1
|
Guo X, Huangphattarakul V, Gao J, Yi Z, Yang X, Man Y. Radiographic Outcomes of Transcrestal Sinus Floor Elevation With RBH ≤ 5 mm: Non-Perforation and Laterally Repaired Cases. Clin Implant Dent Relat Res 2025; 27:e70034. [PMID: 40197860 DOI: 10.1111/cid.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVE This study aimed to compare the clinical effects of implants placed in sites with a transcrestal sinus floor elevation (TSFE) featuring a residual bone height (RBH) of ≤ 5 mm, without Schneiderian membrane perforations, to those in sites where a lateral window approach was utilized to repair perforations that occurred during TSFE. METHODS A total of 104 implants in 80 patients (80 sinuses) with RBH ≤ 5 mm who had undergone TSFE with simultaneous implant placement were included in this retrospective study. The implants were categorized into two groups based on whether the Schneiderian membrane was perforated, and the lateral window technique for sinus floor elevation (LSFE) was utilized to repair perforations that occurred during the TSFE procedure. The early implant loss, endo-sinus bone gain (ESBG), and implant apical bone resorption (ABR) were used to assess new bone formation between the non-perforated and the perforated groups. RESULTS The non-perforation group consisted of 89 implants in 69 patients (69 sinuses), whereas the perforated group included 15 implants in 11 patients (11 sinuses). No early implant loss or postoperative complications were observed in either group during the first 6 months following implant installation. The ESBG was (5.83 ± 2.06) mm for the non-perforation group and (7.76 ± 1.63) mm for the perforation-repaired group (p < 0.001). A linear mixed model indicated that group (β = 2.41, 95% CI = 1.49, 3.33, p < 0.001) and RBH (β = -0.53, 95% CI = -0.80, -0.27, p < 0.001) significantly influenced ESBG. The ABR between the non-perforation and perforated group has no statistically significant difference (β = 0.84, 95% CI = -0.41, 2.08, p = 0.185). CONCLUSION Repairing Schneiderian membrane perforations that occur during TSFE in cases with RBH ≤ 5 mm, using the lateral window technique, leads to ideal internal radiographic bone augmentation volume maintenance in the maxillary sinus compared to cases without perforation; no significant difference in early implant loss was observed. TRIAL REGISTRATION Clinical Trial Registry: (ChiCTR2200062886).
Collapse
Affiliation(s)
- Xueqi Guo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Vicha Huangphattarakul
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayu Gao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingmei Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Ho AD, Tanaka M. Novel techniques to quantitatively assess age-dependent alterations in biophysical properties of HSPCs and bone marrow niche. Exp Hematol 2025; 142:104686. [PMID: 39613289 DOI: 10.1016/j.exphem.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
The present knowledge on hematopoietic stem and progenitor cell (HSPC) biology and aging is based largely on studies in mouse models. Although mouse models are invaluable, they are not without limitations for defining how physical properties of HSPCs and their niche change with age. The bone marrow (BM) niche is a complex, interactive environment with multiple cell types. The structure and organization of the BM niche, especially the extracellular matrix (ECM), change with age. Provided with recent advances in quantitative analytical techniques and in vitro niche models, we have developed novel tools to quantitatively assess the impact of specific biochemical and physical cues on homing, adhesion, and migration of HSPCs. Recent developments in in vitro niche models have also provided new insights into the interactions between HSPCs and their niche, particularly the role of matrix stiffness. Further research is needed to integrate physical biomarkers into comprehensive mathematical models of age-dependent HSPC-niche interactions. The key is to use mouse models in conjunction with direct analyses in in vitro niche models to achieve a more comprehensive understanding of age-dependent alterations in niche function and regulation.
Collapse
Affiliation(s)
- Anthony D Ho
- Department of Medicine V, Medical Center, Heidelberg University, Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advances Study, Kyoto University, Kyoto, Japan.
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advances Study, Kyoto University, Kyoto, Japan; Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Ueki T, Osaka Y, Homma K, Yamamoto S, Saruwatari A, Wang H, Kamimura M, Nakanishi J. Reversible Solubility Switching of a Polymer Triggered by Visible-Light Responsive Azobenzene Photochromism with Negligible Thermal Relaxation. Macromol Rapid Commun 2024; 45:e2400419. [PMID: 39116444 PMCID: PMC11583355 DOI: 10.1002/marc.202400419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Indexed: 08/10/2024]
Abstract
This study reports the reversible solubility switching of a polymer triggered by non-phototoxic visible light. A photochromic polymerizable azobenzene monomer with four methoxy groups at the ortho-position (mAzoA) was synthesized, exhibiting reversible photoisomerization between trans- and cis-states using green (546 nm) and blue light (436 nm). Free radical copolymerization of hydrophilic dimethylacrylamide (DMAAm) with mAzoA produced a light-responsive random copolymer (P(mAzoA-r-DMAAm)) that shows a reversible photochromic reaction to visible light. Optimizing mAzoA content resulted in P(mAzoA10.7-r-DMAAm)3.0 kDa exhibiting LCST-type phase separation in PBS (pH 7.4) with trans- and cis-states at 39.2 °C and 32.9 °C, respectively. The bistable temperature range of 6.3 °C covers 37 °C, suitable for mammalian cell culture. Reversible solubility changes were demonstrated under alternating green and blue light at 37 °C. 1H NMR indicated significant retardation of thermal relaxation from cis- to trans-states, preventing undesired thermal mechanical degradation. Madin Darby Canine Kidney (MDCK) cells adhered to the P(mAzoA-r-DMAAm) hydrogel, confirming its non-cytotoxicity and potential for biocompatible interfaces. This principle is useful for developing hydrogels that can reversibly stimulate cells mechanically or chemically in response to visible light.
Collapse
Affiliation(s)
- Takeshi Ueki
- Research Center for Macromolecules and BiomaterialsNational Institute of Materials and Science1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita‐kuSapporoHokkaido060–0810Japan
| | - Yuna Osaka
- Graduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijuku, Katsushika‐kuTokyo125–8585Japan
| | - Kenta Homma
- Research Center for Macromolecules and BiomaterialsNational Institute of Materials and Science1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Present address:
Department of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
- Present address:
Center for Future Innovation (CFi), Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Shota Yamamoto
- Research Center for Macromolecules and BiomaterialsNational Institute of Materials and Science1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Aya Saruwatari
- Research Center for Macromolecules and BiomaterialsNational Institute of Materials and Science1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita‐kuSapporoHokkaido060–0810Japan
| | - Hongxin Wang
- Research Center for Macromolecules and BiomaterialsNational Institute of Materials and Science1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Masao Kamimura
- Graduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijuku, Katsushika‐kuTokyo125–8585Japan
| | - Jun Nakanishi
- Research Center for Macromolecules and BiomaterialsNational Institute of Materials and Science1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Graduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijuku, Katsushika‐kuTokyo125–8585Japan
- Graduate School of Advanced Science and EngineeringWaseda University3‐4‐1 OkuboShinjuku‐kuTokyo169–8555Japan
| |
Collapse
|
4
|
Oliveira BA, Levy D, Paz JL, de Freitas FA, Reichert CO, Rodrigues A, Bydlowski SP. 7-Ketocholesterol Effects on Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:11380. [PMID: 39518932 PMCID: PMC11545361 DOI: 10.3390/ijms252111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in osteogenic or adipogenic media. Osteogenic and adipogenic differentiation was evaluated by Alizarin red and Oil Red O staining, respectively. Osteogenic (ALPL, RUNX2, BGLAP) and adipogenic markers (PPARƔ, C/EBPα) were determined by RT-PCR. Differentiation signaling pathways (SHh, Smo, Gli-3, β-catenin) were determined by indirect immunofluorescence. ATMSCs treated with 7-KC in osteogenic media stained positively for Alizarin Red. 7-KC in adipogenic media decreased the number of adipocytes. 7-KC increased ALPL and RUNX2 but not BGLAP expressions. 7-KC decreased expression of PPARƔ and C/EBPα, did not change SHh, Smo, and Gli-3 expression, and increased the expression of β-catenin. In conclusion, 7-KC favors osteogenic differentiation of ATMSCs through the expression of early osteogenic genes (matrix maturation phase) by activating the Wnt/β-catenin signaling pathway, while inhibiting adipogenic differentiation. This knowledge can be potentially useful in regenerative medicine, in treatments for bone diseases.
Collapse
Affiliation(s)
- Beatriz Araújo Oliveira
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Jessica Liliane Paz
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Fabio Alessandro de Freitas
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Alessandro Rodrigues
- Department of Earth and Exact Sciences, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
5
|
Linke P, Munding N, Kimmle E, Kaufmann S, Hayashi K, Nakahata M, Takashima Y, Sano M, Bastmeyer M, Holstein T, Dietrich S, Müller‐Tidow C, Harada A, Ho AD, Tanaka M. Reversible Host-Guest Crosslinks in Supramolecular Hydrogels for On-Demand Mechanical Stimulation of Human Mesenchymal Stem Cells. Adv Healthc Mater 2024; 13:e2302607. [PMID: 38118064 PMCID: PMC11481031 DOI: 10.1002/adhm.202302607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Stem cells are regulated not only by biochemical signals but also by biophysical properties of extracellular matrix (ECM). The ECM is constantly monitored and remodeled because the fate of stem cells can be misdirected when the mechanical interaction between cells and ECM is imbalanced. A well-defined ECM model for bone marrow-derived human mesenchymal stem cells (hMSCs) based on supramolecular hydrogels containing reversible host-guest crosslinks is fabricated. The stiffness (Young's modulus E) of the hydrogels can be switched reversibly by altering the concentration of non-cytotoxic, free guest molecules dissolved in the culture medium. Fine-adjustment of substrate stiffness enables the authors to determine the critical stiffness level E* at which hMSCs turn the mechano-sensory machinery on or off. Next, the substrate stiffness across E* is switched and the dynamic adaptation characteristics such as morphology, traction force, and YAP/TAZ signaling of hMSCs are monitored. These data demonstrate the instantaneous switching of traction force, which is followed by YAP/TAZ signaling and morphological adaptation. Periodical switching of the substrate stiffness across E* proves that frequent applications of mechanical stimuli drastically suppress hMSC proliferation. Mechanical stimulation across E* level using dynamic hydrogels is a promising strategy for the on-demand control of hMSC transcription and proliferation.
Collapse
Affiliation(s)
- Philipp Linke
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Natalie Munding
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Esther Kimmle
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Stefan Kaufmann
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Kentaro Hayashi
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
| | - Masaki Nakahata
- Department of Macromolecular ScienceGraduate School of ScienceOsaka UniversityOsaka560‐0043Japan
| | - Yoshinori Takashima
- Department of Macromolecular ScienceGraduate School of ScienceOsaka UniversityOsaka560‐0043Japan
| | - Masaki Sano
- Institute of Natural SciencesShanghai Jiao Tong UniversityShanghai200240China
| | - Martin Bastmeyer
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Cell and NeurobiologyZoological InstituteKarlsruhe Institute of Technology76131KarlsruheGermany
- Institute for Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP)Karlsruhe Institute of Technology76334Eggenstein‐LeopoldshafenGermany
| | - Thomas Holstein
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Molecular Genetics and EvolutionCentre for Organismal StudiesHeidelberg University69221HeidelbergGermany
| | - Sascha Dietrich
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
- Department of Haematology, Oncology, and Clinical ImmunologyUniversitätsklinikum Düsseldorf40225DüsseldorfGermany
| | - Carsten Müller‐Tidow
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Akira Harada
- The Institute of Scientific and Industrial ResearchOsaka University8‐1 MihogaokaIbarakiOsaka567‐0047Japan
| | - Anthony D. Ho
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
- Molecular Medicine Partnership Unit HeidelbergEMBL and Heidelberg University69120HeidelbergGermany
| | - Motomu Tanaka
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
| |
Collapse
|
6
|
Cambria E, Coughlin MF, Floryan MA, Offeddu GS, Shelton SE, Kamm RD. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024; 24:216-228. [PMID: 38238471 PMCID: PMC11146605 DOI: 10.1038/s41568-023-00656-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Al-Akashi Z, Zujur D, Kamiya D, Kato T, Kondo T, Ikeya M. Selective vulnerability of human-induced pluripotent stem cells to dihydroorotate dehydrogenase inhibition during mesenchymal stem/stromal cell purification. Front Cell Dev Biol 2023; 11:1089945. [PMID: 36814599 PMCID: PMC9939518 DOI: 10.3389/fcell.2023.1089945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The use of induced mesenchymal stem/stromal cells (iMSCs) derived from human induced pluripotent stem cells (hiPSCs) in regenerative medicine involves the risk of teratoma formation due to hiPSCs contamination in iMSCs. Therefore, eradicating the remaining undifferentiated hiPSCs is crucial for the effectiveness of the strategy. The present study demonstrates the Brequinar (BRQ)-induced inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in de novo pyrimidine biosynthesis, selectively induces apoptosis, cell cycle arrest, and differentiation; furthermore, it promotes transcriptional changes and prevents the growth of 3-dimensional hiPSC aggregates. Contrastingly, BRQ-treated iMSCs showed no changes in survival, differentiation potential, or gene expression. The results suggest that BRQ is a potential agent for the effective purification of iMSCs from a mixed population of iMSCs and hiPSCs, which is a crucial step in successful iMSC-based therapy.
Collapse
Affiliation(s)
- Ziadoon Al-Akashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Denise Zujur
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Daisuke Kamiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Kanazawa, Japan
| | - Toru Kondo
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan,*Correspondence: Makoto Ikeya,
| |
Collapse
|
8
|
Hayashi K, Matsuda M, Nakahata M, Takashima Y, Tanaka M. Stimulus-Responsive, Gelatin-Containing Supramolecular Nanofibers as Switchable 3D Microenvironments for Cells. Polymers (Basel) 2022; 14:polym14204407. [PMID: 36297985 PMCID: PMC9607093 DOI: 10.3390/polym14204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Polymer- and/or protein-based nanofibers that promote stable cell adhesion have drawn increasing attention as well-defined models of the extracellular matrix. In this study, we fabricated two classes of stimulus-responsive fibers containing gelatin and supramolecular crosslinks to emulate the dynamic cellular microenvironment in vivo. Gelatin enabled cells to adhere without additional surface functionalization, while supramolecular crosslinks allowed for the reversible switching of the Young’s modulus through changes in the concentration of guest molecules in culture media. The first class of nanofibers was prepared by coupling the host–guest inclusion complex to gelatin before electrospinning (pre-conjugation), while the second class of nanofibers was fabricated by coupling gelatin to polyacrylamide functionalized with host or guest moieties, followed by conjugation in the electrospinning solution (post-conjugation). In situ AFM nano-indentation demonstrated the reversible switching of the Young’s modulus between 2–3 kPa and 0.2–0.3 kPa under physiological conditions by adding/removing soluble guest molecules. As the concentration of additives does not affect cell viability, the supramolecular fibers established in this study are a promising candidate for various biomedical applications, such as standardized three-dimensional culture matrices for somatic cells and the regulation of stem cell differentiation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Mami Matsuda
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka 565-0871, Japan
- Correspondence: (Y.T.); (M.T.)
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (Y.T.); (M.T.)
| |
Collapse
|
9
|
Maillot C, De Isla N, Loubiere C, Toye D, Olmos E. Impact of microcarrier concentration on mesenchymal stem cell growth and death: Experiments and modelling. Biotechnol Bioeng 2022; 119:3537-3548. [DOI: 10.1002/bit.28228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Charlotte Maillot
- Laboratoire Reactions et Genie des ProcedesUniversite de LorraineCNRS UMR 7274NancyFrance
- Ingenierie Moleculaire et Physiopathologie ArticulaireUniversite de LorraineCNRS UMR 736554500Vandoeuvre‐les‐NancyFrance
| | | | - Celine Loubiere
- Laboratoire Reactions et Genie des ProcedesUniversite de LorraineCNRS UMR 7274NancyFrance
| | - Dominique Toye
- Ingenierie Moleculaire et Physiopathologie ArticulaireUniversite de LorraineCNRS UMR 736554500Vandoeuvre‐les‐NancyFrance
| | - Eric Olmos
- Laboratoire Reactions et Genie des ProcedesUniversite de LorraineCNRS UMR 7274NancyFrance
- Department of Chemical Engineering, Product Environment and Processes (PEPs)Universite de LiegeLiegeBelgium
| |
Collapse
|
10
|
Hasturk O, Smiley JA, Arnett M, Sahoo JK, Staii C, Kaplan DL. Cytoprotection of Human Progenitor and Stem Cells through Encapsulation in Alginate Templated, Dual Crosslinked Silk and Silk-Gelatin Composite Hydrogel Microbeads. Adv Healthc Mater 2022; 11:e2200293. [PMID: 35686928 PMCID: PMC9463115 DOI: 10.1002/adhm.202200293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Indexed: 01/27/2023]
Abstract
Susceptibility of mammalian cells against harsh processing conditions limit their use in cell transplantation and tissue engineering applications. Besides modulation of the cell microenvironment, encapsulation of mammalian cells within hydrogel microbeads attract attention for cytoprotection through physical isolation of the encapsulated cells. The hydrogel formulations used for cell microencapsulation are largely dominated by ionically crosslinked alginate (Alg), which suffer from low structural stability under physiological culture conditions and poor cell-matrix interactions. Here the fabrication of Alg templated silk and silk/gelatin composite hydrogel microspheres with permanent or on-demand cleavable enzymatic crosslinks using simple and cost-effective centrifugation-based droplet processing are demonstrated. The composite microbeads display structural stability under ion exchange conditions with improved mechanical properties compared to ionically crosslinked Alg microspheres. Human mesenchymal stem and neural progenitor cells are successfully encapsulated in the composite beads and protected against environmental factors, including exposure to polycations, extracellular acidosis, apoptotic cytokines, ultraviolet (UV) irradiation, anoikis, immune recognition, and particularly mechanical stress. The microbeads preserve viability, growth, and differentiation of encapsulated stem and progenitor cells after extrusion in viscous polyethylene oxide solution through a 27-gauge fine needle, suggesting potential applications in injection-based delivery and three-dimensional bioprinting of mammalian cells with higher success rates.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jordan A. Smiley
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Miles Arnett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
11
|
Zhang L, Liu B, Wang C, Xin C, Li R, Wang D, Xu L, Fan S, Zhang J, Zhang C, Hu Y, Li J, Wu D, Zhang L, Chu J. Functional Shape-Morphing Microarchitectures Fabricated by Dynamic Holographically Shifted Femtosecond Multifoci. NANO LETTERS 2022; 22:5277-5286. [PMID: 35728002 DOI: 10.1021/acs.nanolett.2c01178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functional microdevices based on responsive hydrogel show great promise in targeted delivery and biomedical analysis. Among state-of-the-art techniques for manufacturing hydrogel-based microarchitectures, femtosecond laser two-photon polymerization distinguishes itself by high designability and precision, but the point-by-point writing scheme requires mechanical apparatuses to support focus scanning. In this work, by predesigning holograms combined with lens phase modulation, multiple femtosecond laser spots are holographically generated and shifted for prototyping of three-dimensional shape-morphing structures without any moving equipment in the construction process. The microcage array is rapidly fabricated for high-performance target capturing enabled by switching environmental pH. Moreover, the built scaffolds can serve as arrayed analytical platforms for observing cell behaviors in normal or changeable living spaces or revealing the anticancer effects of loaded drugs. The proposed approach opens a new path for facile and flexible manufacturing of hydrogel-based functional microstructures with great versatility in micro-object manipulation.
Collapse
Affiliation(s)
- Leran Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Bingrui Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chaowei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chen Xin
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Rui Li
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Liqun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shengying Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Juan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chenchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Swanson WB, Omi M, Woodbury SM, Douglas LM, Eberle M, Ma PX, Hatch NE, Mishina Y. Scaffold Pore Curvature Influences ΜSC Fate through Differential Cellular Organization and YAP/TAZ Activity. Int J Mol Sci 2022; 23:4499. [PMID: 35562890 PMCID: PMC9102667 DOI: 10.3390/ijms23094499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering aims to repair, restore, and/or replace tissues in the human body as an alternative to grafts and prostheses. Biomaterial scaffolds can be utilized to provide a three-dimensional microenvironment to facilitate tissue regeneration. Previously, we reported that scaffold pore size influences vascularization and extracellular matrix composition both in vivo and in vitro, to ultimately influence tissue phenotype for regenerating cranial suture and bone tissues, which have markedly different tissue properties despite similar multipotent stem cell populations. To rationally design biomaterials for specific cell and tissue fate specification, it is critical to understand the molecular processes governed by cell-biomaterial interactions, which guide cell fate specification. Building on our previous work, in this report we investigated the hypothesis that scaffold pore curvature, the direct consequence of pore size, modulates the differentiation trajectory of mesenchymal stem cells (MSCs) through alterations in the cytoskeleton. First, we demonstrated that sufficiently small pores facilitate cell clustering in subcutaneous explants cultured in vivo, which we previously reported to demonstrate stem tissue phenotype both in vivo and in vitro. Based on this observation, we cultured cell-scaffold constructs in vitro to assess early time point interactions between cells and the matrix as a function of pore size. We demonstrate that principle curvature directly influences nuclear aspect and cell aggregation in vitro. Scaffold pores with a sufficiently low degree of principle curvature enables cell differentiation; pharmacologic inhibition of actin cytoskeleton polymerization in these scaffolds decreased differentiation, indicating a critical role of the cytoskeleton in transducing cues from the scaffold pore microenvironment to the cell nucleus. We fabricated a macropore model, which allows for three-dimensional confocal imaging and demonstrates that a higher principle curvature facilitates cell aggregation and the formation of a potentially protective niche within scaffold macropores which prevents MSC differentiation and retains their stemness. Sufficiently high principle curvature upregulates yes-associated protein (YAP) phosphorylation while decreased principle curvature downregulates YAP phosphorylation and increases YAP nuclear translocation with subsequent transcriptional activation towards an osteogenic differentiation fate. Finally, we demonstrate that the inhibition of the YAP/TAZ pathway causes a defect in differentiation, while YAP/TAZ activation causes premature differentiation in a curvature-dependent way when modulated by verteporfin (VP) and 1-oleyl-lysophosphatidic acid (LPA), respectively, confirming the critical role of biomaterials-mediated YAP/TAZ signaling in cell differentiation and fate specification. Our data support that the principle curvature of scaffold macropores is a critical design criterion which guides the differentiation trajectory of mesenchymal stem cells' scaffolds. Biomaterial-mediated regulation of YAP/TAZ may significantly contribute to influencing the regenerative outcomes of biomaterials-based tissue engineering strategies through their specific pore design.
Collapse
Affiliation(s)
- W. Benton Swanson
- Department of Biologic and Materials Science, Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (W.B.S.); (M.O.); (S.M.W.); (L.M.D.); (M.E.); (P.X.M.)
| | - Maiko Omi
- Department of Biologic and Materials Science, Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (W.B.S.); (M.O.); (S.M.W.); (L.M.D.); (M.E.); (P.X.M.)
| | - Seth M. Woodbury
- Department of Biologic and Materials Science, Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (W.B.S.); (M.O.); (S.M.W.); (L.M.D.); (M.E.); (P.X.M.)
| | - Lindsey M. Douglas
- Department of Biologic and Materials Science, Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (W.B.S.); (M.O.); (S.M.W.); (L.M.D.); (M.E.); (P.X.M.)
| | - Miranda Eberle
- Department of Biologic and Materials Science, Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (W.B.S.); (M.O.); (S.M.W.); (L.M.D.); (M.E.); (P.X.M.)
| | - Peter X. Ma
- Department of Biologic and Materials Science, Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (W.B.S.); (M.O.); (S.M.W.); (L.M.D.); (M.E.); (P.X.M.)
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA;
| | - Yuji Mishina
- Department of Biologic and Materials Science, Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (W.B.S.); (M.O.); (S.M.W.); (L.M.D.); (M.E.); (P.X.M.)
| |
Collapse
|
13
|
Wei Q, Wang S, Han F, Wang H, Zhang W, Yu Q, Liu C, Ding L, Wang J, Yu L, Zhu C, Li B, Bl, Cz, Cz, Cz, Qw, Sw, Fh, Hw, Wz, Qy, Cl, Ld, Jw, Ly, Cz, Qw. Cellular modulation by the mechanical cues from biomaterials for tissue engineering. BIOMATERIALS TRANSLATIONAL 2021; 2:323-342. [PMID: 35837415 PMCID: PMC9255801 DOI: 10.12336/biomatertransl.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) microenvironment are known to be significant in modulating the fate of stem cells to guide developmental processes and maintain bodily homeostasis. Tissue engineering has provided a promising approach to the repair or regeneration of damaged tissues. Scaffolds are fundamental in cell-based regenerative therapies. Developing artificial ECM that mimics the mechanical properties of native ECM would greatly help to guide cell functions and thus promote tissue regeneration. In this review, we introduce various mechanical cues provided by the ECM including elasticity, viscoelasticity, topography, and external stimuli, and their effects on cell behaviours. Meanwhile, we discuss the underlying principles and strategies to develop natural or synthetic biomaterials with different mechanical properties for cellular modulation, and explore the mechanism by which the mechanical cues from biomaterials regulate cell function toward tissue regeneration. We also discuss the challenges in multimodal mechanical modulation of cell behaviours and the interplay between mechanical cues and other microenvironmental factors.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Changjiang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Luguang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiayuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2021; 8:7033-7081. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, mechanics at multiple stages-nucleus to cell to ECM-underlie multiple physiological and pathological functions from its development to reproduction to death. Under this inspiration, substantial research has established the role of multiple aspects of mechanics in regulating fundamental cellular processes, including spreading, migration, growth, proliferation, and differentiation. However, our understanding of how these mechanical mechanisms are orchestrated or tuned at different stages to maintain or restore the healthy environment at the tissue or organ level remains largely a mystery. Over the past few decades, research in the mechanical manipulation of the surrounding environment-known as substrate or matrix or scaffold on which, or within which, cells are seeded-has been exceptionally enriched in the field of tissue engineering and regenerative medicine. To do so, traditional tissue engineering aims at recapitulating key mechanical milestones of native ECM into a substrate for guiding the cell fate and functions towards specific tissue regeneration. Despite tremendous progress, a big puzzle that remains is how the cells compute a host of mechanical cues, such as stiffness (elasticity), viscoelasticity, plasticity, non-linear elasticity, anisotropy, mechanical forces, and mechanical memory, into many biological functions in a cooperative, controlled, and safe manner. High throughput understanding of key cellular decisions as well as associated mechanosensitive downstream signaling pathway(s) for executing these decisions in response to mechanical cues, solo or combined, is essential to address this issue. While many reports have been made towards the progress and understanding of mechanical cues-particularly, substrate bulk stiffness and viscoelasticity-in regulating the cellular responses, a complete picture of mechanical cues is lacking. This review highlights a comprehensive view on the mechanical cues that are linked to modulate many cellular functions and consequent tissue functionality. For a very basic understanding, a brief discussion of the key mechanical players of ECM and the principle of mechanotransduction process is outlined. In addition, this review gathers together the most important data on the stiffness of various cells and ECM components as well as various tissues/organs and proposes an associated link from the mechanical perspective that is not yet reported. Finally, beyond addressing the challenges involved in tuning the interplaying mechanical cues in an independent manner, emerging advances in designing biomaterials for tissue engineering are also explored.
Collapse
Affiliation(s)
- Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Bangladesh
| | | | | | | |
Collapse
|
15
|
Yang J, Zhang Y, Qin M, Cheng W, Wang W, Cao Y. Understanding and Regulating Cell-Matrix Interactions Using Hydrogels of Designable Mechanical Properties. J Biomed Nanotechnol 2021; 17:149-168. [PMID: 33785089 DOI: 10.1166/jbn.2021.3026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Similar to natural tissues, hydrogels contain abundant water, so they are considered as promising biomaterials for studying the influence of the mechanical properties of extracellular matrices (ECM) on various cell functions. In recent years, the growing research on cellular mechanical response has revealed that many cell functions, including cell spreading, migration, tumorigenesis and differentiation, are related to the mechanical properties of ECM. Therefore, how cells sense and respond to the extracellular mechanical environment has gained considerable attention. In these studies, hydrogels are widely used as the in vitro model system. Hydrogels of tunable stiffness, viscoelasticity, degradability, plasticity, and dynamical properties have been engineered to reveal how cells respond to specific mechanical features. In this review, we summarize recent process in this research direction and specifically focus on the influence of the mechanical properties of the ECM on cell functions, how cells sense and respond to the extracellular mechanical environment, and approaches to adjusting the stiffness of hydrogels.
Collapse
Affiliation(s)
- Jiapeng Yang
- Key Laboratory of Intelligent Optical Sensing and Integration, National Laboratory of Solid State Microstructure, and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu Zhang
- Key Laboratory of Intelligent Optical Sensing and Integration, National Laboratory of Solid State Microstructure, and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Meng Qin
- Key Laboratory of Intelligent Optical Sensing and Integration, National Laboratory of Solid State Microstructure, and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Cheng
- Department of Oral Implantology Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and Integration, National Laboratory of Solid State Microstructure, and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and Integration, National Laboratory of Solid State Microstructure, and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
16
|
Long Y, Cheng X, Jansen JA, Leeuwenburgh SGC, Mao J, Yang F, Chen L. The molecular conformation of silk fibroin regulates osteogenic cell behavior by modulating the stability of the adsorbed protein-material interface. Bone Res 2021; 9:13. [PMID: 33574222 PMCID: PMC7878842 DOI: 10.1038/s41413-020-00130-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/27/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Silk fibroin (SF) can be used to construct various stiff material interfaces to support bone formation. An essential preparatory step is to partially transform SF molecules from random coils to β-sheets to render the material water insoluble. However, the influence of the SF conformation on osteogenic cell behavior at the material interface remains unknown. Herein, three stiff SF substrates were prepared by varying the β-sheet content (high, medium, and low). The substrates had a comparable chemical composition, surface topography, and wettability. When adsorbed fibronectin was used as a model cellular adhesive protein, the stability of the adsorbed protein-material interface, in terms of the surface stability of the SF substrates and the accompanying fibronectin detachment resistance, increased with the increasing β-sheet content of the SF substrates. Furthermore, (i) larger areas of cytoskeleton-associated focal adhesions, (ii) higher orders of cytoskeletal organization and (iii) more elongated cell spreading were observed for bone marrow-derived mesenchymal stromal cells (BMSCs) cultured on SF substrates with high vs. low β-sheet contents, along with enhanced nuclear translocation and activation of YAP/TAZ and RUNX2. Consequently, osteogenic differentiation of BMSCs was stimulated on high β-sheet substrates. These results indicated that the β-sheet content influences osteogenic differentiation of BMSCs on SF materials in vitro by modulating the stability of the adsorbed protein-material interface, which proceeds via protein-focal adhesion-cytoskeleton links and subsequent intracellular mechanotransduction. Our findings emphasize the role of the stability of the adsorbed protein-material interface in cellular mechanotransduction and the perception of stiff SF substrates with different β-sheet contents, which should not be overlooked when engineering stiff biomaterials.
Collapse
Affiliation(s)
- Yanlin Long
- grid.33199.310000 0004 0368 7223Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022 China
| | - Xian Cheng
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - John A. Jansen
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Sander G. C. Leeuwenburgh
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Jing Mao
- grid.33199.310000 0004 0368 7223Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Fang Yang
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Lili Chen
- grid.33199.310000 0004 0368 7223Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022 China
| |
Collapse
|
17
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Uto K, Arakawa CK, DeForest CA. Next-Generation Biomaterials for Culture and Manipulation of Stem Cells. Cold Spring Harb Perspect Biol 2020; 12:a035691. [PMID: 31843993 PMCID: PMC7461762 DOI: 10.1101/cshperspect.a035691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stem cell fate decisions are informed by physical and chemical cues presented within and by the extracellular matrix. Despite the generally attributed importance of extracellular cues in governing self-renewal, differentiation, and collective behavior, knowledge gaps persist with regard to the individual, synergistic, and competing effects that specific physiochemical signals have on cell function. To better understand basic stem cell biology, as well as to expand opportunities in regenerative medicine and tissue engineering, a growing suite of customizable biomaterials has been developed. These next-generation cell culture materials offer user-defined biochemical and biomechanical properties, increasingly in a manner that can be controlled in time and 3D space. This review highlights recent innovations in this regard, focusing on advances to culture and maintain stemness, direct fate, and to detect stem cell function using biomaterial-based strategies.
Collapse
Affiliation(s)
- Koichiro Uto
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0044, Japan
| | - Christopher K Arakawa
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
19
|
Hippler M, Weißenbruch K, Richler K, Lemma ED, Nakahata M, Richter B, Barner-Kowollik C, Takashima Y, Harada A, Blasco E, Wegener M, Tanaka M, Bastmeyer M. Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. SCIENCE ADVANCES 2020; 6:6/39/eabc2648. [PMID: 32967835 PMCID: PMC7531888 DOI: 10.1126/sciadv.abc2648] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/07/2020] [Indexed: 05/19/2023]
Abstract
Many essential cellular processes are regulated by mechanical properties of their microenvironment. Here, we introduce stimuli-responsive composite scaffolds fabricated by three-dimensional (3D) laser lithography to simultaneously stretch large numbers of single cells in tailored 3D microenvironments. The key material is a stimuli-responsive photoresist containing cross-links formed by noncovalent, directional interactions between β-cyclodextrin (host) and adamantane (guest). This allows reversible actuation under physiological conditions by application of soluble competitive guests. Cells adhering in these scaffolds build up initial traction forces of ~80 nN. After application of an equibiaxial stretch of up to 25%, cells remodel their actin cytoskeleton, double their traction forces, and equilibrate at a new dynamic set point within 30 min. When the stretch is released, traction forces gradually decrease until the initial set point is retrieved. Pharmacological inhibition or knockout of nonmuscle myosin 2A prevents these adjustments, suggesting that cellular tensional homeostasis strongly depends on functional myosin motors.
Collapse
Affiliation(s)
- Marc Hippler
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Kai Weißenbruch
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Kai Richler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Enrico D Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Masaki Nakahata
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Benjamin Richter
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Eva Blasco
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Motomu Tanaka
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| |
Collapse
|
20
|
|
21
|
Li R, Lin Z, Zhang Q, Zhang Y, Liu Y, Lyu Y, Li X, Zhou C, Wu G, Ao N, Li L. Injectable and In Situ-Formable Thiolated Chitosan-Coated Liposomal Hydrogels as Curcumin Carriers for Prevention of In Vivo Breast Cancer Recurrence. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17936-17948. [PMID: 32208630 DOI: 10.1021/acsami.9b21528] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To improve water solubility and bioavailability, curcumin (Cur) was encapsulated by liposomes (Cur-Lip), which was further coated with thiolated chitosan (CSSH) to form liposomal hydrogels (CSSH/Cur-Lip gel). The hydrogels were thermosensitive with in situ injectable performance, which were fluidic at room temperature and gelled quickly at 37 °C. The cumulative release ratio of the 200 μM CSSH/Cur-Lip gel was 31.57 ± 1.34% at 12 h, which could effectively delay the release of curcumin. Worthily, the resilient hydrogels were compressive even after five cycles of compression. The cytotoxicity test indicated that the liposomal hydrogels had good cytocompatibility, but after encapsulation of curcumin, MCF-7 cells were suppressed and killed dramatically after 72 h. The in vivo breast cancer recurrence experiment showed that the CSSH/Cur-Lip gel inhibited breast cancer recurrence after tumors were resected, and the tissue of defect in the CSSH/Cur-Lip gel group was repaired. The results showed that the drug-loaded liposomal hydrogels can deliver curcumin continuously and exerted an excellent tumoricidal effect in vitro and in vivo. The injectable, in situ-formable, and thermosensitive CSSH/Cur-Lip gel can be designed as a promising novel drug delivery vehicle to be used as carriers for local accurate and sustained drug delivery to minimize burst release and as tissue engineering scaffolds for tissue regeneration after tumor resection.
Collapse
Affiliation(s)
- Riwang Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
- Institute of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Zhen Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P. R. China
| | - Qian Zhang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Yuhui Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Yang Lyu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Xinyang Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam and University of Amsterdam, MOVE Research Institute, 1081 LA Amsterdam, Nord-Holland, The Netherlands
| | - Ningjian Ao
- Institute of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Lihua Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
22
|
General cellular durotaxis induced with cell-scale heterogeneity of matrix-elasticity. Biomaterials 2020; 230:119647. [DOI: 10.1016/j.biomaterials.2019.119647] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
|
23
|
Li W, Zhao J, Wang J, Sun L, Xu H, Sun W, Pan Y, Wang H, Zhang WB. ROCK-TAZ signaling axis regulates mechanical tension-induced osteogenic differentiation of rat cranial sagittal suture mesenchymal stem cells. J Cell Physiol 2020; 235:5972-5984. [PMID: 31970784 DOI: 10.1002/jcp.29522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Mechanical force across sutures is able to promote suture osteogenesis. Orthodontic clinics often use this biological characteristic of sutures to treat congenital cranio-maxillofacial malformations. However, the underlying mechanisms still remain poorly understood. Craniofacial sutures provide a special growth source and support primary sites of osteogenesis. Here, we isolated rat sagittal suture cells (rSAGs), which had mesenchymal stem cell characteristics and differentiating abilities. Cells were then subjected to mechanical tension (5% elongation, 0.5 Hz; sinusoidal waveforms) showing that mechanical tension could enhance osteogenic differentiation but hardly affect proliferation of rSAGs. Besides, mechanical tension could increase Rho-associated kinase (ROCK) expression and enhance transcriptional coactivator with PDZ-binding motif (TAZ) nuclear translocation. Inhibiting ROCK expression could suppress tension-induced osteogenesis and block tension-induced upregulation of nuclear TAZ. In addition, our results indicated that TAZ had direct combination sites with runt-related transcription factor 2 (Runx2) in rSAGs, and knock-downed TAZ simultaneously decreased the expression of Runx2 no matter with or without mechanical tension. In summary, our findings demonstrated that the multipotency of rSAGs in vitro could give rise to early osteogenic differentiation under mechanical tension, which was mediated by ROCK-TAZ signal axis.
Collapse
Affiliation(s)
- Wenlei Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jialu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haiyang Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wei-Bing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Liang H, Mu H, Jean-Francois F, Lakshman B, Sarkar-Banerjee S, Zhuang Y, Zeng Y, Gao W, Zaske AM, Nissley DV, Gorfe AA, Zhao W, Zhou Y. Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Sci Alliance 2019; 2:e201900343. [PMID: 31296567 PMCID: PMC6625090 DOI: 10.26508/lsa.201900343] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022] Open
Abstract
Plasma membrane (PM) curvature defines cell shape and intracellular organelle morphologies and is a fundamental cell property. Growth/proliferation is more stimulated in flatter cells than the same cells in elongated shapes. PM-anchored K-Ras small GTPase regulates cell growth/proliferation and plays key roles in cancer. The lipid-anchored K-Ras form nanoclusters selectively enriched with specific phospholipids, such as phosphatidylserine (PS), for efficient effector recruitment and activation. K-Ras function may, thus, be sensitive to changing lipid distribution at membranes with different curvatures. Here, we used complementary methods to manipulate membrane curvature of intact/live cells, native PM blebs, and synthetic liposomes. We show that the spatiotemporal organization and signaling of an oncogenic mutant K-Ras G12V favor flatter membranes with low curvature. Our findings are consistent with the more stimulated growth/proliferation in flatter cells. Depletion of endogenous PS abolishes K-Ras G12V PM curvature sensing. In cells and synthetic bilayers, only mixed-chain PS species, but not other PS species tested, mediate K-Ras G12V membrane curvature sensing. Thus, K-Ras nanoclusters act as relay stations to convert mechanical perturbations to mitogenic signaling.
Collapse
Affiliation(s)
- Hong Liang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Frantz Jean-Francois
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bindu Lakshman
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Yinyin Zhuang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Weibo Gao
- School of Physics and Mathematical Science, Nanyang Technological University, Singapore
| | - Ana Maria Zaske
- Internal Medicine, Cardiology Division, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dwight V Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
25
|
Moriyama K, Kidoaki S. Cellular Durotaxis Revisited: Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7478-7486. [PMID: 30230337 DOI: 10.1021/acs.langmuir.8b02529] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Directional cell movement from a softer to a stiffer region on a culture substrate with a stiffness gradient, so-called durotaxis, has attracted considerable interest in the field of mechanobiology. Although the strength of a stiffness gradient has been known to influence durotaxis, the precise manipulation of durotactic cells has not been established due to the limited knowledge available on how the threshold stiffness gradient (TG) for durotaxis is determined. In the present study, to clarify the principles for the manipulation of durotaxis, we focused on the absolute stiffness of the soft region and evaluated its effect on the determination of TG required to induce durotaxis. Microelastically patterned gels that differed with respect to both the absolute stiffness of the soft region and the strength of the stiffness gradient were photolithographically prepared using photo-cross-linkable gelatins, and the TG for mesenchymal stem cells (MSCs) was examined systematically for each stiffness value of the soft region. As a result, the TG values for soft regions with stiffnesses of 2.5, 5, and 10 kPa were 0.14, 1.0, and 1.4 kPa/μm, respectively, i.e., TG markedly increased with an increase in the absolute stiffness of the soft region. An analysis of the area and long-axis length for focal adhesions revealed that the adhesivity of MSCs was more stable on a stiffer soft region. These results suggested that the initial location of cells starting durotaxis plays an essential role in determining the TG values and furthermore that the relationship between the position-dependent TG and intrinsic stiffness gradient (IG) of the culture substrate should be carefully reconsidered for inducing durotaxis; IG must be higher than TG (IG ≥ TG). This principle provides a fundamental guide for designing biomaterials to manipulate cellular durotaxis.
Collapse
Affiliation(s)
- Kousuke Moriyama
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering , Kyushu University , 744 Moto-oka, Nishi ku , Fukuoka , Japan
| | - Satoru Kidoaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering , Kyushu University , 744 Moto-oka, Nishi ku , Fukuoka , Japan
| |
Collapse
|
26
|
Linke P, Suzuki R, Yamamoto A, Nakahata M, Kengaku M, Fujiwara T, Ohzono T, Tanaka M. Dynamic Contact Guidance of Myoblasts by Feature Size and Reversible Switching of Substrate Topography: Orchestration of Cell Shape, Orientation, and Nematic Ordering of Actin Cytoskeletons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7538-7551. [PMID: 30376342 DOI: 10.1021/acs.langmuir.8b02972] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological cells in tissues alter their shapes, positions, and orientations in response to dynamic changes in their physical microenvironments. Here, we investigated the dynamic response of myoblast cells by fabricating substrates displaying microwrinkles that can reversibly change their direction within 60 s by axial compression and relaxation. To quantitatively assess the collective order of cells, we introduced the nematic order parameter of cells that takes not only the distribution of cell-wrinkle angles but also the degree of cell elongation into account. On the subcellular level, we also calculated the nematic order parameter of actin cytoskeletons that takes the rearrangement of actin filaments into consideration. The results obtained on substrates with different wrinkle wavelengths implied the presence of a characteristic wavelength beyond which the order parameters of both cells and actin cytoskeletons level off. Immunofluorescence labeling of vinculin showed that the focal adhesions were all concentrated on the peaks of wrinkles when the wavelength is below the characteristic value. On the other hand, we found focal adhesions on both the peaks and the troughs of wrinkles when the wavelength exceeds the characteristic level. The emergence of collective ordering of cytoskeletons and the adaptation of cell shapes and orientations were monitored by live cell imaging after the seeding of cells from suspensions. After the cells had reached the steady state, the orientation of wrinkles was abruptly changed by 90°. The dynamic response of myoblasts to the drastic change in surface topography was monitored, demonstrating the coordination of the shape and orientation of cells and the nematic ordering of actin cytoskeletons. The "dynamic" substrates established in this study can be used as a powerful tool in mechanobiology that helps us understand how cytoskeletons, cells, and cell ensembles respond to dynamic contact guidance cues.
Collapse
Affiliation(s)
- Philipp Linke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| | | | | | - Masaki Nakahata
- Department of Material Engineering Science, Graduate School of Engineering Science , Osaka University , 560-8531 Osaka , Japan
| | | | | | - Takuya Ohzono
- Electronics and Photonics Research Institute , National Institute for Advanced Industrial Science and Technology , 305-8505 Tsukuba , Japan
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| |
Collapse
|
27
|
Chen X, Wang L, Zhao K, Wang H. Osteocytogenesis: Roles of Physicochemical Factors, Collagen Cleavage, and Exogenous Molecules. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:215-225. [PMID: 29304315 DOI: 10.1089/ten.teb.2017.0378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteocytes, the most abundant cell type in mammalian bone, are generally considered as the terminally differentiated cells of osteoblasts that are progressively self-buried or passively embedded in bone matrix. Emerging evidence reveals the essential functions of osteocytes in bone homeostasis and mechanotransduction. However, our knowledge on osteocytes, especially their formation, remains scarce. In this regard, the current review mainly focuses on several key factors that drive the osteocytic differentiation of osteoblasts, that is, osteocytogenesis. Available literature has demonstrated the involvement of physicochemical factors such as matrix composition, oxygen tension, and mechanical stress in the osteoblast-to-osteocyte transition. During cell migration and matrix remodeling, the matrix metalloproteinase-dependent collagen cleavage would play an "active" role in maturation and maintenance of the osteocytes. Besides, some in vitro methodologies are also established to induce the transformation of osteoblastic cell lines and primary mesenchymal cells to preosteocytes through cell transfection or addition of exogenous molecules (e.g., fibroblast growth factor-2, retinoic acid), which could potentiate the effort to form functional bone substitutes through elevated osteocytogenesis. Thus, advances of new technologies would enable comprehensive and in-depth understanding of osteocytes and their development, which in turn help promote the research on osteocyte biology and osteopathology.
Collapse
Affiliation(s)
- Xuening Chen
- 1 National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, China
| | - Lichen Wang
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| | - Kaitao Zhao
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| | - Hongjun Wang
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| |
Collapse
|
28
|
Yan K, Liu Y, Zhang J, Correa SO, Shang W, Tsai CC, Bentley WE, Shen J, Scarcelli G, Raub CB, Shi XW, Payne GF. Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly. Biomacromolecules 2017; 19:364-373. [PMID: 29244943 DOI: 10.1021/acs.biomac.7b01464] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.
Collapse
Affiliation(s)
- Kun Yan
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan 430079, China
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park , College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Santiago O Correa
- Department of Biomedical Engineering, The Catholic University of America , Washington, D.C. 20064, United States
| | - Wu Shang
- Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park , College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America , Washington, D.C. 20064, United States
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University , Wuhan 430079, China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park , College Park, Maryland 20742, United States.,Fischell Department of Bioengineering, University of Maryland College Park , College Park, Maryland 20742, United States
| |
Collapse
|
29
|
Ou Q, Wang X, Wang Y, Wang Y, Lin X. Oestrogen retains human periodontal ligament stem cells stemness in long-term culture. Cell Prolif 2017; 51:e12396. [PMID: 29027282 PMCID: PMC6528900 DOI: 10.1111/cpr.12396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives During long‐term culture, loss of stemness is observed which greatly restricts the application of human periodontal ligament stem cells (hPDLSCs) in tissue regeneration. Oestrogen (E2) was found to significantly enhance the proliferation and osteogenic differentiation capacity in mesenchymal stem cells. Therefore, in this study, we investigated effects of E2 on hPDLSCs stemness in long‐term culture. Materials and methods Effects of E2 on hPDLSCs stemness were systematically evaluated. To characterize underlying the mechanisms, its effects on PI3K/AKT signalling pathway were determined. Results Our results showed that E2 was able to enhance the proliferation, modify cell cycle, up‐regulate stemness‐related genes expression, promote osteogenic differentiation and elevate the positive rate of CD146 and STRO‐1 over 10 passages in hPDLSCs. Importantly, PI3K/AKT signing pathway might play a role in these effects. Conclusions These findings suggest that E2 retains hPDLSCs stemness in long‐term culture, which might enhance its application in tissue engineering.
Collapse
Affiliation(s)
- Qianmin Ou
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoxiao Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Yanlan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuefeng Lin
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
30
|
Hörning M, Nakahata M, Linke P, Yamamoto A, Veschgini M, Kaufmann S, Takashima Y, Harada A, Tanaka M. Dynamic Mechano-Regulation of Myoblast Cells on Supramolecular Hydrogels Cross-Linked by Reversible Host-Guest Interactions. Sci Rep 2017; 7:7660. [PMID: 28794475 PMCID: PMC5550483 DOI: 10.1038/s41598-017-07934-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023] Open
Abstract
A new class of supramolecular hydrogels, cross-linked by host-guest interactions between β-cyclodextrin (βCD) and adamantane, were designed for the dynamic regulation of cell-substrate interactions. The initial substrate elasticity can be optimized by selecting the molar fraction of host- and guest monomers for the target cells. Moreover, owing to the reversible nature of host-guest interactions, the magnitude of softening and stiffening of the substrate can be modulated by varying the concentrations of free, competing host molecules (βCD) in solutions. By changing the substrate elasticity at a desired time point, it is possible to switch the micromechanical environments of cells. We demonstrated that the Young's modulus of our "host-guest gels", 4-11 kPa, lies in an optimal range not only for static (ex situ) but also for dynamic (in situ) regulation of cell morphology and cytoskeletal ordering of myoblasts. Compared to other stimulus-responsive materials that can either change the elasticity only in one direction or rely on less biocompatible stimuli such as UV light and temperature change, our supramolecular hydrogel enables to reversibly apply mechanical cues to various cell types in vitro without interfering cell viability.
Collapse
Affiliation(s)
- Marcel Hörning
- Institute for Integrated Cell-Material Science (WPI iCeMS), Kyoto University, Kyoto, 606-8501, Japan
- Institute of Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, 70569, Stuttgart, Germany
| | - Masaki Nakahata
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Philipp Linke
- Physical Chemistry of Biosystems, University of Heidelberg, D69120, Heidelberg, Germany
| | - Akihisa Yamamoto
- Institute for Integrated Cell-Material Science (WPI iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Mariam Veschgini
- Physical Chemistry of Biosystems, University of Heidelberg, D69120, Heidelberg, Germany
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, University of Heidelberg, D69120, Heidelberg, Germany
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akira Harada
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Motomu Tanaka
- Institute for Integrated Cell-Material Science (WPI iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
- Physical Chemistry of Biosystems, University of Heidelberg, D69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Duan DH, Fu JH, Qi W, Du Y, Pan J, Wang HL. Graft-Free Maxillary Sinus Floor Elevation: A Systematic Review and Meta-Analysis. J Periodontol 2017; 88:550-564. [PMID: 28168901 DOI: 10.1902/jop.2017.160665] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This systematic review and meta-analysis aims to investigate survival rates of dental implants placed simultaneously with graft-free maxillary sinus floor elevation (GFSFE). Factors influencing amount of vertical bone gain (VBG), protruded implant length (PIL) in sinus at follow-up (PILf), and peri-implant marginal bone loss (MBL) are also evaluated. METHODS Electronic and manual searches for human clinical studies on simultaneous implant placement and GFSFE using the lateral window or transcrestal approach, published in the English language from January 1976 to March 2016, were conducted. The random-effects model and mixed-effect meta-regression were used to analyze weighted mean values of clinical parameters and evaluate factors that influenced amount of VBG. RESULTS Of 740 studies, 22 clinical studies were included in this systematic review. A total of 864 implants were placed simultaneously with GFSFE at edentulous sites having mean residual bone height of 5.7 ± 1.7 mm. Mean implant survival rate (ISR) was 97.9% ± 0.02% (range: 93.5% to 100%). Weighted mean MBL was 0.91 ± 0.11 mm, and it was significantly associated with the postoperative follow-up period (r = 0.02; R2 = 43.75%). Weighted mean VBG was 3.8 ± 0.34 mm, and this parameter was affected significantly by surgical approach, implant length, and PIL immediately after surgery (PILi) (r = 2.82, 0.57, 0.80; R2 = 19.10%, 39.27%, 83.92%, respectively). Weighted mean PILf was 1.26 ± 0.33 mm (range: 0.3 to 2.1 mm). CONCLUSION Within limitations of the present systematic review, GFSFE with simultaneous implant placement can achieve satisfactory mean ISR of 97.9% ± 0.02%.
Collapse
Affiliation(s)
- Deng-Hui Duan
- Department of General Dentistry, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Jia-Hui Fu
- Discipline of Periodontics, Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore
| | - Wei Qi
- Department of Endodontics, Jinan Stomatology Hospital, Jinan, Shandong, People's Republic of China
| | - Yi Du
- Department of General Dentistry, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Jie Pan
- Department of General Dentistry, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
32
|
Mennens SFB, van den Dries K, Cambi A. Role for Mechanotransduction in Macrophage and Dendritic Cell Immunobiology. Results Probl Cell Differ 2017; 62:209-242. [PMID: 28455711 DOI: 10.1007/978-3-319-54090-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue homeostasis is not only controlled by biochemical signals but also through mechanical forces that act on cells. Yet, while it has long been known that biochemical signals have profound effects on cell biology, the importance of mechanical forces has only been recognized much more recently. The types of mechanical stress that cells experience include stretch, compression, and shear stress, which are mainly induced by the extracellular matrix, cell-cell contacts, and fluid flow. Importantly, macroscale tissue deformation through stretch or compression also affects cellular function.Immune cells such as macrophages and dendritic cells are present in almost all peripheral tissues, and monocytes populate the vasculature throughout the body. These cells are unique in the sense that they are subject to a large variety of different mechanical environments, and it is therefore not surprising that key immune effector functions are altered by mechanical stimuli. In this chapter, we describe the different types of mechanical signals that cells encounter within the body and review the current knowledge on the role of mechanical signals in regulating macrophage, monocyte, and dendritic cell function.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|