1
|
Danz JC, Degen M. Selective modulation of the bone remodeling regulatory system through orthodontic tooth movement-a review. FRONTIERS IN ORAL HEALTH 2025; 6:1472711. [PMID: 40115506 PMCID: PMC11924204 DOI: 10.3389/froh.2025.1472711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025] Open
Abstract
Little is known about how tissues mediate the ability to selectively form or resorb bone, as required during orthodontic tooth movement (OTM), facial growth, continued tooth eruption and for healing after fractures, maxillofacial surgical repositioning or implant dentistry. OTM has the unique ability to selectively cause apposition, resorption or a combination of both at the alveolar periosteal surface and therefore, provides an optimal process to study the regulation of bone physiology at a tissue level. Our aim was to elucidate the mechanisms and signaling pathways of the bone remodeling regulatory system (BRRS) as well as to investigate its clinical applications in osteoporosis treatment, orthopedic surgery, fracture management and orthodontic treatment. OTM is restricted to a specific range in which the BRRS permits remodeling; however, surpassing this limit may lead to bone dehiscence. Low-intensity pulsed ultrasound, vibration or photobiomodulation with low-level laser therapy have the potential to modify BRRS with the aim of reducing bone dehiscence and apical root resorption or accelerating OTM. Unloading of bone and periodontal compression promotes resorption via receptor activator of nuclear factor κB-ligand, monocyte chemotactic protein-1, parathyroid hormone-related protein (PTHrP), and suppression of anti-resorptive mediators. Furthermore, proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, IL-8, tumor necrosis factor-α, and prostaglandins exert a synergistic effect on bone resorption. While proinflammatory cytokines are associated with periodontal sequelae such as bone dehiscence and gingival recessions, they are not essential for OTM. Integrins mediate mechanotransduction by converting extracellular biomechanical signals into cellular responses leading to bone apposition. Active Wnt signaling allows β-catenin to translocate into the nucleus and to stimulate bone formation, consequently converging with integrin-mediated mechanotransductive signals. During OTM, periodontal fibroblasts secrete PTHrP, which inhibits sclerostin secretion in neighboring osteocytes via the PTH/PTHrP type 1 receptor interaction. The ensuing sclerostin-depleted region may enhance stem cell differentiation into osteoblasts and subperiosteal osteoid formation. OTM-mediated BRRS modulation suggests that administering sclerostin-inhibiting antibodies in combination with PTHrP may have a synergistic bone-inductive effect. This approach holds promise for enhancing osseous wound healing, treating osteoporosis, bone grafting and addressing orthodontic treatments that are linked to periodontal complications.
Collapse
Affiliation(s)
- Jan Christian Danz
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine ZMK, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Li T, Xing F, Zhang N, Chen J, Zhang Y, Yang H, Peng S, Ma R, Liu Q, Gan S, Wang H. Genome-Wide Association Analysis of Growth Traits in Hu Sheep. Genes (Basel) 2024; 15:1637. [PMID: 39766904 PMCID: PMC11675594 DOI: 10.3390/genes15121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: The Hu sheep is a renowned breed characterized by high reproduction, year-round estrus, and resistance to high humidity and temperature conditions. However, the breed exhibits lower growth rates and meat yields, which necessitate improvements through selective breeding. The integration of molecular markers in sheep breeding programs has the potential to enhance growth performance, reduce breeding cycles, and increase meat production. Currently, the applications of SNP chips for genotyping in conjunction with genome-wide association studies (GWAS) have become a prevalent approach for identifying candidate genes associated with economically significant traits in livestock. (2) Methods: To pinpoint candidate genes influencing growth traits in Hu sheep, we recorded the birth weight, weaning weight, and weights at 3, 4, 5, 6, and 7 months for a total of 567 Hu sheep, and genotyping was performed using the Ovine 40K SNP chip. (3) Results: Through GWAS analysis and KEGG pathway enrichment, we identified three candidate genes associated with birth weight (CAMK2B, CACNA2D1, and CACNA1C). Additionally, we found two candidate genes linked to weaning weight (FGF9 and BMPR1B), with CACNA2D1 also serving as a shared gene between birth weight and weaning weight traits. Furthermore, we identified eight candidate genes related to monthly weight (FIGF, WT1, KCNIP4, JAK2, WWP1, PLCL1, GPRIN3, and CCSER1). (4) Conclusion: Our findings revealed a total of 13 candidate genetic markers that can be utilized for molecular marker-assisted selection, aiming to improve meat production in sheep breeding programs.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science and Technology, Tarim University, Alar 843300, China; (T.L.); (F.X.)
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Feng Xing
- College of Life Science and Technology, Tarim University, Alar 843300, China; (T.L.); (F.X.)
| | - Na Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Jieran Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Yuting Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Hengqian Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Shiyu Peng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Runlin Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Qiuyue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Shangquan Gan
- College of Life Science and Technology, Tarim University, Alar 843300, China; (T.L.); (F.X.)
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haitao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| |
Collapse
|
3
|
Sui L, Cong Y, Liu M, Liu X, Xu Y, Jiang WG, Ye L. Upregulated bone morphogenetic protein 8A (BMP8A) in triple negative breast cancer (TNBC) and its involvement in the bone metastasis. Front Cell Dev Biol 2024; 12:1374269. [PMID: 39100096 PMCID: PMC11294076 DOI: 10.3389/fcell.2024.1374269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
Objective The present study aimed to investigate the involvement of aberrant BMP8A expression in TNBC and bone metastasis. Methods Aberrant expression of BMP8A in breast cancer was first determined by analyzing The Cancer Genome Atlas breast cancer cohort (TCGA-BRCA) and an immunohistochemical (IHC) staining of BMP8A in a breast cancer tissue microarray (TMA). Clinical relevance of deregulated BMP8A in breast cancer was assessed using Kaplan-Meier online analysis. The influence of BMP8A on cellular functions of two TNBC cell lines was assessed using in vitro assays. Conditional medium (CM) collected from the supernatant of hFOB cells and bone matrix extract (BME) was applied to mimic the bone micro-environment to evaluate the role played by BMP8A in bone metastasis. Correlations with both osteolytic and osteoblastic markers were evaluated in the TCGA-BRCA cohort. Expression of certain responsive genes was quantified in the BMP8A overexpression cell lines. Additionally, signal transduction through both Smad-dependent and independent pathways was evaluated using Western blot assay. Results Compared to the adjacent normal tissues, BMP8A expression was significantly increased in primary tumors (p < 0.05) which was associated with shorter distant metastasis free survival (DMFS) in TNBC (p < 0.05). BMP8A was observed to enhance cell invasion and migration within TNBC cells. In the simulated bone milieu, both MDA-MB-231BMP8Aexp and BT549BMP8Aexp cells presented enhanced invasiveness. BMP8A level was strongly correlated with most osteolytic and osteoblastic markers, suggesting the potential involvement of BMP8A in bone metastasis in TNBC. Receptor activator of nuclear factor kappa-B ligand (RANKL) expression was significantly increased in BMP8A overexpressed triple-negative cell lines (MDA-MB-231 and BT549). Furthermore, enhanced phosphorylation of Smad3 and increased expression of epidermal growth factor receptor (EGFR) were observed in MDA-MB-231 cells overexpressing BMP8A. Conclusion BMP8A was upregulated in TNBC which was associated with poorer DMFS. BMP8A overexpression enhanced the invasion and migration of TNBC cells. With a putative role in osteolytic bone metastasis in TNBC, BMP8A represents a promising candidate for further investigation into its therapeutic potential.
Collapse
Affiliation(s)
- Laijian Sui
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
- Department of Orthopedics, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Yizi Cong
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ming Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Xiangyi Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
4
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
5
|
Lhousni S, Charif M, Derouich Y, Elidrissi Errahhali M, Elidrissi Errahhali M, Ouarzane M, Lenaers G, Boulouiz R, Belahcen M, Bellaoui M. A novel variant in BMPR1B causes acromesomelic dysplasia Grebe type in a consanguineous Moroccan family: Expanding the phenotypic and mutational spectrum of acromesomelic dysplasias. Bone 2023; 175:116860. [PMID: 37524292 DOI: 10.1016/j.bone.2023.116860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Acromesomelic dysplasia Grebe type (AMD Grebe type) is an autosomal recessive trait characterized by short stature, shortened limbs and malformations of the hands and feet. It is caused by variants in the growth differentiation factor 5 (GDF5) or, in rare cases, its receptor, the bone morphogenetic protein receptor-1B (BMPR1B). Here, we report a novel homozygous BMPR1B variant causing AMD Grebe type in a consanguineous Moroccan family with two affected sibs from BRO Biobank. Remarkably, the affected individuals showed additional features including bilateral simian creases, lumbar hyperlordosis, as well as lower limb length inequality and dislocated hips in one of them, which were never reported previously for AMD Grebe type patients. The identified novel BMPR1B variant (c.1201C>T, p.R401*) is predicted to result in loss of function of the BMPR1B protein either by nonsense-mediated mRNA decay or production of a truncated BMPR1B protein. Thus, these findings expand the phenotypic and mutational spectrum of AMD, and may improve the diagnosis of AMD and enable appropriate genetic counselling to be offered to patients.
Collapse
Affiliation(s)
- Saida Lhousni
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Majida Charif
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; Genetics and Immuno-Cell Therapy Team, Faculty of Science, University Mohammed Premier, Oujda, Morocco
| | - Yassine Derouich
- Department of Pediatric Orthopedic and Trauma Surgery, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mounia Elidrissi Errahhali
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Manal Elidrissi Errahhali
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Meryem Ouarzane
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Guy Lenaers
- Université d'Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, F-49933 Angers, France; Service de Neurologie, CHU d'Angers, Angers, France
| | - Redouane Boulouiz
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Belahcen
- Department of Pediatric Orthopedic and Trauma Surgery, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Bellaoui
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
6
|
Hu L, Cheng Z, Wu L, Luo L, Pan P, Li S, Jia Q, Yang N, Xu B. Histone methyltransferase SETDB1 promotes osteogenic differentiation in osteoporosis by activating OTX2-mediated BMP-Smad and Wnt/β-catenin pathways. Hum Cell 2023:10.1007/s13577-023-00902-w. [PMID: 37074626 DOI: 10.1007/s13577-023-00902-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Osteogenic differentiation plays important roles in the pathogenesis of osteoporosis. In this study, we explored the regulatory mechanism of histone methyltransferase SET domain bifurcated 1 (SETDB1) underlying the osteogenic differentiation in osteoporosis. The common osteoporosis-related genes were retrieved from the GeneCards, CTD, and Phenolyzer databases. The enrichment analysis was conducted on the candidate osteoporosis-related genes using the PANTHER software, and the binding site between transcription factors and target genes predicted by hTFtarget. The bioinformatics analyses suggested 6 osteoporosis-related chromatin/chromatin binding protein or regulatory proteins (HDAC4, SIRT1, SETDB1, MECP2, CHD7, and DKC1). Normal and osteoporosis tissues were collected from osteoporosis patients to examine the expression of SETDB1. It was found that SETDB1 was poorly expressed in osteoporotic femoral tissues, indicating that SETDB1 might be involved in the development of osteoporosis. We induced SETDB1 overexpression/knockdown, orthodenticle homeobox 2 (OTX2) overexpression, activation of Wnt/β-catenin or BMP-Smad pathways alone or in combination in osteoblasts or ovariectomized mice. The data indicated that SETDB1 methylation regulated H3K9me3 in the OTX2 promoter region and inhibited the expression of OTX2. Besides, the BMP-Smad and Wnt/β-catenin pathways were inhibited by OTX2, thereby resulting in inhibited osteogenic differentiation. Animal experiments showed that overexpressed SETDB1 could promote the increase of calcium level and differentiation of femoral tissues. In conclusion, upregulation of SETDB1 promotes osteogenic differentiation by inhibiting OTX2 and activating the BMP-Smad and Wnt/β-catenin pathways in osteoporosis.
Collapse
Affiliation(s)
- Lianying Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Zhen Cheng
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Lunan Wu
- Department of Anesthesiology and Perioperative Medicine, The Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, The Second Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Liangliang Luo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Ping Pan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Shujin Li
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Qiyu Jia
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Ning Yang
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
7
|
Omi M, Koneru T, Lyu Y, Haraguchi A, Kamiya N, Mishina Y. Increased BMP-Smad signaling does not affect net bone mass in long bones. Front Physiol 2023; 14:1145763. [PMID: 37064883 PMCID: PMC10101206 DOI: 10.3389/fphys.2023.1145763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have been used for orthopedic and dental application due to their osteoinductive properties; however, substantial numbers of adverse reactions such as heterotopic bone formation, increased bone resorption and greater cancer risk have been reported. Since bone morphogenetic proteins signaling exerts pleiotropic effects on various tissues, it is crucial to understand tissue-specific and context-dependent functions of bone morphogenetic proteins. We previously reported that loss-of-function of bone morphogenetic proteins receptor type IA (BMPR1A) in osteoblasts leads to more bone mass in mice partly due to inhibition of bone resorption, indicating that bone morphogenetic protein signaling in osteoblasts promotes osteoclast function. On the other hand, hemizygous constitutively active (ca) mutations for BMPR1A (caBmpr1awt/+) in osteoblasts result in higher bone morphogenetic protein signaling activity and no overt skeletal changes in adult mice. Here, we further bred mice for heterozygous null for Bmpr1a (Bmpr1a+/−) and homozygous mutations of caBmpr1a (caBmpr1a+/+) crossed with Osterix-Cre transgenic mice to understand how differences in the levels of bone morphogenetic protein signaling activity specifically in osteoblasts contribute to bone phenotype. We found that Bmpr1a+/−, caBmpr1awt/+ and caBmpr1a+/+ mice at 3 months of age showed no overt bone phenotypes in tibiae compared to controls by micro-CT and histological analysis although BMP-Smad signaling is increased in both caBmpr1awt/+ and caBmpr1a+/+ tibiae and decreased in the Bmpr1a+/− mice compared to controls. Gene expression analysis demonstrated that slightly higher levels of bone formation markers and resorption markers along with levels of bone morphogenetic protein-Smad signaling, however, there was no significant changes in TRAP positive cells in tibiae. These findings suggest that changes in bone morphogenetic protein signaling activity within differentiating osteoblasts does not affect net bone mass in the adult stage, providing insights into the concerns in the clinical setting such as high-dose and unexpected side effects of bone morphogenetic protein application.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Tejaswi Koneru
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Yishan Lyu
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ai Haraguchi
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Nobuhiro Kamiya
- Department of Budo and Sport Studies, Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- *Correspondence: Yuji Mishina,
| |
Collapse
|
8
|
Profiling the Spatial Expression Pattern and ceRNA Network of lncRNA, miRNA, and mRNA Associated with the Development of Intermuscular Bones in Zebrafish. BIOLOGY 2022; 12:biology12010075. [PMID: 36671767 PMCID: PMC9855694 DOI: 10.3390/biology12010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Intermuscular bones (IBs) are small spicule-like bones in the muscular septum of fish, which affect their edible and economic value. The molecular mechanism of IB development is still uncertain. Numerous studies have shown that the ceRNA network, which is composed of mRNA, lncRNA, and miRNA, plays an important regulatory role in bone development. In this study, we compared the mRNA, lncRNA, and miRNA expression profiles in different IB development segments of zebrafish. The development of IBs includes two main processes, which are formation and growth. A series of genes implicated in the formation and growth of IBs were identified through gene differential expression analysis and expression pattern analysis. Functional enrichment analysis showed that the functions of genes implicated in the regulation of the formation and growth of IBs were quite different. Ribosome and oxidative phosphorylation signaling pathways were significantly enriched during the formation of IBs, suggesting that many proteins are required to form IBs. Several pathways known to be associated with bone development have been shown to play an important role in the growth of IBs, including calcium, ECM-receptor interaction, Wnt, TGF-β, and hedgehog signaling pathways. According to the targeting relationship and expression correlation of mRNA, lncRNA, and miRNA, the ceRNA networks associated with the growth of IBs were constructed, which comprised 33 mRNAs, 9 lncRNAs, and 7 miRNAs. This study provides new insight into the molecular mechanism of the development of IBs.
Collapse
|
9
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
10
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
11
|
Guyot B, Lefort S, Voeltzel T, Pécheur EI, Maguer-Satta V. Altered BMP2/4 Signaling in Stem Cells and Their Niche: Different Cancers but Similar Mechanisms, the Example of Myeloid Leukemia and Breast Cancer. Front Cell Dev Biol 2022; 9:787989. [PMID: 35047500 PMCID: PMC8762220 DOI: 10.3389/fcell.2021.787989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding mechanisms of cancer development is mandatory for disease prevention and management. In healthy tissue, the microenvironment or niche governs stem cell fate by regulating the availability of soluble molecules, cell-cell contacts, cell-matrix interactions, and physical constraints. Gaining insight into the biology of the stem cell microenvironment is of utmost importance, since it plays a role at all stages of tumorigenesis, from (stem) cell transformation to tumor escape. In this context, BMPs (Bone Morphogenetic Proteins), are key mediators of stem cell regulation in both embryonic and adult organs such as hematopoietic, neural and epithelial tissues. BMPs directly regulate the niche and stem cells residing within. Among them, BMP2 and BMP4 emerged as master regulators of normal and tumorigenic processes. Recently, a number of studies unraveled important mechanisms that sustain cell transformation related to dysregulations of the BMP pathway in stem cells and their niche (including exposure to pollutants such as bisphenols). Furthermore, a direct link between BMP2/BMP4 binding to BMP type 1 receptors and the emergence and expansion of cancer stem cells was unveiled. In addition, a chronic exposure of normal stem cells to abnormal BMP signals contributes to the emergence of cancer stem cells, or to disease progression independently of the initial transforming event. In this review, we will illustrate how the regulation of stem cells and their microenvironment becomes dysfunctional in cancer via the hijacking of BMP signaling with main examples in myeloid leukemia and breast cancers.
Collapse
Affiliation(s)
- Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Eve-Isabelle Pécheur
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
| |
Collapse
|
12
|
Shin B, Hrdlicka HC, Delany AM, Lee SK. Inhibition of miR-29 Activity in the Myeloid Lineage Increases Response to Calcitonin and Trabecular Bone Volume in Mice. Endocrinology 2021; 162:bqab135. [PMID: 34192317 PMCID: PMC8328098 DOI: 10.1210/endocr/bqab135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/29/2022]
Abstract
The miR-29-3p family (miR-29a, miR-29b, miR-29c) of microRNAs is increased during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. In vivo, activation of a miR-29-3p tough decoy inhibitor in Cre recombinase under the control of the lysozyme 2 promoter-expressing cells (myeloid lineage) resulted in mice displaying enhanced trabecular and cortical bone volume because of decreased bone resorption. Calcitonin receptor (Calcr) is a miR-29 target that negatively regulates bone resorption. CALCR was significantly increased in RANKL-treated miR-29-decoy osteoclasts, and these cells were more responsive to the inhibitory effect of calcitonin on osteoclast formation. Further, cathepsin K (Ctsk), which is critical for resorption, was decreased in miR-29-decoy cells. CALCR is a Gs-coupled receptor and its activation raises cAMP levels. In turn, cAMP suppresses cathepsin K, and cAMP levels were increased in miR-29-decoy cells. siRNA-mediated knock-down of Calcr in miR-29 decoy osteoclasts allowed recovery of cathepsin K levels in these cells. Overall, using a novel knockin tough decoy mouse model, we identified a new role for miR-29-3p in bone homeostasis. In RANKL-driven osteoclastogenesis, as seen in normal bone remodeling, miR-29-3p promotes resorption. Consequently, inhibition of miR-29-3p activity in the myeloid lineage leads to increased trabecular and cortical bone. Further, this study documents an interrelationship between CALCR and CTSK in osteoclastic bone resorption, which is modulated by miR-29-3p.
Collapse
Affiliation(s)
- Bongjin Shin
- Center on Aging, UConn Health, Farmington, CT 06030, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
13
|
Heubel B, Nohe A. The Role of BMP Signaling in Osteoclast Regulation. J Dev Biol 2021; 9:24. [PMID: 34203252 PMCID: PMC8293073 DOI: 10.3390/jdb9030024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established.
Collapse
Affiliation(s)
- Brian Heubel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
14
|
Hu Y, Hao X, Liu C, Ren C, Wang S, Yan G, Meng Y, Mishina Y, Shi C, Sun H. Acvr1 deletion in osteoblasts impaired mandibular bone mass through compromised osteoblast differentiation and enhanced sRANKL-induced osteoclastogenesis. J Cell Physiol 2021; 236:4580-4591. [PMID: 33251612 PMCID: PMC8048423 DOI: 10.1002/jcp.30183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is well known in bone homeostasis. However, the physiological effects of BMP signaling on mandibles are largely unknown, as the mandible has distinct functions and characteristics from other bones. In this study, we investigated the roles of BMP signaling in bone homeostasis of the mandibles by deleting BMP type I receptor Acvr1 in osteoblast lineage cells with Osterix-Cre. We found mandibular bone loss in conditional knockout mice at the ages of postnatal day 21 and 42 in an age-dependent manner. The decreased bone mass was related to compromised osteoblast differentiation together with enhanced osteoclastogenesis, which was secondary to the changes in osteoblasts in vivo. In vitro study revealed that deletion of Acvr1 in the mandibular bone marrow stromal cells (BMSCs) significantly compromised osteoblast differentiation. When wild type bone marrow macrophages were cocultured with BMSCs lacking Acvr1 both directly and indirectly, both proliferation and differentiation of osteoclasts were induced as evidenced by an increase of multinucleated cells, compared with cocultured with control BMSCs. Furthermore, we demonstrated that the increased osteoclastogenesis in vitro was at least partially due to the secretion of soluble receptor activator of nuclear factor-κB ligand (sRANKL), which is probably the reason for the mandibular bone loss in vivo. Overall, our results proposed that ACVR1 played essential roles in maintaining mandibular bone homeostasis through osteoblast differentiation and osteoblast-osteoclast communication via sRANKL.
Collapse
Affiliation(s)
- Yue Hu
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Xinqing Hao
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Cangwei Liu
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Chunxia Ren
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Shuangshuang Wang
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Guangxing Yan
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Yuan Meng
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Ce Shi
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| |
Collapse
|
15
|
Kumar S, Punetha M, Jose B, Bharati J, Khanna S, Sonwane A, Green JA, Whitworth K, Sarkar M. Modulation of granulosa cell function via CRISPR-Cas fuelled editing of BMPR-IB gene in goats (Capra hircus). Sci Rep 2020; 10:20446. [PMID: 33235250 PMCID: PMC7686318 DOI: 10.1038/s41598-020-77596-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
BMPs are multifunctional growth factors implicated in regulating the ovarian function as key intra-ovarian factors. Biological effects of BMPs are mediated through binding with membrane bound receptors like BMPR-IB and initiating downstream Smad signaling pathway. FecB mutation, regarded as a loss of function mutation in the BMPR-IB gene was identified in certain sheep breeds having high fecundity. Similar type of fecundity genes in goats have not been discovered so far. Hence, the current study was designed to investigate the effects of BMPR-IB gene modulation on granulosa cell function in goats. The BMPR-IB gene was knocked out using CRISPR-Cas technology in granulosa cells and cultured in vitro with BMP-4 stimulation for three different durations In addition, the FecB mutation was introduced in the BMPR-IB gene applying Easi-CRISPR followed by BMP-4/7 stimulation for 72 h. Steroidogenesis and cell viability were studied to explore the granulosa cell function on BMPR-IB gene modulation. BMPRs were found to be expressed stage specifically in granulosa cells of goats. Higher transcriptional abundance of R-Smads, LHR and FSHR indicating sensitisation of Smad signaling and increased gonadotropin sensitivity along with a significant reduction in the cell proliferation and viability was observed in granulosa cells upon BMPR-IB modulation. The inhibitory action of BMP-4/7 on P4 secretion was abolished in both KO and KI cells. Altogether, the study has revealed an altered Smad signaling, steroidogenesis and cell viability upon modulation of BMPR-IB gene in granulosa cells similar to that are documented in sheep breeds carrying the FecB mutation.
Collapse
Affiliation(s)
- Sai Kumar
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Meeti Punetha
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Bosco Jose
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jaya Bharati
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Shivani Khanna
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Arvind Sonwane
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jonathan A Green
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Kristin Whitworth
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Mihir Sarkar
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
16
|
Lademann F, Hofbauer LC, Rauner M. The Bone Morphogenetic Protein Pathway: The Osteoclastic Perspective. Front Cell Dev Biol 2020; 8:586031. [PMID: 33178699 PMCID: PMC7597383 DOI: 10.3389/fcell.2020.586031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Bone health crucially relies on constant bone remodeling and bone regeneration, both tightly controlled processes requiring bone formation and bone resorption. Plenty of evidence identifies bone morphogenetic proteins (BMP) as major players in osteoblast differentiation and thus, bone formation. However, in recent past years, researchers also increasingly reported on the pivotal role of these multi-functional growth factors in osteoclast formation and activity. This review aims to summarize the current knowledge of BMP signaling within the osteoclast lineage, its role in bone resorption, and osteoblast-osteoclast coupling. Furthermore, subsequent clinical implications for recombinant BMP therapy will be discussed in view of recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Shin B, Kupferman J, Schmidt E, Polleux F, Delany AM, Lee SK. Rac1 Inhibition Via Srgap2 Restrains Inflammatory Osteoclastogenesis and Limits the Clastokine, SLIT3. J Bone Miner Res 2020; 35:789-800. [PMID: 31880824 PMCID: PMC7690287 DOI: 10.1002/jbmr.3945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 01/26/2023]
Abstract
The Rac1-specific guanosine triphosphatase (GTPase)-activating protein Slit-Robo GAP2 (Srgap2) is dramatically upregulated during RANKL-induced osteoclastogenesis. Srgap2 interacts with the cell membrane to locally inhibit activity of Rac1. In this study, we determined the role of Srgap2 in the myeloid lineage on bone homeostasis and the osteoclastic response to TNFα treatment. The bone phenotype of mice specifically lacking Srgap2 in the myeloid lineage (Srgap2 f/f :LysM-Cre; Srgap2 conditional knockout [cKO]) was investigated using histomorphometric analysis, in vitro cultures and Western blot analysis. Similar methods were used to determine the impact of TNFα challenge on osteoclast formation in Srgap2 cKO mice. Bone parameters in male Srgap2 cKO mice were unaffected. However, female cKO mice displayed higher trabecular bone volume due to increased osteoblast surface and bone formation rate, whereas osteoclastic parameters were unaltered. In vitro, cells from Srgap2 cKO had strongly enhanced Rac1 activation, but RANKL-induced osteoclast formation was unaffected. In contrast, conditioned medium from Srgap2 cKO osteoclasts promoted osteoblast differentiation and had increased levels of the bone anabolic clastokine SLIT3, providing a possible mechanism for increased bone formation in vivo. Rac1 is rapidly activated by the inflammatory cytokine TNFα. Supracalvarial injection of TNFα caused an augmented osteoclastic response in Srgap2 cKO mice. In vitro, cells from Srgap2 cKO mice displayed increased osteoclast formation in response to TNFα. We conclude that Srgap2 plays a prominent role in limiting osteoclastogenesis during inflammation through Rac1, and restricts expression of the paracrine clastokine SLIT3, a positive regulator of bone formation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bongjin Shin
- Center on Aging, UConn Health, Farmington, CT, USA
| | | | - Ewoud Schmidt
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT, USA
| | | |
Collapse
|
18
|
Shin B, Won H, Adams DJ, Lee SK. CD55 Regulates Bone Mass in Mice by Modulating RANKL-Mediated Rac Signaling and Osteoclast Function. J Bone Miner Res 2020; 35:130-142. [PMID: 31487060 DOI: 10.1002/jbmr.3861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023]
Abstract
CD55 is a glycosylphosphatidylinositol (GPI)-anchored protein that regulates complement-mediated and innate and adaptive immune responses. Although CD55 is expressed in various cell types in the bone marrow, its role in bone has not been investigated. In the current study, trabecular bone volume measured by μCT in the femurs of CD55KO female mice was increased compared to wild type (WT). Paradoxically, osteoclast number was increased in CD55KO with no differences in osteoblast parameters. Osteoclasts from CD55KO mice exhibited abnormal actin-ring formation and reduced bone-resorbing activity. Moreover, macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) treatment failed to activate Rac guanosine triphosphatase (GTPase) in CD55KO bone marrow macrophage (BMM) cells. In addition, apoptotic caspases activity was enhanced in CD55KO, which led to the poor survival of mature osteoclasts. Our results imply that CD55KO mice have increased bone mass due to defective osteoclast resorbing activity resulting from reduced Rac activity in osteoclasts. We conclude that CD55 plays an important role in the survival and bone-resorption activity of osteoclasts through regulation of Rac activity. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bongjin Shin
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Heeyeon Won
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Douglas J Adams
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA.,Department of Orthopedics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sun-Kyeong Lee
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
19
|
Omi M, Kaartinen V, Mishina Y. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J Biol Chem 2019; 294:17818-17836. [PMID: 31619522 DOI: 10.1074/jbc.ra119.009521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are important mediators of osteoclast differentiation. Although accumulating evidence has implicated BMPs in osteoblastogenesis, the mechanisms by which BMPs regulate osteoclastogenesis remain unclear. Activin A receptor type 1 (ACVR1) is a BMP type 1 receptor essential for skeletal development. Here, we observed that BMP-7, which preferentially binds to ACVR1, promotes osteoclast differentiation, suggesting ACVR1 is involved in osteoclastogenesis. To investigate this further, we isolated osteoclasts from either Acvr1-floxed mice or mice with constitutively-activated Acvr1 (caAcvr1) carrying tamoxifen-inducible Cre driven by a ubiquitin promotor and induced Cre activity in culture. Osteoclasts from the Acvr1-floxed mice had reduced osteoclast numbers and demineralization activity, whereas those from the caAcvr1-mutant mice formed large osteoclasts and demineralized pits, suggesting that BMP signaling through ACVR1 regulates osteoclast fusion and activity. It is reported that BMP-2 binds to BMPR1A, another BMP type 1 receptor, whereas BMP-7 binds to ACVR1 to activate SMAD1/5/9 signaling. Here, Bmpr1a-disrupted osteoclasts displayed reduced phospho-SMAD1/5/9 (pSMAD1/5/9) levels when induced by BMP-2, whereas no impacts on pSMAD1/5/9 were observed when induced by BMP-7. In contract, Acvr1-disrupted osteoclasts displayed reduced pSMAD1/5/9 levels when induced either by BMP-2 or BMP-7, suggesting that ACVR1 is the major receptor for transducing BMP-7 signals in osteoclasts. Indeed, LDN-193189 and LDN-212854, which specifically block SMAD1/5/9 phosphorylation, inhibited osteoclastogenesis of caAcvr1-mutant cells. Moreover, increased BMP signaling promoted nuclear translocation of nuclear factor-activated T-cells 1 (NFATc1), which was inhibited by LDN treatments. Taken together, ACVR1-mediated BMP-SMAD signaling activates NFATc1, a regulatory protein crucial for receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
20
|
Gooding S, Olechnowicz SWZ, Morris EV, Armitage AE, Arezes J, Frost J, Repapi E, Edwards JR, Ashley N, Waugh C, Gray N, Martinez-Hackert E, Lim PJ, Pasricha SR, Knowles H, Mead AJ, Ramasamy K, Drakesmith H, Edwards CM. Transcriptomic profiling of the myeloma bone-lining niche reveals BMP signalling inhibition to improve bone disease. Nat Commun 2019; 10:4533. [PMID: 31586071 PMCID: PMC6778199 DOI: 10.1038/s41467-019-12296-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma is an incurable, bone marrow-dwelling malignancy that disrupts bone homeostasis causing skeletal damage and pain. Mechanisms underlying myeloma-induced bone destruction are poorly understood and current therapies do not restore lost bone mass. Using transcriptomic profiling of isolated bone lining cell subtypes from a murine myeloma model, we find that bone morphogenetic protein (BMP) signalling is upregulated in stromal progenitor cells. BMP signalling has not previously been reported to be dysregulated in myeloma bone disease. Inhibition of BMP signalling in vivo using either a small molecule BMP receptor antagonist or a solubilized BMPR1a-FC receptor ligand trap prevents trabecular and cortical bone volume loss caused by myeloma, without increasing tumour burden. BMP inhibition directly reduces osteoclastogenesis, increases osteoblasts and bone formation, and suppresses bone marrow sclerostin levels. In summary we describe a novel role for the BMP pathway in myeloma-induced bone disease that can be therapeutically targeted.
Collapse
Affiliation(s)
- Sarah Gooding
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre Blood Theme, University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Sam W Z Olechnowicz
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
- Nuffield Dept. of Surgical Sciences, University of Oxford, Oxford, UK
| | - Emma V Morris
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
- Nuffield Dept. of Surgical Sciences, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joao Arezes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joe Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James R Edwards
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
- Nuffield Dept. of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Neil Ashley
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Craig Waugh
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicola Gray
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Pei Jin Lim
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sant-Rayn Pasricha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Helen Knowles
- Nuffield Dept. of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Adam J Mead
- Oxford University Hospitals NHS Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre Blood Theme, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Karthik Ramasamy
- Oxford University Hospitals NHS Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre Blood Theme, University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre Blood Theme, University of Oxford, Oxford, UK.
| | - Claire M Edwards
- NIHR Oxford Biomedical Research Centre Blood Theme, University of Oxford, Oxford, UK.
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK.
- Nuffield Dept. of Surgical Sciences, University of Oxford, Oxford, UK.
- Nuffield Dept. of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Rep 2019; 10:100207. [PMID: 31193008 PMCID: PMC6513777 DOI: 10.1016/j.bonr.2019.100207] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The ability to create recombinant bone morphogenetic proteins (BMPs) in recent years has led to their rise as a common clinical adjuvant. Their application varies, from spinal fixation to repairing palatal clefts, to coating implants for osseointegration. In recent years questions have been raised as to the efficacy of BMPs in several of these procedures. These questions are due to the unwanted side effect of BMPs on other cell types, such as osteoclasts which can resorb bone at the graft/implant site. However, most BMP research focuses on the anabolic osteoinductive effects of BMPs on osteoblasts rather than its counterpart- stimulation of the osteoclasts, which are cells responsible for resorbing bone. In this review, we discuss the data available from multiple in-vitro and in-vivo BMP-related knockout models to elucidate the different functions BMPs have on osteoclast differentiation and activity. BMPs can act directly on osteoclasts to regulate differentiation and activity. Osteoclasts express multiple BMP signaling components. BMPs signal through both SMAD independent and dependent mechanisms in osteoclasts. SMAD dependent BMP signaling regulates osteoclast-osteoblast coupling factors.
Collapse
|
22
|
Abstract
Venous endothelial cells are molecularly and functionally distinct from their arterial counterparts. Although veins are often considered the default endothelial state, genetic manipulations can modulate both acquisition and loss of venous fate, suggesting that venous identity is the result of active transcriptional regulation. However, little is known about this process. Here we show that BMP signalling controls venous identity via the ALK3/BMPR1A receptor and SMAD1/SMAD5. Perturbations to TGF-β and BMP signalling in mice and zebrafish result in aberrant vein formation and loss of expression of the venous-specific gene Ephb4, with no effect on arterial identity. Analysis of a venous endothelium-specific enhancer for Ephb4 shows enriched binding of SMAD1/5 and a requirement for SMAD binding motifs. Further, our results demonstrate that BMP/SMAD-mediated Ephb4 expression requires the venous-enriched BMP type I receptor ALK3/BMPR1A. Together, our analysis demonstrates a requirement for BMP signalling in the establishment of Ephb4 expression and the venous vasculature. The establishment of functional vasculatures requires the specification of newly formed vessels into veins and arteries. Here, Neal et al. use a combination of genetic approaches in mice and zebrafish to show that BMP signalling, via ALK3 and SMAD1/5, is required for venous specification during blood vessel development.
Collapse
|
23
|
Abstract
BMPs play important roles in the development, disease, and regeneration of many tissues. Genetically modified mice with altered BMP receptor genes are particularly informative for clarifying the role of BMP signaling. In this chapter, we introduce several selected protocols for in vivo functional characterization of BMP receptors in genetically modified mice, including immunohistochemistry of BMP downstream signaling (P-Smad1/5/9 or others), histological analysis, whole-mount skeletal staining for cartilage and bone tissues, and whole-mount cartilage staining.
Collapse
|
24
|
Brum AM, van der Leije CS, Schreuders‐Koedam M, Chaibi S, van Leeuwen JPTM, van der Eerden BCJ. Mucin 1 (Muc1) Deficiency in Female Mice Leads to Temporal Skeletal Changes During Aging. JBMR Plus 2018; 2:341-350. [PMID: 30460337 PMCID: PMC6237209 DOI: 10.1002/jbm4.10061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Mucin1 (MUC1) encodes a glycoprotein that has been demonstrated to have important roles in cell-cell interactions, cell-matrix interactions, cell signaling, modulating tumor progression and metastasis, and providing physical protection to cells against pathogens. In this study, we investigated the bone phenotype in female C57BL/6 Muc1 null mice and the impact of the loss of Muc1 on osteoblasts and osteoclasts. We found that deletion of Muc1 results in reduced trabecular bone volume in 8-week-old mice compared with wild-type controls, but the trabecular bone volume fraction normalizes with increasing age. In mature female mice (16 weeks old), Muc1 deletion results in stiffer femoral bones with fewer osteoblasts lining the trabecular surface but increased endosteal mineralized surface and bone formation rate. The latter remains higher compared with wild-type females at age 52 weeks. No difference was found in osteoclast numbers in vivo and in bone marrow osteoblast or osteoclast differentiation capacity or activity in vitro. Taken together, these results suggest that Muc1 depletion causes a transiently reduced trabecular bone mass phenotype in young mice, and later in life reduced numbers of osteoblasts with increased endocortical mineralization activity coincides with unaffected total bone mass and increased stiffness. In conclusion, our results show, for the first time to our knowledge, a role for Muc1 in bone mass and mineralization in mice in a time-dependent manner. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andrea M Brum
- Department of Internal MedicineErasmus Medical CentreRotterdamThe Netherlands
| | | | | | - Siham Chaibi
- Department of Internal MedicineErasmus Medical CentreRotterdamThe Netherlands
| | | | | |
Collapse
|
25
|
BMPRIA is required for osteogenic differentiation and RANKL expression in adult bone marrow mesenchymal stromal cells. Sci Rep 2018; 8:8475. [PMID: 29855498 PMCID: PMC5981611 DOI: 10.1038/s41598-018-26820-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) activate the canonical Smad1/5/8 and non-canonical Tak1-MAPK pathways via BMP receptors I and II to regulate skeletal development and bone remodeling. Specific ablation of Bmpr1a in immature osteoblasts, osteoblasts, or osteocytes results in an increase in cancellous bone mass, yet opposite results have been reported regarding the underlying mechanisms. Moreover, the role for BMPRIA-mediated signaling in bone marrow mesenchymal stromal cells (BM-MSCs) has not been explored. Here, we specifically ablated Bmpr1a in BM-MSCs in adult mice to study the function of BMPR1A in bone remodeling and found that the mutant mice showed an increase in cancellous and cortical bone mass, which was accompanied by a decrease in bone formation rate and a greater decrease in bone resorption. Decreased bone formation was associated with a defect in BM-MSC osteogenic differentiation whereas decreased bone resorption was associated with a decrease in RANKL production and osteoclastogenesis. However, ablation of Tak1, a critical non-canonical signaling molecule downstream of BMP receptors, in BM-MSCs at adult stage did not affect bone remodeling. These results suggest that BMP signaling through BMPRIA controls BM-MSC osteogenic differentiation/bone formation and RANKL expression/osteoclastogenesis in adult mice independent of Tak1 signaling.
Collapse
|
26
|
Shi C, Mandair GS, Zhang H, Vanrenterghem GG, Ridella R, Takahashi A, Zhang Y, Kohn DH, Morris MD, Mishina Y, Sun H. Bone morphogenetic protein signaling through ACVR1 and BMPR1A negatively regulates bone mass along with alterations in bone composition. J Struct Biol 2018; 201:237-246. [PMID: 29175363 PMCID: PMC5820174 DOI: 10.1016/j.jsb.2017.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Bone quantity and bone quality are important factors in determining the properties and the mechanical functions of bone. This study examined the effects of disrupting bone morphogenetic protein (BMP) signaling through BMP receptors on bone quantity and bone quality. More specifically, we disrupted two BMP receptors, Acvr1 and Bmpr1a, respectively, in Osterix-expressing osteogenic progenitor cells in mice. We examined the structural changes to the femora from 3-month old male and female conditional knockout (cKO) mice using micro-computed tomography (micro-CT) and histology, as well as compositional changes to both cortical and trabecular compartments of bone using Raman spectroscopy. We found that the deletion of Acvr1 and Bmpr1a, respectively, in an osteoblast-specific manner resulted in higher bone mass in the trabecular compartment. Disruption of Bmpr1a resulted in a more significantly increased bone mass in the trabecular compartment. We also found that these cKO mice showed lower mineral-to-matrix ratio, while tissue mineral density was lower in the cortical compartment. Collagen crosslink ratio was higher in both cortical and trabecular compartments of male cKO mice. Our study suggested that BMP signaling in osteoblast mediated by BMP receptors, namely ACVR1 and BMPR1A, is critical in regulating bone quantity and bone quality.
Collapse
Affiliation(s)
- Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130000, China; Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Gurjit S Mandair
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Gloria G Vanrenterghem
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Ryan Ridella
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48108-1055, USA
| | - Akira Takahashi
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Yanshuai Zhang
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - David H Kohn
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA; Biomedical Engineering College of Engineering, University of Michigan, MI 48109-2110, USA.
| | - Michael D Morris
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48108-1055, USA.
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130000, China.
| |
Collapse
|
27
|
Marie PJ, Cohen-Solal M. The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. J Bone Miner Res 2018; 33:199-210. [PMID: 29206311 DOI: 10.1002/jbmr.3356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
During the last three decades, important progress in bone cell biology and in human and mouse genetics led to major advances in our understanding of the life and functions of cells of the osteoblast lineage. Previously unrecognized sources of osteogenic cells have been identified. Novel cellular and molecular mechanisms controlling osteoblast differentiation and senescence have been determined. New mechanisms of communications between osteogenic cells, osteocytes, osteoclasts, and chondrocytes, as well as novel links between osteogenic cells and blood vessels have been identified. Additionally, cells of the osteoblast lineage were shown to be important components of the hematopoietic niche and to be implicated in hematologic dysfunctions and malignancy. Lastly, unexpected interactions were found between osteogenic cells and several soft tissues, including the central nervous system, gut, muscle, fat, and testis through the release of paracrine factors, making osteogenic cells multifunctional regulatory cells, in addition to their bone-making function. These discoveries considerably enlarged our vision of the life and functions of osteogenic cells, which may lead to the development of novel therapeutics with immediate applications in bone disorders. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
28
|
Boghossian NS, Sicko RJ, Giannakou A, Dimopoulos A, Caggana M, Tsai MY, Yeung EH, Pankratz N, Cole BR, Romitti PA, Browne ML, Fan R, Liu A, Kay DM, Mills JL. Rare copy number variants identified in prune belly syndrome. Eur J Med Genet 2017; 61:145-151. [PMID: 29174092 DOI: 10.1016/j.ejmg.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022]
Abstract
Prune belly syndrome (PBS), also known as Eagle-Barrett syndrome, is a rare congenital disorder characterized by absence or hypoplasia of the abdominal wall musculature, urinary tract anomalies, and cryptorchidism in males. The etiology of PBS is largely unresolved, but genetic factors are implicated given its recurrence in families. We examined cases of PBS to identify novel pathogenic copy number variants (CNVs). A total of 34 cases (30 males and 4 females) with PBS identified from all live births in New York State (1998-2005) were genotyped using Illumina HumanOmni2.5 microarrays. CNVs were prioritized if they were absent from in-house controls, encompassed ≥10 consecutive probes, were ≥20 Kb in size, had ≤20% overlap with common variants in population reference controls, and had ≤20% overlap with any variant previously detected in other birth defect phenotypes screened in our laboratory. We identified 17 candidate autosomal CNVs; 10 cases each had one CNV and four cases each had two CNVs. The CNVs included a 158 Kb duplication at 4q22 that overlaps the BMPR1B gene; duplications of different sizes carried by two cases in the intron of STIM1 gene; a 67 Kb duplication 202 Kb downstream of the NOG gene, and a 1.34 Mb deletion including the MYOCD gene. The identified rare CNVs spanned genes involved in mesodermal, muscle, and urinary tract development and differentiation, which might help in elucidating the genetic contribution to PBS. We did not have parental DNA and cannot identify whether these CNVs were de novo or inherited. Further research on these CNVs, particularly BMP signaling is warranted to elucidate the pathogenesis of PBS.
Collapse
Affiliation(s)
- Nansi S Boghossian
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States; Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| | - Robert J Sicko
- Division of Genetics, Wadsworth Center, Department of Health, Albany, NY, United States
| | - Andreas Giannakou
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Aggeliki Dimopoulos
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, Department of Health, Albany, NY, United States
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Edwina H Yeung
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Benjamin R Cole
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, United States
| | - Marilyn L Browne
- New York State Department of Health, Congenital Malformations Registry, Albany, NY, United States; University at Albany School of Public Health, Rensselaer, NY, United States
| | - Ruzong Fan
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center (GUMC), Washington, DC, United States
| | - Aiyi Liu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, Department of Health, Albany, NY, United States
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Xie XT, Zhan XL, Hu ZH. Zinc finger protein 521 suppresses osteogenic differentiation of rat mesenchymal stem cells by inhibiting the Wnt/beta-catenin signaling pathway. Mol Biol 2017. [DOI: 10.1134/s0026893317020212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Pan H, Zhang H, Abraham P, Komatsu Y, Lyons K, Kaartinen V, Mishina Y. BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development. Dev Biol 2017. [PMID: 28641928 DOI: 10.1016/j.ydbio.2017.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Craniosynostosis is caused by premature fusion of one or more sutures in an infant skull, resulting in abnormal facial features. The molecular and cellular mechanisms by which genetic mutations cause craniosynostosis are incompletely characterized, and many of the causative genes for diverse types of syndromic craniosynostosis have not yet been identified. We previously demonstrated that augmentation of BMP signaling mediated by a constitutively active BMP type IA receptor (ca-BmpR1A) in neural crest cells (ca1A hereafter) causes craniosynostosis and superimposition of heterozygous null mutation of Bmpr1a rescues premature suture fusion (ca1A;1aH hereafter). In this study, we superimposed heterozygous null mutations of the other two BMP type I receptors, Bmpr1b and Acvr1 (ca1A;1bH and ca1A;AcH respectively hereafter) to further dissect involvement of BMP-Smad signaling. Unlike caA1;1aH, ca1A;1bH and ca1A;AcH did not restore the craniosynostosis phenotypes. In our in vivo study, Smad-dependent BMP signaling was decreased to normal levels in mut;1aH mice. However, BMP receptor-regulated Smads (R-Smads; pSmad1/5/9 hereafter) levels were comparable between ca1A, ca1A;1bH and ca1A;AcH mice, and elevated compared to control mice. Bmpr1a, Bmpr1b and Acvr1 null cells were used to examine potential mechanisms underlying the differences in ability of heterozygosity for Bmpr1a vs. Bmpr1b or Acvr1 to rescue the mut phenotype. pSmad1/5/9 level was undetectable in Bmpr1a homozygous null cells while pSmad1/5/9 levels did not decrease in Bmpr1b or Acvr1 homozygous null cells. Taken together, our study indicates that different levels of expression and subsequent activation of Smad signaling differentially contribute each BMP type I receptor to BMP-Smad signaling and craniofacial development. These results also suggest differential involvement of each type 1 receptor in pathogenesis of syndromic craniosynostoses.
Collapse
Affiliation(s)
- Haichun Pan
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Honghao Zhang
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Ponnu Abraham
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yoshihiro Komatsu
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA; Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Karen Lyons
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vesa Kaartinen
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Hildebrand L, Stange K, Deichsel A, Gossen M, Seemann P. The Fibrodysplasia Ossificans Progressiva (FOP) mutation p.R206H in ACVR1 confers an altered ligand response. Cell Signal 2016; 29:23-30. [PMID: 27713089 DOI: 10.1016/j.cellsig.2016.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
Patients with Fibrodysplasia Ossificans Progressiva (FOP) suffer from ectopic bone formation, which progresses during life and results in dramatic movement restrictions. Cause of the disease are point mutations in the Activin A receptor type 1 (ACVR1), with p.R206H being most common. In this study we compared the signalling responses of ACVR1WT and ACVR1R206H to different ligands. ACVR1WT, but not ACVR1R206H inhibited BMP signalling of BMP2 or BMP4 in a ligand binding domain independent manner. Likewise, the basal BMP signalling activity of the receptor BMPR1A or BMPR1B was inhibited by ACVR1WT, but enhanced by ACVR1R206H. In comparison, BMP6 or BMP7 activated ACVR1WT and caused a hyper-activation of ACVR1R206H. These effects were dependent on an intact ligand binding domain. Finally, the neofunction of Activin A in FOP was tested and found to depend on the ligand binding domain for activating ACVR1R206H. We conclude that the FOP mutation ACVR1R206H is more sensitive to a number of natural ligands. The mutant receptor apparently lost some essential inhibitory interactions with its ligands and co-receptors, thereby conferring an enhanced ligand-dependent signalling and stimulating ectopic bone formation as observed in the patients.
Collapse
Affiliation(s)
- Laura Hildebrand
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Katja Stange
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Leibniz Institute for Farm Animal Biology, Institute for Muscle Biology and Growth, Dummerstorf, Germany.
| | - Alexandra Deichsel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| |
Collapse
|