1
|
Zhou J, Yang K, Lu M, Fu P, Chen Y, Chen L. Higher density of compact B cell clusters in invasive front may contribute to better prognosis in pancreatic ductal adenocarcinoma. Discov Oncol 2025; 16:555. [PMID: 40246809 PMCID: PMC12006623 DOI: 10.1007/s12672-025-02260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
While the correlation between T cells and patient survival was widely investigated, the clinical significance of CD20+ B cells in pancreatic ductal adenocarcinoma (PDAC) is less clear. We hypothesized that the spatial pattern of B cells within tumor microenvironment (TME) are more informative, which may reveal the prognostic significance for PDAC patients. Therefore, we developed a computer-based workflow to analyze CD20+ B cells in whole slide images (WSI) from 45 cases of PDAC patients. Depending on this workflow, annotations of each case which were created by pathologists were subdivided for three regions, including invasive front (IF), cancer center (CT) and cancer island (CI) to explore the association between the spatial pattern of CD20+ B cells and patient prognosis outcomes. After that, occupancy rate (as area under curve, occupancy AUC), fractal dimension differences (ΔFD), cluster density and coverage ratio were used to quantify the spatial pattern of B cells in TME. We observed B cells were distributed across different regions, manifesting in both clustered and dispersed patterns. Compared to features of B cells spatial distribution in CT region, B cells in IF region exhibited higher occupancy AUC (p = 0.00004), cluster density (p = 0.000002) and coverage ratio (p = 0.000884). Patients with longer survivals had smaller ΔFD (p = 0.05), higher B-cell cluster density (p = 0.003) and lower coverage ratio (p = 0.02) in IF region. Our study indicated the spatial distribution of B cells in IF and CT was different and the higher density of compact B-cell clusters in IF region may be associated with better prognosis in PDAC.
Collapse
Affiliation(s)
- Junwen Zhou
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, HK, China
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Kunping Yang
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Mei Lu
- Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, Fujian, China
| | - Peiling Fu
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yupeng Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
2
|
Nakata K, Okumura K, Kobayashi T. Application of a Photothermal Microscope To Study the Process of Cutaneous Lesion Formation of Malignant Melanoma. J Phys Chem B 2024; 128:10126-10138. [PMID: 39378363 DOI: 10.1021/acs.jpcb.4c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In this study, we applied a photothermal microscope to study the process of malignant melanoma formation. We analyzed benign papilloma tumors, their metastatic carcinomas, and metastatic melanoma on the preparation of mouse skin using a gray-level co-occurrence matrix (GLCM) method. Based on the analysis of nine GLCM parameters investigated, the characteristics during the degenerative and metastatic processes are clarified by the investigation. The determination of characteristic parameters corresponding to three processes before, during, and after the degeneration indicated that this investigation enables the detection of the malignant transformation and related processes.
Collapse
Affiliation(s)
- K Nakata
- Department of Science, Tokyo University of Science, Kagurazaka 1-3, Sinjuku-ku,Tokyo162-8601,Japan
| | - K Okumura
- Division of Experimental Animal Research, Center of Cancer Genome, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuoku, Chiba ,Chiba 2608717,Japan
| | - T Kobayashi
- Department of Science, Tokyo University of Science, Kagurazaka 1-3, Sinjuku-ku,Tokyo162-8601,Japan
- Faculty of Science, The Univ. of Tokyo, 7-3-1 Hongo, Tokyo 113-8654,Japan
- Brain Life Support Center, The Univ. of Electro-Communications, 1-5-1, Chofugaoka, Chofu ,Tokyo182-8585, Japan
- Department of Electro-Physics, National Yang-Min Chao-Tung University, 1001, Daxue Rd. East Dist., Hsinchu City 300093, Taiwan
| |
Collapse
|
3
|
Mirzapoiazova T, Tseng L, Mambetsariev B, Li H, Lou CH, Pozhitkov A, Ramisetty SK, Nam S, Mambetsariev I, Armstrong B, Malhotra J, Arvanitis L, Nasser MW, Batra SK, Rosen ST, Wheeler DL, Singhal SS, Kulkarni P, Salgia R. Teriflunomide/leflunomide synergize with chemotherapeutics by decreasing mitochondrial fragmentation via DRP1 in SCLC. iScience 2024; 27:110132. [PMID: 38993482 PMCID: PMC11237869 DOI: 10.1016/j.isci.2024.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024] Open
Abstract
Although up to 80% small cell lung cancer (SCLC) patients' response is good for first-line chemotherapy regimen, most patients develop recurrence of the disease within weeks to months. Here, we report cytostatic effect of leflunomide (Leflu) and teriflunomide (Teri) on SCLC cell proliferation through inhibition of DRP1 phosphorylation at Ser616 and decreased mitochondrial fragmentation. When administered together, Teri and carboplatin (Carbo) act synergistically to significantly inhibit cell proliferation and DRP1 phosphorylation, reduce abundance of intermediates in pyrimidine de novo pathway, and increase apoptosis and DNA damage. Combination of Leflu&Carbo has anti-tumorigenic effect in vivo. Additionally, lurbinectedin (Lur) and Teri potently and synergistically inhibited spheroid growth and depleted uridine and DRP1 phosphorylation in mouse tumors. Our results suggest combinations of Carbo and Lur with Teri or Leflu are efficacious and underscore how the relationship between DRP1/DHODH and mitochondrial plasticity serves as a potential therapeutic target to validate these treatment strategies in SCLC clinical trials.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Liz Tseng
- Department of Shared Resources, Light Microscopy Digital Imaging Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Bolot Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Haiqing Li
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Chih-Hong Lou
- Genome Editing Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Alex Pozhitkov
- Division of Research Informatics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sangkil Nam
- Department of Shared Resources, Molecular Pathology Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Brian Armstrong
- Department of Shared Resources, Light Microscopy Digital Imaging Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyoti Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steven T. Rosen
- Hematology Malignancies and Stem Cell Transplantation Institute, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Adamoski D, Dias MM, Quesñay JEN, Yang Z, Zagoriy I, Steyer AM, Rodrigues CT, da Silva Bastos AC, da Silva BN, Costa RKE, de Abreu FMO, Islam Z, Cassago A, van Heel MG, Consonni SR, Mattei S, Mahamid J, Portugal RV, Ambrosio ALB, Dias SMG. Molecular mechanism of glutaminase activation through filamentation and the role of filaments in mitophagy protection. Nat Struct Mol Biol 2023; 30:1902-1912. [PMID: 37857822 DOI: 10.1038/s41594-023-01118-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.
Collapse
Affiliation(s)
- Douglas Adamoski
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marilia Meira Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Jose Edwin Neciosup Quesñay
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhengyi Yang
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna M Steyer
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Camila Tanimoto Rodrigues
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
- Biological Sciences Department, School of Science, Purdue University, Lafayette, IN, USA
| | - Alliny Cristiny da Silva Bastos
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bianca Novaes da Silva
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Renna Karoline Eloi Costa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Zeyaul Islam
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Alexandre Cassago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Marin Gerard van Heel
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil.
| |
Collapse
|
5
|
Wang L, Goldwag J, Bouyea M, Barra J, Matteson K, Maharjan N, Eladdadi A, Embrechts MJ, Intes X, Kruger U, Barroso M. Spatial topology of organelle is a new breast cancer cell classifier. iScience 2023; 26:107229. [PMID: 37519903 PMCID: PMC10384275 DOI: 10.1016/j.isci.2023.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Genomics and proteomics have been central to identify tumor cell populations, but more accurate approaches to classify cell subtypes are still lacking. We propose a new methodology to accurately classify cancer cells based on their organelle spatial topology. Herein, we developed an organelle topology-based cell classification pipeline (OTCCP), which integrates artificial intelligence (AI) and imaging quantification to analyze organelle spatial distribution and inter-organelle topology. OTCCP was used to classify a panel of human breast cancer cells, grown as 2D monolayer or 3D tumor spheroids using early endosomes, mitochondria, and their inter-organelle contacts. Organelle topology allows for a highly precise differentiation between cell lines of different subtypes and aggressiveness. These findings lay the groundwork for using organelle topological profiling as a fast and efficient method for phenotyping breast cancer function as well as a discovery tool to advance our understanding of cancer cell biology at the subcellular level.
Collapse
Affiliation(s)
- Ling Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Joshua Goldwag
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Megan Bouyea
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Jonathan Barra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Kailie Matteson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Niva Maharjan
- Department of Mathematics, The College of Saint Rose, Albany, NY 12203, USA
| | - Amina Eladdadi
- Department of Mathematics, The College of Saint Rose, Albany, NY 12203, USA
| | - Mark J. Embrechts
- Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Uwe Kruger
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
6
|
Franczak MA, Krol O, Harasim G, Jedrzejewska A, Zaffaroni N, Granchi C, Minutolo F, Avan A, Giovannetti E, Smolenski RT, Peters GJ. Metabolic Effects of New Glucose Transporter (GLUT-1) and Lactate Dehydrogenase-A (LDH-A) Inhibitors against Chemoresistant Malignant Mesothelioma. Int J Mol Sci 2023; 24:7771. [PMID: 37175477 PMCID: PMC10177874 DOI: 10.3390/ijms24097771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant mesothelioma (MM) is a highly aggressive and resistant tumor. The prognostic role of key effectors of glycolytic metabolism in MM prompted our studies on the cytotoxicity of new inhibitors of glucose transporter type 1 (GLUT-1) and lactate dehydrogenase-A (LDH-A) in relation to ATP/NAD+ metabolism, glycolysis and mitochondrial respiration. The antiproliferative activity of GLUT-1 (PGL13, PGL14) and LDH-A (NHI-1, NHI-2) inhibitors, alone and in combination, were tested with the sulforhodamine-B assay in peritoneal (MESO-II, STO) and pleural (NCI-H2052 and NCI-H28) MM and non-cancerous (HMEC-1) cells. Effects on energy metabolism were measured by both analysis of nucleotides using RP-HPLC and evaluation of glycolysis and respiration parameters using a Seahorse Analyzer system. All compounds reduced the growth of MM cells in the µmolar range. Interestingly, in H2052 cells, PGL14 decreased ATP concentration from 37 to 23 and NAD+ from 6.5 to 2.3 nmol/mg protein. NHI-2 reduced the ATP/ADP ratio by 76%. The metabolic effects of the inhibitors were stronger in pleural MM and in combination, while in HMEC-1 ATP reduction was 10% lower compared to that of the H2052 cells, and we observed a minor influence on mitochondrial respiration. To conclude, both inhibitors showed cytotoxicity in MM cells, associated with a decrease in ATP and NAD+, and were synergistic in the cells with the highest metabolic modulation. This underlines cellular energy metabolism as a potential target for combined treatments in selected cases of MM.
Collapse
Affiliation(s)
- Marika A. Franczak
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Gabriela Harasim
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy
| | | | | | - Amir Avan
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, 56124 Pisa, Italy
| | | | - Godefridus J. Peters
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Zamponi N, Zamponi E, Cannas SA, Chialvo DR. Universal dynamics of mitochondrial networks: a finite-size scaling analysis. Sci Rep 2022; 12:17074. [PMID: 36224243 PMCID: PMC9556628 DOI: 10.1038/s41598-022-14946-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/15/2022] [Indexed: 01/04/2023] Open
Abstract
Evidence from models and experiments suggests that the networked structure observed in mitochondria emerges at the critical point of a phase transition controlled by fission and fusion rates. If mitochondria are poised at criticality, the relevant network quantities should scale with the system's size. However, whether or not the expected finite-size effects take place has not been demonstrated yet. Here, we first provide a theoretical framework to interpret the scaling behavior of mitochondrial network quantities by analyzing two conceptually different models of mitochondrial dynamics. Then, we perform a finite-size scaling analysis of real mitochondrial networks extracted from microscopy images and obtain scaling exponents comparable with critical exponents from models and theory. Overall, we provide a universal description of the structural phase transition in mammalian mitochondria.
Collapse
Affiliation(s)
- Nahuel Zamponi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| | - Emiliano Zamponi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO, 80309, USA
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Sergio A Cannas
- Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, Instituto de Física Enrique Gaviola (IFEG-CONICET), Ciudad Universitaria, 5000, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Dante R Chialvo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| |
Collapse
|
8
|
Microtubule-Based Mitochondrial Dynamics as a Valuable Therapeutic Target in Cancer. Cancers (Basel) 2021; 13:cancers13225812. [PMID: 34830966 PMCID: PMC8616325 DOI: 10.3390/cancers13225812] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in several fundamental cellular functions, including the regulation of metabolism, energy production, calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression. The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial dynamics are driven by the cytoskeleton-particularly by the microtubules and the microtubule-associated motor proteins dynein and kinesin-the molecular mechanisms regulating these complex processes are not yet fully understood. More recently, an exchange of mitochondria between stromal and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecular mechanisms that regulate mitochondrial trafficking can potentially be important for identifying new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.
Collapse
|
9
|
Tharp KM, Higuchi-Sanabria R, Timblin GA, Ford B, Garzon-Coral C, Schneider C, Muncie JM, Stashko C, Daniele JR, Moore AS, Frankino PA, Homentcovschi S, Manoli SS, Shao H, Richards AL, Chen KH, Hoeve JT, Ku GM, Hellerstein M, Nomura DK, Saijo K, Gestwicki J, Dunn AR, Krogan NJ, Swaney DL, Dillin A, Weaver VM. Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metab 2021; 33:1322-1341.e13. [PMID: 34019840 PMCID: PMC8266765 DOI: 10.1016/j.cmet.2021.04.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Greg A Timblin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Breanna Ford
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carlos Garzon-Coral
- Chemical Engineering Department, Stanford University, Stanford, CA 94305, USA
| | - Catherine Schneider
- Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jonathon M Muncie
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph R Daniele
- MD Anderson Cancer Center, South Campus Research, Houston, CA 77054, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Phillip A Frankino
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Stefan Homentcovschi
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Sagar S Manoli
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kuei-Ho Chen
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gregory M Ku
- Diabetes Center, Division of Endocrinology and Metabolism, Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Marc Hellerstein
- Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Karou Saijo
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexander R Dunn
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Wortman JC, He TF, Solomon S, Zhang RZ, Rosario A, Wang R, Tu TY, Schmolze D, Yuan Y, Yost SE, Li X, Levine H, Atwal G, Lee PP, Yu CC. Spatial distribution of B cells and lymphocyte clusters as a predictor of triple-negative breast cancer outcome. NPJ Breast Cancer 2021; 7:84. [PMID: 34210991 PMCID: PMC8249408 DOI: 10.1038/s41523-021-00291-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
While tumor infiltration by CD8+ T cells is now widely accepted to predict outcomes, the clinical significance of intratumoral B cells is less clear. We hypothesized that spatial distribution rather than density of B cells within tumors may provide prognostic significance. We developed statistical techniques (fractal dimension differences and a box-counting method 'occupancy') to analyze the spatial distribution of tumor-infiltrating lymphocytes (TILs) in human triple-negative breast cancer (TNBC). Our results indicate that B cells in good outcome tumors (no recurrence within 5 years) are spatially dispersed, while B cells in poor outcome tumors (recurrence within 3 years) are more confined. While most TILs are located within the stroma, increased numbers of spatially dispersed lymphocytes within cancer cell islands are associated with a good prognosis. B cells and T cells often form lymphocyte clusters (LCs) identified via density-based clustering. LCs consist either of T cells only or heterotypic mixtures of B and T cells. Pure B cell LCs were negligible in number. Compared to tertiary lymphoid structures (TLS), LCs have fewer lymphocytes at lower densities. Both types of LCs are more abundant and more spatially dispersed in good outcomes compared to poor outcome tumors. Heterotypic LCs in good outcome tumors are smaller and more numerous compared to poor outcome. Heterotypic LCs are also closer to cancer islands in a good outcome, with LC size decreasing as they get closer to cancer cell islands. These results illuminate the significance of the spatial distribution of B cells and LCs within tumors.
Collapse
Affiliation(s)
- Juliana C Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Ting-Fang He
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Shawn Solomon
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Robert Z Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Anthony Rosario
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Roger Wang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Travis Y Tu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Susan E Yost
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Xuefei Li
- Department of Bioengineering and the Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Department of Bioengineering and the Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Bioengineering and Department of Physics, Northeastern University, Boston, MA, USA
| | - Gurinder Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Peter P Lee
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA.
| | - Clare C Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Lima AR, Correia M, Santos L, Tavares C, Rios E, Canberk S, Soares P, Sobrinho-Simões M, Melo M, Máximo V. S616-p-DRP1 associates with locally invasive behavior of follicular cell-derived thyroid carcinoma. Endocrine 2021; 73:85-97. [PMID: 33219495 DOI: 10.1007/s12020-020-02546-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Dynamin-related protein 1 (DRP1), a mitochondrial fission protein, and its active form phosphorylated at Serine 616 (S616-p-DRP1) have been increasingly associated with tumorigenesis and invasion in various tumor models, including oncocytic thyroid cancer (TC). In this study, the expression of DRP1 and S616-p-DRP1 and its relationship with patients' clinicopathological characteristics, tumor genetic profiles, and clinical outcomes were assessed in a large series of follicular cell-derived TC (FCDTC). METHODS Retrospective biomarker study characterizing the clinicopathological and immunochemistry DRP1 and S616-p-DRP1 expression of a series of 259 patients with FCDTC followed in two University Hospitals. RESULTS DRP1 expression was positive in 65.3% (169/259) of the cases, while the expression of the S616-p-DRP1 was positive in only 17.3% (17/98). DRP1-positive expression was significantly associated with differentiated tumors (67.7 vs. 48.0%; P = 0.049), non-encapsulated tumors (73.8 vs. 57.4%; P = 0.011) and thyroid capsule invasion (73.4 vs. 57.5%; P = 0.013). S616-p-DRP1-positive expression was significantly associated with tumor infiltrative margins (88.9 vs. 11.1%; P = 0.033), thyroid capsule invasion (29.8 vs. 3.1%; P = 0.043), lymph node metastases (23.3 vs. 8.1%; P = 0.012), and higher mean cumulative radioiodine dosage (317.4 ± 265.0 mCi vs. 202.5 ± 217.7 mCi; P = 0.038). S616-p-DRP1 expression was negatively associated with oncocytic phenotype (0.0 vs. 26.2%; P = 0.028). CONCLUSIONS S616-p-DRP1 is a better candidate than DRP1 to identify tumors with locally invasive behavior. Prospective studies should be pursued to assess S616-p-DRP1 role as a molecular marker of malignancy in TC and in patients' risk assessment.
Collapse
Affiliation(s)
- Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Marcelo Correia
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Liliana Santos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Catarina Tavares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Elisabete Rios
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Miguel Melo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra (CHUC), Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Medicine of the University of Coimbra (FMUC), Rua Larga, 3004-504, Coimbra, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| |
Collapse
|
12
|
Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, Pandey V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer 2021; 1876:188534. [PMID: 33794332 DOI: 10.1016/j.bbcan.2021.188534] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria, well recognized as the "powerhouse" of cells, are maternally inherited organelles with bacterial ancestry that play essential roles in a myriad of cellular functions. It has become profoundly evident that mitochondria regulate a wide array of cellular and metabolic functions, including biosynthetic metabolism, cell signaling, redox homeostasis, and cell survival. Correspondingly, defects in normal mitochondrial functioning have been implicated in various human malignancies. Cancer development involves the activation of oncogenes, inactivation of tumor suppressor genes, and impairment of apoptotic programs in cells. Mitochondria have been recognized as the site of key metabolic switches for normal cells to acquire a malignant phenotype. This review outlines the role of mitochondria in human malignancies and highlights potential aspects of mitochondrial metabolism that could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
13
|
Yu CC, Wortman JC, He TF, Solomon S, Zhang RZ, Rosario A, Wang R, Tu TY, Schmolze D, Yuan Y, Yost SE, Li X, Levine H, Atwal G, Lee PP. Physics approaches to the spatial distribution of immune cells in tumors. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:022601. [PMID: 33232952 DOI: 10.1088/1361-6633/abcd7b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The goal of immunotherapy is to mobilize the immune system to kill cancer cells. Immunotherapy is more effective and, in general, the prognosis is better, when more immune cells infiltrate the tumor. We explore the question of whether the spatial distribution rather than just the density of immune cells in the tumor is important in forecasting whether cancer recurs. After reviewing previous work on this issue, we introduce a novel application of maximum entropy to quantify the spatial distribution of discrete point-like objects. We apply our approach to B and T cells in images of tumor tissue taken from triple negative breast cancer patients. We find that the immune cells are more spatially dispersed in good clinical outcome (no recurrence of cancer within at least 5 years of diagnosis) compared to poor clinical outcome (recurrence within 3 years of diagnosis). Our results highlight the importance of spatial distribution of immune cells within tumors with regard to clinical outcome, and raise new questions on their role in cancer recurrence.
Collapse
Affiliation(s)
- Clare C Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, United States of America
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Juliana C Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Ting-Fang He
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Shawn Solomon
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Robert Z Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Anthony Rosario
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Roger Wang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Travis Y Tu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Susan E Yost
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| | - Xuefei Li
- Department of Bioengineering and the Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, United States of America
| | - Herbert Levine
- Department of Bioengineering and the Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, United States of America
- Department of Bioengineering and Department of Physics, Northeastern University, Boston, MA 02115, United States of America
| | - Gurinder Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States of America
| | - Peter P Lee
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, United States of America
| |
Collapse
|
14
|
Mito Hacker: a set of tools to enable high-throughput analysis of mitochondrial network morphology. Sci Rep 2020; 10:18941. [PMID: 33144635 PMCID: PMC7642274 DOI: 10.1038/s41598-020-75899-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are highly dynamic organelles that can exhibit a wide range of morphologies. Mitochondrial morphology can differ significantly across cell types, reflecting different physiological needs, but can also change rapidly in response to stress or the activation of signaling pathways. Understanding both the cause and consequences of these morphological changes is critical to fully understanding how mitochondrial function contributes to both normal and pathological physiology. However, while robust and quantitative analysis of mitochondrial morphology has become increasingly accessible, there is a need for new tools to generate and analyze large data sets of mitochondrial images in high throughput. The generation of such datasets is critical to fully benefit from rapidly evolving methods in data science, such as neural networks, that have shown tremendous value in extracting novel biological insights and generating new hypotheses. Here we describe a set of three computational tools, Cell Catcher, Mito Catcher and MiA, that we have developed to extract extensive mitochondrial network data on a single-cell level from multi-cell fluorescence images. Cell Catcher automatically separates and isolates individual cells from multi-cell images; Mito Catcher uses the statistical distribution of pixel intensities across the mitochondrial network to detect and remove background noise from the cell and segment the mitochondrial network; MiA uses the binarized mitochondrial network to perform more than 100 mitochondria-level and cell-level morphometric measurements. To validate the utility of this set of tools, we generated a database of morphological features for 630 individual cells that encode 0, 1 or 2 alleles of the mitochondrial fission GTPase Drp1 and demonstrate that these mitochondrial data could be used to predict Drp1 genotype with 87% accuracy. Together, this suite of tools enables the high-throughput and automated collection of detailed and quantitative mitochondrial structural information at a single-cell level. Furthermore, the data generated with these tools, when combined with advanced data science approaches, can be used to generate novel biological insights.
Collapse
|
15
|
Sedlic F, Seiwerth F, Sepac A, Sikiric S, Cindric M, Milavic M, Batelja Vuletic L, Jakopovic M, Seiwerth S. Mitochondrial ROS Induce Partial Dedifferentiation of Human Mesothelioma via Upregulation of NANOG. Antioxidants (Basel) 2020; 9:antiox9070606. [PMID: 32664372 PMCID: PMC7402173 DOI: 10.3390/antiox9070606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
The expression of pluripotency factors is a key regulator of tumor differentiation status and cancer stem cells. The purpose of this study was to examine the expression of pluripotency factors and differentiation status of human mesothelioma and the role of mitochondria in their regulation. We tested the expression of OCT4/POU5F1, NANOG, SOX2, PI3K-AKT pathway and BCL2 genes and proteins in 65 samples of human mesothelioma and 19 samples of normal mesothelium. Mitochondrial membrane potential, reactive oxygen species (ROS) generation and expression of pluripotency factors were also tested in human mesothelioma cell line. Human mesothelium and mesothelioma expressed SOX2, NANOG, PI3K and AKT genes and proteins and POU5F1 gene, whereby NANOG, SOX2 and phosphorylated (activated) AKT were upregulated in mesothelioma. NANOG protein expression was elevated in less differentiated samples of human mesothelioma. The expression of genes of PI3K-AKT pathway correlated with pluripotency factor genes. Mesothelioma cells had functional, but depolarized mitochondria with large capacity to generate ROS. Mitochondrial ROS upregulated NANOG and mitoTEMPO abrogated it. In conclusion, human mesothelioma displays enhanced expression of NANOG, SOX2 and phosphorylated AKT proteins, while elevated NANOG expression correlates with poor differentiation of human mesothelioma. Mitochondria of mesothelioma cells have a large capacity to form ROS and thereby upregulate NANOG, leading to dedifferentiation of mesothelioma.
Collapse
Affiliation(s)
- Filip Sedlic
- Department of Pathophysiology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-236-7293
| | - Fran Seiwerth
- Department of Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (F.S.); (M.J.)
| | - Ana Sepac
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
| | - Marina Cindric
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
| | - Marija Milavic
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
| | - Marko Jakopovic
- Department of Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (F.S.); (M.J.)
- Department of Internal Medicine, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.S.); (S.S.); (M.M.); (L.B.V.); (S.S.)
- Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
16
|
Prognostic Significance of Lacunarity in Preoperative Biopsy of Colorectal Cancer. Pathol Oncol Res 2020; 26:2567-2576. [PMID: 32617959 DOI: 10.1007/s12253-020-00851-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
The quantity and quality of preoperative material in colorectal cancer is often limiting factor in determination of risk factors and therapy planning. The most important negative prognostic factors are intravascular and perineural invasion, as well as tumor budding. Usually, the only parameter available in preoperative biopsy is tumor budding. However, the growing body of evidence suggests that cancer differentiation based on the poorly differentiated clusters has better prognostic value. The limiting factor in applying of these new parameters is reproducible, simple, cheap and fast method of their determination. In this paper we investigated the prognostic value of lacunarity, determined in preoperative biopsy. Lacunarity is a measure of spatial heterogeneity (inhomogeneity) in an image. It quantifies how objects fill the space, and enables analysis of gaps distribution, homogeneity of gaps, and presence of structures. It was shown that lacunarity and the total number of buds could be combined in a model which clearly divides colorectal cancer patients in low, medium and high risk subgroups. The paper also points out that the quantitative numerical methods are superior to semiquantitative methods, and that individual methods should be combined using algorithms to obtain a more accurate prediction. Because the study described is designed as a pilot study, verification is needed on a larger sample of patients from independent researchers.
Collapse
|
17
|
Wortman JC, He TF, Rosario A, Wang R, Schmolze D, Yuan Y, Yost SE, Li X, Levine H, Atwal G, Lee P, Yu CC. Occupancy and Fractal Dimension Analyses of the Spatial Distribution of Cytotoxic (CD8+) T Cells Infiltrating the Tumor Microenvironment in Triple Negative Breast Cancer. ACTA ACUST UNITED AC 2020. [DOI: 10.1142/s1793048020500022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Favorable outcomes have been associated with high densities of tumor infiltrating lymphocytes (TILs) such as cytotoxic ([Formula: see text]) T cells. However, the clinical significance of the spatial distribution of TILs is less well understood. We have developed novel statistical techniques to characterize the spatial distribution of TILs at various length scales. These include a box counting method that we call “occupancy” and novel applications of fractal dimensions. We apply these techniques to the spatial distribution of [Formula: see text] T cells in the tumor microenvironment of tissue resected from 35 triple negative breast cancer patients. We find that there is a distinct difference in the spatial distribution of [Formula: see text] T cells between good clinical outcome (no recurrence within at least 5 years of diagnosis) and poor clinical outcome (recurrence within 3 years of diagnosis). The statistical significance of the difference between good and poor outcome in the occupancy, fractal dimension (FD), and FD difference of [Formula: see text] T cells is comparable to that of the [Formula: see text] T cell density. Even when we randomly exclude some of the cells so that the images have the same cell density, we still find that the fractal dimension at short length scales is correlated with cancer recurrence, implying that the actual spatial distribution of [Formula: see text] cells, and not just the [Formula: see text] cell density, is associated with clinical outcome. The occupancy and FD difference indicate that the [Formula: see text] T cells are more spatially dispersed in good outcome and more aggregated in poor outcome. We discuss possible interpretations.
Collapse
Affiliation(s)
- Juliana C. Wortman
- Department of Physics and Astronomy, University of California, Irvine 92697, CA, USA
| | - Ting-Fang He
- Cancer Immunotherapeutics & Tumor Immunology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte 91010, CA, USA
| | - Anthony Rosario
- Cancer Immunotherapeutics & Tumor Immunology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte 91010, CA, USA
| | - Roger Wang
- Cancer Immunotherapeutics & Tumor Immunology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte 91010, CA, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte 91010, CA, USA
| | - Yuan Yuan
- Department of Medical Oncology and Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte 91010, CA, USA
| | - Susan E. Yost
- Department of Medical Oncology and Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte 91010, CA, USA
| | - Xuefei Li
- Department of Bioengineering and the Center for Theoretical Biological Physics, Rice University, Houston 77030, TX, USA
| | - Herbert Levine
- Department of Bioengineering and the Center for Theoretical Biological Physics, Rice University, Houston 77030, TX, USA
| | - Gurinder Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Peter Lee
- Cancer Immunotherapeutics & Tumor Immunology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, 1500 East Duarte Road, Duarte 91010, CA, USA
| | - Clare C. Yu
- Department of Physics and Astronomy, University of California, Irvine 92697, CA, USA
| |
Collapse
|
18
|
Mirzapoiazova T, Pozhitkov A, Nam A, Mambetsariev I, Nelson MS, Tan YHC, Zhang K, Raz D, Singhal S, Nasser MW, Kulkarni P, Batra SK, Sattler M, Salgia R. Effects of selected deubiquitinating enzyme inhibitors on the proliferation and motility of lung cancer and mesothelioma cell lines. Int J Oncol 2020; 57:80-86. [PMID: 32236606 PMCID: PMC7252467 DOI: 10.3892/ijo.2020.5034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 11/06/2022] Open
Abstract
The post‑translational modification of proteins by ubiquitinating enzymes plays a central role in a number of cellular functions, such as cell proteolysis, DNA repair, and cell signaling and communication. Deubiquitinating enzymes (DUBs) disassemble ubiquitin chains and remove ubiquitin moieties from proteins. Targeting DUBs in cancer models has revealed an important role for these enzymes in tumorigenesis, and they therefore have emerged as attractive therapeutic targets. In the present study, the effects of three DUB inhibitors, PR‑619, RA‑9 and LDN‑91946, on a non‑small cell lung cancer cell line (A549) and a mesothelioma cell line (H2373) were investigated. PR‑619 significantly inhibited cell adhesion and the proliferation of both cell lines. RA‑9 exerted an inhibitory effect on the adhesion and proliferation of H2373 cells, whereas it had no effect on A549 cells. Notably, however, while PR‑619 attenuated the proliferation of both cell lines, it exerted an opposite effect on cell motility; in the case of A549 cells, there was a significant increase in cell motility, while for the H2373 cells, there was a significant decrease. Furthermore, protein phosphorylation kinetic analyses revealed that the effects were cell line‑specific. In H2373 cells, the phosphorylation of only one peptide corresponding to the P85A protein was significantly affected, and while LDN‑91946 treatment increased phosphorylation, treatment with RA‑9 or PR‑619 decreased its phosphorylation compared to the DMSO control. By contrast, in the case of A549 cells, the phosphorylation of 21 peptides was significantly affected by the same compounds. In light of the potential for the negative side‑effects of DUB inhibition, such as increased cancer cell motility, the data presented herein underscore the dire need for the development of specific DUB inhibitors and to elucidate the individual role of DUB family members in cancer biology before they can be specifically pharmacologically targeted.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| | - Alexander Pozhitkov
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| | - Michael S Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, CA 91010‑3000, USA
| | - Yi-Hung Carol Tan
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Keqiang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| | - Dan Raz
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| | - Sharad Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana‑Farber Cancer Institute, Boston, MA 02215, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010‑3000, USA
| |
Collapse
|
19
|
Puri M. Automated Machine Learning Diagnostic Support System as a Computational Biomarker for Detecting Drug-Induced Liver Injury Patterns in Whole Slide Liver Pathology Images. Assay Drug Dev Technol 2020; 18:1-10. [PMID: 31149832 PMCID: PMC6998050 DOI: 10.1089/adt.2019.919] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging disease to diagnose, a leading cause of acute liver failure, and responsible for drug withdrawal from the market. There is no symptom, no biomarker or test for detection, no therapy, but discontinuation of the drug. Pharmaceutical companies spend huge money, time, and scientific research efforts to test DILI effects and drug efficacy. A preclinical diagnostic support system is designed and proposed for DILI detection and classification on liver biopsy histopathology images. Heterogeneity features and automated machine learning (AutoML) models were tested to classify DILI injury patterns on whole slide image. Fractal and lacunarity values were used to detect hepatocellular necrotic injury patterns caused on a rat liver (in vivo) by 10 drugs at four dose levels. Correlations between fractal and lacunarity values were statistically analyzed for the 10 drugs; the Pearson correlation (r = 0.9809), p-value (1.6612E-06), and R2 (0.9582) were found to be high in the case of carbon tetrachloride. The AutoML model was tested to understand the injury patterns on a subset of 1,277 histology images. The AutoML algorithm was able to classify necrotic injury patterns accurately with an average precision of 98.6% on a score threshold of 0.5.
Collapse
Affiliation(s)
- Munish Puri
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Mirzapoiazova T, Li H, Nathan A, Srivstava S, Nasser MW, Lennon F, Armstrong B, Mambetsariev I, Chu PG, Achuthan S, Batra SK, Kulkarni P, Salgia R. Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells. J Clin Med 2019; 8:jcm8101723. [PMID: 31635288 PMCID: PMC6832496 DOI: 10.3390/jcm8101723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles that constantly fuse and divide, forming dynamic tubular networks. Abnormalities in mitochondrial dynamics and morphology are linked to diverse pathological states, including cancer. Thus, alterations in mitochondrial parameters could indicate early events of disease manifestation or progression. However, finding reliable and quantitative tools for monitoring mitochondria and determining the network parameters, particularly in live cells, has proven challenging. Here, we present a 2D confocal imaging-based approach that combines automatic mitochondrial morphology and dynamics analysis with fractal analysis in live small cell lung cancer (SCLC) cells. We chose SCLC cells as a test case since they typically have very little cytoplasm, but an abundance of smaller mitochondria compared to many of the commonly used cell types. The 2D confocal images provide a robust approach to quantitatively measure mitochondrial dynamics and morphology in live cells. Furthermore, we performed 3D reconstruction of electron microscopic images and show that the 3D reconstruction of the electron microscopic images complements this approach to yield better resolution. The data also suggest that the parameters of mitochondrial dynamics and fractal dimensions are sensitive indicators of cellular response to subtle perturbations, and hence, may serve as potential markers of drug response in lung cancer.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Haiqing Li
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Department of Computational & Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| | - Anusha Nathan
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Saumya Srivstava
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Mohd W Nasser
- University of Nebraska, Medical Center, Nebraska, NE 68198, USA.
| | | | - Brian Armstrong
- Department of Developmental and Stem Cell Biology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Peiguo G Chu
- Department of Anatomic Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Srisairam Achuthan
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Surinder K Batra
- University of Nebraska, Medical Center, Nebraska, NE 68198, USA.
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
21
|
Korolj A, Wu HT, Radisic M. A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems. Biomaterials 2019; 219:119363. [PMID: 31376747 PMCID: PMC6759375 DOI: 10.1016/j.biomaterials.2019.119363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022]
Abstract
Optimal levels of chaos and fractality are distinctly associated with physiological health and function in natural systems. Chaos is a type of nonlinear dynamics that tends to exhibit seemingly random structures, whereas fractality is a measure of the extent of organization underlying such structures. Growing bodies of work are demonstrating both the importance of chaotic dynamics for proper function of natural systems, as well as the suitability of fractal mathematics for characterizing these systems. Here, we review how measures of fractality that quantify the dose of chaos may reflect the state of health across various biological systems, including: brain, skeletal muscle, eyes and vision, lungs, kidneys, tumours, cell regulation, skin and wound repair, bone, vasculature, and the heart. We compare how reports of either too little or too much chaos and fractal complexity can be damaging to normal biological function, and suggest that aiming for the healthy dose of chaos may be an effective strategy for various biomedical applications. We also discuss rising examples of the implementation of fractal theory in designing novel materials, biomedical devices, diagnostics, and clinical therapies. Finally, we explain important mathematical concepts of fractals and chaos, such as fractal dimension, criticality, bifurcation, and iteration, and how they are related to biology. Overall, we promote the effectiveness of fractals in characterizing natural systems, and suggest moving towards using fractal frameworks as a basis for the research and development of better tools for the future of biomedical engineering.
Collapse
Affiliation(s)
- Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Hau-Tieng Wu
- Department of Statistical Science, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Toronto General Research Institute, University Health Network, Toronto, Canada; The Heart and Stroke/Richard Lewar Center of Excellence, Toronto, Canada.
| |
Collapse
|
22
|
The Mitochondrion as an Emerging Therapeutic Target in Cancer. Trends Mol Med 2019; 26:119-134. [PMID: 31327706 DOI: 10.1016/j.molmed.2019.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria have emerged as important pharmacological targets because of their key role in cellular proliferation and death. In tumor tissues, mitochondria can switch metabolic phenotypes to meet the challenges of high energy demand and macromolecular synthesis. Furthermore, mitochondria can engage in crosstalk with the tumor microenvironment, and signals from cancer-associated fibroblasts can impinge on mitochondria. Cancer cells can also acquire a hybrid phenotype in which both glycolysis and oxidative phosphorylation (OXPHOS) can be utilized. This hybrid phenotype can facilitate metabolic plasticity of cancer cells more specifically in metastasis and therapy-resistance. In light of the metabolic heterogeneity and plasticity of cancer cells that had until recently remained unappreciated, strategies targeting cancer metabolic dependency appear to be promising in the development of novel and effective cancer therapeutics.
Collapse
|
23
|
Mambetsariev I, Mirzapoiazova T, Lennon F, Jolly MK, Li H, Nasser MW, Vora L, Kulkarni P, Batra SK, Salgia R. Small Cell Lung Cancer Therapeutic Responses Through Fractal Measurements: From Radiology to Mitochondrial Biology. J Clin Med 2019; 8:jcm8071038. [PMID: 31315252 PMCID: PMC6679065 DOI: 10.3390/jcm8071038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine disease with an overall 5 year survival rate of ~7%. Although patients tend to respond initially to therapy, therapy-resistant disease inevitably emerges. Unfortunately, there are no validated biomarkers for early-stage SCLC to aid in early detection. Here, we used readouts of lesion image characteristics and cancer morphology that were based on fractal geometry, namely fractal dimension (FD) and lacunarity (LC), as novel biomarkers for SCLC. Scanned tumors of patients before treatment had a high FD and a low LC compared to post treatment, and this effect was reversed after treatment, suggesting that these measurements reflect the initial conditions of the tumor, its growth rate, and the condition of the lung. Fractal analysis of mitochondrial morphology showed that cisplatin-treated cells showed a discernibly decreased LC and an increased FD, as compared with control. However, treatment with mdivi-1, the small molecule that attenuates mitochondrial division, was associated with an increase in FD as compared with control. These data correlated well with the altered metabolic functions of the mitochondria in the diseased state, suggesting that morphological changes in the mitochondria predicate the tumor’s future ability for mitogenesis and motogenesis, which was also observed on the CT scan images. Taken together, FD and LC present ideal tools to differentiate normal tissue from malignant SCLC tissue as a potential diagnostic biomarker for SCLC.
Collapse
Affiliation(s)
- Isa Mambetsariev
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | | | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Haiqing Li
- City of Hope, Center for Informatics, Duarte, CA 91010, USA
- City of Hope, Dept. of Computational & Quantitative Medicine, Duarte, CA 91010, USA
| | - Mohd W Nasser
- University of Nebraska Medical Center, Dept. of Biochemistry and Molecular Biology, Omaha, NE 68198, USA
| | - Lalit Vora
- City of Hope, Dept. of Diagnostic Radiology, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA
| | - Surinder K Batra
- University of Nebraska Medical Center, Dept. of Biochemistry and Molecular Biology, Omaha, NE 68198, USA
| | - Ravi Salgia
- City of Hope, Dept. of Medical Oncology and Therapeutics Research, Duarte, CA 91010, USA.
| |
Collapse
|
24
|
González-Durruthy M, Manske Nunes S, Ventura-Lima J, Gelesky MA, González-Díaz H, Monserrat JM, Concu R, Cordeiro MND. MitoTarget Modeling Using ANN-Classification Models Based on Fractal SEM Nano-Descriptors: Carbon Nanotubes as Mitochondrial F0F1-ATPase Inhibitors. J Chem Inf Model 2018; 59:86-97. [DOI: 10.1021/acs.jcim.8b00631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Michael González-Durruthy
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, 4169-007, University of Porto, Porto, Portugal
| | - Silvana Manske Nunes
- Institute of Biological Sciences (ICB), Universidade Federal do Rio Grande -FURG, 96270-900, Rio Grande, Rio Grande do Sul, Brazil
- ICB-FURG Post-Graduate Program in Physiological Sciences, 96270-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Juliane Ventura-Lima
- Institute of Biological Sciences (ICB), Universidade Federal do Rio Grande -FURG, 96270-900, Rio Grande, Rio Grande do Sul, Brazil
- ICB-FURG Post-Graduate Program in Physiological Sciences, 96270-900, Rio Grande, Rio Grande do Sul, Brazil
- National Institute of Carbon Nanomaterial Science and Technology, 30123970, Belo Horizonte, Minas Gerais, Brazil
- Nanotoxicology Network (MCTI/CNPq), 96270-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos A. Gelesky
- Post-Graduate Program in Technological and Environmental Chemistry, 96270-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Humberto González-Díaz
- Department of Organic Chemistry II, College of Science and Technology, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Bizkaia, Spain
| | - José M. Monserrat
- Institute of Biological Sciences (ICB), Universidade Federal do Rio Grande -FURG, 96270-900, Rio Grande, Rio Grande do Sul, Brazil
- ICB-FURG Post-Graduate Program in Physiological Sciences, 96270-900, Rio Grande, Rio Grande do Sul, Brazil
- National Institute of Carbon Nanomaterial Science and Technology, 30123970, Belo Horizonte, Minas Gerais, Brazil
- Nanotoxicology Network (MCTI/CNPq), 96270-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Riccardo Concu
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, 4169-007, University of Porto, Porto, Portugal
| | - M. Natália D.S. Cordeiro
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, 4169-007, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Zahedi A, On V, Phandthong R, Chaili A, Remark G, Bhanu B, Talbot P. Deep Analysis of Mitochondria and Cell Health Using Machine Learning. Sci Rep 2018; 8:16354. [PMID: 30397207 PMCID: PMC6218515 DOI: 10.1038/s41598-018-34455-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
There is a critical need for better analytical methods to study mitochondria in normal and diseased states. Mitochondrial image analysis is typically done on still images using slow manual methods or automated methods of limited types of features. MitoMo integrated software overcomes these bottlenecks by automating rapid unbiased quantitative analysis of mitochondrial morphology, texture, motion, and morphogenesis and advances machine-learning classification to predict cell health by combining features. Our pixel-based approach for motion analysis evaluates the magnitude and direction of motion of: (1) molecules within mitochondria, (2) individual mitochondria, and (3) distinct morphological classes of mitochondria. MitoMo allows analysis of mitochondrial morphogenesis in time-lapse videos to study early progression of cellular stress. Biological applications are presented including: (1) establishing normal phenotypes of mitochondria in different cell types; (2) quantifying stress-induced mitochondrial hyperfusion in cells treated with an environmental toxicant, (3) tracking morphogenesis in mitochondria undergoing swelling, and (4) evaluating early changes in cell health when morphological abnormalities are not apparent. MitoMo unlocks new information on mitochondrial phenotypes and dynamics by enabling deep analysis of mitochondrial features in any cell type and can be applied to a broad spectrum of research problems in cell biology, drug testing, toxicology, and medicine.
Collapse
Affiliation(s)
- Atena Zahedi
- Graduate Program in Bioengineering, University of California, Riverside, CA., USA
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA., USA
| | - Vincent On
- Department of Electrical & Computer Engineering, University of California, Riverside, CA., USA
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA., USA
| | - Angela Chaili
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA., USA
| | - Guadalupe Remark
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA., USA
| | - Bir Bhanu
- Graduate Program in Bioengineering, University of California, Riverside, CA., USA
- Department of Electrical & Computer Engineering, University of California, Riverside, CA., USA
- Department of Computer Science, University of California, Riverside, CA., USA
| | - Prue Talbot
- Graduate Program in Bioengineering, University of California, Riverside, CA., USA.
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA., USA.
| |
Collapse
|
26
|
Wang J, Mirzapoiazova T, Carol Tan YH, Pang KM, Pozhitkov A, Wang Y, Wang Y, Mambetsariev B, Wang E, Nasser MW, Batra SK, Raz D, Reckamp K, Kulkarni P, Zheng Y, Salgia R. Inhibiting crosstalk between MET signaling and mitochondrial dynamics and morphology: a novel therapeutic approach for lung cancer and mesothelioma. Cancer Biol Ther 2018; 19:1023-1032. [PMID: 30311833 PMCID: PMC6301806 DOI: 10.1080/15384047.2018.1472193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The receptor tyrosine kinase MET is frequently involved in malignant transformation and inhibiting its activity in MET-dependent cancers is associated with improved clinical outcomes. Emerging evidence also suggests that mitochondria play an essential role in tumorigenesis and Dynamin Related Protein (DRP1), a key component of the mitochondrial fission machinery, has emerged as an attractive therapeutic target. Here, we report that inhibiting MET activity with the tyrosine kinase inhibitor MGCD516 attenuates viability, migration, and invasion of non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM) cell lines in vitro, and significantly retards tumor growth in vivo. Interestingly, MGCD516 treatment also results in altered mitochondrial morphology in these cell lines. Furthermore, inhibiting MET pharmacologically or knocking down its expression using siRNA, decreases DRP1 activity alluding to possible crosstalk between them in these two cancers. Consistently, a combination of MGCD516 and mdivi-1, a quinazolinone reported to inhibit mitochondrial fission, is more effective in attenuating proliferation of NSCLC and MPM cell lines than either drug alone. Considered together, the present study has uncovered a novel mechanism underlying mitochondrial regulation by MET that involves crosstalk with DRP1, and suggests that a combination therapy targeting both MET and DRP1 could be a novel strategy for NSCLC and MPM.
Collapse
Affiliation(s)
- Jiale Wang
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA.,f Oncology Center, Zhujiang Hospital , Southern Medical University , Guangzhou , China
| | - Tamara Mirzapoiazova
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA
| | - Yi-Hung Carol Tan
- b Department of Medicine, Section of Hematology/ Oncology , University of Chicago Medicine and Biologic Sciences , Chicago , IL , USA
| | - Ka Ming Pang
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA
| | - Alex Pozhitkov
- c Center for Informatics , City of Hope National Medical Center , Duarte , CA , USA
| | - Yingyu Wang
- c Center for Informatics , City of Hope National Medical Center , Duarte , CA , USA
| | - Yang Wang
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA
| | - Bolot Mambetsariev
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA
| | - Edward Wang
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA
| | - Mohd W Nasser
- d Department of Biochemistry and Molecular Biology, Division of Thoracic Surgery , University of Nebraska College of Medicine , Omaha , NE , USA
| | - Surinder K Batra
- d Department of Biochemistry and Molecular Biology, Division of Thoracic Surgery , University of Nebraska College of Medicine , Omaha , NE , USA
| | - Dan Raz
- e Department of Surgery , City of Hope National Medical Center , Duarte , CA , USA
| | - Karen Reckamp
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA
| | - Prakash Kulkarni
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA
| | - Yanfang Zheng
- f Oncology Center, Zhujiang Hospital , Southern Medical University , Guangzhou , China
| | - Ravi Salgia
- a Department of Medical Oncology & Therapeutics Research , City of Hope National Medical Center , Duarte , CA , USA
| |
Collapse
|
27
|
Ugarte JP, Tobón C, Lopes AM, Machado JAT. Atrial Rotor Dynamics Under Complex Fractional Order Diffusion. Front Physiol 2018; 9:975. [PMID: 30087620 PMCID: PMC6066719 DOI: 10.3389/fphys.2018.00975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 12/27/2022] Open
Abstract
The mechanisms of atrial fibrillation (AF) are a challenging research topic. The rotor hypothesis states that the AF is sustained by a reentrant wave that propagates around an unexcited core. Cardiac tissue heterogeneities, both structural and cellular, play an important role during fibrillatory dynamics, so that the ionic characteristics of the currents, their spatial distribution and their structural heterogeneity determine the meandering of the rotor. Several studies about rotor dynamics implement the standard diffusion equation. However, this mathematical scheme carries some limitations. It assumes the myocardium as a continuous medium, ignoring, therefore, its discrete and heterogeneous aspects. A computational model integrating both, electrical and structural properties could complement experimental and clinical results. A new mathematical model of the action potential propagation, based on complex fractional order derivatives is presented. The complex derivative order appears of considering the myocardium as discrete-scale invariant fractal. The main aim is to study the role of a myocardial, with fractal characteristics, on atrial fibrillatory dynamics. For this purpose, the degree of structural heterogeneity is described through derivatives of complex order γ = α + jβ. A set of variations for γ is tested. The real part α takes values ranging from 1.1 to 2 and the imaginary part β from 0 to 0.28. Under this scheme, the standard diffusion is recovered when α = 2 and β = 0. The effect of γ on the action potential propagation over an atrial strand is investigated. Rotors are generated in a 2D model of atrial tissue under electrical remodeling due to chronic AF. The results show that the degree of structural heterogeneity, given by γ, modulates the electrophysiological properties and the dynamics of rotor-type reentrant mechanisms. The spatial stability of the rotor and the area of its unexcited core are modulated. As the real part decreases and the imaginary part increases, simulating a higher structural heterogeneity, the vulnerable window to reentrant is increased, as the total meandering of the rotor tip. This in silico study suggests that structural heterogeneity, described by means of complex order derivatives, modulates the stability of rotors and that a wide range of rotor dynamics can be generated.
Collapse
Affiliation(s)
- Juan P. Ugarte
- Grupo de Investigación en Modelamiento y Simulación Computacional, Facultad de Ingenierías, Universidad de San Buenaventura, Medellín, Colombia
| | | | - António M. Lopes
- UISPA-LAETA/INEGI, Faculty of Engineering, University of Porto, Porto, Portugal
| | - J. A. Tenreiro Machado
- Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
28
|
Lima AR, Santos L, Correia M, Soares P, Sobrinho-Simões M, Melo M, Máximo V. Dynamin-Related Protein 1 at the Crossroads of Cancer. Genes (Basel) 2018; 9:genes9020115. [PMID: 29466320 PMCID: PMC5852611 DOI: 10.3390/genes9020115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dynamics are known to have an important role in so-called age-related diseases, including cancer. Mitochondria is an organelle involved in many key cellular functions and responds to physiologic or stress stimuli by adapting its structure and function. Perhaps the most important structural changes involve mitochondrial dynamics (fission and fusion), which occur in normal cells as well as in cells under dysregulation, such as cancer cells. Dynamin-related protein 1 (DRP1), a member of the dynamin family of guanosine triphosphatases (GTPases), is the key component of mitochondrial fission machinery. Dynamin-related protein 1 is associated with different cell processes such as apoptosis, mitochondrial biogenesis, mitophagy, metabolism, and cell proliferation, differentiation, and transformation. The role of DRP1 in tumorigenesis may seem to be paradoxical, since mitochondrial fission is a key mediator of two very different processes, cellular apoptosis and cell mitosis. Dynamin-related protein 1 has been associated with the development of distinct human cancers, including changes in mitochondrial energetics and cellular metabolism, cell proliferation, and stem cell maintenance, invasion, and promotion of metastases. However, the underlying mechanism for this association is still being explored. Herein, we review the published knowledge on the role of DRP1 in cancer, exploring its interaction with different biological processes in the tumorigenesis context.
Collapse
Affiliation(s)
- Ana Rita Lima
- Medical Faculty of University of Porto-FMUP, Porto 4200-135, Portugal.
| | - Liliana Santos
- Cancer Signaling & Metabolism Group, Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health Sciences) (I3S), University of Porto, Porto 4200-135, Portugal.
- Cancer Signaling & Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto 4200-135, Portugal.
| | - Marcelo Correia
- Cancer Signaling & Metabolism Group, Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health Sciences) (I3S), University of Porto, Porto 4200-135, Portugal.
- Cancer Signaling & Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal.
| | - Paula Soares
- Cancer Signaling & Metabolism Group, Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health Sciences) (I3S), University of Porto, Porto 4200-135, Portugal.
- Cancer Signaling & Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal.
- Department of Pathology, Medical Faculty of University of Porto (FMUP), Porto 4200-135, Portugal.
| | - Manuel Sobrinho-Simões
- Cancer Signaling & Metabolism Group, Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health Sciences) (I3S), University of Porto, Porto 4200-135, Portugal.
- Cancer Signaling & Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal.
- Department of Pathology, Medical Faculty of University of Porto (FMUP), Porto 4200-135, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, Porto 4200-135, Portugal.
| | - Miguel Melo
- Cancer Signaling & Metabolism Group, Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health Sciences) (I3S), University of Porto, Porto 4200-135, Portugal.
- Cancer Signaling & Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal.
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra (Coimbra University Hospital Centre), Coimbra 3000-075, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Valdemar Máximo
- Cancer Signaling & Metabolism Group, Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health Sciences) (I3S), University of Porto, Porto 4200-135, Portugal.
- Cancer Signaling & Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal.
- Department of Pathology, Medical Faculty of University of Porto (FMUP), Porto 4200-135, Portugal.
| |
Collapse
|
29
|
Mitochondrial network complexity emerges from fission/fusion dynamics. Sci Rep 2018; 8:363. [PMID: 29321534 PMCID: PMC5762699 DOI: 10.1038/s41598-017-18351-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/06/2017] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial networks exhibit a variety of complex behaviors, including coordinated cell-wide oscillations of energy states as well as a phase transition (depolarization) in response to oxidative stress. Since functional and structural properties are often interwinded, here we characterized the structure of mitochondrial networks in mouse embryonic fibroblasts using network tools and percolation theory. Subsequently we perturbed the system either by promoting the fusion of mitochondrial segments or by inducing mitochondrial fission. Quantitative analysis of mitochondrial clusters revealed that structural parameters of healthy mitochondria laid in between the extremes of highly fragmented and completely fusioned networks. We confirmed our results by contrasting our empirical findings with the predictions of a recently described computational model of mitochondrial network emergence based on fission-fusion kinetics. Altogether these results offer not only an objective methodology to parametrize the complexity of this organelle but also support the idea that mitochondrial networks behave as critical systems and undergo structural phase transitions.
Collapse
|
30
|
Nicolás-Carlock JR, Carrillo-Estrada JL, Dossetti V. Universal fractality of morphological transitions in stochastic growth processes. Sci Rep 2017; 7:3523. [PMID: 28615671 PMCID: PMC5471257 DOI: 10.1038/s41598-017-03491-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/28/2017] [Indexed: 11/18/2022] Open
Abstract
Stochastic growth processes give rise to diverse and intricate structures everywhere in nature, often referred to as fractals. In general, these complex structures reflect the non-trivial competition among the interactions that generate them. In particular, the paradigmatic Laplacian-growth model exhibits a characteristic fractal to non-fractal morphological transition as the non-linear effects of its growth dynamics increase. So far, a complete scaling theory for this type of transitions, as well as a general analytical description for their fractal dimensions have been lacking. In this work, we show that despite the enormous variety of shapes, these morphological transitions have clear universal scaling characteristics. Using a statistical approach to fundamental particle-cluster aggregation, we introduce two non-trivial fractal to non-fractal transitions that capture all the main features of fractal growth. By analyzing the respective clusters, in addition to constructing a dynamical model for their fractal dimension, we show that they are well described by a general dimensionality function regardless of their space symmetry-breaking mechanism, including the Laplacian case itself. Moreover, under the appropriate variable transformation this description is universal, i.e., independent of the transition dynamics, the initial cluster configuration, and the embedding Euclidean space.
Collapse
Affiliation(s)
- J R Nicolás-Carlock
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico
| | - J L Carrillo-Estrada
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico.
| | - V Dossetti
- CIDS-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico
| |
Collapse
|
31
|
Pendin D, Filadi R, Pizzo P. The Concerted Action of Mitochondrial Dynamics and Positioning: New Characters in Cancer Onset and Progression. Front Oncol 2017; 7:102. [PMID: 28589083 PMCID: PMC5439081 DOI: 10.3389/fonc.2017.00102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are dynamic organelles whose morphology and activity are extremely variable, depending on the metabolic state of the cell. In particular, their shape and movements within the cell are finely regulated by an increasing number of proteins, which take part in the process of mitochondrial fission/fusion and connect the organelles to the cytoskeleton. As to their activities, mitochondria are considered to be at the crossroad between cell life and death since, on the one hand, they are essential in ATP production and in multiple metabolic pathways but, on the other, they are involved in the intrinsic apoptotic cascade, triggered by different stress conditions. Importantly, the process of mitochondrial Ca2+ uptake, as well as the morphology and the dynamics of these organelles, is known to deeply impact on both pro-survival and pro-death mitochondrial activities. Recently, increasing evidence has accrued on a central role of deregulated mitochondrial functionalities in the onset and progression of different pathologies, ranging from neurodegenerative diseases to cancer. In this contribution, we will present the latest findings connecting alterations in the machineries that control mitochondrial dynamics and localization to specific cancer hallmarks, highlighting the importance of mitochondria for the viability of cancer cells and discussing their role as promising targets for the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Diana Pendin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Neuroscience Institute, National Research Council (CNR), Padova, Italy
| |
Collapse
|
32
|
Aouacheria A, Baghdiguian S, Lamb HM, Huska JD, Pineda FJ, Hardwick JM. Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochem Int 2017; 109:141-161. [PMID: 28461171 DOI: 10.1016/j.neuint.2017.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
The morphology of a population of mitochondria is the result of several interacting dynamical phenomena, including fission, fusion, movement, elimination and biogenesis. Each of these phenomena is controlled by underlying molecular machinery, and when defective can cause disease. New understanding of the relationships between form and function of mitochondria in health and disease is beginning to be unraveled on several fronts. Studies in mammals and model organisms have revealed that mitochondrial morphology, dynamics and function appear to be subject to regulation by the same proteins that regulate apoptotic cell death. One protein family that influences mitochondrial dynamics in both healthy and dying cells is the Bcl-2 protein family. Connecting mitochondrial dynamics with life-death pathway forks may arise from the intersection of Bcl-2 family proteins with the proteins and lipids that determine mitochondrial shape and function. Bcl-2 family proteins also have multifaceted influences on cells and mitochondria, including calcium handling, autophagy and energetics, as well as the subcellular localization of mitochondrial organelles to neuronal synapses. The remarkable range of physical or functional interactions by Bcl-2 family proteins is challenging to assimilate into a cohesive understanding. Most of their effects may be distinct from their direct roles in apoptotic cell death and are particularly apparent in the nervous system. Dual roles in mitochondrial dynamics and cell death extend beyond BCL-2 family proteins. In this review, we discuss many processes that govern mitochondrial structure and function in health and disease, and how Bcl-2 family proteins integrate into some of these processes.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institute of Evolutionary Sciences of Montpellier (ISEM), CNRS UMR 5554, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Stephen Baghdiguian
- Institute of Evolutionary Sciences of Montpellier (ISEM), CNRS UMR 5554, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - Jason D Huska
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - Fernando J Pineda
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 2017; 74:1999-2017. [PMID: 28083595 DOI: 10.1007/s00018-016-2451-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.
Collapse
|