1
|
Huang Y, Yu S, Cao Q, Jing J, Tang W, Xue B, Shi H. Dnmt3b deficiency in adipocyte progenitor cells ameliorates obesity in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635994. [PMID: 39975110 PMCID: PMC11838445 DOI: 10.1101/2025.01.31.635994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Obesity arises from chronic energy imbalance where energy intake exceeds energy expenditure. Emerging evidence supports a key role of DNA methylation in the regulation of adipose tissue development and metabolism. We recently discovered a key role of DNA methylation, catalyzed by DNA methyltransferase 1 or 3a (Dnmt1 or 3a), in the regulation of adipocyte differentiation and metabolism. Here, we aimed to investigate the role of adipocyte progenitor cell Dnmt3b, an enzyme mediating de novo DNA methylation, in energy metabolism and obesity. We generated a genetic model with Dnmt3b knockout in adipocyte progenitor cells (PD3bKO) by crossing Dnmt3b -floxed mice with platelet-derived growth factor receptor alpha (Pdgfrα)-Cre mice. Dnmt3b gene deletion in adipocyte progenitors enhanced thermogenic gene expression in brown adipose tissue, increased overall energy expenditure, and mitigated high-fat diet (HFD)-induced obesity in female mice. PD3bKO mice also displayed a lower respiratory exchange ratio (RER), indicative of a metabolic shift favoring fat utilization as an energy source. Furthermore, female PD3bKO mice exhibited improved insulin sensitivity alongside their lean phenotype. In contrast, male PD3bKO mice showed no changes in body weight but demonstrated decreased insulin sensitivity, revealing a sexually dimorphic metabolic response to Dnmt3b deletion in adipocyte progenitor cells. These findings underscore the critical role of Dnmt3b in regulating energy homeostasis, body weight, and metabolic health, with significant implications for understanding sex-specific mechanisms of obesity and metabolism.
Collapse
|
2
|
Lin B, Liu H, Liu H, Su L, Sun K, Feng H, Liu Y, Yu M, Han D. A novel WNT10A variant impairs the homeostasis of alveolar bone mesenchymal stem cells. Oral Dis 2025; 31:168-180. [PMID: 38852166 DOI: 10.1111/odi.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES To explore the influence of a novel WNT10A variant on bone mineral density, proliferation, and osteogenic differentiation capacities of alveolar bone mesenchymal stem cells in humans. SUBJECTS AND METHODS Whole-exome sequencing and Sanger sequencing were utilized to detect gene variants in a family with non-syndromic tooth agenesis (NSTA). The panoramic mandibular index was calculated on the proband with WNT10A variant and normal controls to evaluate bone mineral density. Alveolar bone mesenchymal stem cells from the proband with a novel WNT10A variant and normal controls were isolated and cultured, then proliferation and osteogenic differentiation capacities were evaluated and compared. RESULTS We identified a novel WNT10A pathogenic missense variant (c.353A > G/p. Tyr118Cys) in a family with NSTA. The panoramic mandibular index of the proband implied a reduction in bone mineral density. Moreover, the proliferation and osteogenic differentiation capacities of alveolar bone mesenchymal stem cells from the proband with WNT10A Tyr118Cys variant were significantly decreased. CONCLUSIONS Our findings broaden the spectrum of WNT10A variants in patients with non-syndromic oligodontia, suggest an association between WNT10A and the proliferation and osteogenic differentiation of alveolar bone mesenchymal stem cells, and demonstrate that WNT10A is involved in maintaining jaw bone homeostasis.
Collapse
Affiliation(s)
- Bichen Lin
- Frist Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lanxin Su
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
3
|
Boczki P, Colombo M, Weiner J, Rapöhn I, Lacher M, Kiess W, Hanschkow M, Körner A, Landgraf K. Inhibition of AHCY impedes proliferation and differentiation of mouse and human adipocyte progenitor cells. Adipocyte 2024; 13:2290218. [PMID: 38064408 PMCID: PMC10732623 DOI: 10.1080/21623945.2023.2290218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
S-adenosyl-homocysteine-hydrolase (AHCY) plays an important role in the methionine cycle regulating cellular methylation levels. AHCY has been reported to influence proliferation and differentiation processes in different cell types, e.g. in cancer cells and mouse embryonic stem cells. In the development of adipose tissue, both the proliferation and differentiation of adipocyte progenitor cells (APCs) are important processes, which in the context of obesity are often dysregulated. To assess whether AHCY might also be involved in cell proliferation and differentiation of APCs, we investigated the effect of reduced AHCY activity on human and mouse APCs in vitro. We show that the inhibition of AHCY using adenosine dialdehyde (AdOx) and the knockdown of AHCY using gene-specific siRNAs reduced APC proliferation and number. Inhibition of AHCY further reduced APC differentiation into mature adipocytes and the expression of adipogenic differentiation markers. Global DNA methylation profiling in human APCs revealed that inhibition of AHCY is associated with alterations in CpG methylation levels of genes involved in fat cell differentiation and pathways related to cellular growth. Our findings suggest that AHCY is necessary for the maintenance of APC proliferation and differentiation and inhibition of AHCY alters DNA methylation processes leading to a dysregulation of the expression of genes involved in the regulation of these processes.
Collapse
Affiliation(s)
- Paula Boczki
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Marco Colombo
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet 2024; 15:1429844. [PMID: 39015772 PMCID: PMC11250479 DOI: 10.3389/fgene.2024.1429844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.
Collapse
Affiliation(s)
- Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Song
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Zhong Y, Zhou X, Pan Z, Zhang J, Pan J. Role of epigenetic regulatory mechanisms in age-related bone homeostasis imbalance. FASEB J 2024; 38:e23642. [PMID: 38690719 DOI: 10.1096/fj.202302665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.
Collapse
Affiliation(s)
- Yunyu Zhong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zijian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Yi SJ, Lim J, Kim K. Exploring epigenetic strategies for the treatment of osteoporosis. Mol Biol Rep 2024; 51:398. [PMID: 38453825 DOI: 10.1007/s11033-024-09353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The worldwide trend toward an aging population has resulted in a higher incidence of chronic conditions, such as osteoporosis. Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk, encompasses primary and secondary forms, each with distinct etiologies. Mechanistically, osteoporosis involves an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Current pharmacological interventions for osteoporosis, such as bisphosphonates, denosumab, and teriparatide, aim to modulate bone turnover and preserve bone density. Hormone replacement therapy and lifestyle modifications are also recommended to manage the condition. While current medications offer therapeutic options, they are not devoid of limitations. Recent studies have highlighted the importance of epigenetic mechanisms, including DNA methylation and histone modifications, in regulating gene expression during bone remodeling. The use of epigenetic drugs, or epidrugs, to target these mechanisms offers a promising avenue for therapeutic intervention in osteoporosis. In this review, we comprehensively examine the recent advancements in the application of epidrugs for treating osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaeho Lim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
7
|
Liang J, Jia Y, Yu H, Yan H, Shen Q, Xu Y, Li Y, Yang M. 5-Aza-2'-Deoxycytidine Regulates White Adipocyte Browning by Modulating miRNA-133a/Prdm16. Metabolites 2022; 12:1131. [PMID: 36422269 PMCID: PMC9695087 DOI: 10.3390/metabo12111131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
The conversion of white adipocytes into brown adipocytes improves their thermogenesis and promotes energy consumption. Epigenetic modifications affect related genes and interfere with energy metabolism, and these are the basis of new ideas for obesity treatment. Neonatal mice show high levels of DNA hypermethylation in white adipose tissue early in life and low levels in brown adipose tissue. Thus, we considered that the regulation of DNA methylation may play a role in the conversion of white adipose to brown. We observed growth indicators, lipid droplets of adipocytes, brown fat specific protein, and miRNA-133a after treatment with 5-Aza-2'-deoxycytidine. The expression of Prdm16 and Ucp-1 in adipocytes was detected after inhibiting miRNA-133a. The results showed a decrease in total lipid droplet formation and an increased expression of the brown fat specific proteins Prdm16 and Ucp-1. This study indicated that 5-Aza-2'-deoxycytidine promotes white adipocyte browning following DNA demethylation, possibly via the modulation of miR-133a and Prdm16.
Collapse
Affiliation(s)
- Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Huixin Yu
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Qingyu Shen
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Yong Xu
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| | - Yana Li
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, China
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
8
|
Park J, Lee DH, Ham S, Oh J, Noh JR, Lee YK, Park YJ, Lee G, Han SM, Han JS, Kim YY, Jeon YG, Nahmgoong H, Shin KC, Kim SM, Choi SH, Lee CH, Park J, Roh TY, Kim S, Kim JB. Targeted erasure of DNA methylation by TET3 drives adipogenic reprogramming and differentiation. Nat Metab 2022; 4:918-931. [PMID: 35788760 DOI: 10.1038/s42255-022-00597-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
DNA methylation is a crucial epigenetic modification in the establishment of cell-type-specific characteristics. However, how DNA methylation is selectively reprogrammed at adipocyte-specific loci during adipogenesis remains unclear. Here, we show that the transcription factor, C/EBPδ, and the DNA methylation eraser, TET3, cooperatively control adipocyte differentiation. We perform whole-genome bisulfite sequencing to explore the dynamics and regulatory mechanisms of DNA methylation in adipocyte differentiation. During adipogenesis, DNA methylation selectively decreases at adipocyte-specific loci carrying the C/EBP binding motif, which correlates with the activity of adipogenic promoters and enhancers. Mechanistically, we find that C/EBPδ recruits a DNA methylation eraser, TET3, to catalyse DNA demethylation at the C/EBP binding motif and stimulate the expression of key adipogenic genes. Ectopic expression of TET3 potentiates in vitro and in vivo adipocyte differentiation and recovers downregulated adipogenic potential, which is observed in aged mice and humans. Taken together, our study highlights how targeted reprogramming of DNA methylation through cooperative action of the transcription factor C/EBPδ, and the DNA methylation eraser TET3, controls adipocyte differentiation.
Collapse
Affiliation(s)
- Jeu Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Do Hoon Lee
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Seokjin Ham
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yoon Jeong Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Han Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Cheul Shin
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Min Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Tae Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Tovy A, Reyes JM, Zhang L, Huang YH, Rosas C, Daquinag AC, Guzman A, Ramabadran R, Chen CW, Gu T, Gupta S, Ortinau L, Park D, Cox AR, Rau RE, Hartig SM, Kolonin MG, Goodell MA. Constitutive loss of DNMT3A causes morbid obesity through misregulation of adipogenesis. eLife 2022; 11:e72359. [PMID: 35635747 PMCID: PMC9150890 DOI: 10.7554/elife.72359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
DNA Methyltransferase 3 A (DNMT3A) is an important facilitator of differentiation of both embryonic and hematopoietic stem cells. Heterozygous germline mutations in DNMT3A lead to Tatton-Brown-Rahman Syndrome (TBRS), characterized by obesity and excessive height. While DNMT3A is known to impact feeding behavior via the hypothalamus, here we investigated a role in adipocyte progenitors utilizing heterozygous knockout mice that recapitulate cardinal TBRS phenotypes. These mice become morbidly obese due to adipocyte enlargement and tissue expansion. Adipose tissue in these mice exhibited defects in preadipocyte maturation and precocious activation of inflammatory gene networks, including interleukin-6 signaling. Adipocyte progenitor cell lines lacking DNMT3A exhibited aberrant differentiation. Furthermore, mice in which Dnmt3a was specifically ablated in adipocyte progenitors showed enlarged fat depots and increased progenitor numbers, partly recapitulating the TBRS obesity phenotypes. Loss of DNMT3A led to constitutive DNA hypomethylation, such that the DNA methylation landscape of young adipocyte progenitors resemble that of older wild-type mice. Together, our results demonstrate that DNMT3A coordinates both the central and local control of energy storage required to maintain normal weight and prevent inflammatory obesity.
Collapse
Affiliation(s)
- Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Linda Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of MedicineHoustonUnited States
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
| | - Carina Rosas
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Alexes C Daquinag
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science CenterHoustonUnited States
| | - Anna Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Raghav Ramabadran
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Tianpeng Gu
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sinjini Gupta
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Metabolic and Degenerative Disease, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at HoustonHoustonUnited States
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Metabolic and Degenerative Disease, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at HoustonHoustonUnited States
| | - Aaron R Cox
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Rachel E Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of Medicine and Texas Children's HospitalHoustonUnited States
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Mikhail G Kolonin
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of MedicineHoustonUnited States
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
10
|
Lizunkova P, Engdahl E, Borbély G, Gennings C, Lindh C, Bornehag CG, Rüegg J. A Mixture of Endocrine Disrupting Chemicals Associated with Lower Birth Weight in Children Induces Adipogenesis and DNA Methylation Changes in Human Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23042320. [PMID: 35216435 PMCID: PMC8879125 DOI: 10.3390/ijms23042320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine Disrupting Chemicals (EDCs) are man-made compounds that alter functions of the endocrine system. Environmental mixtures of EDCs might have adverse effects on human health, even though their individual concentrations are below regulatory levels of concerns. However, studies identifying and experimentally testing adverse effects of real-life mixtures are scarce. In this study, we aimed at evaluating an epidemiologically identified EDC mixture in an experimental setting to delineate its cellular and epigenetic effects. The mixture was established using data from the Swedish Environmental Longitudinal Mother and child Asthma and allergy (SELMA) study where it was associated with lower birth weight, an early marker for prenatal metabolic programming. This mixture was then tested for its ability to change metabolic programming of human mesenchymal stem cells. In these cells, we assessed if the mixture induced adipogenesis and genome-wide DNA methylation changes. The mixture increased lipid droplet accumulation already at concentrations corresponding to levels measured in the pregnant women of the SELMA study. Furthermore, we identified differentially methylated regions in genes important for adipogenesis and thermogenesis. This study shows that a mixture reflecting human real-life exposure can induce molecular and cellular changes during development that could underlie adverse outcomes.
Collapse
Affiliation(s)
- Polina Lizunkova
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
| | - Elin Engdahl
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
| | - Gábor Borbély
- The Swedish Toxicology Sciences Research Center (Swetox), 15257 Södertälje, Sweden;
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.G.); (C.-G.B.)
| | - Christian Lindh
- Occupational and Environmental Medicine, Lund University, 22363 Lund, Sweden;
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.G.); (C.-G.B.)
- Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
- Correspondence: ; Tel.: +46-73-7121592
| |
Collapse
|
11
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
12
|
Li F, Wang S, Cui X, Jing J, Yu L, Xue B, Shi H. Adipocyte Utx Deficiency Promotes High-Fat Diet-Induced Metabolic Dysfunction in Mice. Cells 2022; 11:181. [PMID: 35053297 PMCID: PMC8773702 DOI: 10.3390/cells11020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
While the main function of white adipose tissue (WAT) is to store surplus of energy as triacylglycerol, that of brown adipose tissue (BAT) is to burn energy as heat. Epigenetic mechanisms participate prominently in both WAT and BAT energy metabolism. We previously reported that the histone demethylase ubiquitously transcribed tetratricopeptide (Utx) is a positive regulator of brown adipocyte thermogenesis. Here, we aimed to investigate whether Utx also regulates WAT metabolism in vivo. We generated a mouse model with Utx deficiency in adipocytes (AUTXKO). AUTXKO animals fed a chow diet had higher body weight, more fat mass and impaired glucose tolerance. AUTXKO mice also exhibited cold intolerance with an impaired brown fat thermogenic program. When challenged with high-fat diet (HFD), AUTXKO mice displayed adipose dysfunction featured by suppressed lipogenic pathways, exacerbated inflammation and fibrosis with less fat storage in adipose tissues and more lipid storage in the liver; as a result, AUTXKO mice showed a disturbance in whole body glucose homeostasis and hepatic steatosis. Our data demonstrate that Utx deficiency in adipocytes limits adipose tissue expansion under HFD challenge and induces metabolic dysfunction via adipose tissue remodeling. We conclude that adipocyte Utx is a key regulator of systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (S.W.); (X.C.); (J.J.)
| |
Collapse
|
13
|
Khan AA, Khattak MNK, Parambath D, El-Serafi AT. Significant transcriptomic changes are associated with the inhibitory effects of 5-aza-2-deoxycytidine during adipogenic differentiation of MG-63 cells. Saudi J Biol Sci 2021; 28:7336-7348. [PMID: 34867036 PMCID: PMC8626271 DOI: 10.1016/j.sjbs.2021.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Our previous study revealed that the treatment of 5-aza-2-deoxycytidine (5-aza) inhibited while treatment of suberoylanilide hydroxamic acid (SAHA) enhanced the adipogenic differentiation of MG-63 cells. In this study, we examined the transcriptomic profiles of the derived adipocyte-like cells from MG-63 cells in the presence of 5-aza (Treatment 1) and SAHA (Treatment 2). Genome wide expression analysis showed high within sample variability for the adipocytes derived with 5-aza versus vehicle. Additionally, the expression profile of 5-aza derived cells was separated from the other sample groups. Differential analysis on the pairwise comparison of 5-aza versus control and SAHA versus 5-aza identified 1290 and 1086 differentially expressed (DE) genes, respectively. Furthermore, some overlap was observed between the up and down-regulated DE genes of 5-aza versus control and SAHA versus control (jaccard score 0.3) as well as between the differentially regulated genes of 5-aza versus control and 5-aza versus SAHA (jaccard score 0.29). A total of 73 transcription factors (TFs) were differentially expressed across all the pair wise comparisons with some overlap between the under and over expressed TFs of 5-aza versus control and 5-aza versus SAHA (jaccard score 0.29). Unsupervised clustering of TFs showed that the samples within the group are consistent in expression and the samples cluster in accordance with the group. Several GO terms related to enhanced adipogenesis such as neutral lipid biosynthetic process, lipid metabolic processes, cellular amide metabolic processes and cellular carbohydrate metabolic processes were enriched in the down regulated genes of 5-aza derived adipocytes versus control, indicating 5-aza inhibit the adipogenic differentiation of MG-63 cells. GSEA analysis on selected gene sets of MAPK and PI3K signaling pathway in MSigDB identified the pathways were up-regulated in 5-aza versus control. This study revealed that inhibition of MG-63 adipogenesis due to 5-aza treatment is associated with large transcriptomics changes and further research is needed to unravel the roles of these genes in the adipogenesis.
Collapse
Affiliation(s)
- Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.,Human Genetics and Stem Cells Research Group, Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.,Human Genetics and Stem Cells Research Group, Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Divyasree Parambath
- Sharjah Institute for Medical and Health Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed Taher El-Serafi
- Sharjah Institute for Medical and Health Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Biomedical and Clinical Sciences (BKV), Linköping University, P.O. Box 581 83, Linköping, Sweden.,Medical Biochemistry department, Faculty of Medicine, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
14
|
Li F, Cui X, Jing J, Wang S, Shi H, Xue B, Shi H. Brown Fat Dnmt3b Deficiency Ameliorates Obesity in Female Mice. Life (Basel) 2021; 11:life11121325. [PMID: 34947856 PMCID: PMC8703316 DOI: 10.3390/life11121325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Obesity results from a chronic energy imbalance due to energy intake exceeding energy expenditure. Activation of brown fat thermogenesis has been shown to combat obesity. Epigenetic regulation, including DNA methylation, has emerged as a key regulator of brown fat thermogenic function. Here we aimed to study the role of Dnmt3b, a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat thermogenesis and obesity. We found that the specific deletion of Dnmt3b in brown fat promotes the thermogenic and mitochondrial program in brown fat, enhances energy expenditure, and decreases adiposity in female mice fed a regular chow diet. With a lean phenotype, the female knockout mice also exhibit increased insulin sensitivity. In addition, Dnmt3b deficiency in brown fat also prevents diet-induced obesity and insulin resistance in female mice. Interestingly, our RNA-seq analysis revealed an upregulation of the PI3K-Akt pathway in the brown fat of female Dnmt3b knockout mice. However, male Dnmt3b knockout mice have no change in their body weight, suggesting the existence of sexual dimorphism in the brown fat Dnmt3b knockout model. Our data demonstrate that Dnmt3b plays an important role in the regulation of brown fat function, energy metabolism and obesity in female mice.
Collapse
Affiliation(s)
- Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
- Correspondence: (B.X.); (H.S.)
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
- Correspondence: (B.X.); (H.S.)
| |
Collapse
|
15
|
Li F, Jing J, Movahed M, Cui X, Cao Q, Wu R, Chen Z, Yu L, Pan Y, Shi H, Shi H, Xue B. Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat. Nat Commun 2021; 12:6838. [PMID: 34824202 PMCID: PMC8617140 DOI: 10.1038/s41467-021-27141-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
Brown adipocytes share the same developmental origin with skeletal muscle. Here we find that a brown adipocyte-to-myocyte remodeling also exists in mature brown adipocytes, and is induced by prolonged high fat diet (HFD) feeding, leading to brown fat dysfunction. This process is regulated by the interaction of epigenetic pathways involving histone and DNA methylation. In mature brown adipocytes, the histone demethylase UTX maintains persistent demethylation of the repressive mark H3K27me3 at Prdm16 promoter, leading to high Prdm16 expression. PRDM16 then recruits DNA methyltransferase DNMT1 to Myod1 promoter, causing Myod1 promoter hypermethylation and suppressing its expression. The interaction between PRDM16 and DNMT1 coordinately serves to maintain brown adipocyte identity while repressing myogenic remodeling in mature brown adipocytes, thus promoting their active brown adipocyte thermogenic function. Suppressing this interaction by HFD feeding induces brown adipocyte-to-myocyte remodeling, which limits brown adipocyte thermogenic capacity and compromises diet-induced thermogenesis, leading to the development of obesity.
Collapse
Affiliation(s)
- Fenfen Li
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Jia Jing
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Miranda Movahed
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Xin Cui
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Qiang Cao
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Rui Wu
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Ziyue Chen
- grid.256304.60000 0004 1936 7400Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA
| | - Liqing Yu
- grid.411024.20000 0001 2175 4264Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Yi Pan
- grid.256304.60000 0004 1936 7400Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA ,grid.458489.c0000 0001 0483 7922Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P.R. China
| | - Huidong Shi
- grid.410427.40000 0001 2284 9329Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA ,grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hang Shi
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Bingzhong Xue
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
16
|
Park YJ, Han SM, Huh JY, Kim JB. Emerging roles of epigenetic regulation in obesity and metabolic disease. J Biol Chem 2021; 297:101296. [PMID: 34637788 PMCID: PMC8561000 DOI: 10.1016/j.jbc.2021.101296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Adipose tissue dysfunction is a hallmark of obesity and contributes to obesity-related sequelae such as metabolic complications and insulin resistance. Compelling evidence indicates that adipose-tissue-specific gene expression is influenced by gene interactions with proximal and distal cis-regulatory elements; the latter exert regulatory effects via three-dimensional (3D) chromosome conformation. Recent advances in determining the regulatory mechanisms reveal that compromised epigenomes are molecularly interlinked to altered cis-regulatory element activity and chromosome architecture in the adipose tissue. This review summarizes the roles of epigenomic components, particularly DNA methylation, in transcriptional rewiring in adipose tissue. In addition, we discuss the emerging roles of DNA methylation in the maintenance of 3D chromosome conformation and its pathophysiological significance concerning adipose tissue function.
Collapse
Affiliation(s)
- Yoon Jeong Park
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
17
|
Wang S, Cao Q, Cui X, Jing J, Li F, Shi H, Xue B, Shi H. Dnmt3b Deficiency in Myf5 +-Brown Fat Precursor Cells Promotes Obesity in Female Mice. Biomolecules 2021; 11:1087. [PMID: 34439754 PMCID: PMC8393658 DOI: 10.3390/biom11081087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing energy expenditure through activation of brown fat thermogenesis is a promising therapeutic strategy for the treatment of obesity. Epigenetic regulation has emerged as a key player in regulating brown fat development and thermogenic program. Here, we aimed to study the role of DNA methyltransferase 3b (Dnmt3b), a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat function and energy homeostasis. We generated a genetic model with Dnmt3b deletion in brown fat-skeletal lineage precursor cells (3bKO mice) by crossing Dnmt3b-floxed (fl/fl) mice with Myf5-Cre mice. Female 3bKO mice are prone to diet-induced obesity, which is associated with decreased energy expenditure. Dnmt3b deficiency also impairs cold-induced thermogenic program in brown fat. Surprisingly, further RNA-seq analysis reveals a profound up-regulation of myogenic markers in brown fat of 3bKO mice, suggesting a myocyte-like remodeling in brown fat. Further motif enrichment and pyrosequencing analysis suggests myocyte enhancer factor 2C (Mef2c) as a mediator for the myogenic alteration in Dnmt3b-deficient brown fat, as indicated by decreased methylation at its promoter. Our data demonstrate that brown fat Dnmt3b is a key regulator of brown fat development, energy metabolism and obesity in female mice.
Collapse
Affiliation(s)
- Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| |
Collapse
|
18
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
19
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
20
|
Aguilera KY, Dawson DW. WNT Ligand Dependencies in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:671022. [PMID: 33996827 PMCID: PMC8113755 DOI: 10.3389/fcell.2021.671022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
WNT signaling promotes the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) through wide-ranging effects on cellular proliferation, survival, differentiation, stemness, and tumor microenvironment. Of therapeutic interest is a genetically defined subset of PDAC known to have increased WNT/β-catenin transcriptional activity, growth dependency on WNT ligand signaling, and response to pharmacologic inhibitors of the WNT pathway. Here we review mechanisms underlying WNT ligand addiction in pancreatic tumorigenesis, as well as the potential utility of therapeutic approaches that functionally antagonize WNT ligand secretion or frizzled receptor binding.
Collapse
Affiliation(s)
- Kristina Y. Aguilera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
21
|
Visconti VV, Cariati I, Fittipaldi S, Iundusi R, Gasbarra E, Tarantino U, Botta A. DNA Methylation Signatures of Bone Metabolism in Osteoporosis and Osteoarthritis Aging-Related Diseases: An Updated Review. Int J Mol Sci 2021; 22:ijms22084244. [PMID: 33921902 PMCID: PMC8072687 DOI: 10.3390/ijms22084244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methylation is one of the most studied epigenetic mechanisms that play a pivotal role in regulating gene expression. The epigenetic component is strongly involved in aging-bone diseases, such as osteoporosis and osteoarthritis. Both are complex multi-factorial late-onset disorders that represent a globally widespread health problem, highlighting a crucial point of investigations in many scientific studies. In recent years, new findings on the role of DNA methylation in the pathogenesis of aging-bone diseases have emerged. The aim of this systematic review is to update knowledge in the field of DNA methylation associated with osteoporosis and osteoarthritis, focusing on the specific tissues involved in both pathological conditions.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Ida Cariati
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| |
Collapse
|
22
|
Chakraborty S, Sinha S, Sengupta A. Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J 2020; 35:e21234. [PMID: 33337557 DOI: 10.1096/fj.202002232r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidences highlight importance of epigenetic regulation and their integration with transcriptional and cell signaling machinery in determining tissue resident adult pluripotent mesenchymal stem/stromal cell (MSC) activity, lineage commitment, and multicellular development. Histone modifying enzymes and large multi-subunit chromatin remodeling complexes and their cell type-specific plasticity remain the central defining features of gene regulation and establishment of tissue identity. Modulation of transcription factor expression gradient ex vivo and concomitant flexibility of higher order chromatin architecture in response to signaling cues are exciting approaches to regulate MSC activity and tissue rejuvenation. Being an important constituent of the adult bone marrow microenvironment/niche, pathophysiological perturbation in MSC homeostasis also causes impaired hematopoietic stem/progenitor cell function in a non-cell autonomous mechanism. In addition, pluripotent MSCs can function as immune regulatory cells, and they reside at the crossroad of innate and adaptive immune response pathways. Research in the past few years suggest that MSCs/stromal fibroblasts significantly contribute to the establishment of immunosuppressive microenvironment in shaping antitumor immunity. Therefore, it is important to understand mesenchymal stromal epigenome and transcriptional regulation to leverage its applications in regenerative medicine, epigenetic memory-guided trained immunity, immune-metabolic rewiring, and precision immune reprogramming. In this review, we highlight the latest developments and prospects in chromatin biology in determining MSC function in the context of lineage commitment and immunomodulation.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Sayantani Sinha
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Amitava Sengupta
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| |
Collapse
|
23
|
Abstract
We discovered a unique expression pattern of two histone methyltransferases Suv39h1 and Suv39h2 during 3T3-L1 adipogenesis, both of which preferentially catalyse the formation of H3K9 dimethylation (H3K9me2) and further H3K9 trimethylation (H3K9me3), a transcriptional repressive mark. The expression of Suv39h1 and Suv39h2 displayed a sharp increase at the early stage of 3T3-L1 differentiation, which peaked after differentiation induction, and then declined towards later stage of differentiation, suggesting a key role for these two histone methyltransferases in adipogenesis. Indeed, inactivating Suv39h1 or Suv39h2 via lentiviral shRNA knockdown inhibited adipogenesis, while overexpressing Suv39h1 promoted adipogenesis. Notably, overexpressing or knocking down Suv39h1 in 3T3-L1 cells was associated with reciprocal changes in the expression of Wnt10a, an anti-adipogenic regulator. Further, Wnt10a knockdown largely prevented the inhibitory effect of Suv39h1 on adipogenesis, indicating Wnt10a as a downstream target mediating Suv39h1’s action in adipogenesis. Mechanistically, our comprehensive approaches involving ChIP, co-immunoprecipitation and pyrosequencing analysis demonstrated that Suv39h1 may regulate Wnt10a expression via H3K9 methylation and interaction with DNA methyltransferase 1 (DNMT1) at the Wnt10a promoter, resulting in altered DNA methylation at the promoter. We conclude that Suv39h promotes adipogenesis by epigenetically down-regulating Wnt10a expression via H3K9me3 and DNA methylation at the Wnt10a promoter.Abbreviated title: Suv39h and 3T3-L1 Adipogenesis
Collapse
Affiliation(s)
- Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Lin Zha
- Department of Biology, Georgia State University, Atlanta, GA, USA
- Clinical Center of Spaceport, Chinese PLA General Hospital, Beijing, China
| | - Xiaosong Yang
- Department of Biology, Georgia State University, Atlanta, GA, USA
- Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Rui Wu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
24
|
Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban Eslaminejad M. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther 2020; 11:456. [PMID: 33115508 PMCID: PMC7594482 DOI: 10.1186/s13287-020-01966-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient osteogenic differentiation of mesenchymal stem cells (MSCs) is a critical step in the treatment of bone defects and skeletal disorders, which present challenges for cell-based therapy and regenerative medicine. Thus, it is necessary to understand the regulatory agents involved in osteogenesis. Epigenetic mechanisms are considered to be the primary mediators that regulate gene expression during MSC differentiation. In recent years, epigenetic enzyme inhibitors have been used as epidrugs in cancer therapy. A number of studies mentioned the role of epigenetic inhibitors in the regulation of gene expression patterns related to osteogenic differentiation. This review attempts to provide an overview of the key regulatory agents of osteogenesis: transcription factors, signaling pathways, and, especially, epigenetic mechanisms. In addition, we propose to introduce epigenetic enzyme inhibitors (epidrugs) and their applications as future therapeutic approaches for bone defect regeneration.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
25
|
Oh JH, Karadeniz F, Seo Y, Kong CS. Effect of Quercetin 3- O-β-D-Galactopyranoside on the Adipogenic and Osteoblastogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2020; 21:ijms21218044. [PMID: 33126698 PMCID: PMC7663619 DOI: 10.3390/ijms21218044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Natural products, especially phenols, are promising therapeutic agents with beneficial effects against aging-related complications such as osteoporosis. This study aimed to investigate the effect of quercetin 3-O-β-D-galactopyranoside (Q3G), a glycoside of a common bioactive phytochemical quercetin, on osteogenic and adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). hBM-MSCs were induced to differentiate into osteoblasts and adipocytes in the presence or absence of Q3G and the differentiation markers were analyzed to observe the effect. Q3G treatment stimulated the osteoblastogenesis markers: cell proliferation, alkaline phosphatase (ALP) activity and extracellular mineralization. In addition, it upregulated the expression of RUNX2 and osteocalcin protein as osteoblastogenesis regulating transcription factors. Moreover, Q3G treatment increased the activation of osteoblastogenesis-related Wnt and bone morphogenetic protein (BMP) signaling displayed as elevated levels of phosphorylated β-catenin and Smad1/5 in nuclear fractions of osteo-induced hBM-MSCs. The presence of quercetin in adipo-induced hBM-MSC culture inhibited the adipogenic differentiation depicted as suppressed lipid accumulation and expression of adipogenesis markers such as PPARγ, SREBP1c and C/EBPα. In conclusion, Q3G supplementation stimulated osteoblast differentiation and inhibited adipocyte differentiation in hBM-MSCs via Wnt/BMP and PPARγ pathways, respectively. This study provided useful information of the therapeutic potential of Q3G against osteoporosis mediated via regulation of MSC differentiation.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Korea;
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
- Correspondence: ; Tel.: +82-51-999-5429
| |
Collapse
|
26
|
Lu HP, Lin CJ, Chen WC, Chang YJ, Lin SW, Wang HH, Chang CJ. TRIM28 Regulates Dlk1 Expression in Adipogenesis. Int J Mol Sci 2020; 21:ijms21197245. [PMID: 33008113 PMCID: PMC7582669 DOI: 10.3390/ijms21197245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 12/23/2022] Open
Abstract
The tripartite motif-containing protein 28 (TRIM28) is a transcription corepressor, interacting with histone deacetylase and methyltransferase complexes. TRIM28 is a crucial regulator in development and differentiation. We would like to investigate its function and regulation in adipogenesis. Knockdown of Trim28 by transducing lentivirus-carrying shRNAs impairs the differentiation of 3T3-L1 preadipocytes, demonstrated by morphological observation and gene expression analysis. To understand the molecular mechanism of Trim28-mediated adipogenesis, the RNA-seq was performed to find out the possible Trim28-regulated genes. Dlk1 (delta-like homolog 1) was increased in Trim28 knockdown 3T3-L1 cells both untreated and induced to differentiation. Dlk1 is an imprinted gene and known as an inhibitor of adipogenesis. Further knockdown of Dlk1 in Trim28 knockdown 3T3-L1 would rescue cell differentiation. The epigenetic analysis showed that DNA methylation of Dlk1 promoter and differentially methylated regions (DMRs) was not altered significantly in Trim28 knockdown cells. However, compared to control cells, the histone methylation on the Dlk1 promoter was increased at H3K4 and decreased at H3K27 in Trim28 knockdown cells. Finally, we found Trim28 might be recruited by transcription factor E2f1 to regulate Dlk1 expression. The results imply Trim28-Dlk1 axis is critical for adipogenesis.
Collapse
Affiliation(s)
- Hsin-Pin Lu
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-P.L.); (C.-J.L.); (W.-C.C.)
| | - Chieh-Ju Lin
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-P.L.); (C.-J.L.); (W.-C.C.)
| | - Wen-Ching Chen
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-P.L.); (C.-J.L.); (W.-C.C.)
| | - Yao-Jen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (Y.-J.C.); (S.-W.L.)
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (Y.-J.C.); (S.-W.L.)
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan
| | - Ching-Jin Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-P.L.); (C.-J.L.); (W.-C.C.)
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (Y.-J.C.); (S.-W.L.)
- Correspondence:
| |
Collapse
|
27
|
Epigenetic Regulation of Neuregulin-1 Tunes White Adipose Stem Cell Differentiation. Cells 2020; 9:cells9051148. [PMID: 32392729 PMCID: PMC7290571 DOI: 10.3390/cells9051148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Expansion of subcutaneous adipose tissue by differentiation of new adipocytes has been linked to improvements in metabolic health. However, an expandability limit has been observed wherein new adipocytes cannot be produced, the existing adipocytes become enlarged (hypertrophic) and lipids spill over into ectopic sites. Inappropriate ectopic storage of these surplus lipids in liver, muscle, and visceral depots has been linked with metabolic dysfunction. Here we show that Neuregulin-1 (NRG1) serves as a regulator of adipogenic differentiation in subcutaneous primary human stem cells. We further demonstrate that DNA methylation modulates NRG1 expression in these cells, and a 3-day exposure of stem cells to a recombinant NRG1 peptide fragment is sufficient to reprogram adipogenic cellular differentiation to higher levels. These results define a novel molecular adipogenic rheostat with potential implications for the expansion of adipose tissue in vivo.
Collapse
|
28
|
Zhang M, Li D, Zhai Y, Wang Z, Ma X, Zhang D, Li G, Han R, Jiang R, Li Z, Kang X, Sun G. The Landscape of DNA Methylation Associated With the Transcriptomic Network of Intramuscular Adipocytes Generates Insight Into Intramuscular Fat Deposition in Chicken. Front Cell Dev Biol 2020; 8:206. [PMID: 32300590 PMCID: PMC7142253 DOI: 10.3389/fcell.2020.00206] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Intramuscular fat (IMF), which regulated by genetics, nutrition and environment is an important factor that influencing meat quality. Up to now, the epigenetic regulation mechanism underlying poultry IMF deposition remains poorly understood. Here, we focused on the DNA methylation, which usually regulate genes in transcription level. To look into the essential role of DNA methylation on the IMF deposition, chicken intramuscular preadipocytes were isolated and cultured in vitro, and a model of intramuscular adipocyte differentiation was constructed. Combined the whole genome bisulfite sequencing (WGBS) and RNA-Seq technologies, we identified several methylated genes, which mainly affecting fatty acid metabolism and muscle development. Furthermore, we reported that DNA methylation regulate intramuscular adipogenesis by regulating the genes, such as collagen, type VI, alpha 1 (COL6A1) thus affecting IMF deposition. Overexpression of COL6A1 increases the lipid droplet and inhibits cell proliferation by regulating CHAD and CAMK2 in intramuscular adipocytes, while knockdown of COL6A1 shows the opposite effect. Taken together, our results reveal that DNA methylation plays an important role in poultry IMF deposition.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Zhai
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Zhengzhu Wang
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Xiangfei Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Daoyu Zhang
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
29
|
Cheng YH, Dong JC, Bian Q. Small molecules for mesenchymal stem cell fate determination. World J Stem Cells 2019; 11:1084-1103. [PMID: 31875870 PMCID: PMC6904864 DOI: 10.4252/wjsc.v11.i12.1084] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells harboring self-renewal and multilineage differentiation potential that are capable of differentiating into osteoblasts, adipocytes, or chondrocytes in vitro, and regulating the bone marrow microenvironment and adipose tissue remodeling in vivo. The process of fate determination is initiated by signaling molecules that drive MSCs into a specific lineage. Impairment of MSC fate determination leads to different bone and adipose tissue-related diseases, including aging, osteoporosis, and insulin resistance. Much progress has been made in recent years in discovering small molecules and their underlying mechanisms control the cell fate of MSCs both in vitro and in vivo. In this review, we summarize recent findings in applying small molecules to the trilineage commitment of MSCs, for instance, genistein, medicarpin, and icariin for the osteogenic cell fate commitment; isorhamnetin, risedronate, and arctigenin for pro-adipogenesis; and atractylenolides and dihydroartemisinin for chondrogenic fate determination. We highlight the underlying mechanisms, including direct regulation, epigenetic modification, and post-translational modification of signaling molecules in the AMPK, MAPK, Notch, PI3K/AKT, Hedgehog signaling pathways etc. and discuss the small molecules that are currently being studied in clinical trials. The target-based manipulation of lineage-specific commitment by small molecules offers substantial insights into bone marrow microenvironment regulation, adipose tissue homeostasis, and therapeutic strategies for MSC-related diseases.
Collapse
Affiliation(s)
- Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
30
|
Lizcano F. The Beige Adipocyte as a Therapy for Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20205058. [PMID: 31614705 PMCID: PMC6834159 DOI: 10.3390/ijms20205058] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia.
| |
Collapse
|
31
|
Zhang P, Tao F, Li Q, Wu S, Fu B, Liu P. 5-Azacytidine and trichostatin A enhance the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from steroid-induced avascular necrosis of the femoral head in rabbit. J Biosci 2019; 44:87. [PMID: 31502565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) play an important role in the process of bone repair. The present study investigated the effect of 5-azacytidine (AZA) and trichostatin A (TSA) on BMSC behaviors in vitro. The role of WNT family member 5A (WNT5A)/WNT family member 5A (WNT7A)/beta-catenin signaling was also investigated. BMSCs were isolated from a steroid-induced avascular necrosis of the femoral head (SANFH) rabbit model. The third-generation of BMSCs was used after identification. The results revealed obvious degeneration and necrosis in the SANFH rabbit model. AZA, TSA and TSA + AZA increased BMSC proliferation in a time-dependent fashion. AZA, TSA and TSA + AZA induced the cell cycle release from the G0/G1 phase and inhibited apoptosis in BMSCs. AZA, TSA and TSA + AZA treatment significantly decreased caspase-3 and caspase-9 activities. The treatment obviously increased the activity and relative mRNA expression of alkaline phosphatase. The treatment also significantly up-regulated the proteins associated with osteogenic differentiation, including osteocalcin and runt-related transcription factor 2 (RUNX2), and Wnt/beta-catenin signal transduction pathway-related proteins beta-catenin, WNT5A and WNT7A. The relative levels of Dickkopf-related protein 1 (an inhibitor of the canonical Wnt pathway) decreased remarkably. Notably, TSA + AZA treatment exhibited a stronger adjustment ability than either single treatment. Collectively, the present studies suggest that AZA, TSA and TSA + AZA promote cell proliferation and osteogenic differentiation in BMSCs, and these effects are potentially achieved via upregulation of WNT5A/WNT7A/b-catenin signaling.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
5-Azacytidine and trichostatin A enhance the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from steroid-induced avascular necrosis of the femoral head in rabbit. J Biosci 2019. [DOI: 10.1007/s12038-019-9901-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Abstract
The two types of thermogenic fat cells, beige and brown adipocytes, play a significant role in regulating energy homeostasis. Their development and thermogenesis are tightly regulated by dynamic epigenetic mechanisms, which could potentially be targeted to treat metabolic disorders such as obesity. However, we are just beginning to catalog and understand these dynamic changes. In this review, we will discuss the current understanding of the role of DNA (de)methylation events in beige and brown adipose biology in order to highlight the holes in our knowledge and to point the way forward for future studies.
Collapse
Affiliation(s)
- Han Xiao
- a Department of Nutritional Sciences and Toxicology, UC Berkeley , Berkeley , CA , USA
| | - Sona Kang
- a Department of Nutritional Sciences and Toxicology, UC Berkeley , Berkeley , CA , USA
| |
Collapse
|
34
|
Fu X, Li C, Liu Q, McMillin KW. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: The regulation of beef quality by resident progenitor cells1. J Anim Sci 2019; 97:2658-2673. [PMID: 30982893 PMCID: PMC6541817 DOI: 10.1093/jas/skz111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
The intramuscular adipose tissue deposition in the skeletal muscle of beef cattle is a highly desired trait essential for high-quality beef. In contrast, the excessive accumulation of crosslinked collagen in intramuscular connective tissue contributes to beef toughness. Recent studies revealed that adipose tissue and connective tissue share an embryonic origin in mice and may be derived from a common immediate bipotent precursor in mice and humans. Having the same linkages in the development of adipose tissue and connective tissue in beef, the lineage commitment and differentiation of progenitor cells giving rise to these tissues may directly affect beef quality. It has been shown that these processes are regulated by some key transcription regulators and are subjective to epigenetic modifications such as DNA methylation, histone modifications, and microRNAs. Continued exploration of relevant regulatory pathways is very important for the identification of mechanisms influencing meat quality and the development of proper management strategies for beef quality improvement.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Kenneth W McMillin
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| |
Collapse
|
35
|
Abstract
The twin epidemics of obesity and type 2 diabetes (T2D) are a serious health, social, and economic issue. The dysregulation of adipose tissue biology is central to the development of these two metabolic disorders, as adipose tissue plays a pivotal role in regulating whole-body metabolism and energy homeostasis (1). Accumulating evidence indicates that multiple aspects of adipose biology are regulated, in part, by epigenetic mechanisms. The precise and comprehensive understanding of the epigenetic control of adipose tissue biology is crucial to identifying novel therapeutic interventions that target epigenetic issues. Here, we review the recent findings on DNA methylation events and machinery in regulating the developmental processes and metabolic function of adipocytes. We highlight the following points: 1) DNA methylation is a key epigenetic regulator of adipose development and gene regulation, 2) emerging evidence suggests that DNA methylation is involved in the transgenerational passage of obesity and other metabolic disorders, 3) DNA methylation is involved in regulating the altered transcriptional landscape of dysfunctional adipose tissue, 4) genome-wide studies reveal specific DNA methylation events that associate with obesity and T2D, and 5) the enzymatic effectors of DNA methylation have physiological functions in adipose development and metabolic function.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Sona Kang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
36
|
Adamik J, Roodman GD, Galson DL. Epigenetic-Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus 2019; 3:e10183. [PMID: 30918921 PMCID: PMC6419609 DOI: 10.1002/jbm4.10183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/29/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) bone disease is characterized by the development of osteolytic lesions, which cause severe complications affecting the morbidity, mortality, and treatment of myeloma patients. Myeloma tumors seeded within the bone microenvironment promote hyperactivation of osteoclasts and suppression of osteoblast differentiation. Because of this prolonged suppression of bone marrow stromal cells’ (BMSCs) differentiation into functioning osteoblasts, bone lesions in patients persist even in the absence of active disease. Current antiresorptive therapy provides insufficient bone anabolic effects to reliably repair MM lesions. It has become widely accepted that myeloma‐exposed BMSCs have an altered phenotype with pro‐inflammatory, immune‐modulatory, anti‐osteogenic, and pro‐adipogenic properties. In this review, we focus on the role of epigenetic‐based modalities in the establishment and maintenance of myeloma‐induced suppression of osteogenic commitment of BMSCs. We will focus on recent studies demonstrating the involvement of chromatin‐modifying enzymes in transcriptional repression of osteogenic genes in MM‐BMSCs. We will further address the epigenetic plasticity in the differentiation commitment of osteoprogenitor cells and assess the involvement of chromatin modifiers in MSC‐lineage switching from osteogenic to adipogenic in the context of the inflammatory myeloma microenvironment. Lastly, we will discuss the potential of employing small molecule epigenetic inhibitors currently used in the MM research as therapeutics and bone anabolic agents in the prevention or repair of osteolytic lesions in MM. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| | - G David Roodman
- Department of Medicine Division of Hematology-Oncology Indiana University Indianapolis IN USA.,Richard L Roudebush VA Medical Center Indianapolis IN USA
| | - Deborah L Galson
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
37
|
Tsukamoto M, Wang KY, Tasaki T, Murata Y, Okada Y, Yamanaka Y, Nakamura E, Yamada S, Izumi H, Zhou Q, Azuma K, Sasaguri Y, Kohno K, Sakai A. Findings as a starting point to unravel the underlying mechanisms of in vivo interactions involving Wnt10a in bone, fat and muscle. Bone 2019; 120:75-84. [PMID: 30315998 DOI: 10.1016/j.bone.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
Wnt10a is a member of the WNT family. Although deficiency of this gene causes symptoms related to teeth, hair, nails, and skin, we recently demonstrated a new phenotype of Wnt10a knockout (KO) mice involving bone and fat. The in vivo effect of the Wnt10a gene on bone and fat is unclear, and the relationship between bone/fat and muscle in Wnt10a signaling is also interesting. We aimed to evaluate the tissue changes in Wnt10a KO mice compared to wild-type mice and show the findings as a starting point to unravel the underlying mechanisms of in vivo interactions involving Wnt10a in bone, fat and muscle. Trabecular bone loss in the lower limbs of Wnt10a mice and decreased bone mineralization were observed. The adipose tissue in bone marrow was also decreased, and adipocyte differentiation was reduced. The body fat mass in Wnt10a KO mice was decreased, and white adipocytes in subcutaneous fat were converted to beige adipocytes. The muscle weight of the lower limbs was not decreased despite trabecular bone loss, but Gdf8/myostatin expression was reduced in the subcutaneous fat and gastrocnemius muscles of Wnt10a KO mice. Thus, in vivo deletion of Wnt10a inhibited osteogenic activity, promoted beige adipogenesis of white adipocytes and maintained muscle mass. These results suggest that regulation of Gdf8 by Wnt10a may help maintain the muscle mass of Wnt10a KO mice. This study was the first to histologically evaluate the bone, fat and muscle phenotypes of Wnt10a KO mice. The results of this study, which were obtained by investigating the three tissues together, could influence the understanding of in vivo interactions involving the Wnt10a gene.
Collapse
Affiliation(s)
- Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health University, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Takashi Tasaki
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yoichi Murata
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health University, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health University, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health University, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Eiichiro Nakamura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health University, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; Laboratory of Pathology, Fukuoka Tokushukai Hospital, Fukuoka 816-0864, Japan
| | | | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health University, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
38
|
Flores EM, Woeller CF, Falsetta ML, Susiarjo M, Phipps RP. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis. FASEB J 2019; 33:3353-3363. [PMID: 30376360 PMCID: PMC6404567 DOI: 10.1096/fj.201801481r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
The obesity epidemic is developing into the most costly health problem facing the world. Obesity, characterized by excessive adipogenesis and enlarged adipocytes, promotes morbidities, such as diabetes, cardiovascular disease, and cancer. Regulation of adipogenesis is critical to our understanding of how fat cell formation causes obesity and associated health problems. Thy1 (also called CD90), a widely used stem cell marker, blocks adipogenesis and reduces lipid accumulation. Thy1-knockout mice are prone to diet-induced obesity. Although the importance of Thy1 in adipogenesis and obesity is now evident, how its expression is regulated is not. We hypothesized that DNA methylation has a role in promoting adipogenesis and affects Thy1 expression. Using the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we investigated whether DNA methylation alters Thy1 expression during adipogenesis in both mouse 3T3-L1 preadipocytes and mouse mesenchymal stem cells. Thy1 protein and mRNA levels were decreased dramatically during adipogenesis. However, 5-aza-dC treatment prevented that phenomenon. Methylation-sensitive pyrosequencing analysis showed that CpG sites at the Thy1 locus have increased methylation during adipogenesis, as well as increased methylation in adipose tissue from diet-induced obese mice. These new findings highlight the potential role of Thy1 and DNA methylation in adipogenesis and obesity.-Flores, E. M., Woeller, C. F., Falsetta, M. L., Susiarjo, M., Phipps, R. P. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis.
Collapse
Affiliation(s)
- E’Lissa M. Flores
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Megan L. Falsetta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Richard P. Phipps
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
39
|
Paradoxical effects of the epigenetic modifiers 5-aza-deoxycytidine and suberoylanilide hydroxamic acid on adipogenesis. Differentiation 2019; 106:1-8. [PMID: 30818187 DOI: 10.1016/j.diff.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/12/2019] [Accepted: 02/13/2019] [Indexed: 01/17/2023]
Abstract
Adipogenesis is an important biological process that is linked to obesity and metabolic disorders. On the other hand, fat regeneration is crucial as a restorative approach following mastectomy or severe burn injury. Furthermore, optimizing an in-vitro model of adipogenesis, which would help in understanding the possible effects and/or side effects of fat-soluble drugs and anti-obesity remedies, in addition to the developmental studies. Epigenetic is an important factor that is involved in cellular differentiation and commitment. This study aimed at investigating the effect of DNA methylation and histone deactylases inhibitors, 5-Aza-deoxycytidine (5-Aza-dC) and Suberoylanilide hydroxamic acid (SAHA), on the adipogenic differentiation process. The two modifiers were applied according to our previously published protocol, followed by three cycles of a classical, two-step adipogenesis protocol. The cells pretreated with SAHA showed enhanced expression of the many adipogenic genes, including peroxisome proliferator-activated receptor-γ as well as the accumulation of intracytoplasmic fat as shown by oil red and Nile red staining and the secretion of adipokines, such as MCP-1 and IP-10. On contrary, 5-Aza-dC inhibited all these markers. In conclusion, adding the reported step with SAHA to the differentiation protocols could have an impact on the progress of the in-vitro fat regenerative approach. The possible role of 5-Aza-dC in the inhibition of adipogenesis can be of clinical interest and will need further characterization in the future.
Collapse
|
40
|
Wu HY, Bi R, Sun T, Xie F. Deletion of Dicer blocks osteogenic differentiation via the inhibition of Wnt signalling. Mol Med Rep 2019; 19:2897-2905. [PMID: 30816532 DOI: 10.3892/mmr.2019.9941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/29/2019] [Indexed: 11/06/2022] Open
Abstract
Micro (mi)RNAs are small, non‑coding RNAs and have been reported to have important roles in the epigenetic control of bone development. miRNAs markedly regulate osteoblast differentiation through stages of maturation as well as the activities of osteogenic signaling pathways. Dicer is an important endoribonuclease that regulates miRNA maturation. Previous studies have demonstrated that Dicer deletion decreases fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass. However, the underlying molecular mechanisms remain unclear. In the present study, whether the deletion of Dicer affects Wnt signaling, which exhibits important roles during osteogenesis, was investigated. Bone marrow stromal cells (BMSCs) were used as an osteogenic model. Dynamic changes of seven Wnt genes and downstream T‑cell factor 1 (Tcf‑1)/lymphoid enhancing binding factor were observed during the osteogenic differentiation of BMSCs, which revealed different roles at early and late differentiation stages. Following the stable knockdown of Dicer in BMSCs using lentiviral short hairpin RNA, osteogenic differentiation was blocked, and the levels of important osteogenic differentiation markers (runt related transcription factor 2 and alkaline phosphatase) were markedly inhibited. Furthermore, stage specific regulation of Wnt genes in Dicer‑deficient BMSCs was investigated in the present study. At the early differentiation stage (days 5‑7), knockdown of Dicer led to the inhibition of Wnt1, Wnt7 and Wnt10b, as well as the upregulation of Wnt4, Wnt10a and Tcf‑1. At the late stage of differentiation (days 14‑21), knockdown of Dicer significantly suppressed the expression levels of all of the included Wnt genes as well as Tcf‑1, with the exception of Wnt10a. The upregulation of Wnt10a following the deletion of Dicer was maintained throughout all stages of differentiation. In addition, differential regulation of Wnt genes and Tcf‑1 were revealed to be associated with dynamic changes in their expression levels during osteogenic differentiation. Furthermore, the four putative Wnt10a‑targeting miRNAs were investigated in the present study, and the results demonstrated that they were upregulated during osteogenic differentiation, which suggested that inhibition of Wnt10a may be an important factor associated with osteogenic differentiation. In conclusion, the present study investigated the mechanism underlying the regulation of Wnt signalling by Dicer during osteogenesis, and identified potential miRNAs targeting the components of Wnt signalling influenced by Dicer. Collectively, the present study identified the association between Dicer and Wnt signalling during bone development.
Collapse
Affiliation(s)
- Hong-Yan Wu
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Rui Bi
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Ting Sun
- Department of Clinical Pharmacology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Fei Xie
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| |
Collapse
|
41
|
Rajan A, Shi H, Xue B. Class I and II Histone Deacetylase Inhibitors Differentially Regulate Thermogenic Gene Expression in Brown Adipocytes. Sci Rep 2018; 8:13072. [PMID: 30166563 PMCID: PMC6117331 DOI: 10.1038/s41598-018-31560-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/17/2018] [Indexed: 01/04/2023] Open
Abstract
Class I histone deacetylase inhibitors (HDACis) enhance whole body energy expenditure and attenuate high fat diet-induced insulin resistance. However, it is not clear whether this is exerted directly through activating brown fat thermogenesis. Here, we find that pan-HDACi TSA exerts paradoxical effects on brown fat gene expression, as it inhibits the expression of Ucp1, Pparγ and Prdm16 in brown adipocytes, while promoting the expression of other brown fat-specific genes such as Pgc1α, Pgc1β, Acox1 and Cidea. Further studies indicate that class I HDACi MS-275 significantly increases; whereas class II HDACi MC-1568 markedly reduces, the expression of Ucp1 and other brown fat-specific genes in treated brown adipocytes. ChIP assay reveals an enhanced H3 acetylation at the Pgc1α promoter in MS-275-treated brown adipocytes; whereas the effect of MC-1568 is associated with up-regulation of retinoblastoma protein (Rb) and an enhanced acetylation of H3K27 at the Rb promoter. Loss of function studies indicate that Pgc1α up-regulation largely mediates the stimulatory effect of class I HDACis on the thermogenic program, whereas up-regulation of Rb may be responsible for the inhibitory effect of class II HDACis. Thus, our data suggest that class I and II HDACis have differential effects on brown fat thermogenic gene expression.
Collapse
Affiliation(s)
- Anubama Rajan
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Hang Shi
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Bingzhong Xue
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
42
|
Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res 2018; 6:17. [PMID: 29844946 PMCID: PMC5968037 DOI: 10.1038/s41413-018-0017-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Dysregulated Wnt signaling is associated with the pathogenesis of cancers, fibrosis, and vascular diseases. Inhibition of Wnt signaling has shown efficacy in various pre-clinical models of these disorders. One of the key challenges in developing targeted anti-cancer drugs is to balance efficacy with on-target toxicity. Given the crucial role Wnts play in the differentiation of osteoblasts and osteoclasts, acute inhibition of Wnt signaling is likely to affect bone homeostasis. In this study, we evaluated the skeletal effect of small molecule inhibitor of an o-acyl transferase porcupine (PORCN) that prevents Wnt signaling by blocking the secretion of all Wnts. Micro-computed tomography and histomorphometric evaluation revealed that the bones of mice treated with two structurally distinct PORCN inhibitors LGK974 and ETC-1922159 (ETC-159) had loss-of-bone volume and density within 4 weeks of exposure. This decreased bone mass was associated with a significant increase in adipocytes within the bone marrow. Notably, simultaneous administration of a clinically approved anti-resorptive, alendronate, a member of the bisphosphonate family, mitigated loss-of-bone mass seen upon ETC-159 treatment by regulating activity of osteoclasts and blocking accumulation of bone marrow adipocytes. Our results support the addition of bone protective agents when treating patients with PORCN inhibitors. Mitigation of bone toxicity can extend the therapeutic utility of Wnt pathway inhibitors. Potential bone loss caused by cancer drugs could be mitigated by administering an existing osteoporosis drug. Over-activation of the Wnt signaling pathway, which helps maintain healthy tissues and bone development, is often found in cancer. Scientists are trialing cancer drugs that block a key enzyme PORCN and therefore inhibit Wnt signaling, but these drugs may also adversely affect patients’ bone structure. David Virshup at Duke-NUS Medical School in Singapore and Bart Williams at the Van Andel Research Institute in Michigan, US, and co-workers found that mice treated with PORCN -inhibiting cancer drugs lost bone volume and density within four weeks of exposure. The team then combined the cancer drug with another drug, alendronate, which is already used to treat osteoporosis. This combination targeted aberrant Wnt signaling and limited bone toxicity in the mice.
Collapse
|
43
|
Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. Eur J Med Chem 2018; 143:1345-1360. [DOI: 10.1016/j.ejmech.2017.10.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
|
44
|
Liu G, Li M, Xu Y, Wu S, Saeed M, Sun C. ColXV promotes adipocyte differentiation via inhibiting DNA methylation and cAMP/PKA pathway in mice. Oncotarget 2017; 8:60135-60148. [PMID: 28947959 PMCID: PMC5601127 DOI: 10.18632/oncotarget.18550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/04/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular matrix (ECM), as an essential component of adipose tissue, not only provides mechanical support for adipocyte growth, but also participates in ECM-adipocyte communication via various secreted proteins, including highly enriched collagens. Collagen XV (ColXV) is a secreted non-fibrillar collagen within ECM Basement Membrane (BM) zones and well recognized as a tumor suppressor. However, the role of ColXV in adipose tissue is still unknown. In this study, high fat diet (HFD) fed mice were used as obese model, in which we deeply investigated the interaction between ColXV and adipocyte differentiation or adipose metabolism. We found great elevated ColXV expression and positive effect of ColXV on lipid deposition during adipocyte differentiation or obesity both in vitro and in vivo. cAMP response element binding protein (CREB) is a cellular transcription factor that can inhibit adipogenesis and promote lipolysis. Here we proposed ColXV as a newly discovered downstream gene of CREB. We further proved that CREB can repress adipocyte differentiation and enhance lipolysis by negatively regulating ColXV transcription. Mechanistic studies showed ColXV enhanced adipocyte differentiation and lipid deposition through reducing its DNA methylation and repressing the cAMP/PKA signaling pathway. Collectively, our study identified ColXV as a novel downstream gene for CREB and could promote adipocyte differentiation, inhibit lipolysis through repressing cAMP/PKA signaling pathway and positively regulating adipogenic markers expressions by repressing the activity of maintenance methyltransferase Dnmt1. Our data discovered a novel role of ColXV in adipocyte differentiation and provide insight into obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Guannv Liu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Song Wu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
45
|
Llobet L, Bayona-Bafaluy MP, Pacheu-Grau D, Torres-Pérez E, Arbones-Mainar JM, Navarro MÁ, Gómez-Díaz C, Montoya J, López-Gallardo E, Ruiz-Pesini E. Pharmacologic concentrations of linezolid modify oxidative phosphorylation function and adipocyte secretome. Redox Biol 2017; 13:244-254. [PMID: 28600981 PMCID: PMC5466587 DOI: 10.1016/j.redox.2017.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
The oxidative phosphorylation system is important for adipocyte differentiation. Therefore, xenobiotics inhibitors of the oxidative phosphorylation system could affect adipocyte differentiation and adipokine secretion. As adipokines impact the overall health status, these xenobiotics may have wide effects on human health. Some of these xenobiotics are widely used therapeutic drugs, such as ribosomal antibiotics. Because of its similarity to the bacterial one, mitochondrial translation system is an off-target for these compounds. To study the influence of the ribosomal antibiotic linezolid on adipokine production, we analyzed its effects on adipocyte secretome. Linezolid, at therapeutic concentrations, modifies the levels of apolipoprotein E and several adipokines and proteins related with the extracellular matrix. This antibiotic also alters the global methylation status of human adipose tissue-derived stem cells and, therefore, its effects are not limited to the exposure period. Besides their consequences on other tissues, xenobiotics acting on the adipocyte oxidative phosphorylation system alter apolipoprotein E and adipokine production, secondarily contributing to their systemic effects. Linezolid decreases oxidative phosphorylation system capacity. Linezolid reduces adipocyte differentiation from human adipose-derived stem cells. Linezolid modifies APOE, adipokine and extracellular matrix proteins levels. Linezolid changes DNA methylation of human adipose tissue-derived stem cells. Xenobiotics, acting on adipocyte oxidative phosphorylation, affect human health.
Collapse
Affiliation(s)
- Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center, Humboldtalle 23, 37073 Göttingen, Germany.
| | - Elena Torres-Pérez
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Unidad de Investigación Traslacional, Instituto Aragones de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - José M Arbones-Mainar
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Unidad de Investigación Traslacional, Instituto Aragones de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - M Ángeles Navarro
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - Covadonga Gómez-Díaz
- Servicio de Otorrinolaringología, Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Fundación ARAID, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
46
|
Guo W, Chen J, Yang Y, Zhu J, Wu J. Epigenetic programming of Dnmt3a mediated by AP2α is required for granting preadipocyte the ability to differentiate. Cell Death Dis 2016; 7:e2496. [PMID: 27906176 PMCID: PMC5261006 DOI: 10.1038/cddis.2016.378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Adipogenesis has an important role in regulating energy homeostasis in mammals. 3T3-L1 preadipocytes have been widely used as an in vitro model for analyzing the molecular mechanism of adipogenesis. Previous reports indicated that the stage of contact inhibition (CI), through which the proliferating cells exit from the cell cycle, was required for granting preadipocyte the ability to differentiate. While this kind of the granting mechanism remains elusive. In the present study, we showed that DNA (cytosine-5) methyltransferase 3a (Dnmt3a) was upregulated at both the mRNA and protein level during the CI stage, and resulted in increasing promoter methylation of adipogenic genes. We further identified that the expression of Activator protein 2α (AP2α), a member of the transcription factor activator protein 2 (AP2) family, was highly correlated with the expression of Dnmt3a during the CI stage. In addition, we showed that AP2α transcriptionally upregulated Dnmt3a by directly binding to its proximal promoter region. Importantly, treatment of 3T3-L1 preadipocytes with AP2α-specific siRNAs inhibited the preadipocyte differentiation in a stage-dependent manner, supporting the conclusion that AP2α has an important role during the CI stage. Furthermore, overexpression of Dnmt3a partially rescued the impairment of adipogenesis induced by AP2α knockdown. Collectively, our findings reveal that AP2α is an essential regulator for granting preadipocyte the ability to differentiate through the upregulation of Dnmt3a expression during the CI stage.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangnan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Life Science, University of Chinese Academy of Sciences, Shanghai,China
| | - Ying Yang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianbei Zhu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|