1
|
Gao R, Jin H, Dong J, Zheng Y, Han M, Lou J. Low-intensity ultrasound combined with inert particles to improve denitrifying flocculated sludge performance and resulting granulation mechanism. BIORESOURCE TECHNOLOGY 2025; 415:131724. [PMID: 39477160 DOI: 10.1016/j.biortech.2024.131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
To enhance the understanding of flocculated sludge granulation, this study focused on a bacterial denitrification system using low-intensity ultrasound and inert particles to stimulate cell activity and facilitate flocculated sludge granulation. After 75 days, the activated carbon, activated carbon + ultrasonication, and microplastic + ultrasonication groups showed partial pelletization. Both ultrasound and inert particles promoted extracellular polymeric substance secretion and enhanced electron transport system activity. Low-intensity ultrasound improved denitrification performance and enhanced denitrifying bacteria. The addition of inert materials facilitated denitrifying flocculated sludge granulation. Low-intensity ultrasound combined with microplastics obtained the highest activity and enrichment of denitrifying bacteria in granular sludge. This study provides new ideas for optimizing anaerobic sludge granulation.
Collapse
Affiliation(s)
- Ran Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Junlan Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiru Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Mengru Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Lv PL, Jia C, Wei CH, Zhao HP, Chen R. Biochar modulates intracellular electron transfer for nitrate reduction in denitrifying anaerobic methane oxidizing archaea. BIORESOURCE TECHNOLOGY 2024; 406:130998. [PMID: 38885730 DOI: 10.1016/j.biortech.2024.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Denitrifying anaerobic methane oxidizing (DAMO) archaea plays a significant role in simultaneously nitrogen removal and methane mitigation, yet its limited metabolic activity hinders engineering applications. This study employed biochar to explore its potential for enhancing the metabolic activity and nitrate reduction capacity of DAMO microorganisms. Sawdust biochar (7 g/L) was found to increase the nitrate reduction rate by 2.85 times, although it did not affect the nitrite reduction rate individually. Scanning electron microscopy (SEM) and fluorescence excitation-emission matrix (EEM) analyses revealed that biochar promoted microbial aggregation, and stimulated the secretion of extracellular polymeric substances (EPS). Moreover, biochar bolstered the redox capacity and conductivity of the biofilm, notably enhancing the activity of the electron transfer system by 1.65 times. Key genes involved in intracellular electron transport (Hdr, MHC, Rnf) and membrane transport proteins (BBP, ABC, NDH) of archaea were significantly up-regulated. These findings suggest that biochar regulates electrons generated by reverse methanogenesis to the membrane for nitrate reduction.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Chi-Hang Wei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
3
|
Nascimento ALA, de Oliveira Souza S, Guimarães AS, Figueiredo IM, de Albuquerque Dias T, Gomes FS, Botero WG, Santos JCC. Investigation on humic substance and tetracycline interaction mechanism: biophysical and theoretical studies and assessing their effect on biological activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20172-20187. [PMID: 38369661 DOI: 10.1007/s11356-024-32168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/20/2024] [Indexed: 02/20/2024]
Abstract
Tetracycline (TC) is a widely used antibiotic, and evaluating its interaction with humic substances (HS) that act as a complexing agent in the environment is essential to understanding the availability of this contaminant in the environment. This study evaluated the interaction between HS and TC using different spectroscopic techniques, theoretical studies, and biological assays simulating environmental conditions. TC interacts with HS, preferably by electrostatic forces, with a binding constant of 9.2 × 103 M-1 (30 °C). This process induces conformational changes in the superstructure, preferably in the HS, like protein fraction. Besides, studies using the 8-anilino-1-naphthalene sulfonate (ANS) probe indicated that the antibiotic alters the hydrophobicity degree on HS's surface. Synchronized fluorescence shows that the TC interaction occurs preferentially with the protein-like fraction of soil organic matter (KSV = 26.28 ± 1.03 M-1). The TC epitope was evaluated by 1H NMR and varied according to the pH (4.8 and 9.0) of the medium, as well as the main forces responsible for the stabilization of the HS-TC complex. The molecular docking studies showed that the formation of the HS-TC complex is carried out spontaneously (ΔG = -7.1 kcal mol-1) and is stabilized by hydrogen bonds and electrostatic interactions, as observed in the experimental spectroscopic results. Finally, biological assays indicated that HS influenced the antimicrobial activity of TC. Thus, this study contributed to understanding the dynamics and distribution of TC in the environment and HS's potential in the remediation of antibiotics of this class in natural systems, as these can have adverse effects on ecosystems and human health.
Collapse
Affiliation(s)
| | - Shenia de Oliveira Souza
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | - Ari Souza Guimarães
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | - Isis Martins Figueiredo
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | | | - Francis Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | - Wander Gustavo Botero
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | | |
Collapse
|
4
|
Lv PL, Jia C, Guo X, Zhao HP, Chen R. Microbial stratification protects denitrifying anaerobic methane oxidation archaea and bacteria from external oxygen shock in membrane biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 391:129966. [PMID: 37918493 DOI: 10.1016/j.biortech.2023.129966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Different gradients of dissolved oxygen (DO) regulate the microbial community and nitrogen removal pathways of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) coupled process in a batch biofilm reactor. Under completely anaerobic condition, approximately 72 mg NO3--N/L was removed at a daily rate of 6.55 mg N/L, whereas a peak accumulation of 95 mg NO3--N/L was observed during DO reached 0.5 mg/L. There is a decrease in the abundance of Candidatus Methylomirabilis (24.1%), Candidatus Methanoperedens (23.3%), and Candidatus Kuenenia (22.6%) to below 5% when DO levels reached 0.2 mg/L. Moreover, key genes associated with the reverse methanogenesis (mcrA) and anaerobic ammonium oxidase (hzo) decreased. These findings indicate that during oxygen shock, methanotrophs and denitrifiers replace Anammox bacteria on the outer sphere of the biofilm, whereas DAMO bacteria and archaea are protected from external oxygen shock due to the microbial stratification of biofilm.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Xu Guo
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, PR China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
5
|
Priyanka M, Saravanakumar MP. New insights on aging mechanism of microplastics using PARAFAC analysis: Impact on 4-nitrophenol removal via Statistical Physics Interpretation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150819. [PMID: 34627889 DOI: 10.1016/j.scitotenv.2021.150819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The aging effects of Polyethylene terephthalate (PET) microplastics were studied under Fenton process and Seawater. This research work mainly focuses on the aging mechanism of PET microplastics under two different conditions and their effect of aging on the adsorption of organic contaminants. The results of optical microscopic images, Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman Spectroscopy, carbonyl, carboxyl index, X-ray powder diffraction (XRD) and dissolved organic carbon (DOC) help to understand the aging mechanism of PET microplastics. Parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy (2D-COS) were performed using 3D Excitation-Emission Matrix (3D-EEM) to understand the possible dissolved organic matter released during the Fenton process and seawater. The release of protein/phenol like components was observed in seawater whereas humic acid-like component was noted in the Fenton process. Later, the aged PET microplastics were tested for their adsorption capacity towards 4-nitrophenol at three different temperatures (15, 30 and 45 °C). The adsorption capacity of aged microplastics was found to be higher than the normal PET microplastics for all three different temperatures. Hydrogen bonding, n-pi interaction performed a significant role than pi-pi and hydrophobic interaction in the adsorption mechanism. A double layer with double energy model was found to be the best fit in the adsorption processes. The calculated adsorption energies (ΔE1, ΔE2) from the statistical physics modeling also confirms the physisorption mechanism. The above experimental results help to understand the behavior of microplastics at different aging period and how it acts as a carrier for pollutant in the marine environment.
Collapse
Affiliation(s)
- M Priyanka
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, VIT University, Vellore campus, Vellore, Tamilnadu, India
| | - M P Saravanakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, VIT University, Vellore campus, Vellore, Tamilnadu, India.
| |
Collapse
|
6
|
Zhu M, Li N, Lu Y, Hu Z, Chen S, Zeng RJ. The performance and microbial communities of an anaerobic membrane bioreactor for treating fluctuating 2-chlorophenol wastewater. BIORESOURCE TECHNOLOGY 2020; 317:124001. [PMID: 32805483 DOI: 10.1016/j.biortech.2020.124001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
An anaerobic membrane bioreactor (AnMBR) was used to treat low to high (5-200 mg/L) concentrations of 2-chlorophenol (2-CP) wastewater. The AnMBR achieved high and stable chemical oxygen demand removal and 2-CP removal with an average value of 93.2% and 94.2% under long hydraulic retention times (HRTs, 48-96 h), respectively. 2-CP removal efficiency of 98.6 mg/L/d was achieved with 2-CP concentration of 200 mg/L, which was much higher than that of other anaerobic bioreactors. Furthermore, volatile fatty acids didn't accumulate under high 2-CP loading. Long HRTs significantly reduced the membrane fouling as the fouling rate (0.90 × 109-5.44 × 109 m-1h-1) was low. Spirochaetaceae and Methanosaeta were the dominant microbes responsible for dechlorination, methanogenesis, and shock resistance. All these results demonstrate that this AnMBR operated under long HRTs is good and robust for fluctuating chlorophenols wastewater treatment, which has high potential for treating fluctuating refractory organics wastewater with the low membrane fouling rate.
Collapse
Affiliation(s)
- Mingchao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Na Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhaoxia Hu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shouwen Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Ma J, Yang M, Shi C, He C, Yuan Q, Li K, Gong H, Wang K. Insight into the benefits of anammox bacteria living as aggregates. BIORESOURCE TECHNOLOGY 2020; 318:124103. [PMID: 32942094 DOI: 10.1016/j.biortech.2020.124103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
This work tried understanding aggregation preference of anammox bacteria from benefit-driven perspective. Aggregated anammox sludge (AGS) gained benefits in specific anammox activity (SAA) (increased by 40.47 ± 12.64%) and in toxicity resistance (enhanced by 65.41%) than scattered anammox sludge (SCS), which were verified by kinetics. The increased heme c content by 35.67 ± 5.77% and enhanced relative abundance of anammox bacteria by 9.29% supported the benefits in biological activity and improved EPS content by 1097.59 ± 43.06% (622.16 ± 61.73% for protein (PN), 2403.47 ± 162.75% for humic acid (HA) and 1145.34 ± 97.33% for polysaccharide (PS)) justified the benefits in toxicity resistance. The diverse microbial communities and organized spatial structures owned by AGS promoted interactions between species, as the intrinsic justification for obtaining the benefits. We expect our findings to provide theoretical guidance for promotions and applications of the anammox process with excellent nitrogen removal capacity and stability.
Collapse
Affiliation(s)
- Jinyuan Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Meijuan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Chuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Conghui He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kun Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Fang F, Wang SN, Li KY, Dong JY, Xu RZ, Zhang LL, Xie WM, Cao JS. Formation of microbial products by activated sludge in the presence of a metabolic uncoupler o-chlorophenol in long-term operated sequencing batch reactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121311. [PMID: 31585278 DOI: 10.1016/j.jhazmat.2019.121311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Metabolic uncouplers are widely used for reducing excess sludge in biological wastewater treatment systems. However, the formation of microbial products, such as extracellular polymeric substances, polyhydroxyalkanoate and soluble microbial products by activated sludge in the presence of metabolic uncouplers remains unrevealed. In this study, the impacts of a metabolic uncoupler o-chlorophenol (oCP) on the reduction of activated sludge yield and formation of microbial products in laboratory-scale sequencing batch reactors (SBRs) were evaluated for a long-term operation. The results show the average reduction of sludge yield in the four reactors was 17.40%, 25.80%, 33.02% and 39.50%, respectively, when dosing 5, 10, 15, and 20 mg/L oCP. The oCP addition slightly reduced the pollutant removal efficiency and decreased the formation of soluble microbial products in the SBRs, but stimulated the productions of extracellular polymeric substances and polyhydroxyalkanoate in activated sludge. Furthermore, the significant reduction of electronic transport system activity occurred after the oCP addition. Microbial community analysis of the activated sludge indicates dosing oCP resulted in a decrease of sludge richness and diversity in the SBRs. Hopefully, this study would provide useful information for reducing sludge yield in biological wastewater treatment systems and behaviors of activated sludge in the presence of uncouplers.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ke-Yan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jin-Yun Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lu-Lu Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Wen-Ming Xie
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
9
|
Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PNL, Tay JH. A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL-producing strains. WATER RESEARCH 2020; 169:115193. [PMID: 31670083 DOI: 10.1016/j.watres.2019.115193] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
The positive roles of N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) in aerobic granular sludge (AGS) have been widely acknowledged. However, it is not feasible to manipulate granulation via direct addition of AHL chemicals or AHL-producing strains. Here, several strains with high AHL-producing capacity were successfully isolated from AGS. These QS strains were cultivated, mixed as a consortium, and then divided into two groups: AHLs supernatant and bacterial cells encapsulated in sodium alginate (CEBs). The potential of QS regulation, via doses of AHLs supernatant and CEBs, in accelerating granulation was evaluated. Results clearly indicated that short-term (days 21-70) addition of AHLs supernatant led to a rapid specific growth rate (0.08 d-1), compact structure without filamentous bacteria overgrowth, excellent settlement performance (SVI10 37.2 mL/g), and a high integrity coefficient (4.4%) of the granules. Sustainable release of AHLs (mainly C6- and C8-HSL) was induced by exogenous AHLs, possibly attributed to the enrichment of the genera Aeromonas and Pseudomonas. Further, tryptophan and aromatic protein substances were produced to maintain structural stability, suggesting that short-term QS regulation had long-term positive effects on the characteristics of AGS. By comparison, the addition of CEBs posed negligible or negative impact on the granulation, as evidenced by the rupture of smaller aggregates and poor characteristics of AGS. Overall, augmentation of the signaling content via addition of AHLs supernatant from QS strains is an economical and feasible regulation strategy to accelerate granulation and sustain long-term structural stability.
Collapse
Affiliation(s)
- Bing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Department of Civil Engineering, University of Calgary, Calgary, T2N 1N4, Canada
| | - Wei Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuan Guo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing, 400030, China.
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing, 400030, China.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2601 DA, Delft, the Netherlands
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
10
|
Variations of organic matters and extracellular enzyme activities during biodrying of dewatered sludge with different bulking agents. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Chen W, Teng CY, Qian C, Yu HQ. Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4683-4694. [PMID: 30998320 DOI: 10.1021/acs.est.9b01103] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV-vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments.
Collapse
Affiliation(s)
- Wei Chen
- School of Metallurgy and Environment , Central South University , Changsha 410083 , China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Chun-Ying Teng
- School of Metallurgy and Environment , Central South University , Changsha 410083 , China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
12
|
Han F, Wei D, Ngo HH, Guo W, Xu W, Du B, Wei Q. Performance, microbial community and fluorescent characteristic of microbial products in a solid-phase denitrification biofilm reactor for WWTP effluent treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:375-385. [PMID: 30212684 DOI: 10.1016/j.jenvman.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/24/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Microbial products, i.e. extracellular polymeric substance (EPS) and soluble microbial product (SMP), have a significant correlation with microbial activity of biologically based systems. In present study, the spectral characteristics of two kinds of microbial products were comprehensively evaluated in a solid-phase denitrification biofilm reactor for WWTP effluent treatment by using poly (butylene succinate) (PBS) as carbon source. After the achievement of PBS-biofilm, nitrate and total nitrogen removal efficiencies were high of 97.39 ± 1.24% and 96.38 ± 1.1%, respectively. The contents of protein and polysaccharide were changed different degrees in both LB-EPS and TB-EPS. Excitation-emission matrix (EEM) implied that protein-like substances played a significant role in the formation of PBS-biofilm. High-throughput sequencing result implied that the proportion of denitrifying bacteria, including Simplicispira, Dechloromonas, Diaphorobacter, Desulfovibrio, increased to 9.2%, 7.4%, 4.8% and 3.6% in PBS-biofilm system, respectively. According to EEM-PARAFAC, two components were identified from SMP samples, including protein-like substances for component 1 and humic-like and fulvic acid-like substances for component 2, respectively. Moreover, the fluorescent scores of two components expressed significant different trends to reaction time. Gas chromatography-mass spectrometer (GC-MS) implied that some new organic matters were produced in the effluent of SP-DBR due to biopolymer degradation and denitrification processes. The results could provide a new insight about the formation and stability of solid-phase denitrification PBS-biofilm via the point of microbial products.
Collapse
Affiliation(s)
- Fei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
13
|
Huang L, Li M, Ngo HH, Guo W, Xu W, Du B, Wei Q, Wei D. Spectroscopic characteristics of dissolved organic matter from aquaculture wastewater and its interaction mechanism to chlorinated phenol compound. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Maqbool T, Cho J, Hur J. Changes in spectroscopic signatures in soluble microbial products of activated sludge under different osmotic stress conditions. BIORESOURCE TECHNOLOGY 2018; 255:29-38. [PMID: 29414170 DOI: 10.1016/j.biortech.2018.01.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Spectroscopic techniques were used to examine the subtle changes in soluble microbial products (SMP) of batch activated sludge bioreactors working at different salinities (i.e., 0%, 1%, 3%, and 5% NaCl). The changes in different fluorescent constituent were tracked by excitation-emission matrix combined with parallel factor analysis (EEM-PARAFAC), and the sequential production was further identified by two-dimensional correlation spectroscopy (2D-COS). Greater enrichment of tryptophan-like component and large-sized biopolymer were found in SMP for higher saline bioreactors, suggesting the SMP sources from bound extracellular polymeric substances and excreted intercellular constituents. 2D-COS revealed the opposite sequences of the fluorescence changes in SMP between the low and the high saline bioreactors, following the order of "tyrosine-like > tryptophan-like > humic-like fluorescence" for the latter. This study clarified the dominant mechanisms involved in SMP formation during elevating salinity, which were well supported by the changes in SMP spectroscopic features, microbial activity, and organic degradation rates.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
15
|
Dong D, Li L, Zhang L, Hua X, Guo Z. Effects of lead, cadmium, chromium, and arsenic on the sorption of lindane and norfloxacin by river biofilms, particles, and sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4632-4642. [PMID: 29192404 DOI: 10.1007/s11356-017-0840-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
The sorption of both classic and emerging organic contaminants onto aquatic solids is a critical process that controls their fate in natural waters. Sorption is affected by numerous factors, including coexisting heavy metals. The mechanisms of the influence of heavy metals, especially those occurring in acid radical anions, are still unclear. Here, the effects of Pb, Cd, Cr, and As on the sorption of lindane and norfloxacin (NOR) onto natural biofilms, suspended particles, and sediments from one river were investigated following batch equilibration methods. In addition, changes in representative components that have important roles in sorption from these solids in the presence and absence of metals were characterized by spectrum analyses. The results indicated that sorption of lindane and NOR on the three solids in the absence of heavy metals was highly linear and nonlinear, respectively. Pb and Cd promoted and Cr and As suppressed hydrophobic lindane sorption on the three solids. This was because Pb and Cd enhanced but Cr and As weakened the hydrophobicity of these solids. Pb, Cd, Cr, and As decreased NOR sorption on sediments and suspended particles at pH 5.7~6.3. This was due to electrostatic competition between cationic Pb/Cd and NORH2+, and the combination of Cr/As acid radicals with NORH2+, which suppressed its ion-exchange adsorption. Pb, Cd, Cr, and As generally increased the sorption of NOR onto the biofilms at pH 5.7~6.3. Pb and Cd strengthened the flocculation of dissolved organic matter combined with NORH2+ onto the biofilms. Cr and As enhanced the hydrophilicity of biofilms, and then increased their sorption of NOR with active hydrophilic groups. The mechanisms of how different heavy metals affect NOR sorption by biofilms were more complicated than the mechanisms affecting lindane sorption, as well as by sediments and particles.
Collapse
Affiliation(s)
- Deming Dong
- Ministry of Education Key Lab of Groundwater Resources and Environment, Jilin Province Key Lab of Water Resources and Aquatic Environment, College of Environment and Resources, Jilin University, Changchun, 130012, China
| | - Lufeng Li
- Ministry of Education Key Lab of Groundwater Resources and Environment, Jilin Province Key Lab of Water Resources and Aquatic Environment, College of Environment and Resources, Jilin University, Changchun, 130012, China
| | - Liwen Zhang
- Ministry of Education Key Lab of Groundwater Resources and Environment, Jilin Province Key Lab of Water Resources and Aquatic Environment, College of Environment and Resources, Jilin University, Changchun, 130012, China
| | - Xiuyi Hua
- Ministry of Education Key Lab of Groundwater Resources and Environment, Jilin Province Key Lab of Water Resources and Aquatic Environment, College of Environment and Resources, Jilin University, Changchun, 130012, China
| | - Zhiyong Guo
- Ministry of Education Key Lab of Groundwater Resources and Environment, Jilin Province Key Lab of Water Resources and Aquatic Environment, College of Environment and Resources, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Wei D, Ngo HH, Guo W, Xu W, Du B, Khan MS, Wei Q. Biosorption performance evaluation of heavy metal onto aerobic granular sludge-derived biochar in the presence of effluent organic matter via batch and fluorescence approaches. BIORESOURCE TECHNOLOGY 2018; 249:410-416. [PMID: 29059624 DOI: 10.1016/j.biortech.2017.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
In present study, the biosorption process of Cu(II) onto aerobic granular sludge-derived biochar was evaluated in the absence and presence of effluent organic matter (EfOM) by using batch and fluorescence approaches. It was found that EfOM gave rise to enhancement of Cu(II) removal efficiency onto biochar, and the sorption data were better fitted with pseudo-second order model and Freundlich equation, in despite of the absence and presence of EfOM. According to excitation-emission matrix (EEM), EfOM was mainly comprised by humic-like substances and fulvic-like substances and their intensities were reduced in the addition of biochar and Cu(II) from batch biosorption process. Synchronous fluorescence spectra coupled to two-dimensional correlation spectroscopy (2D-COS) further implied that a successive fluorescence quenching was observed in various EfOM fractions with the increasing Cu(II) concentration. Moreover, fulvic-like fraction was more susceptibility than other fractions for fluorescence quenching of EfOM.
Collapse
Affiliation(s)
- Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Malik Saddam Khan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
17
|
Mal J, Nancharaiah YV, Maheshwari N, van Hullebusch ED, Lens PNL. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:79-88. [PMID: 28043045 DOI: 10.1016/j.jhazmat.2016.12.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 12/25/2016] [Indexed: 06/06/2023]
Abstract
Continuous removal of tellurite (TeO32-) from synthetic wastewater and subsequent recovery in the form of elemental tellurium was studied in an upflow anaerobic granular sludge bed (UASB) reactor operated at 30°C. The UASB reactor was inoculated with anaerobic granular sludge and fed with lactate as carbon source and electron donor at an organic loading rate of 0.6g CODL-1d-1. After establishing efficient and stable COD removal, the reactor was fed with 10mg TeO32-L-1 for 42 d before increasing the influent concentration to 20mg TeO32-L-1. Tellurite removal (98 and 92%, respectively, from 10 and 20mg TeL-1) was primarily mediated through bioreduction and most of the removed Te was retained in the bioreactor. Characterization using XRD, Raman spectroscopy, SEM-EDX and TEM confirmed association of tellurium with the granular sludge, typically in the form of elemental Te(0) deposits. Furthermore, application of an extracellular polymeric substances (EPS) extraction method to the tellurite reducing sludge recovered up to 78% of the tellurium retained in the granular sludge. This study demonstrates for the first time the application of a UASB reactor for continuous tellurite removal from tellurite-containing wastewater coupled to elemental Te(0) recovery.
Collapse
Affiliation(s)
- Joyabrata Mal
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands.
| | - Yarlagadda V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai 400094, India
| | - Neeraj Maheshwari
- CNRS UMR 7338, BMBI University de Technologie Compiegne, 60200 Compiegne, France
| | - Eric D van Hullebusch
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands; Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Piet N L Lens
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands; Department of Chemistry and Bioengineering, Tampere University of Technology, P.O-Box 541, Tampere, Finland
| |
Collapse
|
18
|
Wei D, Zhang K, Ngo HH, Guo W, Wang S, Li J, Han F, Du B, Wei Q. Nitrogen removal via nitrite in a partial nitrification sequencing batch biofilm reactor treating high strength ammonia wastewater and its greenhouse gas emission. BIORESOURCE TECHNOLOGY 2017; 230:49-55. [PMID: 28160658 DOI: 10.1016/j.biortech.2017.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
In present study, the feasibility of partial nitrification (PN) process achievement and its greenhouse gas emission were evaluated in a sequencing batch biofilm reactor (SBBR). After 90days' operation, the average effluent NH4+-N removal efficiency and nitrite accumulation rate of PN-SBBR were high of 98.2% and 87.6%, respectively. Both polysaccharide and protein contents were reduced in loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) during the achievement of PN-biofilm. Excitation-emission matrix spectra implied that aromatic protein-like, tryptophan protein-like and humic acid-like substances were the main compositions of both kinds of EPS in seed sludge and PN-biofilm. According to typical cycle, the emission rate of CO2 had a much higher value than that of N2O, and their total amounts per cycle were 67.7 and 16.5mg, respectively. Free ammonia (FA) played a significant role on the inhibition activity of nitrite-oxidizing bacteria and the occurrence of nitrite accumulation.
Collapse
Affiliation(s)
- Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Keyi Zhang
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Siyu Wang
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Jibin Li
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Fei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|