1
|
Praveen Kumar PK, Sundar H, Balakrishnan K, Subramaniam S, Ramachandran H, Kevin M, Michael Gromiha M. The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma. Mol Biotechnol 2025; 67:1367-1381. [PMID: 38684604 DOI: 10.1007/s12033-024-01151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the predominant form of liver cancer and arises due to dysregulation of the cell cycle control machinery. Heat Shock Protein 90 (HSP90) and mitochondrial HSP90, also referred to as TRAP1 are important critical chaperone target receptors for early diagnosis and targeting HCC. Both HSP90 and TRAP1 expression was found to be higher in HCC patients. Hence, the importance of HSP90 and TRAP1 inhibitors mechanism and mitochondrial targeted delivery of those inhibitors function is widely studied. This review also focuses on importance of protein-protein interactions of HSP90 and TRAP1 targets and association of its interacting proteins in various pathways of HCC. To further elucidate the mechanism, systems biology approaches and computational biology approach studies are well explored in the association of inhibition of herbal plant molecules with HSP90 and its mitochondrial type in HCC.
Collapse
Affiliation(s)
- P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harini Sundar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Kamalavarshini Balakrishnan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Sakthivel Subramaniam
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - Hemalatha Ramachandran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - M Kevin
- Department of Biotechnology, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur Tk, Tamil Nadu, 602117, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
2
|
Sun S, Hu H, Li F, Huan S, Chen L, Chen J, Sun P, Dong X. Salidroside enhances 5-fluorouracil sensitivity against hepatocellular carcinoma via YIPF5-induced mitophagy. Front Pharmacol 2025; 15:1503490. [PMID: 39834805 PMCID: PMC11743563 DOI: 10.3389/fphar.2024.1503490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a major medical challenge due to its high incidence and poor prognosis. 5-Fluorouracil (5-FU), although extensively studied in the treatment of HCC and other solid tumors, has limited application as a first-line therapy for HCC due to its resistance and significant inter-patient variability. To address these issues, researchers have explored drug repurposing. One of our key findings in this endeavour was the potent anti-HCC effect of the natural product Salidroside (Sal) when co-administered with 5-FU. Sal was found to inhibit mitosis and promote cellular senescence in HCC cells via a mechanism distinct from 5-FU, specifically by inducing excessive mitophagy that led to cellular mitochondrial dysfunction. Importantly, YIPF5 was confirmed as a potential molecular target of Sal. This natural product modulated YIPF5-induced mitophagy and influenced both mitosis and senescence in HCC cells. The combination of Sal and 5-FU demonstrated significant therapeutic effects in a mouse HCC model. In conclusion, our study was not only in line with the innovative strategy of drug repurposing, but also important for drug design and natural product screening targeting the relevant pathways.
Collapse
Affiliation(s)
- Sumin Sun
- College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China
| | - Haili Hu
- College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China
| | - Feiyu Li
- College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Huan
- College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China
| | - Long Chen
- College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China
| | - Jiahui Chen
- College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China
| | - Peihua Sun
- College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China
| | - Xiaoqing Dong
- College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Liu Z, Zhang J, Li L, Zhang T, Huang L, Yin Q. Shoutai Pill Enhances Endometrial Receptivity in Controlled Ovarian Hyperstimulation Mice by Improving the In-Vivo Immune Environment. Comb Chem High Throughput Screen 2025; 28:711-723. [PMID: 37929727 DOI: 10.2174/0113862073274708231028185333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The Shoutai pill (STP) is a classic formulation in traditional Chinese medicine. Preliminary experimental observations from our study suggest that it is effective in enhancing endometrial receptivity. However, the underlying mechanisms by which STP influences endometrial receptivity remain to be elucidated. OBJECTIVE The objective of this study is to investigate the effects and mechanisms of the STP formulation in enhancing endometrial receptivity in controlled ovarian hyperstimulation (COH) model mice. METHODS The network pharmacology analysis identified target proteins associated with the reduction of endometrial receptivity by STP. The COH mouse model was established using the GnRHa+PMSG+HCG protocol. The levels of MHC-1 and MHC-2 in mouse serum were measured using the ELISA method, while the levels of IL-1β, IL-4, IL-10, IP-10, IL-1a, IL-2, IL-17, TNF-a, and IFN-y were measured using liquid chip technology. RESULTS STP exhibited a significant improvement in the immune environment of COH model mice. The major active components of STP were identified as beta-sitosterol and quercetin, among others. Furthermore, AKT1, VEGFA, and several immune factors, such as TNF, IFN, IL- 1β, and IL-10, were identified as key targets for regulating endometrial receptivity. STP enhanced the expression of IL-10, IL-4, and IP-10 in the mice while reducing the expression levels of IL-2, IL-17, TNF-α, and IFN-γ in COH mice. These effects led to the modulation of early high expression of IL-1β and an improvement in endometrial receptivity. CONCLUSION This study demonstrates that STP can modulate in-vivo immune factors throughout the COH process, subsequently restoring the immune equilibrium within the endometrium, thereby enhancing the endometrial receptivity in the COH model mice.
Collapse
Affiliation(s)
- Ziping Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| | - Jizhong Zhang
- Southwest University for Nationalities, Chengdu Sichuan, China
| | - Liming Li
- 3Sichuan Academy of Traditional Chinese Medicine Science, Chengdu Sichuan China
| | - Tiane Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| | - Li Huang
- Sichuan Academy of Traditional Chinese Medicine Science, Chengdu Sichuan China
| | - Qiaozhi Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, China
| |
Collapse
|
4
|
Aslam S, Qasim M, Noor F, Shahid M, Ashfaq UA, Munir S, Al-Harthi HF, Mashraqi MM, Waqas U, Khurshid M. Potential Target Metabolites From Gut Microbiota Against Hepatocellular Carcinoma: A Network Pharmacology and Molecular Docking Study. Int J Microbiol 2024; 2024:4286228. [PMID: 39502516 PMCID: PMC11537736 DOI: 10.1155/2024/4286228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, posing significant challenges and economic burdens on healthcare systems. Gut microbiota metabolites have shown promise in cancer treatment, but the specific active metabolites and their key targets remain unclear. This study employed a network pharmacology-based approach to identify potent metabolites of gut microbiota and their key targets. Active metabolites produced by gut microbiota were retrieved using the database gutMGene, and targets associated with these metabolites were identified using the Swiss Target Prediction tool. HCC-related targets were obtained from the GeneCards database, and overlapping targets were selected through a Venn diagram tool. An integrated metabolites-target-pathway network was analyzed to identify active inhibitors against HCC, including p-cresol glucuronide, secoisolariciresinol, glycocholic acid, enterodiol, and citric acid. Molecular docking tests were performed to validate the findings and assess the binding affinity of the metabolites with their target proteins. The study identified AKT1, EGFR, ALB, and TNF genes as potential therapeutic targets against hepatic cancer. The metabolites, p-cresol glucuronide, secoisolariciresinol, glycocholic acid, enterodiol, and citric acid, exhibited significant binding affinity with their respective target proteins. The study also revealed multiple signaling pathways and biological processes associated with the metabolites, demonstrating their preventive effect against HCC. This research utilizes a network pharmacology-based approach to identify potent metabolites of gut microbiota and their key targets for the treatment of HCC. The findings were validated through molecular docking tests, providing a foundation for future studies on anti-HCC metabolites and their mechanisms of action. Furthermore, this study offers insights into the development of novel anti-HCC drugs utilizing gut microbiota metabolites.
Collapse
Affiliation(s)
- Sehar Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Samman Munir
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Najran University, Najran 61441, Saudi Arabia
| | - Umair Waqas
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
Saeed Y, Zhong R, Sun Z. Advances in traditional herbal formulation based nano-vaccine for cancer immunotherapy: Unraveling the enigma of complex tumor environment and multidrug resistance. Int Immunopharmacol 2024; 132:111948. [PMID: 38554445 DOI: 10.1016/j.intimp.2024.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Cancer is attributed to uncontrolled cell growth and is among the leading causes of death with no known effective treatment while complex tumor microenvironment (TME) and multidrug resistance (MDR) are major challenges for developing an effective therapeutic strategy. Advancement in cancer immunotherapy has been limited by the over-activation of the host immune response that ultimately affects healthy tissues or organs and leads to a feeble response of the patient's immune system against tumor cells. Besides, traditional herbal medicines (THM) have been well-known for their essential role in the treatment of cancer and are considered relatively safe due to their compatibility with the human body. Yet, poor solubility, low bio-availability, and lack of understanding about their pathophysiological mechanism halt their clinical application. Moreover, considering the complex TME and drug resistance, the most precarious and least discussed concerns for developing THM-based nano-vaccination, are identification of specific biomarkers for drug inhibitory protein and targeted delivery of bioactive ingredients of THM on the specific sites in tumor cells. The concept of THM-based nano-vaccination indicates immunomodulation of TME by THM-based bioactive adjuvants, exerting immunomodulatory effects, via targeted inhibition of key proteins involved in the metastasis of cancer. However, this concept is at its nascent stage and very few preclinical studies provided the evidence to support clinical translation. Therefore, we attempted to capsulize previously reported studies highlighting the role of THM-based nano-medicine in reducing the risk of MDR and combating complex tumor environments to provide a reference for future study design by discussing the challenges and opportunities for developing an effective and safe therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Zhanghua Sun
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
6
|
Xing J, Tan R, Huang F, Tian N. Integrated analyses for identification of a three-gene signature associated with Chaihu Shugan San formula for hepatocellular carcinoma treatment. J Cell Mol Med 2024; 28:e18211. [PMID: 38613352 PMCID: PMC11015397 DOI: 10.1111/jcmm.18211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 02/16/2024] [Indexed: 04/14/2024] Open
Abstract
Chaihu Shugan San (CSS) is a well-known traditional herbal formula that has the potential to ameliorate hepatocellular carcinoma (HCC); however, its mechanism of action remains unknown. Here, we identified the key targets of CSS against HCC and developed a prognostic model to predict the survival of patients with HCC. The effect of CSS plus sorafenib on HCC cell proliferation was evaluated using the MTT assay. LASSO-Cox regression was used to establish a three-gene signature model targeting CSS. Correlations between immune cells, immune checkpoints and risk score were determined to evaluate the immune-related effects of CSS. The interactions between the components and targets were validated using molecular docking and Surface Plasmon Resonance (SPR) assays. CSS and sorafenib synergistically inhibited HCC cell proliferation. Ten core compounds and 224 targets were identified using a drug compound-target network. The prognostic model of the three CSS targets (AKT1, MAPK3 and CASP3) showed predictive ability. Risk scores positively correlated with cancer-promoting immune cells and high expression of immune checkpoint proteins. Molecular docking and SPR analyses confirmed the strong binding affinities of the active components and the target genes. Western blot analysis confirmed the synergistic effect of CSS and sorafenib in inhibiting the expression of these three targets. In conclusion, CSS may regulate the activity of immune-related factors in the tumour microenvironment, reverse immune escape, enhance immune responses through AKT1, MAPK3, and CASP3, and synergistically alleviate HCC. The co-administration of sorafenib with CSS has a strong clinical outlook against HCC.
Collapse
Affiliation(s)
- Jia‐heng Xing
- College of Life ScienceZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Ru‐xue Tan
- College of Life ScienceZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Fei‐er Huang
- College of Life ScienceZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Nan Tian
- College of Life ScienceZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| |
Collapse
|
7
|
Liu W, Yuan L, Che M, Hou S, Meng F, Xu D, Nan Y. Exploring the mechanism of Dahuang-Tusizi drug pair in the treatment of diabetes nephropathy based on network pharmacology and immune infiltration analysis. Medicine (Baltimore) 2023; 102:e36196. [PMID: 38013385 PMCID: PMC10681581 DOI: 10.1097/md.0000000000036020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023] Open
Abstract
The study aimed to explore the key targets and molecular mechanisms of Dahuang-Tusizi drug pair (DTDP) in the treatment of diabetes nephropathy (DN) based on the GEO database by using network pharmacology combined with molecular docking and immune infiltration. The active components of the DTDP were screened using the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database. The differential genes of DN were retrieved from GEO databases. Next, the intersecting targets of drug and disease were imported into the String database for protein-protein interactions network analysis, and the core targets were identified through topological analysis. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed with the help of the Metascape database and gene set enrichment analysis database. Subsequently, molecular docking was performed to verify the binding activity of the key component and the key target. The Nephroseq V5 database was used to verify the clinical relevance of DN and core genes. Finally, the Using CIBERSORT Algorithm to analyze the immune Infiltration of DN Gene Chip. The network analysis showed that 25 active ingredients of DTDP were associated with 22 targets in DN. The key active ingredients (Sesamin, quercetin, EUPATIN, matrine, beta-sitosterol, isorhamnetin, etc.) and the core targets (JUN, EGF, CD44, FOS, KDR, CCL2, PTGS2, and MMP2) were further identified. Enrichment analysis revealed signaling pathways including TNF, MAPK, and IL-17 signaling pathway. Molecular docking results showed that there was a strong affinity between the key components and core targets. The results of immune infiltration found that the proportion of macrophages in DN tissues was significantly increased. Our findings demonstrated that the characteristics of DTDP in treating DN are "multiple components, multiple targets and multiple pathways." We predicted that DTDP may inhibit inflammation related pathways by regulating key genes, reducing macrophage infiltration. Thus, inhibiting inflammatory response to reduce glomerular damage and delay the development of DN.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Mengying Che
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Shaozhang Hou
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Gu C, Tang L, Hao Y, Dong S, Shen J, Xie F, Han Z, Luo W, He J, Yu L. Network pharmacology and bioinformatics were used to construct a prognostic model and immunoassay of core target genes in the combination of quercetin and kaempferol in the treatment of colorectal cancer. J Cancer 2023; 14:1956-1980. [PMID: 37497415 PMCID: PMC10367918 DOI: 10.7150/jca.85517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/18/2023] [Indexed: 07/28/2023] Open
Abstract
Purpose: CRC is a malignant tumor seriously threatening human health. Quercetin and kaempferol are representative components of traditional Chinese medicine (TCM). Previous studies have shown that both quercetin and kaempferol have antitumor pharmacological effects, nevertheless, the underlying mechanism of action remains unclear. To explore the synergy and mechanism of quercetin and kaempferol in colorectal cancer. Methods: In this study, network pharmacology, and bioinformatics are used to obtain the intersection of drug targets and disease genes. Training gene sets were acquired from the TCGA database, acquired prognostic-related genes by univariate Cox, multivariate Cox, and Lasso-Cox regression models, and validated in the GEO dataset. We also made predictions of the immune function of the samples and used molecular docking to map a model for binding two components to prognostic genes. Results: Through Lasso-Cox regression analysis, we obtained three models of drug target genes. This model predicts the combined role of quercetin and kaempferol in the treatment and prognosis of CRC. Prognostic genes are correlated with immune checkpoints and immune infiltration and play an adjuvant role in the immunotherapy of CRC. Conclusion: Core genes are regulated by quercetin and kaempferol to improve the patient's immune system and thus assist in the treatment of CRC.
Collapse
Affiliation(s)
- Chenqiong Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
- Central Laboratory of Panyu Central Hospital, Guangzhou, 511400, Guangdong, P.R. China
| | - LinDong Tang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Yinghui Hao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
- Central Laboratory of Panyu Central Hospital, Guangzhou, 511400, Guangdong, P.R. China
| | - Shanshan Dong
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Jian Shen
- Central Laboratory of Panyu Central Hospital, Guangzhou, 511400, Guangdong, P.R. China
| | - FangMei Xie
- Central Laboratory of Panyu Central Hospital, Guangzhou, 511400, Guangdong, P.R. China
| | - ZePing Han
- Central Laboratory of Panyu Central Hospital, Guangzhou, 511400, Guangdong, P.R. China
| | - WenFeng Luo
- Central Laboratory of Panyu Central Hospital, Guangzhou, 511400, Guangdong, P.R. China
| | - JinHua He
- Central Laboratory of Panyu Central Hospital, Guangzhou, 511400, Guangdong, P.R. China
| | - Li Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| |
Collapse
|
9
|
Ahmad A, Orassay A, Majaz S, Saeed A, Sadvokassova D, Berdigaliyev A, Ahmad S, Wang LX, Xie Y. Computational analysis of target genes in monkeypox virus infection and potential therapeutic precursors. Expert Rev Anti Infect Ther 2023; 21:1153-1161. [PMID: 37711024 DOI: 10.1080/14787210.2023.2259614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/23/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Monkeypox is an orthopoxvirus that is responsible for zoonotic infections in humans. The virus has recently spread rapidly and the WHO has listed it as an international public health emergency of concern. RESEARCH DESIGN AND METHODS Here, we used network analysis and gene enrichment protocols and analyzed datasets of MPXV infection that induced host cell gene expression list and subsequently mapped them against two herbal target gene lists which highlighted considerable coherence in pharmacological attributes with COVID-19. Molecular docking and simulation were performed for the screened compounds. RESULTS Our results identified β-carotene and kaempferol possessing tremendous ability against the MPXV PLD protein. Both compounds were subjected to each of 100 ns molecular dynamics simulation and were found native to the PLD pocket. MM-PB (GB) SA analyses indicated -25.4, -40.1 kcal/mol and -17.2, -26.4kcal/mol of ΔGbind to the active pocket of PLD. Our data suggest the adaptive nature of the MPXV PLD active pocket toward hydrophobic inhibitors. CONCLUSION These results will be of high importance for the viral researchers to be tested in wet lab settings in designing potential inhibitors.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Aliya Orassay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Aamir Saeed
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Darya Sadvokassova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Alan Berdigaliyev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Salar Ahmad
- Department of Surgery, Tehsil Head Quarter (THQ) Hospital, Dargai Malakand, Pakistan
| | - Lian-Xiang Wang
- Department of Crops Research, Heze Research Institute, Heze, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
10
|
Sun Y, Wang L, Du L, Yu H, Tian Y, Jin H, Li S, Yan S, Xiao X. Investigation on the mechanism of Ginkgo Folium in the treatment of Non-alcoholic Fatty Liver Disease by strategy of network pharmacology and molecular docking. Technol Health Care 2023; 31:209-221. [PMID: 37038793 DOI: 10.3233/thc-236018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND Ginkgo Folium has a favorable effect on non-alcoholic fatty live disease (NAFLD), but its mechanism remains unclear. OBJECTIVE The aim of this study is to reveal the underlying mechanism of Ginkgo Folium in the treatment of NAFLD. METHODS Ingredients of Ginkgo Folium and ingredients-related genes were collected from TCMSP database and SwissTargetPrediction website, respectively. Genecards database was used to obtain NAFLD-related genes. Next, the protein-protein interaction network and key ingredients-genes network were constructed via Cytoscape3.7.0. Based on the Metascape website, gene ontology function analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were carried out for key genes. Finally, molecular docking was performed to present the interaction between components and genes using AutoDock Vina 1.1.2. RESULTS Eighteen active ingredients and 10 target genes were screened from Ginkgo Folium. AKT1, TNF, EGFR, PTGS2, MAPK8, PPAγ, APP, ESR1, HIFα and PPAα were considered as potential therapeutic targets. These target genes were mainly enriched in insulin resistance, HIF-1, adipocytokine and AMPK signaling pathways. Molecular docking results suggested that Ginkgo Folium active ingredients including luteolin-4'-glucoside, sesamin, luteolin, chryseriol, isorhamnetin and laricitrin showed strong binding capacities with AKT1. CONCLUSION The study showed that multi-components in Ginkgo Folium interacted with AKT1 and regulated AKT-AMPK/HIF pathway to alleviate NAFLD. Our findings provided an essential role and basis for new anti-NAFLD drug discovery and further research on Ginkgo Folium.
Collapse
Affiliation(s)
- Yuanfang Sun
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Leqi Wang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, Guangdong, China
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang, Guizhou, China
| | - Huajun Yu
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang, Guizhou, China
| | - Yan Tian
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang, Guizhou, China
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, Guangdong, China
| | - Shikai Yan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, Guangdong, China
| | - Xue Xiao
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Mo J, Tong Y, Ma J, Wang K, Feng Y, Wang L, Jiang H, Jin C, Li J. The mechanism of flavonoids from Cyclocarya paliurus on inhibiting liver cancer based on in vitro experiments and network pharmacology. Front Pharmacol 2023; 14:1049953. [PMID: 36817123 PMCID: PMC9936097 DOI: 10.3389/fphar.2023.1049953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Cyclocarya paliurus (Batal.) Iljinsk., a subtropical tree belonging to the family Juglandaceae, is rich in polysaccharides, flavonoids, and terpenoids. It has important pharmacological effects such as lowering blood lipids, blood sugar, and blood pressure. However, little has been discerned regarding anti tumor effects and their potential mechanisms. Method: In vitro cell culture experiments were used to test the effect of C. paliurus total flavonoids (CTFs) extract on apoptosis mechanisms in HepG2 cells. Network pharmacology was applied to further explore the effects of CTFs on liver cancer as well as the mechanisms through which these effects might be achieved. Both 3 hydroxyflavone and luteolin were randomly selected to verify the effect on inducing apoptosis and inhibiting the proliferation of HepG2 cells. Results and Discussion: Network pharmacological analysis was applied to these 62 compounds and their targets, and 13 flavonoids were further screened for their potential anti liver cancer activity. These 13 flavonoids included: tangeretin, baicalein, 7,3'-dihydroxyflavone, velutin, 3-hydroxyflavone, chrysin, kumatakenin, tricin, luteolin, chrysoeriol, apigenin, pinocembrin, and butin. Together, these flavonoids were predicted to interact with AKT1, MAPK3, PIK3CA, EGFR, MAP2K1, SRC, IGF1R, IKBKB, MET, and MAPK14. It was predicted that the inhibitory effect on hepatocellular carcinoma would be accomplished by regulation of core proteins relating to such KEGG pathways as cancer, PI3K-Akt, proteoglycans in cancer, microRNAs in cancer, and endocrine resistance via core target proteins. Both 3-hydroxyflavone and luteolin were demonstrated to induce apoptosis and inhibit the proliferation of HepG2 cells. Our study provides scientific evidence supporting the use of CTFs for the treatment of liver cancer.
Collapse
Affiliation(s)
- Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Yingpeng Tong
- School of Advanced Study, Taizhou University, Taizhou, China
| | - Junxia Ma
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Yifu Feng
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China,*Correspondence: Chong Jin, ; Junmin Li,
| | - Junmin Li
- School of Advanced Study, Taizhou University, Taizhou, China,Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China,*Correspondence: Chong Jin, ; Junmin Li,
| |
Collapse
|
12
|
Tan J, Xiang Y, Xiong Y, Zhang Y, Qiao B, Zhang H. Crebanine induces ROS-dependent apoptosis in human hepatocellular carcinoma cells via the AKT/FoxO3a signaling pathway. Front Pharmacol 2023; 14:1069093. [PMID: 36874025 PMCID: PMC9978116 DOI: 10.3389/fphar.2023.1069093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC), as an aggressive cancer with a high mortality rate, needs high-efficiency and low-toxicity drug therapy. Natural products have great potential as candidate lead compounds for the development of new HCC drugs. Crebanine is an isoquinoline alkaloid derived from Stephania with various potential pharmacological effects such as anti-cancer. However, the molecular mechanism underlying crebanine-induced liver cancer cells apoptosis has not been reported. Here, we investigated the effect of crebanine on HCC and identified a potential mechanism of action. Methods: In this paper, we intend to detect the toxic effects of crebanine on hepatocellular carcinoma HepG2 cells through a series of in vitro experiments, including detecting the effects of crebanine on the proliferation of HepG2 cells using the CCK8 method and plate cloning assay, observing the growth status and morphological changes of crebanine on HepG2 cells by inverted microscopy; and using the Transwell method to determine the the effect of crebanine on the migration and invasion ability of HepG2 cells; using Hoechst 33258 assay to stain cancer cells, thus observing the effect of crebanine on the morphology of HepG2 apoptotic cells, and detecting the apoptotic state and level of HepG2 cells by flow cytometry; using ROS kit and JC-1 assay kit to detect the changes of reactive oxygen species and mitochondrial membrane potential of HepG2 The immunofluorescence assay was taken to verify whether crebanine had an effect on the expression of p-FoxO3a in cancer cells; the Wetern blot assay was also used to examine the effect of crebanine on proteins related to the mitochondrial apoptotic pathway and its effect on the regulation of the relative protein expression of AKT/FoxO3a axis; after this, NAC and AKT inhibitor LY294002 were used to cells were pretreated with NAC and AKT inhibitor LY294002, respectively, in order to further validate the inhibitory effect of crebanine. Results: It was shown that crebanine effectively inhibited the growth and capacity of HepG2 cells migration and invasion in a dose-dependent manner. Furthermore, the effect of crebanine on the morphology of HepG2 cells was observed through microscopy. Meanwhile, crebanine induced apoptosis by causing reactive oxygen species (ROS) burst and mitochondrial membrane potential (MMP) disrupt. We found that crebanine could down-regulate Bcl-2 and up-regulate Bax, cleaved-PARP, cleaved-caspase-3 and cleaved-caspase-9, but these effects were overturned by ROS inhibitor N-acetylcysteine (NAC). Crebanine also down-regulated p-AKT and p-FoxO3a, and the PI3K inhibitor LY294002 significantly enhances this effect. We also found that the expression of AKT/FoxO3a signaling pathway was ROS-dependent. As shown by Western blots, NAC could partially attenuate the inhibitory effect of crebanine on AKT and FoxO3a phosphorylation. Conclusion: Based on our results, our results suggest that crebanine, as a compound with potential anticancer activity, has significant cytotoxic effects on hepatocellular carcinoma,and it likely induces apoptosis via ROS in the mitochondrial pathway and simultaneously affects the biological function of HCC via the ROS-AKT-FoxO3a signaling axis.
Collapse
Affiliation(s)
- Jiajie Tan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuling Xiang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuanguo Xiong
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yaoyuan Zhang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Boyang Qiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Zulfugarova P, Zivari-Ghader T, Maharramova S, Ahmadian E, Eftekhari A, Khalilov R, Turksoy VA, Rosić G, Selakovic D. A mechanistic review of pharmacological activities of homeopathic medicine licorice against neural diseases. Front Neurosci 2023; 17:1148258. [PMID: 36950127 PMCID: PMC10025333 DOI: 10.3389/fnins.2023.1148258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
The use of medicinal plants has grown in popularity in recent decades because, as natural ingredients, they have fewer adverse effects and are more effective than synthetic alternatives. As a small perennial herb, Glycyrrhiza glabra L. (Licorice) has been investigated for its therapeutic efficacy against neural disorders mainly ischemic stroke as well as the neurodegenerative diseases such as dementia and Alzheimer's disease, and Parkinson's disease which has been attributed to its HMGB inhibitory function, reactive oxygen scavenging and anti-inflammatory activity. The objective of current review is to review the evidence for the pharmacological effects of licorice and its vital active components on neurological disorders and the underlying signaling networks. We reviewed Papers published from 2000.1.1 up to 2 January 2023 in web of science, Google Scholar and PubMed data bases using key words including "Licorice," "Glycyrrhiza glabra L.," "Glycyrrhizic acid," "brain," "neurodegenerative disease," "Alzheimer's," and "Parkinson" were used to search in title/abstracts. Licorice extract and/or its active components can be used safely in therapeutic doses for optimizing the management of a multiple neurodegenerative disorders, and hampering the extent of neural tissue injury and neurologic deficits subsequent to cerebrovascular accidents.
Collapse
Affiliation(s)
- Parvin Zulfugarova
- Department of Zoology and Physiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| | - Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevinj Maharramova
- Department of Pharmaceutical Technology and Management, Azerbaijan Medical University, Baku, Azerbaijan
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Aziz Eftekhari,
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
| | - Vugar Ali Turksoy
- Department of Public Health, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Gvozden Rosić
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Gvozden Rosić,
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Dragica Selakovic,
| |
Collapse
|
14
|
Tong T, Cheng B, Tie S, Zhan G, Ouyang D, Cao J. Exploring the mechanism of Epimedii folium and notoginseng radix against vascular dementia based on network pharmacology and molecular docking analysis: pharmacological mechanisms of EH-PN for VD. Medicine (Baltimore) 2022; 101:e31969. [PMID: 36451386 PMCID: PMC9704979 DOI: 10.1097/md.0000000000031969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To explore the mechanism of Epimedii Folium (HF) and Notoginseng Radix (NR) intervention in vascular dementia (VD). This study used the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database to collect the active ingredients and potential drug targets of HF and NR, the Uniprot database to convert drug target names into gene names, GeneCards, Drugbank, Therapeutic Target Database, and Online Mendelian Inheritance in Man database to collect the potential disease targets of VD, and then combined them with the drug targets to construct the HF-NR-VD protein-protein interaction (PPI) network by Search Tool for the Retrieval of Interacting (STRING). Cytoscape (version 3.7.1) was used to perform cluster analysis of the PPI network. Metascape database was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The potential interaction of the main components of the HF-NR couplet medicine with core disease targets was revealed by molecular docking simulations. There were 23 predicted active ingredients in HF and NR, and 109 common drug targets that may be involved in the treatment of VD. Through PPI network analysis, 30 proteins were identified as core proteins owing to their topological importance. GO functional analysis revealed that the primary biological processes were mainly related to inflammation, apoptosis, and the response to oxidative stress. KEGG pathway enrichment analysis revealed that TNF and PI3K/Akt signaling pathways may occupy the core status in the anti-VD system. Molecular docking results confirmed that the core targets of VD had a high affinity for the main compounds of the HF-NR couplet medicine. We demonstrated the multi-component, multi-target, and multi-pathway characteristics of HF-NR couplet medicine for the treatment of VD and provided a foundation for further clinical application and experimental research.
Collapse
Affiliation(s)
- Tianhao Tong
- Hunan University of Chinese Medicine, Changsha, China
| | - Bin Cheng
- Xiangtan County Hospital of Traditional Chinese Medicine, Xiangtan, China
| | - Songyan Tie
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Dan Ouyang
- Hunan University of Chinese Medicine, Changsha, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Jianzhong Cao, Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, No. 300, Xueshi Road, Yuelu District, Changsha 410208, Hunan, China (e-mail: )
| |
Collapse
|
15
|
Integrated System Pharmacology Approaches to Elucidate Multi-Target Mechanism of Solanum surattense against Hepatocellular Carcinoma. Molecules 2022; 27:molecules27196220. [PMID: 36234758 PMCID: PMC9570789 DOI: 10.3390/molecules27196220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors with high mortality. Chronic hepatitis B and C viruses, aflatoxins, and alcohol are among the most common causes of hepatocellular carcinoma. The limited reported data and multiple spectra of pathophysiological mechanisms of HCC make it a challenging task and a serious economic burden in health care management. Solanum surattense (S. surattense) is the herbal plant used in many regions of Asia to treat many disorders including various types of cancer. Previous in vitro studies revealed the medicinal importance of S. surattense against hepatocellular carcinoma. However, the exact molecular mechanism of S. surattense against HCC still remains unclear. In vitro and in silico experiments were performed to find the molecular mechanism of S. surattense against HCC. In this study, the network pharmacology approach was used, through which multi-targeted mechanisms of S. surattense were explored against HCC. Active ingredients and potential targets of S. surattense found in HCC were figured out. Furthermore, the molecular docking technique was employed for the validation of the successful activity of bioactive constituents against potential genes of HCC. The present study investigated the active “constituent–target–pathway” networks and determined the tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), Bcl-2-like protein 1(BCL2L1), estrogen receptor (ER), GTPase HRas, hypoxia-inducible factor 1-alpha (HIF1-α), Harvey Rat sarcoma virus, also known as transforming protein p21 (HRAS), and AKT Serine/Threonine Kinase 1 (AKT1), and found that the genes were influenced by active ingredients of S. surattense. In vitro analysis was also performed to check the anti-cancerous activity of S. surattense on human liver cells. The result showed that S. surattense appeared to act on HCC via modulating different molecular functions, many biological processes, and potential targets implicated in 11 different pathways. Furthermore, molecular docking was employed to validate the successful activity of the active compounds against potential targets. The results showed that quercetin was successfully docked to inhibit the potential targets of HCC. This study indicates that active constituents of S. surattense and their therapeutic targets are responsible for their pharmacological activities and possible molecular mechanisms for treating HCC. Lastly, it is concluded that active compounds of S. surattense act on potential genes along with their influencing pathways to give a network analysis in system pharmacology, which has a vital role in the development and utilization of drugs. The current study lays a framework for further experimental research and widens the clinical usage of S. surattense.
Collapse
|
16
|
Identification of the Mechanism of Matrine Combined with Glycyrrhizin for Hepatocellular Carcinoma Treatment through Network Pharmacology and Bioinformatics Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2663758. [PMID: 36193082 PMCID: PMC9526635 DOI: 10.1155/2022/2663758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Matrine and glycyrrhizin are representative active ingredients of traditional Chinese medicine (TCM) used in clinical practice. Studies have demonstrated that matrine has antitumor pharmacological effects and that glycyrrhizin protects liver function. However, the potential bioactive compounds and mechanisms remain unknown, as well as whether they have synergistic effects in killing cancer cells and protecting liver cells. To investigate the synergistic effects and mechanism of matrine combined with glycyrrhizin in hepatocellular carcinoma (HCC) treatment, we used both network pharmacology and bioinformatics analyses. First, the chemical gene interaction information of matrine and glycyrrhizin was obtained from the PubChem database. The pathogenic genes of HCC were accessed from five public databases. The RNA sequencing data and clinical information of HCC patients were downloaded from The Cancer Genome Atlas (TCGA). Next, the overlapping genes among the potential targets of matrine and glycyrrhizin and HCC-related targets were determined using bioinformatics analysis. We constructed the drug-target interaction network. Prognosis-associated genes were acquired through the univariate Cox regression model and Lasso-Cox regression model. The results were verified by the International Cancer Genome Consortium (ICGC) database. Finally, we predicted the immune function of the samples. The drug-target interaction network consisted of 10 matrine and glycyrrhizin targets. We selected a Lasso-Cox regression model consisting of 3 differentially expressed genes (DEGs) to predict the efficacy of the combination in HCC. Subsequently, we successfully predicted the overall survival of HCC patients using the constructed prognostic model and investigated the correlation of the immune response. Matrine and glycyrrhizin have synergistic effects on HCC. The model we obtained consisted of three drug-target genes by Lasso-Cox regression analysis. The model independently predicted the combined effect of matrine and glycyrrhizin in HCC treatment and OS, which will be helpful for guiding clinical treatment. The prognostic model was correlated with the immune cells and immune checkpoints of patients, which had an adjuvant effect on HCC immunotherapy. Matrine and glycyrrhizin can have therapeutic effects on HCC by promoting the production or enhancing the core gene activity in the drug network and improving the immune system function of patients.
Collapse
|
17
|
Batool S, Javed MR, Aslam S, Noor F, Javed HMF, Seemab R, Rehman A, Aslam MF, Paray BA, Gulnaz A. Network Pharmacology and Bioinformatics Approach Reveals the Multi-Target Pharmacological Mechanism of Fumaria indica in the Treatment of Liver Cancer. Pharmaceuticals (Basel) 2022; 15:ph15060654. [PMID: 35745580 PMCID: PMC9229061 DOI: 10.3390/ph15060654] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Liver cancer (LC), a frequently occurring cancer, has become the fourth leading cause of cancer mortality. The small number of reported data and diverse spectra of pathophysiological mechanisms of liver cancer make it a challenging task and a serious economic burden in health care management. Fumaria indica is a herbaceous annual plant used in various regions of Asia to treat a variety of ailments, including liver cancer. Several in vitro investigations have revealed the effectiveness of F. indica in the treatment of liver cancer; however, the exact molecular mechanism is still unrevealed. In this study, the network pharmacology technique was utilized to characterize the mechanism of F. indica on liver cancer. Furthermore, we analyzed the active ingredient-target-pathway network and uncovered that Fumaridine, Lastourvilline, N-feruloyl tyramine, and Cryptopine conclusively contributed to the development of liver cancer by affecting the MTOR, MAPK3, PIK3R1, and EGFR gene. Afterward, molecular docking was used to verify the effective activity of the active ingredients against the prospective targets. The results of molecular docking predicted that several key targets of liver cancer (along with MTOR, EGFR, MAPK3, and PIK3R1) bind stably with the corresponding active ingredient of F. indica. We concluded through network pharmacology methods that multiple biological processes and signaling pathways involved in F. indica exerted a preventing effect in the treatment of liver cancer. The molecular docking results also provide us with sound direction for further experiments. In the framework of this study, network pharmacology integrated with docking analysis revealed that F. indica exerted a promising preventive effect on liver cancer by acting on liver cancer-associated signaling pathways. This enables us to understand the biological mechanism of the anti liver cancer activity of F. indica.
Collapse
Affiliation(s)
- Sara Batool
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
- Correspondence: (M.R.J.); (S.A.); Tel.: +92-(0)301-6012931 (M.R.J.); +92-(0)312-1759482 (S.A.)
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
- Correspondence: (M.R.J.); (S.A.); Tel.: +92-(0)301-6012931 (M.R.J.); +92-(0)312-1759482 (S.A.)
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
| | | | - Riffat Seemab
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
| | - Muhammad Farhan Aslam
- School of Biological Sciences, University of Edinburgh, Edinburgh P.O. Box EH9 3FF, UK;
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| |
Collapse
|
18
|
Li X, Deng S, Li J, Gong S, Song T, Ge J, Zhao Y, Zhang J, Ma L, Zheng Y, Fu K. UPLC‐MS analysis and network pharmacology‐based investigation into the active ingredients and molecular mechanisms of anti‐fatigue of male flowers with
Eucommia ulmoides
Oliv. Fundam Clin Pharmacol 2022; 36:1083-1098. [DOI: 10.1111/fcp.12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Xiankuan Li
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Sha Deng
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiarong Li
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Sihan Gong
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Tianbao Song
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiaming Ge
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Ying Zhao
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jian Zhang
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Lin Ma
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yanchao Zheng
- Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Kun Fu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin China
| |
Collapse
|
19
|
Using Network Pharmacology to Systematically Decipher the Potential Mechanisms of Jisuikang in the Treatment of Spinal Cord Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4932153. [PMID: 35265147 PMCID: PMC8898796 DOI: 10.1155/2022/4932153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Objective To identify the potential pharmacological targets of Jisuikang (JSK) for the treatment of spinal cord injury (SCI) using network pharmacology. Methods The bioactive compounds of JSK herbs and their corresponding potential SCI targets were obtained from three traditional Chinese medicine (TCM) databases. SCI-related therapeutic target genes were obtained from the Comparative Toxicogenomics Database and the GeneCards Database. The common target genes between the JSK compounds and SCI-related therapeutic targets were screened using GO/KEGG functional enrichment and protein-protein interaction (PPI) analyses to identify hub genes and their categories of biological function. Gene expression distribution and receiver operating characteristic curve (ROC) analyses were used to identify probable SCI-related target genes. Molecular docking was used to quantify molecular interactions between target genes and the bioactive compounds of JSK. Results A total of 183 JSK bioactive compounds and 197 target genes for the treatment of SCI were screened and assessed. The target genes were enriched primarily in drug metabolism and in inflammation-related biological processes. Ten genes with statistical significance were identified as therapeutic SCI-related target genes of JSK. Molecular docking experiments demonstrated that the proteins of these 10 genes docked with binding energies of less than −5 kcal/mol with the bioactive compounds in JSK. Conclusion This study showed that the anti-SCI effects of JSK may be mediated through numerous bioactive components, multiple gene targets, and inflammation-related pathways and provided potential novel targets for directed therapies for treating SCI. These results provide a foundation for further experimental investigations into treatment options for SCI.
Collapse
|
20
|
Zheng Y, Su L, Tan J, Dong F. Actinidia chinensis Planch Root extract suppresses the growth and metastasis of hypopharyngeal carcinoma by inhibiting E2F Transcription Factor 1-mediated MNX1 antisense RNA 1. Bioengineered 2022; 13:4911-4922. [PMID: 35152841 PMCID: PMC8973797 DOI: 10.1080/21655979.2022.2037226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence has shown that traditional Chinese medicines and their bioactive components exert an anti-tumor effect, representing a novel treatment strategy. Actinidia chinensis Planch Root extracts (acRoots) have been reported to repress cancer cell proliferation and metastasis. The effect of acRoots on hypopharyngeal carcinoma progression was explored in this study. Firstly, data from MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and colony formation assays showed that incubation with accRoots reduced cell proliferation of hypopharyngeal carcinoma cells. Moreover, acRoots promoted the cell apoptosis of hypopharyngeal carcinoma. Secondly, cell migration and invasion of hypopharyngeal carcinoma cells were suppressed by acRoots. Thirdly, E2F1 (E2F Transcription Factor 1) and lncRNA MNX1-AS1 (MNX1 antisense RNA 1) were up-regulated in hypopharyngeal carcinoma tissues, and reduced in hypopharyngeal carcinoma cells post acRoots incubation. Overexpression of E2F1 attenuated acRoots-induced decrease in MNX1-AS1 in hypopharyngeal carcinoma cells. Lastly, administration with acRoots retarded in vivo hypopharyngeal carcinoma growth through down-regulation of E2F1-mediated MNX1-AS1. In conclusion, acRoots exerted tumor-suppressive role in hypopharyngeal carcinoma through inhibition of E2F1-mediated MNX1-AS1.
Collapse
Affiliation(s)
- Yi Zheng
- Medical College, Soochow University, Suzhou, China
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lizhong Su
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jun Tan
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Feilin Dong
- Head and Neck & Otolaryngology Center, Plastic Surgery Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:869-886. [DOI: 10.1093/jpp/rgac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/03/2022] [Indexed: 11/14/2022]
|
22
|
Gao K, Zhu Y, Wang H, Gong X, Yue Z, Lv A, Zhou X. Network pharmacology reveals the potential mechanism of Baiying Qinghou decoction in treating laryngeal squamous cell carcinoma. Aging (Albany NY) 2021; 13:26003-26021. [PMID: 34986125 PMCID: PMC8751612 DOI: 10.18632/aging.203786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
Abstract
Context: Baiying Qinghou as a traditional Chinese medicine decoction shows anticancer property on laryngeal squamous cell carcinoma. However, little is known about the precise mechanism of Baiying Qinghou detection against laryngeal squamous cell carcinoma. Objective: This study was aimed to explore potential mechanism of therapeutic actions of Baiying Qinghou decoction on laryngeal squamous cell carcinoma. Materials and Methods: The active chemical components of Baiying Qinghou decoction were predicted, followed by integrated analysis of network pharmacology and molecular docking approach. The network pharmacology approach included target protein prediction, protein-protein interaction network construction and functional enrichment analysis. Results: Sitosterol and quercetin were predicted to be the overlapped active ingredients among three Chinese herbs of Baiying Qinghou decoction. The target proteins were closely associated with response to chemical, response to drug related biological process and cancer related pathways such as PI3K-Akt signaling, HIF-1 signaling and Estrogen signaling pathway. The target proteins of TP53, EGFR, PTGS2, NOS3 and IL1B as the key nodes in PPI network were cross-validated, among which EGFR, IL1B, NOS3 and TP53 were significantly correlated with the prognosis of patients with laryngeal squamous cell carcinoma. Finally, the binding modes of EGFR, IL1B, NOS3 and TP53 with quercetin were visualized. Discussion and Conclusion: Quercetin of Baiying Qinghou decoction showed therapeutic effect against laryngeal squamous cell carcinoma by regulating TP53, EGFR, NOS3 and IL1B involved with drug resistance and PI3K-AKT signaling pathway. TP53, EGFR, NOS3 and IL1B may be the candidate targets for the treatment of laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Kun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Yanan Zhu
- Department of Internal Medicine, Shandong Provincial Chest Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Hui Wang
- Department of Ultrasound, The Fifth People's Hospital of Jinan, Jinan 250022, Shandong, China
| | - Xianwei Gong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhiyong Yue
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Aiai Lv
- Department of Internal Medicine, Shandong Provincial Chest Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| |
Collapse
|
23
|
Zhang X, Han L, Li P, Zhang S, Zhang M, Li X, Chu J, Wang L, Tu P, Zhang Y, Liu K. Region-Specific Biomarkers and Their Mechanisms in the Treatment of Lung Adenocarcinoma: A Study of Panax quinquefolius from Wendeng, China. Molecules 2021; 26:molecules26226829. [PMID: 34833921 PMCID: PMC8623508 DOI: 10.3390/molecules26226829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Panax quinquefolius, a popular medicinal herb, has been cultivated in China for many years. In this work, the region-specific profiles of metabolites in P. quinquefolius from Wendeng was investigated using liquid-chromatography-quadrupole-time-of-flight-(LC-Q-TOF)-based metabolomics analysis. The three most abundant biomarkers, identified as ginsenoside Rb3, notoginsenoside R1, and ginsenoside Rc, were the representative chemical components employed in the network pharmacology analysis. In addition, molecular docking and western blotting analyses revealed that the three compounds were effective binding ligands with Hsp90α, resulting in the inactivation of SRC and PI3K kinase, which eventually led to the inactivation of the Akt and ERK pathways and lung cancer suppression. The outcomes obtained herein demonstrated the intriguing chemical characteristics and potential functional activities of P. quinquefolius from Wendeng.
Collapse
Affiliation(s)
- Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
| | - Liwen Han
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 256200, China;
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
| | - Mengqi Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
| | - Jie Chu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
| | - Lizhen Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Yun Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
- Correspondence: (Y.Z.); (K.L.)
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (X.Z.); (P.L.); (S.Z.); (M.Z.); (X.L.); (J.C.); (L.W.)
- Correspondence: (Y.Z.); (K.L.)
| |
Collapse
|
24
|
The Key Ingredient Acacetin in Weishu Decoction Alleviates Gastrointestinal Motility Disorder Based on Network Pharmacology Analysis. Mediators Inflamm 2021; 2021:5265444. [PMID: 34594156 PMCID: PMC8478590 DOI: 10.1155/2021/5265444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Gastrointestinal motility disorder is a common gastrointestinal disease, which seriously affects life quality. Traditional Chinese medicine (TCM) has been widely used as an alternative therapy for gastrointestinal motility disorder. Acacetin is a natural flavonoid compound that has antioxidant and anti-inflammatory, antidepressant, and anticancer properties. However, the efficacy of Acacetin in the treatment of gastrointestinal motility disorders has not been studied. Our aim was to investigate the mechanism of Acacetin-alleviated gastrointestinal motility disorder and its efficacy based on network pharmacology. Methods We performed network pharmacology to predict the active components, match Weishu decoction (WSD) targets in gastrointestinal motility disorders, and investigate its potential pharmacological mechanisms. We performed the GO and KEGG enrichment analysis. In vivo, we investigated the effects of Acacetin in the gastrointestinal motility disorder model. Results Based on network pharmacological method, the key active ingredient of WSD was identified as Acacetin, and the enrichment signaling pathway was the PI3K-AKT signaling pathway. Acacetin and Mosapride accelerated gastric emptying time, reduced gastric remnant rate, and increased small intestinal propulsion rate. The levels of GAS and MTL were increased after using Acacetin. These results indicated that Acacetin could improve gastrointestinal motility disorders. Among them, high-dose Acacetin showed a better effect. Acacetin could regulate protein and lipid metabolism in mice with gastrointestinal motility disorder. Furthermore, Acacetin could modulate gastrointestinal inflammation and apoptosis. The detection of the PI3K-AKT signaling pathway-related proteins showed that Acacetin improved gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway. Conclusion The key ingredient Acacetin in WSD could alleviate gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway based on network pharmacology analysis. The efficacy and safety of Acacetin treatment provide strong experimental support for the clinical treatment of gastrointestinal motility disorder.
Collapse
|
25
|
Liu YJ, Li JP, Zhang Y, Nie MJ, Zhang YH, Liu SL, Zou X. FSTL3 is a Prognostic Biomarker in Gastric Cancer and is Correlated with M2 Macrophage Infiltration. Onco Targets Ther 2021; 14:4099-4117. [PMID: 34262295 PMCID: PMC8274543 DOI: 10.2147/ott.s314561] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Follistatin-related gene 3 (FSTL3), an established oncogene, can modulate target gene expression via members of the transforming growth factor β (TGF-β) superfamily. The present study was conducted to evaluate the expression of FSTL3 in gastric cancer (GC) and to determine its prognostic significance. We also evaluated the possible mechanisms involved in the oncogenic role of FSTL3 in gastric carcinogenesis and development. Methods We obtained data from the Human Protein Atlas, MethSurv, cBioPortal, UALCAN, TIMER, GEPIA, STRING, GeneMANIA, ONCOMINE, and MEXPRESS databases and examined it using R software. RNAi was used to establish stable FSTL3-knockdown (shFSTL3) and overexpression (OE) cell strains. Western blot; enzyme-linked immunosorbent (ELISA); and immunohistochemical (ICH), immunofluorescence, and phalloidin staining were used for examining protein expression. Cell invasion and migration were determined using transwell and scratch-wound assays. After tumor-associated macrophage (TAM) generation, co-culturing of cancer cells with TAMs was performed to confirm the relationship between FSTL3 and TAMs. Results In GC patients, FSTL3 mRNA and protein levels were upregulated. FSTL3 expression was significantly linked to cancer stage as well as to pathological tumor grade in GC. Moreover, a high expression of FSTL3 was associated with a dismal survival duration in patients with GC. Furthermore, functional enrichment analysis demonstrated that FSTL3 overexpression could activate epithelial-mesenchymal transition (EMT) by promoting F-actin expression and BMP/SMAD signaling. Finally, immunofluorescence staining confirmed that the overexpression of FSTL3 promoted the proliferation of M2 TAMs. Conclusion Taken together, our findings suggest that FSTL3 may be involved in GC progression via the promotion of BMP/SMAD signaling-mediated EMT and M2 macrophage activation.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China.,Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Ying Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Meng-Jun Nie
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yong-Hua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Shen-Lin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
26
|
Wei Y, Lin Y, Chen W, Liu S, Jin L, Huang D. Computational and In Vitro Analysis of Plumbagin's Molecular Mechanism for the Treatment of Hepatocellular Carcinoma. Front Pharmacol 2021; 12:594833. [PMID: 33912033 PMCID: PMC8072012 DOI: 10.3389/fphar.2021.594833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor and the second leading cause of cancer-related death in the world. Plumbagin (PL) is a small molecule naphthoquinone compound isolated from Plumbago zeylanica L. that has important anticancer properties, but its mechanism requires further investigation. In this study, we used a comprehensive network pharmacology approach to study the mechanism of action of PL for the treatment of HCC. The method includes the construction of multiple networks; moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify biological processes and signaling pathways. Subsequently, in vitro experiments were performed to verify the predicted molecular mechanisms obtained from the network pharmacology-based analysis. Network pharmacological analysis showed that PL may exert anti-HCC effects by enhancing reactive oxygen species (ROS) production to generate oxidative stress and by regulating the PI3K/Akt and MAPK signaling pathways. In vitro experiments confirmed that PL mainly mediates the production of ROS, regulates the PI3K/Akt and MAPK signaling pathways to promote apoptosis and autophagy, and shows significant therapeutic effects on HCC. In conclusion, our work proposes a comprehensive systems pharmacology approach to explore the potential mechanism of PL for the treatment of HCC.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuning Lin
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, China
| | - Wanjun Chen
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, China
| | - Shasha Liu
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, China
| | - Lijie Jin
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, China
| | - Delun Huang
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
27
|
Network pharmacology-based and clinically relevant prediction of active ingredients and potential targets of Chinese herbs on stage IV lung adenocarcinoma patients. J Cancer Res Clin Oncol 2021; 147:2079-2092. [PMID: 33797608 DOI: 10.1007/s00432-020-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/30/2020] [Indexed: 10/21/2022]
Abstract
AIM This study is designed to ascertain the relative molecular targets of effective Chinese herbs in treating stage IV lung adenocarcinoma based on clinical data and network pharmacology. In addition, we showed that Chinese Herbal Medicine (CHM) treatment was associated with survival benefit for patients with stage IV lung adenocarcinoma and identified 18 herbs beneficial to survival through correlation analysis. BACKGROUND Increasing evidence has shown that CHM has efficient therapeutic effects for advanced lung adenocarcinoma, while active ingredients and potential targets remain unclear. METHODS Kaplan-Meier method and Cox regression analysis were used to evaluate the survival benefit of CHM treatment, and correlation analysis was applied to identify the most effective components in the formulas. A network pharmacological approach was used to decipher the potential therapeutic mechanisms of CHM. RESULTS CHM treatment was an independent protective factor. The hazard ratio (HR) was 0.487 (95% CI 0.293-0.807; P = 0.005). Patients in the CHM group had a longer median survival time (31 months) compared with the non-CHM group (19 months; P < 0.001). 18 out of the total 241 herbs were significantly correlated with favorable survival outcomes (P < 0.05), likely representing the most effective components in these formulas. Bioinformatics analysis suggested that the 18 herbs realize anti-lung-adenocarcinoma activity mainly through (1) inhibiting the activity of some growth factors' receptors, such as HGFR, EGFR, and IGFR. (2) Suppressing angiogenesis not only through VEGFR and PDGFR, but also through the function of neurotransmitters such as dopamine and serotonin. (3) Inhibiting the Ras signaling pathway directly through Ras as well as through ALK and FNTA/FNTB. CONCLUSIONS We performed a network pharmacological method to decipher the underlying mechanisms, which provides a good foundation for herbal research based on clinical data.
Collapse
|
28
|
Yang X, Cui Y, Zhou Z, Zhao H, Zhang Y. Analysis of pharmacological mechanisms of Yinyanghuo as treatment of erectile dysfunction with network pharmacology-based strategy. Andrologia 2021; 53:e13943. [PMID: 33368466 DOI: 10.1111/and.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction is considered an important health problem that impacts the quality of life of men. Yinyanghuo, also called Epimedium or Horny Goat Weed, is a frequently used Chinese traditional herbal medicine, commonly used in treating erectile dysfunction in China. A network pharmacology method was performed systematically, at a molecular level, to analyse the pharmacological mechanism of Yinyanghuo as erectile dysfunction therapy. The network pharmacology method used in this study primarily includes prescreening of the active compounds, prediction of targets, network analysis and gene enrichment analysis. This network analysis proved that 4 targets (AR, NR3C2, PDE5A and BMP2) could be the targets of Yinyanghuo therapy on erectile dysfunction. Besides, gene enrichment analysis predicted that Yinyanghuo might have a role in erectile dysfunction by regulating 10 molecular functions, 8 cellular components, 10 biological processes and 36 possible targets related to 10 signalling pathways. Our study demonstrated the molecular and pharmacological mechanisms of Yinyanghuo against erectile dysfunction with a holistic approach and demonstrated a powerful method for analysing pharmacological mechanisms and rational utilisation of Traditional Chinese Medicine clinically.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanshan Cui
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhongbao Zhou
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huishan Zhao
- Department of Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yong Zhang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Zhou TJ, Liu JF, Wang P, Hu AN, Chen LL, Zan JF. Identification of Targets and Active Components of Yiqi SanJie Formula Against Lung Neoplasms Based on Network Pharmacology Analysis and Molecular Docking. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21997677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Yiqi Sanjie formula (YQSJF) is mainly applied clinically for the treatment of lung neoplasms. The purpose of this study was to explore the pharmacodynamics of the active components of YQSJF and the mechanism of therapeutic effects in the treatment of lung neoplasm diseases based on network pharmacology. The network of component-target, target-pathway, and pathway-disease of YQSJF was constructed by using Cytoscape software. According to the screening result, 37 key components, 57 important targets, and 866 candidate pathways were obtained. The enrichment analysis results indicated that YQSJF might play a therapeutic role in lung cancer by regulating several signaling pathways, such as the PI3K-AKT, non-small cell lung cancer, small cell lung cancer, and apoptosis pathways. There were 53 intersection genes between YQSJF and the lung cancer gene, 52 common genes, and 11 key targets, including CASP8, CASP9, AR, ESR1, PTGS2, NOS3, PGR, TGFB1, PPARG, RELA, and NOS2, screened by using Protein-Protein Interaction (PPI) analysis. These could be the potential therapeutic targets of YQSJF against lung cancer. Enrichment analysis of the intersection gene pathways revealed 10 major functional pathways, including the VEGF, apoptosis, and IL-17 signaling pathways. The molecular docking results showed the potential regulating activity of kaempferol against AR, pelargonidin against PGR, and baicalein against both PTGS2 and AR. In conclusion, combinational network pharmacology analysis results indicated that YQSJF might present its efficacy of alleviating lung neoplasm symptoms through multiple targets in a synergetic way.
Collapse
Affiliation(s)
- Tian-jiao Zhou
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun-feng Liu
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, China
| | - An-na Hu
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Lin-lin Chen
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun-feng Zan
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
30
|
Gong Y, Li D, Li L, Yang J, Ding H, Zhang C, Wen G, Wu C, Fang Z, Hou S, Yang Y. Smad3 C-terminal phosphorylation site mutation attenuates the hepatoprotective effect of salvianolic acid B against hepatocarcinogenesis. Food Chem Toxicol 2021; 147:111912. [DOI: 10.1016/j.fct.2020.111912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
|
31
|
Identify Molecular Mechanisms of Jiangzhi Decoction on Nonalcoholic Fatty Liver Disease by Network Pharmacology Analysis and Experimental Validation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8829346. [PMID: 33415161 PMCID: PMC7753939 DOI: 10.1155/2020/8829346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Background Jiangzhi Decoction (JZD), a traditional herb mixture, has shown significant clinical efficacy against nonalcoholic fatty liver disease (NAFLD). However, its multicomponent and multitarget characteristics bring difficulty in deciphering its pharmacological mechanisms. Our study is aimed at identifying the core molecular mechanisms of JZD against NAFLD. Methods The active ingredients were searched from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Traditional Chinese Medicine Integrated Database (TCMID). The targets of those ingredients were identified using ChemMapper database based on 3D structure similarity. NAFLD-related genes were searched from DisGeNET database and Gene Expression Omnibus (GEO) database. Then, we performed protein-protein interaction (PPI) analysis, functional enrichment analysis, and constructed pathway networks of “herbs-active ingredients-candidate targets” and identified the core molecular mechanisms and key active ingredients in the network. Also, molecular docking was carried out to predict the ligands of candidate targets using SwissDock. Finally, the human hepatic L02 cell line was used to establish the NAFLD model in vitro. The effect and key molecules were validated by Oil Red O staining, biochemical assays, and quantitative real-time PCR (qRT-PCR). Results We found 147 active ingredients in JZD, 1285 targets of active ingredients, 401 NAFLD-related genes, and 59 overlapped candidate targets of JZD against NAFLD. 22 core targets were obtained by PPI analysis. Finally, nuclear receptor transcription and lipid metabolism regulation were found as the core molecular mechanisms of JZD against NAFLD by functional enrichment analysis. The candidate targets PPARα and LXRα were both docked with hyperin as the most favorable interaction, and HNF4α was docked with linolenic acid ethyl ester. According to in vitro experiments, it was found that JZD had an inhibitory effect on lipid accumulation and regulatory effects on cholesterol and triglycerides. Compared with OA group, the mRNA expression levels of PPARα and HNF4α were significantly upregulated in JZD group (P < 0.05), and LXRα was significantly downregulated (P < 0.001). Conclusion JZD might alleviate hepatocyte steatosis by regulating some key molecules related to nuclear receptor transcription and lipid metabolism, such as PPARα, LXRα, and HNF4α. Our study will provide the scientific evidences of the clinical efficacy of JZD against NAFLD.
Collapse
|
32
|
Wang Y, Ru Y, Zhuo G, Sheng M, Wang S, Ma J, Zhou C, Sun X, Zeng Y, Zhang Y, Li H, Lu Z, Wu D, Wu M. Investigation of the Potential Mechanism Governing the Effect of the Shen Zhu San on COVID-19 by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8468303. [PMID: 33224256 PMCID: PMC7669347 DOI: 10.1155/2020/8468303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/30/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Since December 2019, coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 infection has emerged in Wuhan and rapidly spread throughout China and even to other countries. Combined therapy with modern medicine and traditional Chinese medicine has been proposed, in which Shen Zhu San (SZS) was regarded as one of the basic prescriptions. METHODS Network pharmacological approaches along with candidate compound screening, target prediction, target tissue location, protein-protein interaction network, gene ontology (GO), KEGG enrichment analyses, and gene microarray analyses were applied. RESULTS A total of 627 targets of the 116 active ingredients of SZS were identified. Targets in immune cells and tissues were much more abundant than those in other tissues. A total of 597 targets were enriched in the GO biological cellular process, while 153 signaling pathways were enriched according to the KEGG analysis. A total of 450 SARS-related targets were integrated and intersected with the targets of SZS to identify 40 common targets that were significantly enriched in five immune function aspects of the immune system process during GO analysis. Several inflammation-related pathways were found to be significantly enriched throughout the study. CONCLUSIONS The therapeutic mechanisms of the effects of SZS on COVID-19 potentially involve four effects: suppressing cytokine storms, protecting the pulmonary alveolar-capillary barrier, regulating the immune response, and mediating cell death and survival.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Yuhua Ru
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Guowei Zhuo
- First Clinical Medical School, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Maozheng Sheng
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Shuangqiu Wang
- Department of Respiration, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Jiarui Ma
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Chongyi Zhou
- Department of Respiration, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Xiaohe Sun
- Department of Respiration, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Yanqi Zeng
- First Clinical Medical School, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Ya Zhang
- First Clinical Medical School, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Hui Li
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Zhigang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Minghua Wu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| |
Collapse
|
33
|
Network Pharmacology-Based and Clinically Relevant Prediction of the Potential Targets of Chinese Herbs in Ovarian Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8965459. [PMID: 33150184 PMCID: PMC7603558 DOI: 10.1155/2020/8965459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/01/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Reports increasingly suggest that Chinese herbal medicine (CHM) has been used to treat ovarian cancer (OvCa) with a good curative effect; however, the molecular mechanisms underlying CHM are still unclear. In this retrospective study, we explored CHM's molecular targets for the treatment of OvCa based on clinical data and network pharmacology. We used the Kaplan-Meier method and Cox regression analysis to verify the survival rate of 202 patients with CHM-treated OvCa. The association between CHM and survival time was analyzed by bivariate correlation. A target network of CHM active ingredients against OvCa was established via network pharmacology. Cox regression analysis showed that CHM is an independent favorable prognostic factor. The median survival time was 91 months in the CHM group and 65 months in the non-CHM group. The survival time of FIGO stage III patients in the two groups was 91 months and 52 months, and the median survival period of FIOG stage IV patients was 60 months and 22 months, respectively (p < 0.001). Correlation analysis demonstrated that 12 herbs were closely associated with prognosis, especially in regard to the long-term benefits. Bioinformatics analysis indicated that the anti-OvCa activity of these 12 herbs occurs mainly through the regulation of apoptosis-related protein expression, which promotes OvCa cell apoptosis and inhibits OvCa development. They also regulate the progress of OvCa treatment by promoting or inhibiting protein expression on the p53 signaling pathway and by inhibiting the NF-κB signaling pathway by directly inhibiting NF-κB.
Collapse
|
34
|
Liao X, Bu Y, Jia Q. Traditional Chinese medicine as supportive care for the management of liver cancer: Past, present, and future. Genes Dis 2020; 7:370-379. [PMID: 32884991 PMCID: PMC7452431 DOI: 10.1016/j.gendis.2019.10.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death worldwide. Western medicine and therapies are the primary treatment strategies of hepatocellular carcinoma (HCC), but the general prognosis for HCC patients is still dismal. Under these circumstances, HCC prevention is particularly important. Traditional Chinese medicine (TCM) encompasses a wealth of documented therapeutic resources, and "preventative treatment" is the principle of TCM. In China, TCM has been used for HCC prevention for thousands of years, and has also been demonstrated to be effective for the treatment of HCC in modern China. However, the TCM theory for prevention and treatment of HCC is more widely accepted in China than abroad. In this review, we first summarize the herbs and ancient formulas with therapeutic effects on HCC. We also review the research status of TCM in modern medicine as well as the current obstacles in its development. Finally, we discuss the future of TCM in the context of precision and integrated medicine. After reviewing the literature, we believe that TCM, through ancient development, is an advanced method of cancer treatment with positive curative effects, despite its surrounding controversy. Furthermore, precise analyses and systematic research methods provides novel approaches to modernize TCM for the future.
Collapse
Affiliation(s)
- Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Bu
- Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan, 750001, China
| | - Qingan Jia
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
35
|
Zhao Q, Dai H, Wang J, Yan F, Jang G, Ma J, Wang B, Li H. A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Zuogui Yin in the Treatment of Male Infertility. Comb Chem High Throughput Screen 2020; 24:803-813. [PMID: 32838712 DOI: 10.2174/1386207323999200824112611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Traditional Chinese medicine (TCM), as a complementary and alternative therapy, has played increasingly important roles in clinical treatment and disease prevention. Zuogui Yin (ZGY) is one of the well-known TCM prescriptions used for the treatment of male infertility. To fully reveal the potential mechanisms underlying the therapeutic effects of ZGY on male infertility, a network pharmacology approach was conducted at the molecular level. METHODS Network pharmacology approach was used in this study, which mainly included active compound screening, target prediction, gene enrichment analysis, and network analysis. RESULTS The network analysis successfully identified 148 potential active ingredients of ZGY and 155 predicted targets that were associated with male infertility. ZGY might play a role in the treatment of male infertility by regulating ten hub targets (VEGFA, CASP3, TNF, AKT1, EGF, EGFR, IL-6, MAPK1, TP53, and PTGS2) and six pathways (TNF signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, Toll-like receptor signaling pathway, VEGF signaling pathway, and MAPK signaling pathway). CONCLUSION This study explored the pharmacological activity and molecular mechanisms of ZGY against male infertility from a holistic perspective. The underlying molecular mechanisms were closely related to the intervention of oxidative stress and apoptosis with CASP3, TP53, AKT1, and MAPK1 being possible targets.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Hengheng Dai
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Jisheng Wang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Fei Yan
- Beijing University of Chinese Medicine, Beijing 100029, Beijing, China
| | - Guejin Jang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Jianxiong Ma
- Department of Andrology, Hang Zhou Red Cross Hospital, Hangzhou 310003, Zhejiang, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Haisong Li
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| |
Collapse
|
36
|
Wang KX, Gao Y, Lu C, Li Y, Zhou BY, Qin XM, Du GH, Gao L, Guan DG, Lu AP. Uncovering the Complexity Mechanism of Different Formulas Treatment for Rheumatoid Arthritis Based on a Novel Network Pharmacology Model. Front Pharmacol 2020; 11:1035. [PMID: 32754034 PMCID: PMC7365894 DOI: 10.3389/fphar.2020.01035] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) with the characteristics of “multi-component-multi-target-multi-pathway” has obvious advantages in the prevention and treatment of complex diseases, especially in the aspects of “treating the same disease with different treatments”. However, there are still some problems such as unclear substance basis and molecular mechanism of the effectiveness of formula. Network pharmacology is a new strategy based on system biology and poly-pharmacology, which could observe the intervention of drugs on disease networks at systematical and comprehensive level, and especially suitable for study of complex TCM systems. Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, causing articular and extra articular dysfunctions among patients, it could lead to irreversible joint damage or disability if left untreated. TCM formulas, Danggui-Sini-decoction (DSD), Guizhi-Fuzi-decoction (GFD), and Huangqi-Guizhi-Wuwu-Decoction (HGWD), et al., have been found successful in controlling RA in clinical applications. Here, a network pharmacology-based approach was established. With this model, key gene network motif with significant (KNMS) of three formulas were predicted, and the molecular mechanism of different formula in the treatment of rheumatoid arthritis (RA) was inferred based on these KNMSs. The results show that the KNMSs predicted by the model kept a high consistency with the corresponding C-T network in coverage of RA pathogenic genes, coverage of functional pathways and cumulative contribution of key nodes, which confirmed the reliability and accuracy of our proposed KNMS prediction strategy. All validated KNMSs of each RA therapy-related formula were employed to decode the mechanisms of different formulas treat the same disease. Finally, the key components in KNMSs of each formula were evaluated by in vitro experiments. Our proposed KNMS prediction and validation strategy provides methodological reference for interpreting the optimization of core components group and inference of molecular mechanism of formula in the treatment of complex diseases in TCM.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Li
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Bo-Ya Zhou
- Department of Ultrasound, Eighth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
37
|
Gomez-Cadena A, Barreto A, Fioretino S, Jandus C. Immune system activation by natural products and complex fractions: a network pharmacology approach in cancer treatment. Cell Stress 2020; 4:154-166. [PMID: 32656498 PMCID: PMC7328673 DOI: 10.15698/cst2020.07.224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Natural products and traditional herbal medicine are an important source of alternative bioactive compounds but very few plant-based preparations have been scientifically evaluated and validated for their potential as medical treatments. However, a promising field in the current therapies based on plant-derived compounds is the study of their immunomodulation properties and their capacity to activate the immune system to fight against multifactorial diseases like cancer. In this review we discuss how network pharmacology could help to characterize and validate natural single molecules or more complex preparations as promising cancer therapies based on their multitarget capacities.
Collapse
Affiliation(s)
- Alejandra Gomez-Cadena
- Department of Pathology and Immunology, Targeting of Cytokine Secreting Lymphocyte group, Geneva University, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Switzerland.,Departamento de Microbiología, Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Departamento de Microbiología, Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fioretino
- Departamento de Microbiología, Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camilla Jandus
- Department of Pathology and Immunology, Targeting of Cytokine Secreting Lymphocyte group, Geneva University, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Switzerland
| |
Collapse
|
38
|
Lin H, Zhang R, Wu W, Lei L. Comprehensive network analysis of the molecular mechanisms associated with sorafenib resistance in hepatocellular carcinoma. Cancer Genet 2020; 245:27-34. [PMID: 32559715 DOI: 10.1016/j.cancergen.2020.04.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/28/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is an intractable disease because patients with HCC frequently develop sorafenib resistance after long-term chemotherapy. Although studies has demonstrated the availability of cumulative information on drug-resistant patients, little is known about the strategies and molecular mechanisms to reverse sorafenib resistance. Here, the present study identified critical mRNAs and transcription factors (TFs) associated with sorafenib resistance of HCC and evaluated the significance correlation between drug-resistant genes and TFs in comprehensive network for HCC xenografts mice. METHODS The expression profiles of mRNAs were compared between sorafenib-acquired resistant tissue and sorafenib sensitive tissue utilizing RNA-Seq data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Gene Ontology and KEGG pathway analysis were performed to investigate the biological function of significantly dysregulated mRNA. Furthermore, the Kaplan-Meier survival analyses were performed to evaluate the effect of mRNA on over survival. Subsequently, TFs were predicted using TRANSFAC and TF-mRNA regulatory networks were visualized using cytoscape software. RESULTS A total of 827 mRNAs were found to be differentially expressed in sorafenib-acquired resistant tissue compared with control. Thereafter, the results of functional enrichment analysis showed the dysregulated mRNAs involved in drug-resistant signaling pathway, including MAPK, JAK-STAT, TGF-β and drug-metabolism cytochrome P450 signaling pathway. CDK1, CDKN1A and TAPBP might serve as prognostic signature of resistance of HCC to sorafenib according to the survival analysis. Furthermore, TF-mRNA networks were constructed. There were 18 TFs were predicted to regulate differentially expressed mRNAs, which play an essential role in the regulation of dysfunctional gene networks. NFKB1 was presented in the TF-mRNA networks as the node with the highest degree and MYC was predicted as prognostic TF in drug resistance of HCC CONCLUSIONS: Taken together, our findings showed that novel mRNAs and TFs, which served as critical biomarkers to predict survival and therapeutic targets of resistance to sorafenib in HCC. Furthermore, we constructed the TF-mRNA networks, which provides valuable theoretical references to further evaluate the molecular mechanisms of resistance to sorafenib in HCC.
Collapse
Affiliation(s)
- Haoming Lin
- Department of Pancreto-biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Rui Zhang
- Department of Pancreto-biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Wenrui Wu
- Department of Pancreto-biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Liming Lei
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Laboratory of South China Structural Heart Disease, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
39
|
Yang H, Fan Y, Cheng J, Zou J, Zhang X, Shi Y, Guo D. Network Pharmacology-Based Prediction of Active Ingredients and Potential Targets of ShengDiHuang Decoction for Treatment of Dysfunctional Uterine Bleeding. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7370304. [PMID: 32454870 PMCID: PMC7240676 DOI: 10.1155/2020/7370304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To analyze the potential active ingredients and related crucial targets of the ShengDiHuang Decoction (SDHD) formula in the treatment of dysfunctional uterine bleeding (DUB) by using network pharmacology and verification experiment. METHODS In this study, we determined the potential active ingredients from the traditional SDHD formula and their targets with the network pharmacology method. The network of "compound-disease-target" was constructed by the software of Cytoscape. Software of DAVID was used to enrich pathways for these 87 targets of SDHD. Further, the therapeutic effect of SDHD on DUB was verified by observing the morphological changes of the uterus and ovaries and determining the expression of ERS2 and progesterone in the plasma. RESULTS 52 compounds of Rheum and 5 compounds of Rehmannia were selected, and 87 potential targets were screened by network pharmacology. Furthermore, 7 main active ingredients were acquired by the ADME process. In addition, enrichment analysis of drug-target networks indicated that SDHD may play a role in overall coordination through "multicomponent and multitarget" in different organ patterns by regulating multiple pathways directly or indirectly. Finally, in the verification experiment of SDHD on DUB, it was found that SDHD can effectively repair the uterus and ovaries and also have an upregulation effect on the target ESR2 and increase the content of progesterone. CONCLUSION Overall, this study revealed potential mechanisms of multitarget and multicomponent about SDHD in the treatment of DUB and provided a scientific foundation for further studying the mechanism.
Collapse
Affiliation(s)
- Hui Yang
- Shaanxi Key Laboratory of Traditional Chinese Medicine Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yu Fan
- School of Basic Medical Science, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jiangxue Cheng
- Shaanxi Key Laboratory of Traditional Chinese Medicine Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Traditional Chinese Medicine Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Traditional Chinese Medicine Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Traditional Chinese Medicine Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Traditional Chinese Medicine Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
40
|
Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020; 25:molecules25081833. [PMID: 32316274 PMCID: PMC7221665 DOI: 10.3390/molecules25081833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Thanks to omic disciplines and a systems biology approach, the study of essential oils and phytocomplexes has been lately rolling on a faster track. While metabolomic fingerprinting can provide an effective strategy to characterize essential oil contents, network pharmacology is revealing itself as an adequate, holistic platform to study the collective effects of herbal products and their multi-component and multi-target mediated mechanisms. Multivariate analysis can be applied to analyze the effects of essential oils, possibly overcoming the reductionist limits of bioactivity-guided fractionation and purification of single components. Thanks to the fast evolution of bioinformatics and database availability, disease-target networks relevant to a growing number of phytocomplexes are being developed. With the same potential actionability of pharmacogenomic data, phytogenomics could be performed based on relevant disease-target networks to inform and personalize phytocomplex therapeutic application.
Collapse
|
41
|
Li L, Yang D, Li J, Niu L, Chen Y, Zhao X, Oduro PK, Wei C, Xu Z, Wang Q, Li Y. Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation. BMC Complement Med Ther 2020; 20:112. [PMID: 32293408 PMCID: PMC7158159 DOI: 10.1186/s12906-020-02905-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Shenmai injection (SMI) has been used in the treatment of cardiovascular disease (CVD), such as heart failure, myocardial ischemia and coronary heart disease. It has been found to have efficacy on doxorubicin (DOX)-induced cardiomyopathy. The aims of this study were to explore the underlying molecular mechanisms of SMI treatment on CVD by using network pharmacology and its protective effect on DOX-induced cardiotoxicity by in vitro and in vivo experiment based on network pharmacology prediction. METHODS Network pharmacology method was used to reveal the relationship between ingredient-target-disease and function-pathway of SMI on the treatment of CVD. Chemical ingredients of SMI were collected form TCMSP, BATMAN-TCM and HIT Database. Drugbank, DisGeNET and OMIM Database were used to obtain potential targets for CVD. Networks were visualized utilizing Cytoscape software, and the enrichment analysis was performed using IPA system. Finally, cardioprotective effects and predictive mechanism confirmation of SMI were investigated in H9c2 rat cardiomyocytes and DOX-injured C57BL/6 mice. RESULTS An ingredient-target-disease & function-pathway network demonstrated that 28 ingredients derived from SMI modulated 132 common targets shared by SMI and CVD. The analysis of diseases & functions, top pathways and upstream regulators indicated that the cardioprotective effects of SMI might be associated with 28 potential ingredients, which regulated the 132 targets in cardiovascular disease through regulation of G protein-coupled receptor signaling. In DOX-injured H9c2 cardiomyocytes, SMI increased cardiomyocytes viability, prevented cell apoptosis and increased PI3K and p-Akt expression. This protective effect was markedly weakened by PI3K inhibitor LY294002. In DOX-treated mice, SMI treatment improved cardiac function, including enhancement of ejection fraction and fractional shortening. CONCLUSIONS Collectively, the protective effects of SMI on DOX-induced cardiotoxicity are possibly related to the activation of the PI3K/Akt pathway, as the downstream of G protein-coupled receptor signaling pathway.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dongli Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinghao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chun Wei
- Tianjin Medical University Cancer Hospital, Tianjin, 300060, China
| | - Zongpei Xu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
42
|
Aisa Y, Yunusi K, Chen Q, Mi N. Systematic understanding of the potential targets and pharmacological mechanisms of acteoside by network pharmacology approach. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Mou X, Zhou DY, Zhou D, Liu K, Chen LJ, Liu WH. A bioinformatics and network pharmacology approach to the mechanisms of action of Shenxiao decoction for the treatment of diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153192. [PMID: 32200292 DOI: 10.1016/j.phymed.2020.153192] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells is the main pathological alteration in diabetic nephropathy (DN). Traditional Chinese medicine (TCM) has been used for the treatment of DN in clinical practice and has been proven to be effective. PURPOSE This aim of this study was to shed light on the efficacy of Shenxiao decoction (SXD) on the EMT of renal tubular epithelial cells and the molecular mechanisms of SXD in mice with DN, as well as on the high glucose (HG)- and TGF-β1-induced EMT of NRK-52E and HK-2 cells. STUDY DESIGN AND METHODS A bioinformatics and network pharmacology method were utilized to construct the active ingredient-target networks of SXD that were responsible for the beneficial effects against DN. The effects of RUNX3 were validated in HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells. RESULTS Bioinformatics analysis revealed that 122 matching targets were closely associated with the regulation of cell migration and the AGE-RAGE signaling pathway in diabetic complications. The results also revealed that, relative to the mice with DN, the mice in the treatment group had an improved general state and reduced blood glucose levels. The degradation of renal function was ameliorated by SXD. Moreover, the protective effects of SXD were also observed on renal structural changes. Furthermore, SXD suppressed the activation of the transforming growth factor (TGF)-β1/Smad pathway and upregulated the RUNX3 and E-cadherin levels and downregulated the extracellular matrix (ECM) protein levels in mice with DN. SXD was further found to prevent the HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells. Additionally, the overexpression of RUNX3 markedly inhibited the EMT and TGF-β1/Smad pathway induced by HG and TGF-β1 in NRK-52E and HK-2 cells. CONCLUSION Taken together, these results suggest that SXD maybe alleviate EMT in DN via the inhibition of the TGF-β1/Smad/RUNX3 signaling pathway under hyperglycemic conditions.
Collapse
Affiliation(s)
- Xin Mou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Di Yi Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Danyang Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Kaiyuan Liu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Li Jun Chen
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Wen Hong Liu
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
44
|
Zhou W, Wu J, Zhu Y, Meng Z, Liu X, Liu S, Ni M, Jia S, Zhang J, Guo S. Study on the mechanisms of compound Kushen injection for the treatment of gastric cancer based on network pharmacology. BMC Complement Med Ther 2020; 20:6. [PMID: 32020871 PMCID: PMC7076865 DOI: 10.1186/s12906-019-2787-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background As an effective prescription for gastric cancer (GC), Compound Kushen Injection (CKI) has been widely used even though few molecular mechanism analyses have been carried out. Methods In this study, we identified 16 active ingredients and 60 GC target proteins. Then, we established a compound-predicted target network and a GC target protein-protein interaction (PPI) network by Cytoscape 3.5.1 and systematically analyzed the potential targets of CKI for the treatment of GC. Finally, molecular docking was applied to verify the key targets. In addition, we analyzed the mechanism of action of the predicted targets by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Results The results showed that the potential targets, including CCND1, PIK3CA, AKT1, MAPK1, ERBB2, and MMP2, are the therapeutic targets of CKI for the treatment of GC. Functional enrichment analysis indicated that CKI has a therapeutic effect on GC by synergistically regulating some biological pathways, such as the cell cycle, pathways in cancer, the PI3K-AKT signaling pathway, the mTOR signaling pathway, and the FoxO signaling pathway. Moreover, molecular docking simulation indicated that the compounds had good binding activity to PIK3CA, AKT1, MAPK1, ERBB2, and MMP2 in vivo. Conclusion This research partially highlighted the molecular mechanism of CKI for the treatment of GC, which has great potential in the identification of the effective compounds in CKI and biomarkers to treat GC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China.
| | - Yingli Zhu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| |
Collapse
|
45
|
Zhang Y, Zhu M, Zhang F, Zhang S, Du W, Xiao X. Integrating Pharmacokinetics Study, Network Analysis, and Experimental Validation to Uncover the Mechanism of Qiliqiangxin Capsule Against Chronic Heart Failure. Front Pharmacol 2019; 10:1046. [PMID: 31619994 PMCID: PMC6759796 DOI: 10.3389/fphar.2019.01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: The purpose of this study was to propose an integrated strategy for investigating the mechanism of Qiliqiangxin capsule (QLQX) to treat chronic heart failure (CHF). Methods: Pharmacokinetics analysis was performed to screen the active components of QLQX using high-performance liquid chromatography-tandem mass spectrometry techniques. We then constructed the component-target network between the targets of active components in QLQX and CHF using Cytoscape. A network analysis, including topological parameters, clustering, and pathway enrichment, was established to identify the hub targets and pathways. Finally, some of the predicted hub targets were validated experimentally in human cardiac microvascular endothelial cell (HCMEC). Results: We identified 29 active components in QLQX, and 120 consensus potential targets were determined by the pharmacokinetics analysis and network pharmacology approach. Further network analysis indicated that 6 target genes, namely, VEGFA, CYP1A1, CYP2B6, ATP1A1, STAT3, and STAT4, and 10 predicted functional genes, namely, KDR, FLT1, NRP2, JAK2, EGFR, IL-6, AHR, ATP1B1, JAK1, and HIF1A, may be the primary targets regulated by QLQX for the treatment of CHF. Among these targets, VEGFA, IL-6, p-STAT3, and p-JAK2 were selected for validation in the HCMEC. The results indicated that QLQX may inhibit inflammatory processes and promote angiogenesis in CHF via the JAK/STAT signaling pathway. Conclusions: This study provides a strategy for understanding the mechanism of QLQX against CHF by combining pharmacokinetics study, network pharmacology, and experimental validation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingdan Zhu
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fugeng Zhang
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Shaoqiang Zhang
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wuxun Du
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuefeng Xiao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
46
|
Jie M, Hai-Xia L, Fei-Fei T, Shu-Ling L, Tian-Yi F, Xue-Qian W, Qing-Guo W, Fa-Feng C. Systematic Investigation of Berberine for Treating Hepatocellular Carcinoma Based on Network Pharmacology. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Zhao H, Shan Y, Ma Z, Yu M, Gong B. A network pharmacology approach to explore active compounds and pharmacological mechanisms of epimedium for treatment of premature ovarian insufficiency. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2997-3007. [PMID: 31692519 PMCID: PMC6710481 DOI: 10.2147/dddt.s207823] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022]
Abstract
Background and purpose Premature ovarian insufficiency (POI) refers to a hypergonadotropic hypoestrogenism and the condition of pre-onset ovarian function failure. Epimedium is a common traditional Chinese herbal medicine that is widely used to relieve POI in China. To systematically explore the pharmacological mechanism of epimedium on POI therapy, a network pharmacology approach was conducted at the molecular level. Methods In this study, we adopt the network pharmacology method, which mainly includes active ingredients prescreening, target prediction, gene enrichment analysis and network analysis. Results The network analysis revealed that 6 targets (ESR1, AR, ESR2, KDR, CYP19A1 and ESRRG) might be the therapeutic targets of epimedium on POI. In addition, gene-enrichment analysis suggested that epimedium appeared to play a role in POI by modulating 6 molecular functions, 5 cellular components, 15 biological processes and striking 52 potential targets involved in 13 signaling pathways. Conclusion This study predicted the pharmacological and molecular mechanism of epimedium against POI from a holistic perspective, as well as provided a powerful tool for exploring pharmacological mechanisms and rational clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Yinghua Shan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Zhi Ma
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Mingwei Yu
- Department of Orthopaedics and Traumatology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Benjiao Gong
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| |
Collapse
|
48
|
Chen M, Zhu J, Kang J, Lai X, Gao Y, Gan H, Yang F. Exploration in the Mechanism of Action of Licorice by Network Pharmacology. Molecules 2019; 24:molecules24162959. [PMID: 31443210 PMCID: PMC6720938 DOI: 10.3390/molecules24162959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Licorice is a popular sweetener and a thirst quencher in many food products particularly in Europe and the Middle East and also one of the oldest and most frequently used herbs in traditional Chinese medicine. As a wide application of food additive, it is necessary to clarify bioactive chemical ingredients and the mechanism of action of licorice. In this study, a network pharmacology approach that integrated drug-likeness evaluation, structural similarity analysis, target identification, network analysis, and KEGG pathway analysis was established to elucidate the potential molecular mechanism of licorice. First, we collected and evaluated structural information of 282 compounds in licorice and found 181 compounds that met oral drug rules. Then, structural similarity analysis with known ligands of targets in the ChEMBL database (similarity threshold = 0.8) was applied to the initial target identification, which found 63 compounds in licorice had 86 multi-targets. Further, molecular docking was performed to study their binding modes and interactions, which screened out 49 targets. Finally, 17 enriched KEGG pathways (p < 0.01) of licorice were obtained, exhibiting a variety of biological activities. Overall, this study provided a feasible and accurate approach to explore the safe and effective application of licorice as a food additive and herb medicine.
Collapse
Affiliation(s)
- Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jingru Zhu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jie Kang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xinmei Lai
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yuxing Gao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huijuan Gan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Fafu Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
49
|
Wang G, Wang YZ, Yu Y, Wang JJ, Yin PH, Xu K. Triterpenoids Extracted fromRhus chinensis MillAct Against Colorectal Cancer by Inhibiting Enzymes in Glycolysis and Glutaminolysis: Network Analysis and Experimental Validation. Nutr Cancer 2019; 72:293-319. [PMID: 31267795 DOI: 10.1080/01635581.2019.1631858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Central laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Central laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Identify the Key Active Ingredients and Pharmacological Mechanisms of Compound XiongShao Capsule in Treating Diabetic Peripheral Neuropathy by Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5801591. [PMID: 31210774 PMCID: PMC6532326 DOI: 10.1155/2019/5801591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Compound XiongShao Capsule (CXSC), a traditional herb mixture, has shown significant clinical efficacy against diabetic peripheral neuropathy (DPN). However, its multicomponent and multitarget features cause difficulty in deciphering its molecular mechanisms. Our study aimed to identify the key active ingredients and potential pharmacological mechanisms of CXSC in treating DPN by network pharmacology and provide scientific evidence of its clinical efficacy. CXSC active ingredients were identified from both the Traditional Chinese Medicine Systems Pharmacology database, with parameters of oral bioavailability ≥ 30% and drug-likeness ≥ 0.18, and the Herbal Ingredients' Targets (HIT) database. The targets of those active ingredients were identified using ChemMapper based on 3D-structure similarity and using HIT database. DPN-related genes were acquired from microarray dataset GSE95849 and five widely used databases (TTD, Drugbank, KEGG, DisGeNET, and OMIM). Next, we obtained candidate targets with therapeutic effects against DPN by mapping active ingredient targets and DPN-related genes and identifying the proteins interacting with those candidate targets using STITCH 5.0. We constructed an “active ingredients-candidate targets-proteins” network using Cytoscape 3.61 and identified key active ingredients and key targets in the network. We identified 172 active ingredients in CXSC, 898 targets of the active ingredients, 110 DPN-related genes, and 38 candidate targets with therapeutic effects against DPN. Three key active ingredients, namely, quercetin, kaempferol, and baicalein, and 25 key targets were identified. Next, we input all key targets into ClueGO plugin for KEGG enrichment and molecular function analyses. The AGE-RAGE signaling pathway in diabetic complications and MAP kinase activity were determined as the main KEGG pathway and molecular function involved, respectively. We determined quercetin, kaempferol, and baicalein as the key active ingredients of CXSC and the AGE-RAGE signaling pathway and MAP kinase activity as the main pharmacological mechanisms of CXSC against DPN, proving the clinical efficacy of CXSC against DPN.
Collapse
|