1
|
Hummel D, Juhasz J, Kamotsay K, Kristof K, Xavier BB, Koster SD, Szabo D, Kocsis B. Genomic Investigation and Comparative Analysis of European High-Risk Clone of Acinetobacter baumannii ST2. Microorganisms 2024; 12:2474. [PMID: 39770677 PMCID: PMC11728346 DOI: 10.3390/microorganisms12122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is a major concern in healthcare institutions worldwide. Several reports described the dissemination of A. baumannii high-risk clones that are responsible for a high number of difficult-to-treat infections. In our study, 19 multidrug-resistant A. baumannii strains from Budapest, Hungary, were investigated based on whole-genome sequencing (WGS). The obtained results were analysed together with data from 433 strains of A. baumannii from the Pathogenwatch database. WGS analysis of 19 A. baumannii strains detected that 12 belonged to ST2 and seven belonged to ST636. Among ST2 strains, 11 out of 12 carried either blaOXA-23 or blaOXA-58 genes; however, all strains of ST636 uniformly carried blaOXA-72 gene. All strains of ST2 and ST636 carried blaOXA-66 and blaADC-25 genes. Based on core genome multilocus sequence typing (cgMLST), 10 strains of ST2 belonged to cgMLST906, one strain to cgMLST458, and one strain to cgMLST1320; by contrast, all strains of ST636 belonged to cgMLST1178. Certain virulence determinants were present in all strains of both ST2 and ST636, namely, Ata, Bap, BfmRS, T2SS and PNAG. Interestingly, OmpA was present in all strains of ST2, but it was absent in all strains of ST636. Comparative analysis of 19 strains of this study and the collection of 433 isolates from Pathogenwatch database, proved a diverse clonal distribution of high-risk A. baumannii clones in Europe. The major clone in Europe is ST2, which is present all over the continent. However, ST636 has been mainly reported in Eastern Europe. Interestingly, cgMLSTs of ST2 correspond to the production of different beta-lactamases, namely, OXA-82 in cgMLST116, OXA-72 in cgMLST506, and cgMLST556, PER-1 in cgMLST456 and cgMLST1041. Our study demonstrates that the ST2 high-risk clone of A. baumannii is the most widespread in Europe; however, based on cgMLST analysis, a detailed detection of beta-lactamase production can be determined.
Collapse
Affiliation(s)
- David Hummel
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Janos Juhasz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Katalin Kamotsay
- Central Microbiology Laboratory, National Institute of Hematology and Infectious Disease, Central Hospital of Southern-Pest, 1097 Budapest, Hungary
| | - Katalin Kristof
- Institute of Laboratory Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, University of Antwerp, 2610 Antwerpen, Belgium
- Department of Medical Microbiology and Infection Control, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Sien De Koster
- Microbiology Department, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary
- Department of Neurosurgical and Neurointervention, Semmelweis University, 1085 Budapest, Hungary
| | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
2
|
Dessenne C, Ménart B, Acket S, Dewulf G, Guerardel Y, Vidal O, Rossez Y. Lipidomic analyses reveal distinctive variations in homeoviscous adaptation among clinical strains of Acinetobacter baumannii, providing insights from an environmental adaptation perspective. Microbiol Spectr 2024; 12:e0075724. [PMID: 39254344 PMCID: PMC11448061 DOI: 10.1128/spectrum.00757-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Acinetobacter baumannii is known for its antibiotic resistance and is increasingly found outside of healthcare settings. To survive colder temperatures, bacteria, including A. baumannii, adapt by modifying glycerophospholipids (GPL) to maintain membrane flexibility. This study examines the lipid composition of six clinical A. baumannii strains, including the virulent AB5075, at two temperatures. At 18°C, five strains consistently show an increase in palmitoleic acid (C16:1), while ABVal2 uniquely shows an increase in oleic acid (C18:1). LC-HRMS2 analysis identifies shifts in GPL and glycerolipid composition between 18°C and 37°C, highlighting variations in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids. ABVal2 shows increased PE with C18:1 and C16:1 at 18°C, but no change in PG, in contrast to other strains that show increased PE and PG with C16:1. Notably, although A. baumannii typically lacks FabA, a key enzyme for unsaturated fatty acid synthesis, this enzyme was found in both ABVal2 and ABVal3. In addition, ABVal2 contains five candidate desaturases that may contribute to its lipid profile. The study also reveals variations in strain motility and biofilm formation over temperature. These findings enhance our understanding of A. baumannii's physiological adaptations, survival strategies and ecological fitness in different environments.IMPORTANCEAcinetobacter baumannii, a bacterium known for its resistance to antibiotics, is a concern in healthcare settings. This study focused on understanding how this bacterium adapts to different temperatures and how its lipid composition changes. Lipids are the building blocks of cell membranes. By studying these changes, scientists can gain insights into how the bacterium survives and behaves in various environments. This understanding improves our understanding of its global dissemination capabilities. The results of the study contribute to our broader understanding of how Acinetobacter baumannii works, which is important for developing strategies to combat its impact on patient health.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Benoît Ménart
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Sébastien Acket
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| | - Gisèle Dewulf
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| |
Collapse
|
3
|
Harmer CJ, Nigro SJ, Hall RM. Acinetobacter baumannii GC2 Sublineage Carrying the aac( 6')- Im Amikacin, Netilmicin, and Tobramycin Resistance Gene Cassette. Microbiol Spectr 2023; 11:e0120423. [PMID: 37409961 PMCID: PMC10434200 DOI: 10.1128/spectrum.01204-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
The aminoglycoside antibiotics amikacin, gentamicin, and tobramycin are important therapeutic options for Acinetobacter iinfections. Several genes that confer resistance to one or more of these antibiotics are prevalent in the globally distributed resistant clones of Acinetobacter baumannii, but the aac(6')-Im (aacA16) gene (amikacin, netilmicin, and tobramycin resistance), first reported in isolates from South Korea, has rarely been reported since. In this study, GC2 isolates (1999 to 2002) from Brisbane, Australia, carrying aac(6')-Im and belonging to the ST2:ST423:KL6:OCL1 type were identified and sequenced. The aac(6')-Im gene and surrounds have been incorporated into one end of the IS26-bounded AbGRI2 antibiotic resistance island and are accompanied by a characteristic 70.3-kbp deletion of adjacent chromosome. The compete genome of the 1999 isolate F46 (RBH46) includes only two copies of ISAba1 (in AbGRI1-3 and upstream of ampC) but later isolates, which differ from one another by <10 single nucleotide differences (SND), carry two to seven additional shared copies. Several complete GC2 genomes with aac(6')-Im in an AbGRI2 island (2004 to 2017; several countries) found in GenBank and two additional Australian A. baumannii isolates (2006) carry different gene sets, KL2, KL9, KL40, or KL52, at the capsule locus. These genomes include ISAba1 copies in a different set of shared locations. The distribution of SND between F46 and AYP-A2, a 2013 ST2:ST208:KL2:OCL1 isolate from Victoria, Australia, revealed that a 640-kbp segment that includes KL2 and the AbGRI1 resistance island replaces the corresponding region in F46. Over 1,000 A. baumannii draft genomes also include aac(6')-Im, indicating that it is currently globally disseminated and significantly underreported. IMPORTANCE Aminoglycosides are important therapeutic options for treatment of Acinetobacter infections. Here, we show that a little-known aminoglycoside resistance gene, aac(6')-Im (aacA16), that confers amikacin, netilmicin, and tobramycin resistance has been circulating undetected for many years in a sublineage of A. baumannii global clone 2 (GC2), generally with a second aminoglycoside resistance gene, aacC1, which confers resistance to gentamicin. These two genes are commonly found together in GC2 complete and draft genomes and globally distributed. One isolate appears to be ancestral, as its genome contains few ISAba1 copies, providing insight into the original source of this insertion sequence (IS), which is abundant in most GC2 isolates. Tracking ISAba1 spread can provide a simple means to track the development and ongoing evolution as well as the dissemination of specific lineages and detect the formation of many sublineages. The complete ancestral genome will provide an essential base point for tracking this process.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Steven J. Nigro
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| |
Collapse
|
4
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:934-943. [DOI: 10.1093/jac/dkac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/26/2021] [Indexed: 11/14/2022] Open
|
5
|
Chilam J, Argimón S, Limas MT, Masim ML, Gayeta JM, Lagrada ML, Olorosa AM, Cohen V, Hernandez LT, Jeffrey B, Abudahab K, Hufano CM, Sia SB, Holden MT, Stelling J, Aanensen DM, Carlos CC, on behalf of the Philippines Antimicrobial Resistance Surveillance Program. Genomic surveillance of Acinetobacter baumannii in the Philippines, 2013-2014. Western Pac Surveill Response J 2021; 12:1-15. [PMID: 35251744 PMCID: PMC8873916 DOI: 10.5365/wpsar.2021.12.4.863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Acinetobacter baumannii is an opportunistic nosocomial pathogen that has increasingly become resistant to carbapenems worldwide. In the Philippines, rates of carbapenem resistance and multidrug resistance are above 50%. We undertook a genomic study of carbapenem-resistant A. baumannii in the Philippines to characterize the population diversity and antimicrobial resistance mechanisms. METHODS We sequenced the whole genomes of 117 A. baumannii isolates recovered by 16 hospitals in the Philippines between 2013 and 2014. From the genome sequences, we determined the multilocus sequence type, presence of acquired determinants of antimicrobial resistance and relatedness between isolates. We also compared the phenotypic and genotypic resistance results. RESULTS Carbapenem resistance was mainly explained by acquisition of the class-D β-lactamase gene blaOXA-23. The concordance between phenotypic and genotypic resistance to imipenem was 98.15%, and it was 94.97% overall for the seven antibiotics analysed. Twenty-two different sequence types were identified, including 7 novel types. The population was dominated by the high-risk international clone 2 (i.e. clonal complex 92), in particular by ST195 and ST208 and their single locus variants. Using whole-genome sequencing, we identified local clusters representing potentially undetected nosocomial outbreaks, as well as multihospital clusters that indicated interhospital dissemination. Comparison with global genomes suggested that the establishment of carbapenem-resistant international clone 2 in the Philippines is likely the result of clonal expansion and geographical dissemination, and at least partly explained by inadequate hospital infection control and prevention. DISCUSSION This is the first extensive genomic study of carbapenem-resistant A. baumannii in the Philippines, and it underscores the importance of hospital infection control and prevention measures to contain high-risk clones.
Collapse
Affiliation(s)
- Jeremiah Chilam
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
- These authors contributed equally to this work
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
- These authors contributed equally to this work
| | - Marilyn T. Limas
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Melissa L. Masim
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - June M. Gayeta
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Marietta L. Lagrada
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Agnettah M. Olorosa
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Victoria Cohen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
| | - Lara T. Hernandez
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Benjamin Jeffrey
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
| | - Charmian M. Hufano
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Sonia B. Sia
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | | | | | - David M. Aanensen
- Big Data Institute, University of Oxford, Oxford, England
- These authors contributed equally to this work
| | - Celia C. Carlos
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
- These authors contributed equally to this work
| | - on behalf of the Philippines Antimicrobial Resistance Surveillance Program
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England
- University of St Andrews School of Medicine, St Andrews, Scotland
- Brigham and Women’s Hospital, Boston, MA, USA
- Big Data Institute, University of Oxford, Oxford, England
- These authors contributed equally to this work
- These authors contributed equally to this work
| |
Collapse
|
6
|
Ruan Z, Yu Y, Feng Y. The global dissemination of bacterial infections necessitates the study of reverse genomic epidemiology. Brief Bioinform 2021; 21:741-750. [PMID: 30715167 DOI: 10.1093/bib/bbz010] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 01/29/2023] Open
Abstract
Whole genome sequencing (WGS) has revolutionized the genotyping of bacterial pathogens and is expected to become the new gold standard for tracing the transmissions of bacterial infectious diseases for public health purposes. Traditional genomic epidemiology often uses WGS as a verification tool, namely, when a common source or epidemiological link is suspected, the collected isolates are sequenced for the determination of clonal relationships. However, increasingly frequent international travel and food transportation, and the associated potential for the cross-border transmission of bacterial pathogens, often lead to an absence of information on bacterial transmission routes. Here we introduce the concept of 'reverse genomic epidemiology', i.e. when isolates are inspected by genome comparisons to be sufficiently similar to one another, they are assumed to be a consequence of infection from a common source. Through BacWGSTdb (http://bacdb.org/BacWGSTdb/), a database we have developed for bacterial genome typing and source tracking, we have found that almost the entire analyzed 20 bacterial species exhibit the phenomenon of cross-border clonal dissemination. Five networks were further identified in which isolates sharing nearly identical genomes were collected from at least five different countries. Three of these have been documented as real infectious disease outbreaks, therefore demonstrating the feasibility and authority of reverse genomic epidemiology. Our survey and proposed strategy would be of potential value in establishing a global surveillance system for tracing bacterial transmissions and outbreaks; the related database and techniques require urgent standardization.
Collapse
Affiliation(s)
- Zhi Ruan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Chen CL, Dudek A, Liang YH, Janapatla RP, Lee HY, Hsu L, Kuo HY, Chiu CH. d-mannose-sensitive pilus of Acinetobacter baumannii is linked to biofilm formation and adherence onto respiratory tract epithelial cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:69-79. [PMID: 33610507 DOI: 10.1016/j.jmii.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND/PURPOSE Acinetobacter baumannii is an important nosocomial pathogen. To better understand the role of CsuA/BABCDE pilus of A. baumannii in virulence, bacterial biofilm formation, adherence and carbohydrate-mediated inhibition were conducted. METHODS CsuA/BABCDE pilus-producing (abbreviated Csu pilus) operon of A. baumannii ATCC17978 was cloned for analysis of biofilm formation on an abiotic plastic plate, bacterial adherence to respiratory epithelial human A549 cells and carbohydrate-mediated inhibition. The carbohydrates used for inhibition of biofilm formation and adherence to A549 cells included monosaccharides, pyranosides, and mannose-polymers. RESULTS The Csu pilus of A. baumannii ATCC17978 was cloned and expressed into a non-pilus-producing Escherichia coli JM109, and was knocked out as well. The recombinant Csu (rCsu) pilus on E. coli JM109/rCsu pilus-producing clone observed by both electro-microscopy and atomic force microscopy showed abundant, while Csu-knockout A. baumannii ATCC17978 mutant appeared less or no pilus production. The E. coli JM109/rCsu pilus-producing clone significantly increased biofilm formation and adherence to A549 cells; however, the Csu-knockout mutant dramatically lost biofilm-making ability but, in contrast, increased adherence. Moreover, both of biofilm formation and adherence could be significantly inhibited by d-mannose and methyl-α-d-mannopyranoside in Csu pilus-producing E. coli JM109, whereas in A. baumannii ATCC17978, high concentration of carbohydrates was required for the inhibition, suggesting that Csu pilus is sensitive to d-mannose. CONCLUSION This is the first study confirming that Csu pilus of A. baumannii belongs to mannose-sensitive type 1 pilus family and contributes to biofilm formation and bacterial adherence to human epithelial cells.
Collapse
Affiliation(s)
- Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Anna Dudek
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Hao-Yuan Lee
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan; Department of Pediatrics, Wei Gong Memorial Hospital, Miaoli, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Long Hsu
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Han-Yueh Kuo
- Division of Infectious Disease, Department of Internal Medicine, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Mancilla-Rojano J, Ochoa SA, Reyes-Grajeda JP, Flores V, Medina-Contreras O, Espinosa-Mazariego K, Parra-Ortega I, Rosa-Zamboni DDL, Castellanos-Cruz MDC, Arellano-Galindo J, Cevallos MA, Hernández-Castro R, Xicohtencatl-Cortes J, Cruz-Córdova A. Molecular Epidemiology of Acinetobacter calcoaceticus- Acinetobacter baumannii Complex Isolated From Children at the Hospital Infantil de México Federico Gómez. Front Microbiol 2020; 11:576673. [PMID: 33178158 PMCID: PMC7593844 DOI: 10.3389/fmicb.2020.576673] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
The Acinetobacter calcoaceticus-baumannii (Acb) complex is regarded as a group of phenotypically indistinguishable opportunistic pathogens responsible for mainly causing hospital-acquired pneumonia and bacteremia. The aim of this study was to determine the frequency of isolation of the species that constitute the Acb complex, as well as their susceptibility to antibiotics, and their distribution at the Hospital Infantil de Mexico Federico Gomez (HIMFG). A total of 88 strains previously identified by Vitek 2®, 40 as Acinetobacter baumannii and 48 as Acb complex were isolated from 52 children from 07, January 2015 to 28, September 2017. A. baumannii accounted for 89.77% (79/88) of the strains; Acinetobacter pittii, 6.82% (6/88); and Acinetobacter nosocomialis, 3.40% (3/88). Most strains were recovered mainly from patients in the intensive care unit (ICU) and emergency wards. Blood cultures (BC) provided 44.32% (39/88) of strains. The 13.63% (12/88) of strains were associated with primary bacteremia, 3.4% (3/88) with secondary bacteremia, and 2.3% (2/88) with pneumonia. In addition, 44.32% (39/88) were multidrug-resistant (MDR) strains and, 11.36% (10/88) were extensively drug-resistant (XDR). All strains amplified the blaOXA-51 gene; 51.13% (45/88), the blaOXA-23 gene; 4.54% (4/88), the blaOXA-24 gene; and 2.27% (2/88), the blaOXA-58 gene. Plasmid profiles showed that the strains had 1–6 plasmids. The strains were distributed in 52 pulsotypes, and 24 showed identical restriction patterns, with a correlation coefficient of 1.0. Notably, some strains with the same pulsotype were isolated from different patients, wards, or years, suggesting the persistence of more than one clone. Twenty-seven sequence types (STs) were determined for the strains based on a Pasteur multilocus sequence typing (MLST) scheme using massive sequencing; the most prevalent was ST 156 (27.27%, 24/88). The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas I-Fb system provided amplification in A. baumannii and A. pittii strains (22.73%, 20/88). This study identified an increased number of MDR strains and the relationship among strains through molecular typing. The data suggest that more than one strain could be causing an infection in some patient. The implementation of molecular epidemiology allowed the characterization of a set of strains and identification of different attributes associated with its distribution in a specific environment.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico.,Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Juan Pablo Reyes-Grajeda
- Subdirección de Desarrollo de Aplicaciones Clínicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Víctor Flores
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Irapuato, Mexico
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Laboratorio Central, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | | | | | - José Arellano-Galindo
- Unidad de investigación en Enfermedades Infecciosas, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| |
Collapse
|
9
|
Bautype: Capsule and Lipopolysaccharide Serotype Prediction for Acinetobacter baumannii Genome. INFECTIOUS MICROBES AND DISEASES 2020. [DOI: 10.1097/im9.0000000000000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Kim MH, Jeong H, Sim YM, Lee S, Yong D, Ryu CM, Choi JY. Using comparative genomics to understand molecular features of carbapenem-resistant Acinetobacter baumannii from South Korea causing invasive infections and their clinical implications. PLoS One 2020; 15:e0229416. [PMID: 32084241 PMCID: PMC7034955 DOI: 10.1371/journal.pone.0229416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/28/2022] Open
Abstract
Acinetobacter baumannii is a highly potent nosocomial pathogen that is associated with increased in-hospital mortality. Here, we investigated the changes in molecular characteristics of carbapenem-resistant A. baumannii (CRAB) isolated from the blood samples of patients admitted to a tertiary hospital in South Korea from January 2009 to July 2015. Whole genome sequencing using the Illumina MiSeq platform and multi-locus sequence typing (MLST) were performed for 98 CRAB clinical isolates. In silico analyses for the prediction of antimicrobial resistance and virulence factor genes were performed. Plasmid sequences, including complete forms, were reconstructed from the sequence reads. Epidemiologic data were collected from the hospital database. MLST using the Oxford scheme revealed 10 sequence types of CRAB, of which ST191 was the dominant type (n = 59). Although blaOXA-23 was shared by most analysed strains, the compositions of antimicrobial resistance determinants differed among sequence types. ST447 and ST451/ST1809 with a few resistance genes were isolated during the later years of the study period. The number of virulence genes increased, while that of ST191 did not change significantly over the investigation period. Intriguingly MLST types, compositions of antimicrobial resistance genes, and virulence genes had no association with clinical outcomes of CRAB bacteraemia. In conclusion, active changes in or accumulations of antimicrobial resistance determinants and virulence genes in CRAB were not observed during the research period. Molecular characteristics of CRAB had no association with clinical outcomes of CRAB bacteraemia.
Collapse
Affiliation(s)
- Min Hyung Kim
- Department of Internal Medicine, Bundang Jesaeng Hospital, Seongam, Gyeonggi, South Korea
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- R&D Center, Medytox Inc., Suwon, Gyeonggi-do, South Korea
| | - Young Mi Sim
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Soohyun Lee
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of antimicrobial resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Jun Yong Choi
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Gaiarsa S, Bitar I, Comandatore F, Corbella M, Piazza A, Scaltriti E, Villa L, Postiglione U, Marone P, Nucleo E, Pongolini S, Migliavacca R, Sassera D. Can Insertion Sequences Proliferation Influence Genomic Plasticity? Comparative Analysis of Acinetobacter baumannii Sequence Type 78, a Persistent Clone in Italian Hospitals. Front Microbiol 2019; 10:2080. [PMID: 31572316 PMCID: PMC6751323 DOI: 10.3389/fmicb.2019.02080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Acinetobacter baumannii is a known opportunistic pathogen, dangerous for public health mostly due to its ability to rapidly acquire antibiotic-resistance traits. Its genome was described as characterized by remarkable plasticity, with a high frequency of homologous recombinations and proliferation of Insertion Sequences (IS). The SMAL pulsotype is an A. baumannii strain currently isolated only in Italy, characterized by a low incidence and a high persistence over the years. In this present work, we have conducted a comparative genomic analysis on this clone. The genome of 15 SMAL isolates was obtained and characterized in comparison with 24 other assemblies of evolutionary related isolates. The phylogeny highlighted the presence of a monophyletic clade (named ST78A), which includes the SMAL isolates. ST78A isolates have a low rate of homologous recombination and low gene content variability when compared to two related clades (ST78B and ST49) and to the most common A. baumannii variants worldwide (International Clones I and II). Remarkably, genomes in the ST78A clade present a high number of IS, including classes mostly absent in the other related genomes. Among these IS, one copy of IS66 was found to interrupt the gene comEC/rec2, involved in the acquisition of exogenous DNA. The genomic characterization of SMAL isolates shed light on the surprisingly low genomic plasticity and the high IS proliferation present in this strain. The interruption of the gene comEC/rec2 by an IS in the SMAL genomes brought us to formulate an evolutionary hypothesis according to which the proliferation of IS is slowing the acquisition of exogenous DNA, thus limiting genome plasticity. Such genomic architecture could explain the epidemiological behavior of high persistence and low incidence of the clone and provides an interesting framework to compare ST78 with the highly epidemic International Clones, characterized by high genomic plasticity.
Collapse
Affiliation(s)
- Stefano Gaiarsa
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ibrahim Bitar
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Francesco Comandatore
- Pediatric Clinical Research Center, Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”, Università degli Studi di Milano, Milan, Italy
| | - Marta Corbella
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Servizio di Epidemiologia Clinica e Biometria, Direzione Scientifica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Aurora Piazza
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
- Pediatric Clinical Research Center, Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”, Università degli Studi di Milano, Milan, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Parma, Italy
| | - Laura Villa
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanitá, Rome, Italy
| | - Umberto Postiglione
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università degli Studi di Pavia, Pavia, Italy
| | - Piero Marone
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisabetta Nucleo
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Parma, Italy
| | - Roberta Migliavacca
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
12
|
Rafei R, Osman M, Dabboussi F, Hamze M. Update on the epidemiological typing methods for Acinetobacter baumannii. Future Microbiol 2019; 14:1065-1080. [DOI: 10.2217/fmb-2019-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The outstanding ability of Acinetobacter baumannii to cause outbreaks and acquire multidrug resistance motivated the development of a plethora of typing techniques, which can help infection preventionists and hospital epidemiologists to more efficiently implement intervention controls. Nowadays, the world is witnessing a gradual transition from traditional typing methodology to whole genome sequencing-based approaches. Such approaches are opening new prospects and applications never achieved by existing typing methods. Herein, we provide the reader with an updated review on A. baumannii typing methods recapping the added value of well-established techniques previously applied for A. baumannii and detailing new ones (as clustered regularly interspaced short palindromic repeats-based typing) with a special focus on whole genome sequencing.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
13
|
Gaiarsa S, Batisti Biffignandi G, Esposito EP, Castelli M, Jolley KA, Brisse S, Sassera D, Zarrilli R. Comparative Analysis of the Two Acinetobacter baumannii Multilocus Sequence Typing (MLST) Schemes. Front Microbiol 2019; 10:930. [PMID: 31130931 PMCID: PMC6510311 DOI: 10.3389/fmicb.2019.00930] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
Acinetobacter species assigned to the Acinetobacter calcoaceticus-baumannii (Acb) complex, are Gram-negative bacteria responsible for a large number of human infections. The population structure of Acb has been studied using two 7-gene MLST schemes, introduced by Bartual and coworkers (Oxford scheme) and by Diancourt and coworkers (Pasteur scheme). The schemes have three genes in common but underlie two coexisting nomenclatures of sequence types and clonal complexes, which complicates communication on A. baumannii genotypes. The aim of this study was to compare the characteristics of the two schemes to make a recommendation about their usage. Using genome sequences of 730 strains of the Acb complex, we evaluated the phylogenetic congruence of MLST schemes, the correspondence between sequence types, their discriminative power and genotyping reliability from genomic sequences. In silico ST re-assignments highlighted the presence of a second copy of the Oxford gdhB locus, present in 553/730 genomes that has led to the creation of artefactual profiles and STs. The reliability of the two MLST schemes was tested statistically comparing MLST-based phylogenies to two reference phylogenies (core-genome genes and genome-wide SNPs) using topology-based and likelihood-based tests. Additionally, each MLST gene fragment was evaluated by correlating the pairwise nucleotide distances between each pair of genomes calculated on the core-genome and on each single gene fragment. The Pasteur scheme appears to be less discriminant among closely related isolates, but less affected by homologous recombination and more appropriate for precise strain classification in clonal groups, which within this scheme are more often correctly monophyletic. Statistical tests evaluate the tree deriving from the Oxford scheme as more similar to the reference genome trees. Our results, together with previous work, indicate that the Oxford scheme has important issues: gdhB paralogy, recombination, primers sequences, position of the genes on the genome. While there is no complete agreement in all analyses, when considered as a whole the above results indicate that the Pasteur scheme is more appropriate for population biology and epidemiological studies of A. baumannii and related species and we propose that it should be the scheme of choice during the transition toward, and in parallel with, core genome MLST.
Collapse
Affiliation(s)
- Stefano Gaiarsa
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Eliana Pia Esposito
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Michele Castelli
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biosciences, University of Milan, Milan, Italy
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
14
|
Adams MD, Wright MS, Karichu JK, Venepally P, Fouts DE, Chan AP, Richter SS, Jacobs MR, Bonomo RA. Rapid Replacement of Acinetobacter baumannii Strains Accompanied by Changes in Lipooligosaccharide Loci and Resistance Gene Repertoire. mBio 2019; 10:e00356-19. [PMID: 30914511 PMCID: PMC6437055 DOI: 10.1128/mbio.00356-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
The population structure of health care-associated pathogens reflects patterns of diversification, selection, and dispersal over time. Empirical data detailing the long-term population dynamics of nosocomial pathogens provide information about how pathogens adapt in the face of exposure to diverse antimicrobial agents and other host and environmental pressures and can inform infection control priorities. Extensive sequencing of clinical isolates from one hospital spanning a decade and a second hospital in the Cleveland, OH, metropolitan area over a 3-year time period provided high-resolution genomic analysis of the Acinetobacter baumannii metapopulation. Genomic analysis demonstrated an almost complete replacement of the predominant strain groups with a new, genetically distinct strain group during the study period. The new group, termed clade F, differs from other global clone 2 (GC2) strains of A. baumannii in several ways, including its antibiotic resistance and lipooligosaccharide biosynthesis genes. Clade F strains are part of a large phylogenetic group with broad geographic representation. Phylogenetic analysis of single-nucleotide variants in core genome regions showed that although the Cleveland strains are phylogenetically distinct from those isolated from other locations, extensive intermixing of strains from the two hospital systems was apparent, suggesting either substantial exchange of strains or a shared, but geographically restricted, external pool from which infectious isolates were drawn. These findings document the rapid evolution of A. baumannii strains in two hospitals, with replacement of the predominant clade by a new clade with altered lipooligosaccharide loci and resistance gene repertoires.IMPORTANCE Multidrug-resistant (MDR) A. baumannii is a difficult-to-treat health care-associated pathogen. Knowing the resistance genes present in isolates causing infection aids in empirical treatment selection. Furthermore, knowledge of the genetic background can assist in tracking patterns of transmission to limit the spread of infections in hospitals. The appearance of a new genetic background in A. baumannii strains with a different set of resistance genes and cell surface structures suggests that strong selective pressures exist, even in highly MDR pathogens. Because the new strains have levels of antimicrobial resistance similar to those of the strains that were displaced, we hypothesize that other features, including host colonization and infection, may confer additional selective advantages and contribute to their increased prevalence.
Collapse
Affiliation(s)
- Mark D Adams
- The J. Craig Venter Institute, La Jolla, California, USA
| | | | - James K Karichu
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Agnes P Chan
- The J. Craig Venter Institute, Rockville, Maryland, USA
| | - Sandra S Richter
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael R Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Center for Proteomics, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Ko KS. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J Microbiol 2018; 57:195-202. [PMID: 30552629 DOI: 10.1007/s12275-019-8491-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones-CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum ß-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23-producing global clone 2 in Acinetobacter baumannii-that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
16
|
Cho GS, Li B, Rostalsky A, Fiedler G, Rösch N, Igbinosa E, Kabisch J, Bockelmann W, Hammer P, Huys G, Franz CMAP. Diversity and Antibiotic Susceptibility of Acinetobacter Strains From Milk Powder Produced in Germany. Front Microbiol 2018; 9:536. [PMID: 29636733 PMCID: PMC5880893 DOI: 10.3389/fmicb.2018.00536] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022] Open
Abstract
Forty-seven Acinetobacter spp. isolates from milk powder obtained from a powdered milk producer in Germany were investigated for their antibiotic resistance susceptibilities, in order to assess whether strains from food harbor multiple antibiotic resistances and whether the food route is important for dissemination of resistance genes. The strains were identified by 16S rRNA and rpoB gene sequencing, as well as by whole genome sequencing of selected isolates and their in silico DNA-DNA hybridization (DDH). Furthermore, they were genotyped by rep-PCR together with reference strains of pan-European groups I, II, and III strains of Acinetobacter baumannii. Of the 47 strains, 42 were identified as A. baumannii, 4 as Acinetobacter Pittii, and 1 as Acinetobacter calcoaceticus based on 16S rRNA gene sequencing. In silico DDH with the genome sequence data of selected strains and rpoB gene sequencing data suggested that the five non-A. baumannii strains all belonged to A. pittii, suggesting that the rpoB gene is more reliable than the 16S rRNA gene for species level identification in this genus. Rep-PCR genotyping of the A. baumannii strains showed that these could be grouped into four groups, and that some strains clustered together with reference strains of pan-European clinical group II and III strains. All strains in this study were intrinsically resistant toward chloramphenicol and oxacillin, but susceptible toward tetracycline, tobramycin, erythromycin, and ciprofloxacin. For cefotaxime, 43 strains (91.5%) were intermediate and 3 strains (6.4%) resistant, while 3 (6.4%) and 21 (44.7%) strains exhibited resistance to cefepime and streptomycin, respectively. Forty-six (97.9%) strains were susceptible to amikacin and ampicillin-sulbactam. Therefore, the strains in this study were generally not resistant to the clinically relevant antibiotics, especially tobramycin, ciprofloxacin, cefepime, and meropenem, suggesting that the food route probably poses only a low risk for multidrug resistant Acinetobacter strains or resistance genes.
Collapse
Affiliation(s)
- Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Bo Li
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - André Rostalsky
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Gregor Fiedler
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Niels Rösch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Etinosa Igbinosa
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany.,Department of Microbiology, Faculty of Life Science, University of Benin, Benin City, Nigeria
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Philipp Hammer
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut, Kiel, Germany
| | - Geert Huys
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| |
Collapse
|
17
|
Distribution and Molecular Characterization of Acinetobacter baumannii International Clone II Lineage in Japan. Antimicrob Agents Chemother 2018; 62:AAC.02190-17. [PMID: 29203489 DOI: 10.1128/aac.02190-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter spp. have been globally disseminated in association with the successful clonal lineage Acinetobacter baumannii international clone II (IC II). Because the prevalence of MDR Acinetobacter spp. in Japan remains very low, we characterized all Acinetobacter spp. (n = 866) from 76 hospitals between October 2012 and March 2013 to describe the entire molecular epidemiology of Acinetobacter spp. The most prevalent species was A. baumannii (n = 645; 74.5%), with A. baumannii IC II (n = 245) accounting for 28.3% of the total. Meropenem-resistant isolates accounted for 2.0% (n = 17) and carried ISAba1-blaOXA-23-like (n = 10), blaIMP (n = 4), or ISAba1-blaOXA-51-like (n = 3). Multilocus sequence typing of 110 representative A. baumannii isolates revealed the considerable prevalence of domestic sequence types (STs). A. baumannii IC II isolates were divided into the domestic sequence type 469 (ST469) (n = 18) and the globally disseminated STs ST208 (n = 14) and ST219 (n = 4). ST469 isolates were susceptible to more antimicrobial agents, while ST208 and ST219 overproduced the intrinsic AmpC β-lactamase. A. baumannii IC II and some A. baumannii non-IC II STs (e.g., ST149 and ST246) were associated with fluoroquinolone resistance. This study revealed that carbapenem-susceptible A. baumannii IC II was moderately disseminated in Japan. The low prevalence of acquired carbapenemase genes and presence of domestic STs could contribute to the low prevalence of MDR A. baumannii A similar epidemiology might have appeared before the global dissemination of MDR epidemic lineages. In addition, fluoroquinolone resistance associated with A. baumannii IC II may provide insight into the significance of A. baumannii epidemic clones.
Collapse
|
18
|
Zhang Q, Hua X, Ruan Z, Yu Y, Feng Y. Revisiting the contribution of gene duplication of blaOXA-23 in carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 2018; 73:250-252. [PMID: 29029045 DOI: 10.1093/jac/dkx339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Ruan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Yuan Y, Liu ZQ, Jin H, Sun S, Liu TJ, Wang X, Fan HJ, Hou SK, Ding H. Photodynamic antimicrobial chemotherapy with the novel amino acid-porphyrin conjugate 4I: In vitro and in vivo studies. PLoS One 2017; 12:e0176529. [PMID: 28493985 PMCID: PMC5426629 DOI: 10.1371/journal.pone.0176529] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Photodynamic antimicrobial chemotherapy (PACT), as a novel and effective therapeutic modality to eradicate drug resistant bacteria without provoking multidrug resistance, has attracted increasing attention. This study examined the antimicrobial efficacy of the novel cationic amino acid-porphyrin conjugate 4I with four lysine groups against two different clinical isolated strains (drug sensitive and multidrug resistant) of the Acinetobacter baumannii species and its toxicity on murine dermal fibroblasts in vitro, as well as the therapeutic effect of PACT on acute, potentially lethal multidrug resistant strain excisional wound infections in vivo. The PACT protocol exposed 4I to illumination, exhibiting high antimicrobial efficacy on two different strains due to a high yield of reactive oxygen species (ROS) and non-selectivity to microorganisms. The photoinactivation effects of 4I against two different strains were dose-dependent. At 3.9 μM and 7.8 μM, PACT induced 6 log units of inactivation of sensitive and multidrug resistant strains. In contrast, 4I alone and illumination alone treatments had no visibly antimicrobial effect. Moreover, cytotoxicity tests revealed the great safety of the photosensitizer 4I in mice. In the in vivo study, we found 4I-mediated PACT was not only able to kill bacteria but also accelerated wound recovery. Compared with non-treated mice, over 2.89 log reduction of multidrug resistant Acinetobacter baumannii strain was reached in PACT treat mice at 24 h post-treatment. These results imply that 4I-mediated PACT therapy is an effective and safe alternative to conventional antibiotic therapy and has clinical potential for superficial drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yao Yuan
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Zi-Quan Liu
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian-Jun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College – Chinese Academy of Medical Sciences, Tianjin, China
| | - Xue Wang
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Hao-Jun Fan
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Shi-Ke Hou
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Hui Ding
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
- * E-mail:
| |
Collapse
|
20
|
Marchaim D, Levit D, Zigron R, Gordon M, Lazarovitch T, Carrico JA, Chalifa-Caspi V, Moran-Gilad J. Clinical and molecular epidemiology of Acinetobacter baumannii bloodstream infections in an endemic setting. Future Microbiol 2017; 12:271-283. [PMID: 28287300 DOI: 10.2217/fmb-2016-0158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM The transmission dynamics of Acinetobacter baumannii in endemic settings, and the relation between microbial properties and patients' clinical outcomes, are yet obscure and hampered by insufficient metadata. METHODS & RESULTS Of 20 consecutive patients with A. baumannii bloodstream infection that were thoroughly analyzed at a single center, at least one transmission opportunity was evident for 85% of patients. This implies that patient-to-patient transmission is the major mode of A. baumannii acquisitions in health facilities. Moreover, all patients who died immediately (<24 h of admission) were infected with a single clone (ST457; relative risk = 1.6; p = 0.05). CONCLUSION This preliminary analysis should prompt further investigation by mapping genomic virulence determinants among A. baumannii ST457 lineage compared with other strains.
Collapse
Affiliation(s)
- Dror Marchaim
- Unit of Infectious Diseases, Assaf Harofeh Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dana Levit
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Roy Zigron
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Gordon
- NIBN, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tsillia Lazarovitch
- Clinical Microbiology Laboratory, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Joao A Carrico
- Instituto de Microbiologia & Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Jacob Moran-Gilad
- Public Health Services, Ministry of Health, Jerusalem, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,ESCMID Study Group for Genomic & Molecular Diagnostics (ESGMD), Basel, Switzerland
| |
Collapse
|
21
|
Occurrence of Diverse AbGRI1-Type Genomic Islands in Acinetobacter baumannii Global Clone 2 Isolates from South Korea. Antimicrob Agents Chemother 2017; 61:AAC.01972-16. [PMID: 27895018 DOI: 10.1128/aac.01972-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022] Open
Abstract
In this study, we analyzed the frequency of the AbGRI1-type genomic island (GI) and its association with genotypes. We obtained 130 Acinetobacter baumannii isolates causing bloodstream infections from patients in South Korea. Antimicrobial susceptibility testing and multilocus sequence typing were performed. The presence of AbGRI1-type GIs and their structures were determined by sequential PCR and sequencing. Ninety-eight isolates (75.3%) representing 14 sequence types (STs) belonged to clonal complex 208 (CC208), corresponding to global clone 2 (GC2). AbGRI1-type GIs interrupted the comM gene in 107 isolates (82.4%). Four types of GIs were identified: Tn6022 (50 isolates; 46.7%), AbaR4 (23 isolates; 21.5%), Tn6166 (10 isolates; 9.3%), and Tn6166/Tn2006 (24 isolates; 22.4%). In the 50 isolates with Tn6022, Tn2006 or Tn2008B, both containing ISAba1-blaOXA-23, was present in sites other than GIs in 3 or 28 isolates, respectively. In the 10 isolates with Tn6166, Tn2008B was identified in one isolate. AbGRI1-type GIs were identified nearly exclusively in CC208 isolates, with the exception of nine non-CC208 isolates (AbaR4 in eight ST229 isolates and Tn6022 in one ST1244 isolate). Within CC208 isolates, there was evidence of frequent recombination events, in both housekeeping genes and AbGRI1-type GIs, contributing to genotype diversification and the emergence of carbapenem resistance.
Collapse
|
22
|
Hua X, Shu J, Ruan Z, Yu Y, Feng Y. Multiplication ofblaOXA-23is common in clinicalAcinetobacter baumannii, but does not enhance carbapenem resistance. J Antimicrob Chemother 2016; 71:3381-3385. [DOI: 10.1093/jac/dkw310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 11/13/2022] Open
|