1
|
Singh I, Rao STRB, Irving HR, Balani K, Kong I. Advanced alginate/58S bioactive glass inks with enhanced printability, mechanical strength, and cytocompatibility for soft tissue engineering. Int J Biol Macromol 2025; 305:141106. [PMID: 39956239 DOI: 10.1016/j.ijbiomac.2025.141106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Alginate-based hydrogels are promising biomaterials for extrusion-based bioprinting; however, their poor mechanical properties, printability, and shape integrity limit their utility in mimicking complex tissues and organs. In this study, a novel sodium alginate (Alg)/58S bioactive glass (BG)-based ink was developed for soft tissue engineering applications. The inks were characterised for shear-thinning, flowability, and shape integrity by printing various structures, including single filaments (0° and 90° nozzle movement), scaffolds, and rings. The ABG10 ink (10 wt% 58S BG in Alg) exhibited superior printability, achieving a printing accuracy of over 90 %, compared to a printing accuracy of 30-40 % for pure Alg. Fourier transform infrared spectroscopy revealed interactions between 58S BG and the Alg matrix, while scanning electron microscopy characterised the 58S BG morphology within the matrix. The storage modulus increased from 767 (pure Alg) to 13,604 Pa (ABG10), while compressive strength rose from 23 ± 3 to 43 ± 4 kPa (58 % enhancement). The cytocompatibility of the inks was assessed using an MTT assay (with SH-SY5Y cells), which confirmed that ABG10 ink supports cell viability. Overall, ABG10 hydrogel-based inks exhibited enhanced shear-thinning behaviour, printability, mechanical strength, and cytocompatibility, which could help to develop patient-specific soft tissues.
Collapse
Affiliation(s)
- Indrajeet Singh
- Advanced Polymer and Composite Materials Laboratory, Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia; Department of Materials Science and Engineering, Indian Institute of Technology Kanpur (208016), India
| | - Santosh T R B Rao
- Advanced Polymer and Composite Materials Laboratory, Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Helen R Irving
- Advanced Polymer and Composite Materials Laboratory, Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur (208016), India.
| | - Ing Kong
- Advanced Polymer and Composite Materials Laboratory, Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia.
| |
Collapse
|
2
|
Bidaki A, Rezaei N, Kazemi S, Ali SN, Ziaei S, Moeinzadeh A, Hosseini F, Noorbazargan H, Farmani AR, Ren Q. 3D printed bioengineered scaffold containing chitosan, alginate, and Barijeh-loaded niosomes enabled efficient antibiofilm activity and wound healing. Int J Biol Macromol 2025:143743. [PMID: 40316113 DOI: 10.1016/j.ijbiomac.2025.143743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/31/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
In this study, we developed a novel biocompatible wound scaffold by encapsulating Barijeh (Bar), a plant-derived antibacterial compound, with niosome (Nio). The Nio-Bar formulation was incorporated into a chitosan (CS) and alginate (AL) hydrogel mixture, followed by 3D printing to create a three-dimensional scaffold, namely Nio-Bar@CS-AL. The obtained scaffold showed notable degradation, reaching 68 % (w/w) within 14 days. Nio-Bar@CS-AL displayed strong antibacterial activity and led to a >5-log reduction of both Pseudomonas aeruginosa and Staphylococcus aureus, far surpassing the performance of CS-AL scaffolds. Further, it effectively reduced biofilm formation by 74 %-80 % for both pathogens, and showed no cytotoxicity toward human fibroblast (HFF) cells, ensuring safety for wound application. In an in vivo murine wound model, Nio-Bar@CS-AL facilitated over 90 % wound healing after 10-day. Tissue integration was signaled by a twofold increase of TGF-β expression and a reduction of IL-6 expression to near-baseline levels, thereby mitigating inflammation. Histopathological analysis revealed a much higher collagen deposition, a key indicator of effective healing, in scaffold-treated wounds compared to the control. These results suggest that Nio-Bar@CS-AL holds promising clinical potential for treating wound infections and defects, offering a multifaceted strategy to improve wound healing outcomes.
Collapse
Affiliation(s)
- Ali Bidaki
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Niloufar Rezaei
- Department of Chemical Engineering, Pennsylvania State University, PA 16802, USA
| | - Sara Kazemi
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Saba Naeimaei Ali
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Seyedehrozhin Ziaei
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hosseini
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
3
|
Choi AJ, Hefley BS, Strobel HA, Moss SM, Hoying JB, Nicholas SE, Moshayedi S, Kim J, Karamichos D. Fabrication of a 3D Corneal Model Using Collagen Bioink and Human Corneal Stromal Cells. J Funct Biomater 2025; 16:118. [PMID: 40278226 PMCID: PMC12028034 DOI: 10.3390/jfb16040118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Corneal transplantation remains a critical treatment option for individuals with corneal disorders, but it faces challenges such as rejection, high associated medical costs, and donor scarcity. A promising alternative for corneal replacement involves fabricating artificial cornea from a patient's own cells. Our study aimed to leverage bioprinting to develop a corneal model using human corneal stromal cells embedded in a collagen-based bioink. We generated both cellular and acellular collagen I (COL I) constructs. Cellular constructs were cultured for up to 4 weeks, and gene expression analysis was performed to assess extracellular matrix (ECM) remodeling and fibrotic markers. Our results demonstrated a significant decrease in the expression of COL I, collagen III (COL III), vimentin (VIM), and vinculin (VCL), indicating a dynamic remodeling process towards a more physiologically relevant corneal ECM. Overall, our study provides a foundational framework for developing customizable, corneal replacements using bioprinting technology. Further research is necessary to optimize the bioink composition and evaluate the functional and biomechanical properties of these bioengineered corneas.
Collapse
Affiliation(s)
- Alexander J. Choi
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Brenna S. Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Hannah A. Strobel
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - Sarah M. Moss
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - James B. Hoying
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Shadi Moshayedi
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Jayoung Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Guo Y, Wang Z, Zhang X, Li J, Gao S, Lv Y, Ouyang L. Microfiber-Templated Porogel Bioinks Enable Tubular Interfaces and Microvascularization Down to the Building Blocks for 3D Bioprinting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501594. [PMID: 40099633 DOI: 10.1002/smll.202501594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Vascularization is key to the biofabrication of large-scale tissues. Despite the progress, there remain some outstanding challenges, such as limited vessel density, difficulty in fabricating microvasculatures, and inhomogeneity of post-seeding cells. Here, a new form of bioink called microfiber-templated porogel (µFTP) bioink is introduced to engineer vasculatures down to the filament building blocks of 3D bioprinted hydrogels. The cell-laden sacrificial microfibers (diameter ranges from 50-150 µm) are embedded in the bioink to template tubular voids and deliver endothelial cells for in-situ endothelialization. The inclusion of softening hydrogel microfibers retains the desirable rheological properties of the bioink for extrusion-based bioprinting and the microfibers are well inter-contacted in the extruded filament. Such bioinks can be printed into a well-defined 3D structure with tunable tubular porosities up to 55%. Compared to the conventional bulk bioink counterpart, the µFTP bioink supports the significant growth and spread of endothelial cells either embedded in the matrix or sacrificial fibers, free of the post-cell seeding procedure. Furthermore, the bioprinted scaffolds based on µFTP bioink are seen to significantly promote the in-growth of blood vessels and native tissues in vivo. The µFTP bioink approach enables the engineering of tubular bio-interfaces within the building blocks and contributes to the in-situ endothelialization of microvasculatures, providing a versatile tool for the construction of customized vascularized tissue models.
Collapse
Affiliation(s)
- Yuzhi Guo
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziyu Wang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Xuening Zhang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinghang Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shan Gao
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Lv
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Liliang Ouyang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Paduano T, Zuppolini S, Vitiello R, Zarrelli M, Tesser R, Borriello A. Encapsulation of Lactoferrin in Calcium-Alginate Microparticles and Its Release Therefrom Under Neutral and Mild Acidic Conditions: Synthesis, Characterization and Mathematical Modeling. Gels 2025; 11:116. [PMID: 39996661 PMCID: PMC11854222 DOI: 10.3390/gels11020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Bio-based polymeric stimuli-responsive materials have attracted increasing interest, especially in the pharmacological and nutraceutical fields. These materials mainly consist of macromolecules capable of conformational and chemical changes in response to external signals. One active molecule mostly used in bio-related areas is lactoferrin (Lf), which is attracting attention due to its beneficial effects (antimicrobial, anti-inflammatory, and anti-carcinogenic) on the human body. Since pH or temperature in the human body can promote Lf degradation, encapsulation in a suitable system is required. A valid solution is to encapsulate the Lf in a polysaccharidic matrix such as alginate (ALG) thanks to its biocompatibility and easy gelation with bivalent cations. This work aims to encapsulate iron-depleted Lf in alginate gel microspheres for stability improvement by ionic cross-linking with Ca2+ ions. The obtained particles were characterized in terms of structure, thermal stability, and morphology, and their swelling capability was determined. Release studies were carried out on the freeze-dried particles to investigate the effect of neutral pH 7 and acidic pH 5. At last, the optimization of the loaded system was completed by developing a mathematical model able to predict the swelling behavior of the carrier particle and the subsequent Lf kinetic release over time.
Collapse
Affiliation(s)
- Teresa Paduano
- Institute for Polymers, Composites and Biomaterials (IPCB)—National Research Council, 80055 Portici, Italy; (T.P.); (M.Z.); (A.B.)
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy;
| | - Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials (IPCB)—National Research Council, 80055 Portici, Italy; (T.P.); (M.Z.); (A.B.)
| | - Rosa Vitiello
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy;
| | - Mauro Zarrelli
- Institute for Polymers, Composites and Biomaterials (IPCB)—National Research Council, 80055 Portici, Italy; (T.P.); (M.Z.); (A.B.)
| | - Riccardo Tesser
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy;
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials (IPCB)—National Research Council, 80055 Portici, Italy; (T.P.); (M.Z.); (A.B.)
| |
Collapse
|
6
|
Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Curr Eye Res 2025; 50:1-17. [PMID: 39261982 DOI: 10.1080/02713683.2024.2396385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE This comprehensive review is designed to elucidate the transformative role and multifaceted applications of ocular hydrogels in contemporary ophthalmic therapeutic strategies, with a particular emphasis on their capability to revolutionize drug delivery mechanisms and optimize patient outcomes. METHODS A systematic and structured methodology is employed, initiating with a succinct exploration of prevalent ocular pathologies and delineating the corresponding therapeutic agents. This serves as a precursor for an extensive examination of the diverse methodologies and fabrication techniques integral to the design, development, and application of hydrogels specifically tailored for ophthalmic pharmaceutical delivery. The review further scrutinizes the pivotal manufacturing processes that significantly influence hydrogel efficacy and delves into an analysis of the current spectrum of hydrogel-centric ocular formulations. RESULTS The review yields illuminating insights into the escalating prominence of ocular hydrogels within the medical community, substantiated by a plethora of ongoing clinical investigations. It reveals the dynamic and perpetually evolving nature of hydrogel research and underscores the extensive applicability and intricate progression of transposing biologics-loaded hydrogels from theoretical frameworks to practical clinical applications. CONCLUSIONS This review accentuates the immense potential and promising future of ocular hydrogels in the realm of ophthalmic care. It not only serves as a comprehensive guide but also as a catalyst for recognizing the transformative potential of hydrogels in augmenting drug delivery mechanisms and enhancing patient outcomes. Furthermore, it draws attention to the inherent challenges and considerations that necessitate careful navigation by researchers and clinicians in this progressive field.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Vanasthali, India
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, India
| | | | | |
Collapse
|
7
|
Sousa AC, Mcdermott G, Shields F, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Richardson SM, Domingos M, Maurício AC. Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications. Gels 2024; 10:831. [PMID: 39727588 DOI: 10.3390/gels10120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlueTM revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Grace Mcdermott
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Fraser Shields
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Animal and Veterinary Sciences, University Institute of Health Sciences (IUCS), Cooperative of Polytechnic and University Higher Education, CRL (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- Associated Laboratory for Green Chemistry (REQUIMTE-LAQV), Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Stephen M Richardson
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Hao S, Shi L, Li J, Shi J, Kuang G, Liang G, Gao S. Biomacromolecular hydrogel scaffolds from microfluidics for cancer therapy: A review. Int J Biol Macromol 2024; 282:136738. [PMID: 39437954 DOI: 10.1016/j.ijbiomac.2024.136738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Traditional cancer treatment is confronted with the problem of limited therapeutic effect, tissue defects, and lack of drug screening. Hydrogel scaffolds from biological macromolecules based on microfluidic technology are a promising candidate, which can mimic tumor microenvironments to screen personalized drugs, promote the regeneration of healthy tissues, and deliver drugs for enhanced localized antitumor treatment. This review summarizes the latest research on the composition of biomacromolecular hydrogel scaffolds, the architecture of hydrogel scaffolds from microfluidic technology, and their application in cancer therapy, including anti-tumor drug screening, anti-tumor treatment, and anti-tumor treatment and tissue repair. In addition, the potential breakthroughs of this innovative platform in the clinical transformation of cancer therapy are further discussed. The insights revealed in this review are intended to guide the utilization of microfluidic technology-based biomacromolecular hydrogel scaffolds in cancer therapy.
Collapse
Affiliation(s)
- Siyu Hao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| | - Jiayi Li
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Jiaming Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Gaizhen Kuang
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Gaofeng Liang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
9
|
Al Monla R, Daien V, Michon F. Advanced bioengineering strategies broaden the therapeutic landscape for corneal failure. Front Bioeng Biotechnol 2024; 12:1480772. [PMID: 39605752 PMCID: PMC11598527 DOI: 10.3389/fbioe.2024.1480772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The cornea acts as the eye foremost protective layer and is essential for its focusing power. Corneal blindness may arise from physical trauma or conditions like dystrophies, keratitis, keratoconus, or ulceration. While conventional treatments involve medical therapies and donor allografts-sometimes supplemented with keratoprostheses-these options are not suitable for all corneal defects. Consequently, the development of bioartificial corneal tissue has emerged as a critical research area, aiming to address the global shortage of human cornea donors. Bioengineered corneas hold considerable promise as substitutes, with the potential to replace either specific layers or the entire thickness of damaged corneas. This review first delves into the structural anatomy of the human cornea, identifying key attributes necessary for successful corneal tissue bioengineering. It then examines various corneal pathologies, current treatments, and their limitations. Finally, the review outlines the primary approaches in corneal tissue engineering, exploring cell-free, cell-based, and scaffold-based options as three emerging strategies to address corneal failure.
Collapse
Affiliation(s)
- Reem Al Monla
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
10
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
11
|
Deng Y, Li L, Xu J, Yao Y, Ding J, Wang L, Luo C, Yang W, Li L. A biomimetic human disease model of bacterial keratitis using a cornea-on-a-chip system. Biomater Sci 2024; 12:5239-5252. [PMID: 39233608 DOI: 10.1039/d4bm00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Bacterial keratitis is a common form of inflammation caused by the bacterial invasion of the corneal stroma after trauma. In extreme cases, it can lead to severe visual impairment or even blindness; therefore, timely medical intervention is imperative. Unfortunately, widespread misuse of antibiotics has led to the development of drug resistance. In recent years, organ-on-chips that integrate multiple cell co-cultures have extensive applications in fundamental research and drug screening. In this study, immortalized human corneal epithelial cells and primary human corneal fibroblasts were co-cultured on a porous polydimethylsiloxane membrane to create a cornea-on-a-chip model. The developed multilayer epithelium closely mimicked clinical conditions, demonstrating high structural resemblance and repeatability. By introducing a consistently defective epithelium and bacterial infection using the space-occupying method, we successfully established an in vitro model of bacterial keratitis using S. aureus. We validate this model by evaluating the efficacy of antibiotics, such as levofloxacin, tobramycin, and chloramphenicol, through simultaneously observing the reactions of bacteria and the two cell types to these antibiotics. Our study has revealed the barrier function of epithelium of the model and differentiated efficacy of three drugs in terms of bactericidal activity, reducing cellular apoptosis, and mitigating scar formation. Altogether, the cornea on chip enables the assessment of ocular antibiotics, distinguishing the impact on corneal cells and structural integrity. This study introduced a biomimetic in vitro disease model to evaluate drug efficacy and provided significant insights into the extensive effects of antibiotics on diverse cell populations within the cornea.
Collapse
Affiliation(s)
- Yudan Deng
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lingjun Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Jian Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Yili Yao
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Jiangtao Ding
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lei Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Chunxiong Luo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Wei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lingli Li
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Vijayaraghavan R, Loganathan S, Valapa RB. Fabrication of GelMA - Agarose Based 3D Bioprinted Photocurable Hydrogel with In Vitro Cytocompatibility and Cells Mirroring Natural Keratocytes for Corneal Stromal Regeneration. Macromol Biosci 2024; 24:e2400136. [PMID: 39096155 DOI: 10.1002/mabi.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Indexed: 08/05/2024]
Abstract
The complex anatomy of the cornea and the subsequent keratocyte-fibroblast transition have always made corneal stromal regeneration difficult. Recently, 3D printing has received considerable attention in terms of fabrication of scaffolds with precise dimension and pattern. In the current work, 3D printable polymer hydrogels made of GelMA/agarose are formulated and its rheological properties are evaluated. Despite the variation in agarose content, both the hydrogels exhibited G'>G'' modulus. A prototype for 3D stromal model is created using Solid Works software, mimicking the anatomy of an adult cornea. The fabrication of 3D-printed hydrogels is performed using pneumatic extrusion. The FTIR analysis speculated that the hydrogel is well crosslinked and established strong hydrogen bonding with each other, thus contributing to improved thermal and structural stability. The MTT analysis revealed a higher rate of cell proliferation on the hydrogels. The optical analysis carried out on the 14th day of incubation revealed that the hydrogels exhibit transparency matching with natural corneal stromal tissue. Specific protein marker expression confirmed the keratocyte phenotype and showed that the cells do not undergo terminal differentiation into stromal fibroblasts. The findings of this work point to the potential of GelMA/A hydrogels as a novel biomaterial for corneal stromal tissue engineering.
Collapse
Affiliation(s)
- Renuka Vijayaraghavan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sravanthi Loganathan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Babu Valapa
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Zoghi S. Advancements in Tissue Engineering: A Review of Bioprinting Techniques, Scaffolds, and Bioinks. Biomed Eng Comput Biol 2024; 15:11795972241288099. [PMID: 39364141 PMCID: PMC11447703 DOI: 10.1177/11795972241288099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Tissue engineering is a multidisciplinary field that uses biomaterials to restore tissue function and assist with drug development. Over the last decade, the fabrication of three-dimensional (3D) multifunctional scaffolds has become commonplace in tissue engineering and regenerative medicine. Thanks to the development of 3D bioprinting technologies, these scaffolds more accurately recapitulate in vivo conditions and provide the support structure necessary for microenvironments conducive to cell growth and function. The purpose of this review is to provide a background on the leading 3D bioprinting methods and bioink selections for tissue engineering applications, with a specific focus on the growing field of developing multifunctional bioinks and possible future applications.
Collapse
Affiliation(s)
- Shervin Zoghi
- School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
14
|
Vanlauwe F, Dermaux C, Shamieva S, Vermeiren S, Van Vlierberghe S, Blondeel P. Small molecular weight alginate gel porogen for the 3D bioprinting of microvasculature. Front Bioeng Biotechnol 2024; 12:1452477. [PMID: 39380897 PMCID: PMC11458444 DOI: 10.3389/fbioe.2024.1452477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
In order to recreate the complexity of human organs, the field of tissue engineering and regenerative medicine has been focusing on methods to build organs from the bottom up by assembling distinct small functional units consisting of a biomaterial and cells. This bottom-up engineering requires bioinks that can be assembled by 3D bioprinting and that permit fast vascularization of the construct to ensure survival of embedded cells. To this end, a small molecular weight alginate (SMWA) gel porogen is presented herein. Alginate is a biocompatible biomaterial, which can be easily converted into small porogen gels with the procedure reported in this article. The SMWA porogen is mixed with photo-crosslinkable hydrogels and leached from the hydrogel post-crosslinking to increase porosity and facilitate vascularization. As a proof of concept, this system is tested with the commonly used biomaterial Gelatin Methacryloyl (GelMA). The SMWA porogen-GelMA blend is proven to be bioprintable. Incubating the blend for 20 min in a low concentration phosphate buffered saline and sodium citrate solution significantly reduces the remaining porogen in the hydrogel . The intent to completely leach the porogen from the hydrogel was abandoned, as longer incubation times and higher concentrations of phosphate and citrate were detrimental to endothelial proliferation. Nonetheless, even with remnants of the porogen left in the hydrogel, the created porosity significantly improves viability, growth factor signaling, vasculogenesis, and angiogenesis in 3D bioprinted structures. This article concludes that the usage of the SMWA porogen can improve the assembly of microvasculature in 3D bioprinted structures. This technology can benefit the bottom-up assembly of large scaffolds with high cell density through 3D bioprinting by improving cell viability and allowing faster vascularization.
Collapse
Affiliation(s)
- Florian Vanlauwe
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Charlotte Dermaux
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Sabina Shamieva
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Stef Vermeiren
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Phillip Blondeel
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
15
|
Agarwal P, Mathur V, Kasturi M, Srinivasan V, Seetharam RN, S Vasanthan K. A Futuristic Development in 3D Printing Technique Using Nanomaterials with a Step Toward 4D Printing. ACS OMEGA 2024; 9:37445-37458. [PMID: 39281933 PMCID: PMC11391532 DOI: 10.1021/acsomega.4c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
3D bioprinting has shown great promise in tissue engineering and regenerative medicine for creating patient-specific tissue scaffolds and medicinal devices. The quickness, accurate imaging, and design targeting of this emerging technology have excited biomedical engineers and translational medicine researchers. Recently, scaffolds made from 3D bioprinted tissue have become more clinically effective due to nanomaterials and nanotechnology. Because of quantum confinement effects and high surface area/volume ratios, nanomaterials and nanotechnological techniques have unique physical, chemical, and biological features. The use of nanomaterials and 3D bioprinting has led to scaffolds with improved physicochemical and biological properties. Nanotechnology and nanomaterials affect 3D bioprinted tissue engineered scaffolds for regenerative medicine and tissue engineering. Biomaterials and cells that respond to stimuli change the structural shape in 4D bioprinting. With such dynamic designs, tissue architecture can change morphologically. New 4D bioprinting techniques will aid in bioactuation, biorobotics, and biosensing. The potential of 4D bioprinting in biomedical technologies is also discussed in this article.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Meghana Kasturi
- Department of Mechanical Engineering, University of Michigan, Dearborn, Michigan 48128, United States
| | - Varadharajan Srinivasan
- Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
16
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
17
|
Cheon J, Song M, Kwon S. Alginate-gelatine hydrogel microspheres protect NK cell proliferation and cytotoxicity under hypoxic conditions. J Microencapsul 2024; 41:375-389. [PMID: 38945166 DOI: 10.1080/02652048.2024.2362170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
AIMS This study aimed to encapsulate natural killer (NK) cells in a hydrogel to sustain their function within the hypoxic tumour microenvironments. METHODS An alginate-gelatine hydrogel was generated via electrospray technology. Hydrogel biocompatibility was assessed through cell counting kit-8 and Live/Dead assays to ascertain cell. Moreover, we analysed lactate dehydrogenase assays to evaluate the cytotoxicity against tumours and utilised RT-qPCR to analyse cytokine gene level. RESULTS Alginate and gelatine formed hydrogels with diameters ranging from 489.2 ± 23.0 μm, and the encapsulation efficiency was 34.07 ± 1.76%. Encapsulated NK cells exhibited robust proliferation and tumour-killing capabilities under normoxia and hypoxia. Furthermore, encapsulation provided a protective shield against cell viability under hypoxia. Importantly, tumour-killing cytotoxicity through cytokines upregulation such as granzyme B and interferon-gamma was preserved under hypoxia. CONCLUSION The encapsulation of NK cells not only safeguards their viability but also reinforces anticancer capacity, countering the inhibition of activation induced by hypoxia.
Collapse
Affiliation(s)
- Jiyoung Cheon
- Department of Biological Engineering, Inha University, Incheon, Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, Korea
| | - Myeongkwan Song
- Department of Biological Engineering, Inha University, Incheon, Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, Korea
| |
Collapse
|
18
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Barcena AJR, Mishra A, Bolinas DKM, Martin BM, Melancon MP. Integration of Electrospun Scaffolds and Biological Polymers for Enhancing the Delivery and Efficacy of Mesenchymal Stem/Stromal Cell Therapies. FRONT BIOSCI-LANDMRK 2024; 29:228. [PMID: 38940050 PMCID: PMC11725061 DOI: 10.31083/j.fbl2906228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach for a variety of diseases due to their immunomodulatory and tissue regeneration capabilities. Despite their potential, the clinical application of MSC therapies is hindered by limited cell retention and engraftment at the target sites. Electrospun scaffolds, with their high surface area-to-volume ratio and tunable physicochemical properties, can be used as platforms for MSC delivery. However, synthetic polymers often lack the bioactive cues necessary for optimal cell-scaffold interactions. Integrating electrospun scaffolds and biological polymers, such as polysaccharides, proteins, and composites, combines the mechanical integrity of synthetic materials with the bioactivity of natural polymers and represents a strategic approach to enhance cell-scaffold interactions. The molecular interactions between MSCs and blended or functionalized scaffolds have been examined in recent studies, and it has been shown that integration can enhance MSC adhesion, proliferation, and paracrine secretion through the activation of multiple signaling pathways, such as FAK/Src, MAPK, PI3K/Akt, Wnt/β-catenin, and YAP/TAZ. Preclinical studies on small animals also reveal that the integration of electrospun scaffolds and natural polymers represents a promising approach to enhancing the delivery and efficacy of MSCs in the context of regenerating bone, cartilage, muscle, cardiac, vascular, and nervous tissues. Future research should concentrate on identifying the distinct characteristics of the MSC niche, investigating the processes involved in MSC-scaffold interactions, and applying new technologies in stem cell treatment and biofabrication to enhance scaffold design. Research on large animal models and collaboration among materials scientists, engineers, and physicians are crucial to translating these advancements into clinical use.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Archana Mishra
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dominic Karl M. Bolinas
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Benjamin M. Martin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
20
|
Kanokova D, Matejka R, Zaloudkova M, Zigmond J, Supova M, Matejkova J. Active Media Perfusion in Bioprinted Highly Concentrated Collagen Bioink Enhances the Viability of Cell Culture and Substrate Remodeling. Gels 2024; 10:316. [PMID: 38786233 PMCID: PMC11120981 DOI: 10.3390/gels10050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The bioprinting of high-concentrated collagen bioinks is a promising technology for tissue engineering and regenerative medicine. Collagen is a widely used biomaterial for bioprinting because of its natural abundance in the extracellular matrix of many tissues and its biocompatibility. High-concentrated collagen hydrogels have shown great potential in tissue engineering due to their favorable mechanical and structural properties. However, achieving high cell proliferation rates within these hydrogels remains a challenge. In static cultivation, the volume of the culture medium is changed once every few days. Thus, perfect perfusion is not achieved due to the relative increase in metabolic concentration and no medium flow. Therefore, in our work, we developed a culture system in which printed collagen bioinks (collagen concentration in hydrogels of 20 and 30 mg/mL with a final concentration of 10 and 15 mg/mL in bioink) where samples flow freely in the culture medium, thus enhancing the elimination of nutrients and metabolites of cells. Cell viability, morphology, and metabolic activity (MTT tests) were analyzed on collagen hydrogels with a collagen concentration of 20 and 30 mg/mL in static culture groups without medium exchange and with active medium perfusion; the influence of pure growth culture medium and smooth muscle cells differentiation medium was next investigated. Collagen isolated from porcine skins was used; every batch was titrated to optimize the pH of the resulting collagen to minimize the difference in production batches and, therefore, the results. Active medium perfusion significantly improved cell viability and activity in the high-concentrated gel, which, to date, is the most limiting factor for using these hydrogels. In addition, based on SEM images and geometry analysis, the cells remodel collagen material to their extracellular matrix.
Collapse
Affiliation(s)
- Denisa Kanokova
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna 3105, 272 01 Kladno, Czech Republic; (D.K.); (R.M.); (J.Z.)
| | - Roman Matejka
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna 3105, 272 01 Kladno, Czech Republic; (D.K.); (R.M.); (J.Z.)
| | - Margit Zaloudkova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague, Czech Republic; (M.Z.); (M.S.)
| | - Jan Zigmond
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna 3105, 272 01 Kladno, Czech Republic; (D.K.); (R.M.); (J.Z.)
| | - Monika Supova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague, Czech Republic; (M.Z.); (M.S.)
| | - Jana Matejkova
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna 3105, 272 01 Kladno, Czech Republic; (D.K.); (R.M.); (J.Z.)
| |
Collapse
|
21
|
Zhou Z, Li T, Zhu X, Zhang Z, Huang G. Engineering Soft Spring Gauges for In Situ Biomaterial and Tissue Weighing. ACS Biomater Sci Eng 2024; 10:2133-2142. [PMID: 38451467 DOI: 10.1021/acsbiomaterials.3c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Hydrogels have gained great attention and broad applications in tissue engineering, regenerative medicine, and drug delivery due to their excellent biocompatibility and degradability. However, accurately and noninvasively characterizing the degradation process of hydrogels remains a challenge. To address this, we have developed a method using soft spring gauges (SSGs) for the in situ weighing of hydrogels. Our approach uses a simple hydrogel-based sacrificial template method to fabricate polydimethylsiloxane (PDMS) SSGs. The SSGs used in this study can characterize hydrogels with a minimum wet weight of approximately 30 mg. Through theoretical derivations, numerical simulations, and experimental characterization, we confirmed that the length change of the SSGs in a buffer solution correlates linearly with the applied hanging weights. This allows us to track and assess the solid mass change of hydrogels during degradation with high feasibility and accuracy. Additionally, we have demonstrated the potential application of SSGs for the in situ characterization of engineered tissue growth. This method represents an advanced approach for in situ hydrogel weighing, holding great promise for advancing the development of hydrogels and other biomaterials in biomedical applications.
Collapse
Affiliation(s)
- Zixing Zhou
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,Wuhan 430072, P.R. China
| | - Tingting Li
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,Wuhan 430072, P.R. China
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University,Wuhan 430072, P. R. China
| | - Zuoqi Zhang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,Wuhan 430072, P.R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University,Wuhan 430072, P.R. China
| |
Collapse
|
22
|
Lee GW, Chandrasekharan A, Roy S, Thamarappalli A, Mahaling B, Lee H, Seong KY, Ghosh S, Yang SY. 3D bioprinting of stromal cells-laden artificial cornea based on visible light-crosslinkable bioinks forming multilength networks. Biofabrication 2024; 16:035002. [PMID: 38507802 DOI: 10.1088/1758-5090/ad35eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
3D bioprinting has the potential for the rapid and precise engineering of hydrogel constructs that can mimic the structural and optical complexity of a healthy cornea. However, the use of existing light-activated bioinks for corneal printing is limited by their poor cytocompatibility, use of cytotoxic photoinitiators (PIs), low photo-crosslinking efficiency, and opaque/colored surface of the printed material. Herein, we report a fast-curable, non-cytotoxic, optically transparent bioprinting system using a new water-soluble benzoyl phosphinate-based PI and photocrosslinkable methacrylated hyaluronic acid (HAMA). Compared with commercially available PIs, the newly developed PI, lithium benzoyl (phenyl) phosphinate (BP), demonstrated increased photoinitiation efficiency under visible light and low cytotoxicity. Using a catalytic amount of BP, the HA-based bioinks quickly formed 3D hydrogel constructs under low-energy visible-light irradiation (405 nm, <1 J cm-2). The mechanical properties and printability of photocurable bioinks were further improved by blending low (10 kDa) and high (100 kDa) molecular weight (MW) HAMA by forming multilength networks. For potential applications as corneal scaffolds, stromal cell-laden dome-shaped constructs were fabricated using MW-blended HAMA/BP bioink and a digital light processing printer. The HA-based photocurable bioinks exhibited good cytocompatibility (80%-95%), fast curing kinetics (<5 s), and excellent optical transparency (>90% in the visible range), potentially making them suitable for corneal tissue engineering.
Collapse
Affiliation(s)
- Gyeong Won Lee
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Republic of Korea
| | - Ajeesh Chandrasekharan
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Republic of Korea
| | - Subhadeep Roy
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Akash Thamarappalli
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Republic of Korea
| | - Binapani Mahaling
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Hyeseon Lee
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Republic of Korea
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
23
|
Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio 2024; 25:100973. [PMID: 38322663 PMCID: PMC10844750 DOI: 10.1016/j.mtbio.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science, Pohang, 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Inha University Hospital, Incheon, 22332, Republic of Korea
| |
Collapse
|
24
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
25
|
Wu KY, Tabari A, Mazerolle É, Tran SD. Towards Precision Ophthalmology: The Role of 3D Printing and Bioprinting in Oculoplastic Surgery, Retinal, Corneal, and Glaucoma Treatment. Biomimetics (Basel) 2024; 9:145. [PMID: 38534830 PMCID: PMC10968161 DOI: 10.3390/biomimetics9030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
In the forefront of ophthalmic innovation, biomimetic 3D printing and bioprinting technologies are redefining patient-specific therapeutic strategies. This critical review systematically evaluates their application spectrum, spanning oculoplastic reconstruction, retinal tissue engineering, corneal transplantation, and targeted glaucoma treatments. It highlights the intricacies of these technologies, including the fundamental principles, advanced materials, and bioinks that facilitate the replication of ocular tissue architecture. The synthesis of primary studies from 2014 to 2023 provides a rigorous analysis of their evolution and current clinical implications. This review is unique in its holistic approach, juxtaposing the scientific underpinnings with clinical realities, thereby delineating the advantages over conventional modalities, and identifying translational barriers. It elucidates persistent knowledge deficits and outlines future research directions. It ultimately accentuates the imperative for multidisciplinary collaboration to enhance the clinical integration of these biotechnologies, culminating in a paradigm shift towards individualized ophthalmic care.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Adrian Tabari
- Southern Medical Program, Faculty of Medicine, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Éric Mazerolle
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
26
|
Chen S, Tan S, Zheng L, Wang M. Multilayered Shape-Morphing Scaffolds with a Hierarchical Structure for Uterine Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6772-6788. [PMID: 38295266 DOI: 10.1021/acsami.3c14983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Owing to dysfunction of the uterus, millions of couples around the world suffer from infertility. Different from conventional treatments, tissue engineering provides a new and promising approach to deal with difficult problems such as human tissue or organ failure. Adopting scaffold-based tissue engineering, three-dimensional (3D) porous scaffolds in combination with stem cells and appropriate biomolecules may be constructed for uterine tissue regeneration. In this study, a hierarchical tissue engineering scaffold, which mimicked the uterine tissue structure and functions, was designed, and the biomimicking scaffolds were then successfully fabricated using solvent casting, layer-by-layer assembly, and 3D bioprinting techniques. For the multilayered, hierarchical structured scaffolds, poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PLATMC" in short) and poly(lactic acid-co-glycolic acid) (PLGA) blends were first used to fabricate the shape-morphing layer of the scaffolds, which was to mimic the function of myometrium in uterine tissue. The PLATMC/PLGA polymer blend scaffolds were highly stretchable. Subsequently, after etching of the PLATMC/PLGA surface and employing estradiol (E2), polydopamine (PDA), and hyaluronic acid (HA), PDA@E2/HA multilayer films were formed on PLATMC/PLGA scaffolds to build an intelligent delivery platform to enable controlled and sustained release of E2. The PDA@E2/HA multilayer films also improved the biological performance of the scaffold. Finally, a layer of bone marrow-derived mesenchymal stem cell (BMSC)-laden hydrogel [which was a blend of gelatin methacryloyl (GelMA) and gelatin (Gel)] was 3D printed on the PDA@E2/HA multilayer films of the scaffold, thereby completing the construction of the hierarchical scaffold. BMSCs in the GelMA/Gel hydrogel layer exhibited excellent cell viability and could spread and be released eventually upon biodegradation of the GelMA/Gel hydrogel. It was shown that the hierarchically structured scaffolds could evolve from the initial flat shape into the tubular structure completely in an aqueous environment at 37 °C, fulfilling the requirement for curved scaffolds for uterine tissue engineering. The biomimicking scaffolds with a hierarchical structure and curved shape, high stretchability, and controlled and sustained E2 release appear to be very promising for uterine tissue regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Shenglong Tan
- Department of Endodontics and Operative Dentistry, College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Liwu Zheng
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| |
Collapse
|
27
|
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. NANO CONVERGENCE 2023; 10:52. [PMID: 37968379 PMCID: PMC10651626 DOI: 10.1186/s40580-023-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
28
|
Kantaros A, Ganetsos T. From Static to Dynamic: Smart Materials Pioneering Additive Manufacturing in Regenerative Medicine. Int J Mol Sci 2023; 24:15748. [PMID: 37958733 PMCID: PMC10647622 DOI: 10.3390/ijms242115748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The emerging field of regenerative medicine holds immense promise for addressing complex tissue and organ regeneration challenges. Central to its advancement is the evolution of additive manufacturing techniques, which have transcended static constructs to embrace dynamic, biomimetic solutions. This manuscript explores the pivotal role of smart materials in this transformative journey, where materials are endowed with dynamic responsiveness to biological cues and environmental changes. By delving into the innovative integration of smart materials, such as shape memory polymers and stimulus-responsive hydrogels, into additive manufacturing processes, this research illuminates the potential to engineer tissue constructs with unparalleled biomimicry. From dynamically adapting scaffolds that mimic the mechanical behavior of native tissues to drug delivery systems that respond to physiological cues, the convergence of smart materials and additive manufacturing heralds a new era in regenerative medicine. This manuscript presents an insightful overview of recent advancements, challenges, and future prospects, underscoring the pivotal role of smart materials as pioneers in shaping the dynamic landscape of regenerative medicine and heralding a future where tissue engineering is propelled beyond static constructs towards biomimetic, responsive, and regenerative solutions.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | | |
Collapse
|
29
|
De S, Singh N. Collagen-alginate 3D microscaffolds for studying cellular migration. Int J Biol Macromol 2023; 245:125308. [PMID: 37315661 DOI: 10.1016/j.ijbiomac.2023.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Metastasis is one of the major causes for cancer mortality. Its early steps comprise of invasion of basement membrane and migration. Thus, it is hypothesized that a platform, that allows quantification and grading of migration capability of cells can potentially be used for predicting metastatic potential. Two-dimensional (2D) models have been rendered inadequate for modelling in-vivo microenvironment due to various reasons. To attenuate homogeneity observed in 2D, three-dimensional (3D) platforms supplemented with bioinspired components have been designed. Unfortunately, till date there are no simple models to capture the migration of cells in 3D along with quantification of the process. In this study, we report an alginate-collagen based 3D model system, which can predict the migratory property of the cells within 72 h. The micron size of the scaffold enabled faster readout and the optimum pore-size provided conducive cellular growth environment. The platform's ability to allow observation of cellular migration was validated by encapsulating cells with transiently upregulated matrix metalloprotease 9 (MMP9), which has been reported to play a significant role in migration of cells during metastasis. The readout for migration was clustering of cells in the microscaffolds detected in a short span of 48 h. The observed clustering in MMP9 upregulated cells was validated by observing changes in the epithelial-mesenchymal transition (EMT) markers. Thus, this simple 3D platform can be used to study migration and predict the metastatic potential of cells.
Collapse
Affiliation(s)
- Shreemoyee De
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
30
|
Boix-Lemonche G, Nagymihaly RM, Niemi EM, Josifovska N, Johansen S, Moe MC, Scholz H, Petrovski G. Intracorneal Implantation of 3D Bioprinted Scaffolds Containing Mesenchymal Stromal Cells Using Femtosecond-Laser-Assisted Intrastromal Keratoplasty. Macromol Biosci 2023; 23:e2200422. [PMID: 36729619 DOI: 10.1002/mabi.202200422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Indexed: 02/03/2023]
Abstract
Injury of the cornea is a complex biological process. Regeneration of the corneal stroma can be facilitated by the presence of mesenchymal stromal cells (MSCs) and application of tissue equivalents. A new tissue-engineering strategy for corneal stroma regeneration is presented using cellularized 3D bioprinted hydrogel constructs implanted into organ cultured porcine corneas using femtosecond laser-assisted intrastromal keratoplasty. The ex vivo cultured, MSC-loaded 3D bioprinted structures remain intact, support cell survival, and contain de novo synthesized extracellular matrix components and migrating cells throughout the observation period. At day 14 postimplantation, the cellularized tissue equivalents contain few or no cells, as demonstrated by optical coherence tomography imaging and immunofluorescent staining. This study successfully combines a laboratory-based method with modern, patient-care practice to produce a cell-laden tissue equivalent for corneal implantation. Optimal bioink composition and cellularization of tissue equivalents are essential in fine-tuning a method to promote the current technique as a future treatment modality.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Essi M Niemi
- Vascular Biology and Surgery Group, Institute for Surgical Research and Department of Vascular Surgery, Oslo University Hospital, Post Box 4950, Oslo, Nydalen, N-0424, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0349, Norway
| | - Natasha Josifovska
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Morten C Moe
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, 0450, Norway
| | - Hanne Scholz
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0349, Norway
- Cell Transplantation and Tissue Engineering Group, Institute for Surgical Research and Section for Transplant Surgery, Oslo University Hospital, Post Box 4950, Oslo, Nydalen, N-0424, Norway
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, 0450, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| |
Collapse
|
31
|
McWilliam RH, Chang W, Liu Z, Wang J, Han F, Black RA, Wu J, Luo X, Li B, Shu W. Three-dimensional biofabrication of nanosecond laser micromachined nanofibre meshes for tissue engineered scaffolds. BIOMATERIALS TRANSLATIONAL 2023; 4:104-114. [PMID: 38283921 PMCID: PMC10817787 DOI: 10.12336/biomatertransl.2023.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 01/30/2024]
Abstract
There is a high demand for bespoke grafts to replace damaged or malformed bone and cartilage tissue. Three-dimensional (3D) printing offers a method of fabricating complex anatomical features of clinically relevant sizes. However, the construction of a scaffold to replicate the complex hierarchical structure of natural tissues remains challenging. This paper reports a novel biofabrication method that is capable of creating intricately designed structures of anatomically relevant dimensions. The beneficial properties of the electrospun fibre meshes can finally be realised in 3D rather than the current promising breakthroughs in two-dimensional (2D). The 3D model was created from commercially available computer-aided design software packages in order to slice the model down into many layers of slices, which were arrayed. These 2D slices with each layer of a defined pattern were laser cut, and then successfully assembled with varying thicknesses of 100 μm or 200 μm. It is demonstrated in this study that this new biofabrication technique can be used to reproduce very complex computer-aided design models into hierarchical constructs with micro and nano resolutions, where the clinically relevant sizes ranging from a simple cube of 20 mm dimension, to a more complex, 50 mm-tall human ears were created. In-vitro cell-contact studies were also carried out to investigate the biocompatibility of this hierarchal structure. The cell viability on a micromachined electrospun polylactic-co-glycolic acid fibre mesh slice, where a range of hole diameters from 200 μm to 500 μm were laser cut in an array where cell confluence values of at least 85% were found at three weeks. Cells were also seeded onto a simpler stacked construct, albeit made with micromachined poly fibre mesh, where cells can be found to migrate through the stack better with collagen as bioadhesives. This new method for biofabricating hierarchical constructs can be further developed for tissue repair applications such as maxillofacial bone injury or nose/ear cartilage replacement in the future.
Collapse
Affiliation(s)
- Ross H. McWilliam
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Wenlong Chang
- Centre for Precision Manufacturing, Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow, UK
| | - Zhao Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiayuan Wang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Richard A. Black
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Junxi Wu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Xichun Luo
- Centre for Precision Manufacturing, Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow, UK
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
32
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
33
|
Tosca EM, Ronchi D, Facciolo D, Magni P. Replacement, Reduction, and Refinement of Animal Experiments in Anticancer Drug Development: The Contribution of 3D In Vitro Cancer Models in the Drug Efficacy Assessment. Biomedicines 2023; 11:biomedicines11041058. [PMID: 37189676 DOI: 10.3390/biomedicines11041058] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated through a multitude of techniques, from both immortalized cancer cell lines and primary patient-derived tumor tissue. Among them, spheroids and organoids represent the most versatile and promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers. Although their recent applications include drug screening programs and personalized medicine, 3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace, reduce and refine animal experimentations, highlighting their strength and weakness, and discussing possible perspectives to overcome current challenges.
Collapse
|
34
|
Hua W, Zhang C, Raymond L, Mitchell K, Wen L, Yang Y, Zhao D, Liu S, Jin Y. 3D printing-based full-scale human brain for diverse applications. BRAIN-X 2023; 1:e5. [PMID: 37818250 PMCID: PMC10564551 DOI: 10.1002/brx2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Surgery is the most frequent treatment for patients with brain tumors. The construction of full-scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three-dimensional (3D) printing approaches to fabricate customized full-scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli-responsive yield-stress support bath. Then, an inverse 3D printing strategy, called "peeling-boiled-eggs," is proposed to fabricate full-scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield-stress support bath. After crosslinking the contour layer, the as-printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full-scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches.
Collapse
Affiliation(s)
- Weijian Hua
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada, USA
| | - Cheng Zhang
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada, USA
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Lily Raymond
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada, USA
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada, USA
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Ying Yang
- Department of Chemistry, University of Nevada Reno, Reno, Nevada, USA
| | - Danyang Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Shu Liu
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada Reno, Reno, Nevada, USA
| |
Collapse
|
35
|
Li S, Ma X, Zhang Y, Qu Y, Wang L, Ye L. Applications of hydrogel materials in different types of corneal wounds. Surv Ophthalmol 2023:S0039-6257(23)00040-1. [PMID: 36854372 DOI: 10.1016/j.survophthal.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Severe corneal injury can lead to a decrease in light transmission and even blindness. Currently, corneal transplantation has been applied as the primary treatment for corneal blindness; however, the worldwide shortage of suitable corneal donor tissue means that a large proportion of patients have no access to corneal transplants. This situation has contributed to the rapid development of various corneal substitutes. The development and optimization of novel hydrogels that aim to replace partial or full-thickness pathological corneas have advanced in the last decade. Meanwhile, with the help of 3D bioprinting technology, hydrogel materials can be molded to a refined and controllable shape, attracting many scientists to the field of corneal reconstruction research. Although hydrogels are not yet available as a substitute for traditional clinical methods of corneal diseases, their rapid development makes us confident that they will be in the near future. We summarize the application of hydrogel materials for various types of corneal injuries frequently encountered in clinical practice, especially focusing on animal experiments and preclinical studies. Finally, we discuss the development and achievements of 3D bioprinting in the treatment of corneal injury.
Collapse
Affiliation(s)
- Shixu Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Xudai Ma
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Yongxin Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Yunhao Qu
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Ling Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China.
| | - Lin Ye
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
36
|
Ow V, Chang JJ, Chooi WH, Boo YJ, Tan RPT, Wong JHM, Parikh BH, Su X, Ng SY, Loh XJ, Xue K. Orthogonally crosslinked alginate conjugate thermogels with potential for cell encapsulation. Carbohydr Polym 2023; 302:120308. [PMID: 36604036 DOI: 10.1016/j.carbpol.2022.120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
Hydrogels with more than one mode of crosslinking have gained interest due to improved control over hydrogel properties such as mechanical strength using multiple stimuli. In this work, sodium alginate was covalently conjugated onto thermoresponsive polyurethanes to prepare hybrid polymers (EPC-Alg) that are responsive to both temperature and Ca2+, forming orthogonally crosslinked hydrogels which are non-toxic to cells. Notably, the crosslinks are fully reversible, allowing for gel strength to be modulated via selective removal of either stimulus, or complete deconstruction of the hydrogel network by removing both stimuli. Higher alginate fractions increased the hydrophilicity and Ca2+ response of the EPC-Alg hydrogel, enabling tunable modulation of the thermal stability, stiffness and gelation temperatures. The EPC-Alg hydrogel could sustain protein release for a month and encapsulate neural spheroids with high cell viability after 7-day culture, demonstrating feasibility towards 3D cell encapsulation in cell-based biomedical applications such as cell encapsulation and cell therapy.
Collapse
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore; Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Jun Jie Chang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Rebekah P T Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Joey H M Wong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, Singapore 119228, Singapore; Singapore Eye Research Institute (SERI), 20 College Rd, Singapore 169856, Singapore
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore; Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Singapore; School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Ave, Singapore 639798, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore.
| |
Collapse
|
37
|
Jia S, Bu Y, Lau DSA, Lin Z, Sun T, Lu WW, Lu S, Ruan C, Chan CHJ. Advances in 3D bioprinting technology for functional corneal reconstruction and regeneration. Front Bioeng Biotechnol 2023; 10:1065460. [PMID: 36686254 PMCID: PMC9852906 DOI: 10.3389/fbioe.2022.1065460] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Corneal transplantation constitutes one of the major treatments in severe cases of corneal diseases. The lack of cornea donors as well as other limitations of corneal transplantation necessitate the development of artificial corneal substitutes. Biosynthetic cornea model using 3D printing technique is promising to generate artificial corneal structure that can resemble the structure of the native human cornea and is applicable for regenerative medicine. Research on bioprinting artificial cornea has raised interest into the wide range of materials and cells that can be utilized as bioinks for optimal clarity, biocompatibility, and tectonic strength. With continued advances in biomaterials science and printing technology, it is believed that bioprinted cornea will eventually achieve a level of clinical functionality and practicality as to replace donated corneal tissues, with their associated limitations such as limited or unsteady supply, and possible infectious disease transmission. Here, we review the literature on bioprinting strategies, 3D corneal modelling, material options, and cellularization strategies in relation to keratoprosthesis design. The progress, limitations and expectations of recent cases of 3D bioprinting of artifial cornea are discussed. An outlook on the rise of 3D bioprinting in corneal reconstruction and regeneration is provided.
Collapse
Affiliation(s)
- Shuo Jia
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yashan Bu
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dzi-Shing Aaron Lau
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhizhen Lin
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tianhao Sun
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Gangqing Biomedical Technology Co. Ltd, Shenzhen, China
| | - Weijia William Lu
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sheng Lu
- Department of Orthopedic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Changshun Ruan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheuk-Hung Jonathan Chan
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
38
|
Balters L, Reichl S. 3D bioprinting of corneal models: A review of the current state and future outlook. J Tissue Eng 2023; 14:20417314231197793. [PMID: 37719307 PMCID: PMC10504850 DOI: 10.1177/20417314231197793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023] Open
Abstract
The cornea is the outermost layer of the eye and serves to protect the eye and enable vision by refracting light. The need for cornea organ donors remains high, and the demand for an artificial alternative continues to grow. 3D bioprinting is a promising new method to create artificial organs and tissues. 3D bioprinting offers the precise spatial arrangement of biomaterials and cells to create 3D constructs. As the cornea is an avascular tissue which makes it more attractive for 3D bioprinting, it could be one of the first tissues to be made fully functional via 3D bioprinting. This review discusses the most common 3D bioprinting technologies and biomaterials used for 3D bioprinting corneal models. Additionally, the current state of 3D bioprinted corneal models, especially specific characteristics such as light transmission, biomechanics, and marker expression, and in vivo studies are discussed. Finally, the current challenges and future prospects are presented.
Collapse
Affiliation(s)
- Leon Balters
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
39
|
Pérez-Cortez JE, Sánchez-Rodríguez VH, Gallegos-Martínez S, Chuck-Hernández C, Rodriguez CA, Álvarez MM, Trujillo-de Santiago G, Vázquez-Lepe E, Martínez-López JI. Low-Cost Light-Based GelMA 3D Bioprinting via Retrofitting: Manufacturability Test and Cell Culture Assessment. MICROMACHINES 2022; 14:55. [PMID: 36677116 PMCID: PMC9863692 DOI: 10.3390/mi14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Light-based bioprinter manufacturing technology is still prohibitively expensive for organizations that rely on accessing three-dimensional biological constructs for research and tissue engineering endeavors. Currently, most of the bioprinting systems are based on commercial-grade-based systems or modified DIY (do it yourself) extrusion apparatuses. However, to date, few examples of the adoption of low-cost equipment have been found for light-based bioprinters. The requirement of large volumes of bioinks, their associated cost, and the lack of information regarding the parameter selection have undermined the adoption of this technology. This paper showcases the retrofitting and assessing of a low-cost Light-Based 3D printing system for tissue engineering. To evaluate the potential of a proposed design, a manufacturability test for different features, machine parameters, and Gelatin Methacryloyl (GelMA) concentrations for 7.5% and 10% was performed. Furthermore, a case study of a previously seeded hydrogel with C2C12 cells was successfully implemented as a proof of concept. On the manufacturability test, deviational errors were found between 0.7% to 13.3% for layer exposure times of 15 and 20 s. Live/Dead and Actin-Dapi fluorescence assays after 5 days of culture showed promising results in the cell viability, elongation, and alignment of 3D bioprinted structures. The retrofitting of low-cost equipment has the potential to enable researchers to create high-resolution structures and three-dimensional in vitro models.
Collapse
Affiliation(s)
| | | | | | | | - Ciro A. Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, NL, Mexico
| | - Mario Moises Álvarez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, NL, Mexico
| | | | - Elisa Vázquez-Lepe
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, NL, Mexico
| | - J. Israel Martínez-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, NL, Mexico
- Centro de Investigación Numericalc, Monterrey 64000, NL, Mexico
| |
Collapse
|
40
|
Kostenko A, Connon CJ, Swioklo S. Storable Cell-Laden Alginate Based Bioinks for 3D Biofabrication. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010023. [PMID: 36671596 PMCID: PMC9854877 DOI: 10.3390/bioengineering10010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
Over the last decade, progress in three dimensional (3D) bioprinting has advanced considerably. The ability to fabricate complex 3D structures containing live cells for drug discovery and tissue engineering has huge potential. To realise successful clinical translation, biologistics need to be considered. Refinements in the storage and transportation process from sites of manufacture to the clinic will enhance the success of future clinical translation. One of the most important components for successful 3D printing is the 'bioink', the cell-laden biomaterial used to create the printed structure. Hydrogels are favoured bioinks used in extrusion-based bioprinting. Alginate, a natural biopolymer, has been widely used due to its biocompatibility, tunable properties, rapid gelation, low cost, and easy modification to direct cell behaviour. Alginate has previously demonstrated the ability to preserve cell viability and function during controlled room temperature (CRT) storage and shipment. The novelty of this research lies in the development of a simple and cost-effective hermetic system whereby alginate-encapsulated cells can be stored at CRT before being reformulated into an extrudable bioink for on-demand 3D bioprinting of cell-laden constructs. To our knowledge the use of the same biomaterial (alginate) for storage and on-demand 3D bio-printing of cells has not been previously investigated. A straightforward four-step process was used where crosslinked alginate containing human adipose-derived stem cells was stored at CRT before degelation and subsequent mixing with a second alginate. The printability of the resulting bioink, using an extrusion-based bioprinter, was found to be dependent upon the concentration of the second alginate, with 4 and 5% (w/v) being optimal. Following storage at 15 °C for one week, alginate-encapsulated human adipose-derived stem cells exhibited a high viable cell recovery of 88 ± 18%. Stored cells subsequently printed within 3D lattice constructs, exhibited excellent post-print viability and even distribution. This represents a simple, adaptable method by which room temperature storage and biofabrication can be integrated for on-demand bioprinting.
Collapse
Affiliation(s)
- Anastassia Kostenko
- Atelerix Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK
- International Centre for Life, Faculty of Medicine, Bioscience Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Che J. Connon
- Atelerix Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK
- International Centre for Life, Faculty of Medicine, Bioscience Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
- Correspondence: ; Tel.: +44-(0)-191-241-8623
| | - Stephen Swioklo
- Atelerix Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK
| |
Collapse
|
41
|
Orash Mahmoud Salehi A, Heidari-Keshel S, Poursamar SA, Zarrabi A, Sefat F, Mamidi N, Behrouz MJ, Rafienia M. Bioprinted Membranes for Corneal Tissue Engineering: A Review. Pharmaceutics 2022; 14:2797. [PMID: 36559289 PMCID: PMC9784133 DOI: 10.3390/pharmaceutics14122797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Corneal transplantation is considered a convenient strategy for various types of corneal disease needs. Even though it has been applied as a suitable solution for most corneal disorders, patients still face several issues due to a lack of healthy donor corneas, and rejection is another unknown risk of corneal transplant tissue. Corneal tissue engineering (CTE) has gained significant consideration as an efficient approach to developing tissue-engineered scaffolds for corneal healing and regeneration. Several approaches are tested to develop a substrate with equal transmittance and mechanical properties to improve the regeneration of cornea tissue. In this regard, bioprinted scaffolds have recently received sufficient attention in simulating corneal structure, owing to their spectacular spatial control which produces a three-cell-loaded-dimensional corneal structure. In this review, the anatomy and function of different layers of corneal tissue are highlighted, and then the potential of the 3D bioprinting technique for promoting corneal regeneration is also discussed.
Collapse
Affiliation(s)
- Amin Orash Mahmoud Salehi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
| | - Saeed Heidari-Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1434875451, Iran
| | - Seyed Ali Poursamar
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
| | - Mahmoud Jabbarvand Behrouz
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| |
Collapse
|
42
|
Shamsnajafabadi H, Soheili ZS, Samiee S, Ahmadieh H, Pirmardan ER, Haghighi M. Neural differentiation of human retinal pigment epithelial cells on alginate/gelatin substrate. Mol Vis 2022; 28:412-431. [PMID: 36601411 PMCID: PMC9767845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/10/2022] [Indexed: 01/06/2023] Open
Abstract
Purpose The development of biomaterials provides potent promise for the regeneration of neuroretinal cells in degenerative eye diseases and retinal tissue engineering. Biomimetic three-dimensional (3D) microenvironments and specific growth factors motivate the differentiation of human retinal pigment epithelial (hRPE) cells toward a retinal neural lineage. In this study, we evaluated alginate/gelatin (A/G) as a substrate for the culture of hRPE cells. Methods hRPE cells were isolated from neonatal human cadaver globes and cultivated on A/G substrate under different culture conditions, including 30% human amniotic fluid (HAF), 10% fetal bovine serum (FBS), and serum-free Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F12). The proliferation of cells in different culture conditions was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and a cell proliferation assay. Immunocytochemistry and real-time PCR were performed to evaluate the effect of the substrate on hRPE cell differentiation. Results A significant increase in the cell proliferation rate was observed in hRPE cells cultivated on an A/G substrate. Continuous observations demonstrated that hRPE cells formed densely packed, suspended spheroids in DMEM/F12 culture conditions, with dominant transdifferentiation into amacrine cells. Small adherent clusters of hRPE cells in HAF- and FBS-treated cultures represented dedifferentiation toward retinal progenitor cells. These cultures generated amacrine, rod photoreceptors, and bipolar cells. Conclusions These findings indicated that A/G substrate induced neural retinal cell propagation in cultures and would therefore be promising for RPE-based tissue engineering studies.
Collapse
Affiliation(s)
| | | | - Shahram Samiee
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA
| | | |
Collapse
|
43
|
Su G, Li G, Wang W, Xu L. Application Prospect and Preliminary Exploration of GelMA in Corneal Stroma Regeneration. Polymers (Basel) 2022; 14:4227. [PMID: 36236174 PMCID: PMC9571618 DOI: 10.3390/polym14194227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Corneal regeneration has become a prominent study area in recent decades. Because the corneal stroma contributes about 90% of the corneal thickness in the corneal structure, corneal stromal regeneration is critical for the treatment of cornea disease. Numerous materials, including deacetylated chitosan, hydrophilic gel, collagen, gelatin methacrylate (GelMA), serine protein, glycerol sebacate, and decellularized extracellular matrix, have been explored for keratocytes regeneration. GelMA is one of the most prominent materials, which is becoming more and more popular because of its outstanding three-dimensional scaffold structure, strong mechanics, good optical transmittance, and biocompatibility. This review discussed recent research on corneal stroma regeneration materials and related GelMA.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
44
|
Singh G, Singh S, Kumar R, Parkash C, Pruncu C, Ramakrishna S. Tissues and organ printing: An evolution of technology and materials. Proc Inst Mech Eng H 2022; 236:1695-1710. [DOI: 10.1177/09544119221125084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its beginnings, three-dimensional printing (3DP) technology has been successful because of ongoing advances in operating principles, the range of materials and cost-saving measures. However, the 3DP technological progressions in the biomedical sector have majorly taken place in the last decade after the evolution of novel 3DP systems, generally categorised as bioprinters and biomaterials to provide a replacement, transplantation or regeneration of the damaged organs and tissue constructs of the human body. There is now substantial scientific literature accessible to support the benefits of digital healthcare procedures with the help of bioprinters. It is of the highest significance to know the fundamental principles of the available printers and the compatibility of biomaterials as their feedstock, notwithstanding the huge potential of bioprinting systems to manufacture organs and other human body components. This paper provides a precise and helpful reading of the different categories of bioprinters, suitable biomaterials, numerical simulations and modelling and examples of much acknowledged clinical practices. The paper will also cite the prominent issues that still have not received desired solutions. Overall, the article will be of great use for all the professionals, scholars and engineers concerned with the 3DP, bioprinting and biomaterials.
Collapse
Affiliation(s)
- Gurminder Singh
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- Mechanical Engineering Department, Chandigarh University, Punjab
| | - Raman Kumar
- Mechanical Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Chander Parkash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Catalin Pruncu
- Departimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
45
|
Taymour R, Chicaiza-Cabezas NA, Gelinsky M, Lode A. Core-shell bioprinting of vascularized in vitro liver sinusoid models. Biofabrication 2022; 14. [PMID: 36070706 DOI: 10.1088/1758-5090/ac9019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
In vitro liver models allow the investigation of the cell behavior in disease conditions or in response to changes in the microenvironment. A major challenge in liver tissue engineering is to mimic the tissue-level complexity: Besides the selection of suitable biomaterial(s) replacing the extracellular matrix (ECM) and cell sources, the three-dimensional (3D) microarchitecture defined by the fabrication method is a critical factor to achieve functional constructs. In this study, coaxial extrusion-based 3D bioprinting has been applied to develop a liver sinusoid-like model that consists of a core compartment containing pre-vascular structures and a shell compartment containing hepatocytes. The shell ink was composed of alginate and methylcellulose (algMC), dissolved in human fresh frozen plasma. The algMC blend conferred high printing fidelity and stability to the core-shell constructs and the plasma as biologically active component enhanced viability and supported cluster formation and biomarker expression of HepG2 embedded in the shell. For the core, a natural ECM-like ink based on angiogenesis-supporting collagen-fibrin (CF) matrices was developed; the addition of gelatin (G) enabled 3D printing in combination with the plasma-algMC shell ink. Human endothelial cells (HUVEC), laden in the CFG core ink together with human fibroblasts as supportive cells, formed a pre-vascular network in the core in the absence and presence of HepG2 in the shell. The cellular interactions occurring in the triple culture model enhanced the albumin secretion. In conclusion, core-shell bioprinting was shown to be a valuable tool to study cell-cell-interactions and to develop complex tissue-like models.
Collapse
Affiliation(s)
- Rania Taymour
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Dresden University of Technology, Fetscherstrasse 74, Dresden, Sachsen, 01307, GERMANY
| | - Nathaly Alejandra Chicaiza-Cabezas
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet Dresden, Fetscherstrasse 74, Dresden, Sachsen, 01307, GERMANY
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitat Dresden, Fetscherstr. 74, Dresden, 01062, GERMANY
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet Dresden, Fetscherstrasse 74, Dresden, 01307, GERMANY
| |
Collapse
|
46
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
47
|
Investigation of Collagen-Incorporated Sodium Alginate Bioprinting Hydrogel for Tissue Engineering. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue engineering is a promising area that is aimed at tissue regeneration and wound repair. Sodium alginate (SA) has been widely used as one of the most biocompatible materials for tissue engineering. The cost-efficiency and rapid gel ability made SA attractive in would healing and regeneration area. To improve printability and elasticity, many hydrogel-based bioinks were developed by mixing SA with other natural or synthetic polymers. In this paper, composite SA/COL bioink was used for the bioprinting of artificial cartilage tissue mimicries. The results showed that the concentration of both SA and COL has significant effects on filament diameter and merging. A higher concentration of the bioink solution led to better printing fidelity and less deformation. Overall, a higher SA concentration and a lower COL concentration contributed to a lower shrinkage ratio after crosslinking. In summary, the SA/COL composite bioink has favorable rheological properties and this study provided material composition optimization for future bioprinting of engineered tissues.
Collapse
|
48
|
Tyramine-Functionalized Alginate-Collagen Hybrid Hydrogel Inks for 3D-Bioprinting. Polymers (Basel) 2022; 14:polym14153173. [PMID: 35956690 PMCID: PMC9371113 DOI: 10.3390/polym14153173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Extrusion-based 3D-bioprinting using hydrogels has exhibited potential in precision medicine; however, researchers are beset with several challenges. A major challenge of this technique is the production of constructs with sufficient height and fidelity to support cellular behavior in vivo. In this study, we present the 3D-bioprinting of cylindrical constructs with tunable gelation kinetics by controlling the covalent crosslinking density and gelation time of a tyramine-functionalized alginate hydrogel (ALG-TYR) via enzymatic reaction by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The extruded filament was crosslinked for a second time on a support bath containing H2O2 to increase fidelity after printing. The resulting tubular construct, with a height of 6 mm and a wall thickness of 2 mm, retained its mechanical properties and had a maximum 2-fold swelling after 2 d. Furthermore, collagen (COL) was introduced into the ALG-TYR hydrogel network to increase the mechanical modulus and cell cytocompatibility, as the encapsulated fibroblast cells exhibited a higher cell viability in the ALG-TYR/COL construct (92.13 ± 0.70%) than in ALG-TYR alone (68.18 ± 3.73%). In summary, a vascular ECM-mimicking scaffold was 3D-bioprinted with the ALG-TYR/COL hybrid hydrogel, and this scaffold can support tissue growth for clinical translation in regenerative and personalized medicine.
Collapse
|
49
|
Biofabrication of Sodium Alginate Hydrogel Scaffolds for Heart Valve Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158567. [PMID: 35955704 PMCID: PMC9368972 DOI: 10.3390/ijms23158567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Every year, thousands of aortic valve replacements must take place due to valve diseases. Tissue-engineered heart valves represent promising valve substitutes with remodeling, regeneration, and growth capabilities. However, the accurate reproduction of the complex three-dimensional (3D) anatomy of the aortic valve remains a challenge for current biofabrication methods. We present a novel technique for rapid fabrication of native-like tricuspid aortic valve scaffolds made of an alginate-based hydrogel. Using this technique, a sodium alginate hydrogel formulation is injected into a mold produced using a custom-made sugar glass 3D printer. The mold is then dissolved using a custom-made dissolving module, revealing the aortic valve scaffold. To assess the reproducibility of the technique, three scaffolds were thoroughly compared. CT (computed tomography) scans showed that the scaffolds respect the complex native geometry with minimal variations. The scaffolds were then tested in a cardiac bioreactor specially designed to reproduce physiological flow and pressure (aortic and ventricular) conditions. The flow and pressure profiles were similar to the physiological ones for the three valve scaffolds, with small variabilities. These early results establish the functional repeatability of this new biofabrication method and suggest its application for rapid fabrication of ready-to-use cell-seeded sodium alginate scaffolds for heart valve tissue engineering.
Collapse
|
50
|
Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Gels 2022; 8:gels8070431. [PMID: 35877516 PMCID: PMC9316786 DOI: 10.3390/gels8070431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
For many years, corneal transplantation has been the first-choice treatment for irreversible damage affecting the anterior part of the eye. However, the low number of cornea donors and cases of graft rejection highlighted the need to replace donor corneas with new biomaterials. Tissue engineering plays a fundamental role in achieving this goal through challenging research into a construct that must reflect all the properties of the cornea that are essential to ensure correct vision. In this review, the anatomy and physiology of the cornea are described to point out the main roles of the corneal layers to be compensated and all the requirements expected from the material to be manufactured. Then, a deep investigation of alginate as a suitable alternative to donor tissue was conducted. Thanks to its adaptability, transparency and low immunogenicity, alginate has emerged as a promising candidate for the realization of bioengineered materials for corneal regeneration. Chemical modifications and the blending of alginate with other functional compounds allow the control of its mechanical, degradation and cell-proliferation features, enabling it to go beyond its limits, improving its functionality in the field of corneal tissue engineering and regenerative medicine.
Collapse
|