1
|
Chen XL, Jiang MZ. [Research progress of metabolomics in children with irritable bowel syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:989-994. [PMID: 39267517 PMCID: PMC11404471 DOI: 10.7499/j.issn.1008-8830.2404130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by symptoms such as abdominal pain, diarrhea, constipation, and indigestion. Given its unclear etiology and pathogenesis, and the absence of specific biomarkers, clinical diagnosis and treatment of IBS continue to pose significant challenges. In recent years, metabolomics technology, known for its non-invasive, high-throughput, high-precision, and highly reproducible features, has been widely applied in the diagnosis, treatment, and prognosis of various diseases. Therefore, metabolomics technology is expected to offer novel insights and methodologies for the biological mechanism research, diagnosis, and treatment of IBS. This article reviews recent advancements in the application of metabolomics to IBS, exploring its potential value in the clinical diagnosis and treatment of children with this condition.
Collapse
Affiliation(s)
- Xiao-Long Chen
- Department of Gastroenterology and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health/National Children's Regional Medical Center, Hangzhou 310052, China
| | | |
Collapse
|
2
|
Vakili O, Adibi Sedeh P, Pourfarzam M. Metabolic biomarkers in irritable bowel syndrome diagnosis. Clin Chim Acta 2024; 560:119753. [PMID: 38821336 DOI: 10.1016/j.cca.2024.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal (GI) disorder characterized by altered bowel habits and abdominal discomfort during defecation. It significantly impacts life quality and work productivity for those affected. Global data suggests a slightly higher prevalence in females than in males. Today, unambiguous diagnosis of IBS remains challenging due to the absence of a specific biochemical, histopathological, or radiological test. Current diagnosis relies heavily on thorough symptom evaluation. Efforts by the Rome committees have established standardized diagnostic criteria (Rome I-IV), improving consistency and clinical applicability. Recent studies in this framework, seem to have successfully employed metabolomics techniques to identify distinct metabolite profiles in breath and stool samples of IBS patients, differentiating them from healthy controls and those with other functional GI disorders, such as inflammatory bowel disease (IBD). Building on this success, researchers are investigating the presence of similar metabolites in easily accessible biofluids such as urine, potentially offering a less invasive diagnostic approach. Accordingly, this review focuses on key metabolites specifically detected in IBS patients' biological specimens, with a focus on urinary metabolites, using various methods, particularly mass spectrometry (MS)-based techniques, including gas chromatography-MS (GC-MS), liquid chromatography-tandem MS (LC-MS/MS), and capillary electrophoresis-MS (CE-MS) metabolomics assays. These findings may make provision for a new set of non-invasive biomarkers for IBS diagnosis and management.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Peyman Adibi Sedeh
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Saqib Z, De Palma G, Lu J, Surette M, Bercik P, Collins SM. Alterations in fecal β-defensin-3 secretion as a marker of instability of the gut microbiota. Gut Microbes 2023; 15:2233679. [PMID: 37464450 PMCID: PMC10355691 DOI: 10.1080/19490976.2023.2233679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Compositional changes in the microbiota (dysbiosis) may be a basis for Irritable Bowel Syndrome (IBS), but biomarkers are currently unavailable to direct microbiota-directed therapy. We therefore examined whether changes in fecal β-defensin could be a marker of dysbiosis in a murine model. Experimental dysbiosis was induced using four interventions relevant to IBS: a mix of antimicrobials, westernized diets (high-fat/high-sugar and high salt diets), or mild restraint stress. Fecal mouse β-defensin-3 and 16S rRNA-based microbiome profiles were assessed at baseline and during and following these interventions. Each intervention, except for mild restraint stress, altered compositional and diversity profiles of the microbiota. Exposure to antimicrobials or a high-fat/high-sugar diet, but not mild restraint stress, resulted in decreased fecal β-defensin-3 compared to baseline. In contrast, exposure to the high salt diet increased β-defensin-3 compared to baseline. Mice exposed to the mix of antimicrobials showed the largest compositional changes and the most significant correlations between β-defensin-3 levels and bacterial diversity. The high salt diet was also associated with significant correlations between changes in β-defensin-3 and bacterial diversity, and this was not accompanied by discernible inflammatory changes in the host. Thus, dietary change or antimicrobial exposure, both recognized factors in IBS exacerbations, induced marked dysbiosis that was accompanied by changes in fecal β-defensin-3 levels. We propose that serial monitoring of fecal β-defensins may serve as a marker of dysbiosis and help identify those IBS patients who may benefit from microbiota-directed therapeutic interventions.
Collapse
Affiliation(s)
- Zarwa Saqib
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael Surette
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Stephen Michael Collins
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
5
|
Beckers AB, Wilms E, Mujagic Z, Kajtár B, Csekő K, Weerts ZZRM, Vork L, Troost FJ, Kruimel JW, Conchillo JM, Helyes Z, Masclee AAM, Keszthelyi D, Jonkers DMAE. Age-Related Decrease in Abdominal Pain and Associated Structural- and Functional Mechanisms: An Exploratory Study in Healthy Individuals and Irritable Bowel Syndrome Patients. Front Pharmacol 2022; 12:806002. [PMID: 34975501 PMCID: PMC8716827 DOI: 10.3389/fphar.2021.806002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: The world population is ageing, resulting in increased prevalence of age-related comorbidities and healthcare costs. Limited data are available on intestinal health in elderly populations. Structural and functional changes, including altered visceroperception, may lead to altered bowel habits and abdominal symptoms in healthy individuals and irritable bowel syndrome (IBS) patients. Our aim was to explore age-related changes in gastrointestinal symptoms and underlying mechanisms. Methods: In total, 780 subjects (IBS patients n = 463, healthy subjects n = 317) from two separate studies were included. Subjects were divided into different age groups ranging from young adult to elderly. Demographics and gastrointestinal symptom scores were collected from all participants using validated questionnaires. A subset of 233 IBS patients and 103 controls underwent a rectal barostat procedure to assess visceral hypersensitivity. Sigmoid biopsies were obtained from 10 healthy young adults and 10 healthy elderly. Expression of the visceral pain-associated receptors transient receptor potential (TRP) Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) genes were investigated by quantitative RT-PCR and immunofluorescence. Results: Both elderly IBS and healthy individuals showed significantly lower scores for abdominal pain (p < 0.001) and indigestion (p < 0.05) as compared to respective young adults. Visceral hypersensitivity was less common in elderly than young IBS patients (p < 0.001). Relative TRPA1 gene transcription, as well as TRPA1 and TRPV1 immunoreactivity were significantly lower in healthy elderly versus healthy young adults (p < 0.05). Conclusions: Our findings show an age-related decrease in abdominal pain perception. This may in part be related to decreased TRPA1 and/or TRPV1 receptor expression. Further studies are needed to reveal precise underlying mechanisms and the associations with intestinal health.
Collapse
Affiliation(s)
- Abraham B Beckers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ellen Wilms
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Zlatan Mujagic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Béla Kajtár
- Department of Pathology, Clinical Centre, Medical School, University of Pecs, Pécs, Hungary
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School and Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pecs, Pécs, Hungary
| | - Zsa Zsa R M Weerts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Lisa Vork
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Freddy J Troost
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Joanna W Kruimel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - José M Conchillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pecs, Pécs, Hungary.,PharmInVivo Ltd, Pécs, Hungary
| | - Ad A M Masclee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Daisy M A E Jonkers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
6
|
Mujagic Z, Kasapi M, Jonkers DMAE, Garcia-Perez I, Vork L, Weerts ZZR, Serrano-Contreras JI, Zhernakova A, Kurilshikov A, Scotcher J, Holmes E, Wijmenga C, Keszthelyi D, Nicholson JK, Posma JM, Masclee AAM. Integrated fecal microbiome-metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome. Gut Microbes 2022; 14:2063016. [PMID: 35446234 PMCID: PMC9037519 DOI: 10.1080/19490976.2022.2063016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS), several modalities of biological and clinical data must be combined. We aimed to identify profiles of fecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Fecal metabolites were measured using proton nuclear magnetic resonance (1H-NMR) spectroscopy and gut microbiome using shotgun metagenomic sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HCs) with extensive clinical, biological and phenotype information. Data were analyzed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on fecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal (GI) symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavorable stress response related to GI symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS.
Collapse
Affiliation(s)
- Zlatan Mujagic
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK,CONTACT Zlatan Mujagic Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Melpomeni Kasapi
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Daisy MAE Jonkers
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Isabel Garcia-Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - Lisa Vork
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Zsa Zsa R.M. Weerts
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jose Ivan Serrano-Contreras
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jamie Scotcher
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Elaine Holmes
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK,The Australian National Phenome Center, Harry Perkins Institute, Murdoch University, Perth, Australia
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniel Keszthelyi
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jeremy K Nicholson
- The Australian National Phenome Center, Harry Perkins Institute, Murdoch University, Perth, Australia
| | - Joram M Posma
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Ad AM Masclee
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Gacesa R, Vich Vila A, Collij V, Mujagic Z, Kurilshikov A, Voskuil M, Festen E, Wijmenga C, Jonkers D, Dijkstra G, Fu J, Zhernakova A, Imhann F, Weersma R. A combination of fecal calprotectin and human beta-defensin 2 facilitates diagnosis and monitoring of inflammatory bowel disease. Gut Microbes 2021; 13:1943288. [PMID: 34313538 PMCID: PMC8317932 DOI: 10.1080/19490976.2021.1943288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) show a large overlap in clinical presentation, which presents diagnostic challenges. As a consequence, invasive and burdensome endoscopies are often used to distinguish between IBD and IBS. Here, we aimed to develop a noninvasive fecal test that can distinguish between IBD and IBS and reduce the number of endoscopies.We used shotgun metagenomic sequencing to analyze the composition and function of gut microbiota of 169 IBS patients, 447 IBD patients and 1044 population controls and measured fecal Calprotectin (FCal), human beta defensin 2 (HBD2), and chromogranin A (CgA) in these samples. These measurements were used to construct training sets (75% of data) for logistic regression and machine learning models to differentiate IBS from IBD and inactive from active IBD. The results were replicated on test sets (remaining 25% of the data) and microbiome data obtained using 16S sequencing.Fecal HBD2 showed high sensitivity and specificity for differentiating between IBD and IBS (sensitivity = 0.89, specificity = 0.76), while the inclusion of microbiome data with biomarkers (HBD2 and FCal) showed a potential for improvement in predictive power (optimal sensitivity = 0.87, specificity = 0.93). Shotgun sequencing-based models produced comparable results using 16S-sequencing data. HBD2 and FCal were found to have predictive power for IBD disease activity (AUC ≈ 0.7).HBD2 is a novel biomarker for IBD in patients with gastro-intestinal complaints, especially when used in combination with FCal and potentially in combination with gut microbiome data.
Collapse
Affiliation(s)
- R. Gacesa
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - A. Vich Vila
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - V. Collij
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Z. Mujagic
- Maastricht University Medical Center, Division of Gastroenterology-Hepatology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - A. Kurilshikov
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - M.D. Voskuil
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - E.A.M. Festen
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - C. Wijmenga
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - D.M.A.E. Jonkers
- Maastricht University Medical Center, Division of Gastroenterology-Hepatology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - G. Dijkstra
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - J. Fu
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - A. Zhernakova
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - F. Imhann
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands,CONTACT F. Imhann University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - R.K. Weersma
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| |
Collapse
|
8
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Metabolic Profiling of Plasma in Patients with Irritable Bowel Syndrome after a 4-Week Starch- and Sucrose-Reduced Diet. Metabolites 2021; 11:metabo11070440. [PMID: 34357334 PMCID: PMC8306703 DOI: 10.3390/metabo11070440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
A 4-week dietary intervention with a starch- and sucrose-restricted diet (SSRD) was conducted in patients with irritable bowel syndrome (IBS) to examine the metabolic profile in relation to nutrient intake and gastrointestinal symptoms. IBS patients were randomized to SSRD intervention (n = 69) or control continuing with their ordinary food habits (n = 22). Food intake was registered and the questionnaires IBS-symptoms severity scale (IBS-SSS) and visual analog scale for IBS (VAS-IBS) were completed. Metabolomics untargeted analysis was performed by gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) in positive and negative ionization modes. SSRD led to marked changes in circulating metabolite concentrations at the group level, most prominent for reduced starch intake and increased polyunsaturated fat, with small changes in the control group. On an individual level, the correlations were weak. The marked reduction in gastrointestinal symptoms did not correlate with the metabolic changes. SSRD was observed by clear metabolic effects mainly related to linoleic acid metabolism, fatty acid biosynthesis, and beta-oxidation.
Collapse
|
10
|
Nakov R, Snegarova V, Dimitrova-Yurukova D, Velikova T. Biomarkers in Irritable Bowel Syndrome: Biological Rationale and Diagnostic Value. Dig Dis 2021; 40:23-32. [PMID: 33752201 DOI: 10.1159/000516027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with irritable bowel syndrome (IBS) usually suffer from nonspecific and overlapping signs that hamper the diagnostic process. In line with this, biomarkers specific for IBS could be of great benefit for diagnosing and managing patients. In IBS, the need is for apparent distinguishing features linked to the disease that improve diagnosis, differentiate from other organic diseases, and discriminate between IBS subtypes. SUMMARY Some biomarkers are associated with a possible pathophysiologic mechanism of IBS; others are used for differentiating IBS from non-IBS patients. Implementation of IBS biomarkers in everyday clinical practice is critical for early diagnosis and treatment. However, our knowledge about their efficient use is still scarce. Key Messages: This review discusses the biomarkers implemented for IBS diagnosis and management, such as blood (serum), fecal, immunological, related to the microbiome, microRNAs, and some promising novel biomarkers associated with imaging and psychological features of the disease. We focus on the most commonly studied and validated biomarkers and their biological rationale, diagnostic, and clinical value.
Collapse
Affiliation(s)
- Radislav Nakov
- Clinic of Gastroenterology, Tsaritsa Yoanna University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Violeta Snegarova
- Department of Hygiene and Epidemiology, Medical University of Varna, Varna, Bulgaria
| | | | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| |
Collapse
|
11
|
Carco C, Young W, Gearry RB, Talley NJ, McNabb WC, Roy NC. Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis. Front Cell Infect Microbiol 2020; 10:468. [PMID: 33014892 PMCID: PMC7509092 DOI: 10.3389/fcimb.2020.00468] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbors most of the microbial cells inhabiting the body, collectively known as the microbiota. These microbes have several implications for the maintenance of structural integrity of the gastrointestinal mucosal barrier, immunomodulation, metabolism of nutrients, and protection against pathogens. Dysfunctions in these mechanisms are linked to a range of conditions in the gastrointestinal tract, including functional gastrointestinal disorders, ranging from irritable bowel syndrome, to functional constipation and functional diarrhea. Irritable bowel syndrome is characterized by chronic abdominal pain with changes in bowel habit in the absence of morphological changes. Despite the high prevalence of irritable bowel syndrome in the global population, the mechanisms responsible for this condition are poorly understood. Although alterations in the gastrointestinal microbiota, low-grade inflammation and immune activation have been implicated in the pathophysiology of functional gastrointestinal disorders, there is inconsistency between studies and a lack of consensus on what the exact role of the microbiota is, and how changes to it relate to these conditions. The complex interplay between host factors, such as microbial dysbiosis, immune activation, impaired epithelial barrier function and motility, and environmental factors, including diet, will be considered in this narrative review of the pathophysiology of functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Caterina Carco
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Wayne Young
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Richard B Gearry
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Fukui H, Nishida A, Matsuda S, Kira F, Watanabe S, Kuriyama M, Kawakami K, Aikawa Y, Oda N, Arai K, Matsunaga A, Nonaka M, Nakai K, Shinmura W, Matsumoto M, Morishita S, Takeda AK, Miwa H. Usefulness of Machine Learning-Based Gut Microbiome Analysis for Identifying Patients with Irritable Bowels Syndrome. J Clin Med 2020; 9:E2403. [PMID: 32727141 PMCID: PMC7464323 DOI: 10.3390/jcm9082403] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Irritable bowel syndrome (IBS) is diagnosed by subjective clinical symptoms. We aimed to establish an objective IBS prediction model based on gut microbiome analyses employing machine learning. We collected fecal samples and clinical data from 85 adult patients who met the Rome III criteria for IBS, as well as from 26 healthy controls. The fecal gut microbiome profiles were analyzed by 16S ribosomal RNA sequencing, and the determination of short-chain fatty acids was performed by gas chromatography-mass spectrometry. The IBS prediction model based on gut microbiome data after machine learning was validated for its consistency for clinical diagnosis. The fecal microbiome alpha-diversity indices were significantly smaller in the IBS group than in the healthy controls. The amount of propionic acid and the difference between butyric acid and valerate were significantly higher in the IBS group than in the healthy controls (p < 0.05). Using LASSO logistic regression, we extracted a featured group of bacteria to distinguish IBS patients from healthy controls. Using the data for these featured bacteria, we established a prediction model for identifying IBS patients by machine learning (sensitivity >80%; specificity >90%). Gut microbiome analysis using machine learning is useful for identifying patients with IBS.
Collapse
Affiliation(s)
- Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.F.); (H.M.)
| | - Akifumi Nishida
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
- Department of Electrical Engineering and Bioscience, Waseda University, 1-104, Totsuka, Shinjuku, Tokyo 169-8050, Japan
- School of Computing, Tokyo Institute of Technology, 2-12-1, Okayama, Meguro, Tokyo 152-8550, Japan
| | - Satoshi Matsuda
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Fumitaka Kira
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
- Department of Gastroenterology, JCHO Tokyo Shinjuku Medical Center, 5-1, Tsukudo, Shinjuku, Tokyo 162-8543, Japan; (W.S.); (M.M.); (S.M.)
| | - Satoshi Watanabe
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
| | - Minoru Kuriyama
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
| | - Kazuhiko Kawakami
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Yoshiko Aikawa
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Noritaka Oda
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Kenichiro Arai
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Atsushi Matsunaga
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Masahiko Nonaka
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Katsuhiko Nakai
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Wahei Shinmura
- Department of Gastroenterology, JCHO Tokyo Shinjuku Medical Center, 5-1, Tsukudo, Shinjuku, Tokyo 162-8543, Japan; (W.S.); (M.M.); (S.M.)
| | - Masao Matsumoto
- Department of Gastroenterology, JCHO Tokyo Shinjuku Medical Center, 5-1, Tsukudo, Shinjuku, Tokyo 162-8543, Japan; (W.S.); (M.M.); (S.M.)
| | - Shinji Morishita
- Department of Gastroenterology, JCHO Tokyo Shinjuku Medical Center, 5-1, Tsukudo, Shinjuku, Tokyo 162-8543, Japan; (W.S.); (M.M.); (S.M.)
| | - Aya K. Takeda
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.F.); (H.M.)
| |
Collapse
|
13
|
Lee JS, Kim SY, Chun YS, Chun YJ, Shin SY, Choi CH, Choi HK. Characteristics of fecal metabolic profiles in patients with irritable bowel syndrome with predominant diarrhea investigated using 1 H-NMR coupled with multivariate statistical analysis. Neurogastroenterol Motil 2020; 32:e13830. [PMID: 32125749 DOI: 10.1111/nmo.13830] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gut microbiota are known to be closely related to irritable bowel syndrome (IBS). However, not much is known about characteristic fecal metabolic profiles of IBS. We aimed to characterize fecal metabolites in patients with IBS with predominant diarrhea (IBS-D) using 1 H-nuclear magnetic resonance (1 H-NMR) spectroscopy. METHODS In this study, we enrolled 29 patients diagnosed with IBS-D according to the Rome IV criteria, 22 healthy controls (HC) and 11 HC administered laxatives (HC-L) in the age group of 20-69 year. The usual diet of the patients and HC was maintained, their fecal samples were collected and investigated by NMR-based global metabolic profiling coupled with multivariate statistical analysis. RESULTS We detected 55 metabolites in 1 H-NMR spectra of fecal samples: four amines, 16 amino acids, six fatty acids, eight organic acids, three sugars, and 18 other compounds. Orthogonal partial least square-discriminant analysis derived score plots showed clear separation between the IBS-D group and the HC and HC-L groups. Among the 55 metabolites identified, we found five disease-relevant potential biomarkers distinguishing the IBS-D from the HC, namely, cadaverine, putrescine, threonine, tryptophan, and phenylalanine. CONCLUSIONS The patients with IBS-D were clearly differentiated from the HC and HC-L by fecal metabolite analysis using 1 H-NMR spectroscopy, and five fecal metabolites characteristic of IBS-D were found. The findings of this study could be used to develop alternative and complementary diagnostic methods and as a source of fundamental information for developing novel therapies for IBS-D.
Collapse
Affiliation(s)
- Jae Soung Lee
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | | | | | - Seung Yong Shin
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | | |
Collapse
|
14
|
James SC, Fraser K, Young W, McNabb WC, Roy NC. Gut Microbial Metabolites and Biochemical Pathways Involved in Irritable Bowel Syndrome: Effects of Diet and Nutrition on the Microbiome. J Nutr 2020; 150:1012-1021. [PMID: 31891398 PMCID: PMC7198292 DOI: 10.1093/jn/nxz302] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/25/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
The food we consume and its interactions with the host and their gut microbiota affect normal gut function and health. Functional gut disorders (FGDs), including irritable bowel syndrome (IBS), can result from negative effects of these interactions, leading to a reduced quality of life. Certain foods exacerbate or reduce the severity and prevalence of FGD symptoms. IBS can be used as a model of perturbation from normal gut function with which to study the impact of foods and diets on the severity and symptoms of FGDs and understand how critical processes and biochemical mechanisms contribute to this impact. Analyzing the complex interactions between food, host, and microbial metabolites gives insights into the pathways and processes occurring in the gut which contribute to FGDs. The following review is a critical discussion of the literature regarding metabolic pathways and dietary interventions relevant to FGDs. Many metabolites, for example bile acids, SCFAs, vitamins, amino acids, and neurotransmitters, can be altered by dietary intake, and could be valuable for identifying perturbations in metabolic pathways that distinguish a "normal, healthy" gut from a "dysfunctional, unhealthy" gut. Dietary interventions for reducing symptoms of FGDs are becoming more prevalent, but studies investigating the underlying mechanisms linked to host, microbiome, and metabolite interactions are less common. Therefore, we aim to evaluate the recent literature to assist with further progression of research in this field.
Collapse
Affiliation(s)
- Shanalee C James
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Karl Fraser
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Wayne Young
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
15
|
Zhgun ES, Ilina EN. Fecal Metabolites As Non-Invasive Biomarkers of Gut Diseases. Acta Naturae 2020; 12:4-14. [PMID: 32742723 PMCID: PMC7385093 DOI: 10.32607/actanaturae.10954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown the importance of the human intestinal microbiome in maintaining a healthy gastrointestinal tract, as well as in the development of pathological processes. The intestinal microbiome manifests itself primarily as fecal metabolites. In the past decade, there has been growing interest in studying its composition, which for the most part had to do with the possibility of using the metabolomic analysis in clinical diagnosis. In contrast to the comprehensive description of blood serum, urine, saliva, and cerebrospinal fluid metabolites, data on fecal metabolites is sparse. Despite the instrumental and methodological achievements in the metabolomic analysis in general, the analysis of fecal metabolome remains less well developed, mainly because of the inhomogeneity of its composition and the lack of standardized methods for collecting, processing, and analyzing fecal samples. This review summarizes data on methods for studying and describing various groups of fecal metabolites. It also assesses their potential as tools in the diagnosis of gastrointestinal diseases.
Collapse
Affiliation(s)
- E. S. Zhgun
- Federal Research and Clinical Center of Physical-chemical Medicine of Federal Medical Biological Agency, Moscow, 119435 Russia
| | - E. N. Ilina
- Federal Research and Clinical Center of Physical-chemical Medicine of Federal Medical Biological Agency, Moscow, 119435 Russia
| |
Collapse
|
16
|
Stavropoulos G, Jonkers DMAE, Mujagic Z, Koek GH, Masclee AAM, Pierik MJ, Dallinga JW, Van Schooten FJ, Smolinska A. Implementation of quality controls is essential to prevent batch effects in breathomics data and allow for cross-study comparisons. J Breath Res 2020; 14:026012. [PMID: 32120348 DOI: 10.1088/1752-7163/ab7b8d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exhaled breath analysis has become a promising monitoring tool for various ailments by identifying volatile organic compounds (VOCs) as indicative biomarkers excreted in the human body. Throughout the process of sampling, measuring, and data processing, non-biological variations are introduced in the data leading to batch effects. Algorithmic approaches have been developed to cope with within-study batch effects. Batch differences, however, may occur among different studies too, and up-to-date, ways to correct for cross-study batch effects are lacking; ultimately, cross-study comparisons to verify the uniqueness of found VOC profiles for a specific disease may be challenging. This study applies within-study batch-effect-correction approaches to correct for cross-study batch effects; suggestions are made that may help prevent the introduction of cross-study variations. Three batch-effect-correction algorithms were investigated: zero-centering, combat, and the analysis of covariance framework. The breath samples were collected from inflammatory bowel disease ([Formula: see text]), chronic liver disease ([Formula: see text]), and irritable bowel syndrome ([Formula: see text]) patients at different periods, and they were analysed via gas chromatography-mass spectrometry. Multivariate statistics were used to visualise and verify the results. The visualisation of the data before any batch-effect-correction technique was applied showed a clear distinction due to probable batch effects among the datasets of the three cohorts. The visualisation of the three datasets after implementing all three correction techniques showed that the batch effects were still present in the data. Predictions made using partial least squares discriminant analysis and random forest confirmed this observation. The within-study batch-effect-correction approaches fail to correct for cross-study batch effects present in the data. The present study proposes a framework for systematically standardising future breathomics data by using internal standards or quality control samples at regular analysis intervals. Further knowledge regarding the nature of the unsolicited variations among cross-study batches must be obtained to move the field further.
Collapse
Affiliation(s)
- Georgios Stavropoulos
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Balmus IM, Ilie-Dumitru O, Ciobica A, Cojocariu RO, Stanciu C, Trifan A, Cimpeanu M, Cimpeanu C, Gorgan L. Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise-Searching for Gap Fillers in the Oxidative Stress Way of Thinking. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:38. [PMID: 31963795 PMCID: PMC7023055 DOI: 10.3390/medicina56010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Irritable bowel syndrome (IBS) remains to date an intriguing functional gastrointestinal disorder. Recent studies described a multitude of exogenous factors that work together in IBS, gradually impairing intestinal lining cellular metabolism, including oxidative status balance, with or without a genetic background. Although the current biomarkers support the differentiation between IBS subtypes and other functional gastrointestinal disorder, they are mostly non-specific, referring to clinical, biochemical, and inflammatory imbalances. Since IBS could be also the result of deficient signaling pathways involving both gastrointestinal secretion and neuro-vegetative stimulation, IBS makes no exception from the oxidative hypothesis in the pathological mechanisms. Regarding the oxidative stress implication in IBS, the previous research efforts showed controversial results, with some animal models and patient studies reporting clear oxidative imbalance both on systemic and local levels, but still with no concrete evidence to point to a direct correlation between oxidative stress and IBS. Additionally, it seems that a major role could be also attributed to gut microbiota and their ability to shape our bodies and behaviors. Moreover, the genetic features study in IBS patients showed that several genetic similarities point to a possible correlation of IBS with affective spectrum disorders. Thus, we focus here the discussion on the assumption that IBS could in fact be more likely a stress-related disorder rather than a gastrointestinal one.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, No. 11, 700506 Iasi, Romania;
| | - Ovidiu Ilie-Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Roxana-Oana Cojocariu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Carol Stanciu
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania;
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iasi, Romania
| | - Mirela Cimpeanu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Cristian Cimpeanu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| |
Collapse
|
18
|
Balmus IM, Lefter R, Ciobica A, Cojocaru S, Guenne S, Timofte D, Stanciu C, Trifan A, Hritcu L. Preliminary Biochemical Description of Brain Oxidative Stress Status in Irritable Bowel Syndrome Contention-Stress Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:776. [PMID: 31817740 PMCID: PMC6956041 DOI: 10.3390/medicina55120776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/05/2023]
Abstract
Background and objectives: Oxidative stress and inflammation have been implicated in the etiology of irritable bowel syndrome (IBS), a common gastrointestinal functional disease. This study aimed to further characterize the contention-stress rat model by exploring a possible correlation between oxidative stress markers measured in brain tissues with behavioral components of the aforementioned model. Thus, it is hereby proposed a possible IBS animal model relevant to pharmacological and complementary medicine studies. Materials and Methods: Wild-type male Wistar rats (n = 5/group) were chronically exposed to 6-hour/day contention, consisting of isolating the animals in small, vital space-granting plastic devices, for seven consecutive days. Following contention exposure, temporal lobes were extracted and subjected to biochemical analyses to assess oxidative stress-status parameters. Results: Our results show increased brain oxidative stress in contention-stress rat model: decreased superoxide dismutase and glutathione peroxidase activities and increased malondialdehyde production in the IBS group, as compared to the control group. Furthermore, the biochemical ratios which are used to evaluate the effectiveness of an antioxidant system on oxidative stress could be described in this model. Conclusions: The correlations between the behavioral patterns and biochemical oxidative stress features could suggest that this may be a complex model, which can successfully mimic IBS symptomatology further providing evidence of a strong connection between the digestive system, enteric nervous system, and the central nervous system.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Interdisciplinary Research Department–Field Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
| | - Radu Lefter
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
- Romanian Academy, Iasi Branch, Nr. 8, Carol I Avenue, no. 8, 700490 Iasi, Romania;
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
| | - Sabina Cojocaru
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania;
| | - Samson Guenne
- Department of Biochemistry and Microbiology, University Ouaga I Pr Joseph KI-ZERBO, Dagnöen Nord, Ouagadougou BP 7021, Burkina Faso;
| | - Daniel Timofte
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 6th University Street, 700490 Iasi, Romania
| | - Carol Stanciu
- Romanian Academy, Iasi Branch, Nr. 8, Carol I Avenue, no. 8, 700490 Iasi, Romania;
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 6th University Street, 700490 Iasi, Romania;
| | - Luminita Hritcu
- Department of Clinics, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad” of Iasi, 3rd Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| |
Collapse
|
19
|
Zhang WX, Zhang Y, Qin G, Li KM, Wei W, Li SY, Yao SK. Altered profiles of fecal metabolites correlate with visceral hypersensitivity and may contribute to symptom severity of diarrhea-predominant irritable bowel syndrome. World J Gastroenterol 2019; 25:6416-6429. [PMID: 31798278 PMCID: PMC6881512 DOI: 10.3748/wjg.v25.i43.6416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fecal metabolites are associated with gut visceral sensitivity, mucosal immune function and intestinal barrier function, all of which have critical roles in the pathogenesis of irritable bowel syndrome (IBS). However, the metabolic profile and pathophysiology of IBS are still unclear. We hypothesized that altered profiles of fecal metabolites might be involved in the pathogenesis of IBS with predominant diarrhea (IBS-D). AIM To investigate the fecal metabolite composition and the role of metabolites in IBS-D pathophysiology. METHODS Thirty IBS-D patients and 15 age- and sex-matched healthy controls (HCs) underwent clinical and psychological assessments, including the IBS Symptom Severity System (IBS-SSS), an Italian modified version of the Bowel Disease Questionnaire, the Bristol Stool Form Scale (BSFS), the Hospital Anxiety and Depression Scale, and the Visceral Sensitivity Index. Visceral sensitivity to rectal distension was tested using high-resolution manometry system by the same investigator. Fecal metabolites, including amino acids and organic acids, were measured by targeted metabolomics approaches. Correlation analyses between these parameters were performed. RESULTS The patients presented with increased stool water content, more psychological symptoms and increased visceral hypersensitivity compared with the controls. In fecal metabolites, His [IBS-D: 0.0642 (0.0388, 0.1484), HC: 0.2636 (0.0780, 0.3966), P = 0.012], Ala [IBS-D: 0.5095 (0.2826, 0.9183), HC: 1.0118 (0.6135, 1.4335), P = 0.041], Tyr [IBS-D: 0.1024 (0.0173, 0.4527), HC: 0.5665 (0.2436, 1.3447), P = 0.018], Phe [IBS-D: 0.1511 (0.0775, 0.3248), HC: 0.3967 (0.1388, 0.7550), P = 0.028], and Trp [IBS-D: 0.0323 (0.0001, 0.0826), HC: 0.0834 (0.0170, 0.1759), P = 0.046] were decreased in IBS-D patients, but isohexanoate [IBS-D: 0.0127 (0.0060, 0.0246), HC: 0.0070 (0.0023, 0.0106), P = 0.028] was significantly increased. Only Tyr was mildly correlated with BSFS scores in all subjects (r = -0.347, P = 0.019). A possible potential biomarker panel was identified to correlate with IBS-SSS score (R 2 Adjusted = 0.693, P < 0.001). In this regression model, the levels of Tyr, Val, hexanoate, fumarate, and pyruvate were significantly associated with the symptom severity of IBS-D. Furthermore, visceral sensation, including abdominal pain and visceral hypersensitivity, was correlated with isovalerate, valerate and isohexanoate. CONCLUSION Altered profiles of fecal metabolites may be one of the origins or exacerbating factors of symptoms in IBS-D via increasing visceral sensitivity.
Collapse
Affiliation(s)
- Wen-Xue Zhang
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Zhang
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Geng Qin
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kai-Min Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Wei
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Su-Yun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Shu-Kun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
20
|
Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, Kurilshikov A, Bonder MJ, Jiang X, Tigchelaar EF, Dekens J, Peters V, Voskuil MD, Visschedijk MC, van Dullemen HM, Keszthelyi D, Swertz MA, Franke L, Alberts R, Festen EAM, Dijkstra G, Masclee AAM, Hofker MH, Xavier RJ, Alm EJ, Fu J, Wijmenga C, Jonkers DMAE, Zhernakova A, Weersma RK. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 2019; 10:10/472/eaap8914. [PMID: 30567928 DOI: 10.1126/scitranslmed.aap8914] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/06/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Changes in the gut microbiota have been associated with two of the most common gastrointestinal diseases, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Here, we performed a case-control analysis using shotgun metagenomic sequencing of stool samples from 1792 individuals with IBD and IBS compared with control individuals in the general population. Despite substantial overlap between the gut microbiome of patients with IBD and IBS compared with control individuals, we were able to use gut microbiota composition differences to distinguish patients with IBD from those with IBS. By combining species-level profiles and strain-level profiles with bacterial growth rates, metabolic functions, antibiotic resistance, and virulence factor analyses, we identified key bacterial species that may be involved in two common gastrointestinal diseases.
Collapse
Affiliation(s)
- Arnau Vich Vila
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Floris Imhann
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Valerie Collij
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Soesma A Jankipersadsing
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Thomas Gurry
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zlatan Mujagic
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Alexander Kurilshikov
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Marc Jan Bonder
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Xiaofang Jiang
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ettje F Tigchelaar
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Jackie Dekens
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Vera Peters
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Michiel D Voskuil
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Marijn C Visschedijk
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Hendrik M van Dullemen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Daniel Keszthelyi
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Morris A Swertz
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Lude Franke
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Rudi Alberts
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Eleonora A M Festen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Gerard Dijkstra
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Ad A M Masclee
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Marten H Hofker
- University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands
| | - Ramnik J Xavier
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jingyuan Fu
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands
| | - Cisca Wijmenga
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Daisy M A E Jonkers
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Alexandra Zhernakova
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Rinse K Weersma
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.
| |
Collapse
|
21
|
A rapid derivatization based LC–MS/MS method for quantitation of short chain fatty acids in human plasma and urine. Bioanalysis 2019; 11:741-753. [DOI: 10.4155/bio-2018-0241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: Objective of this study is to develop a robust multi-matrix LC–MS/MS for the quantitation of endogenous short-chain fatty acids (SCFA) biomarkers in human plasma and urine. Methods: Developed method utilizes stable isotope-labeled internal standards, high-throughput derivatization procedure for sample preparation and LC–MS/MS analysis using multiple reaction monitoring transitions in positive electrospray ionization mode. Results: Surrogate matrix method was used for quantitation. Accuracy, precision, parallelism, curve linearity, derivatization efficiency, stability and recovery were all evaluated, and the results were well within the acceptable criteria. Conclusion: SCFA levels in human plasma and urine of inflammatory bowel disease patients versus non-disease subjects were quantified and compared by LC–MS/MS.
Collapse
|
22
|
Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 2019; 4:623-632. [DOI: 10.1038/s41564-018-0337-x] [Citation(s) in RCA: 784] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/05/2018] [Indexed: 11/09/2022]
|
23
|
Garcia-Etxebarria K, Zheng T, Bonfiglio F, Bujanda L, Dlugosz A, Lindberg G, Schmidt PT, Karling P, Ohlsson B, Simren M, Walter S, Nardone G, Cuomo R, Usai-Satta P, Galeazzi F, Neri M, Portincasa P, Bellini M, Barbara G, Jonkers D, Eswaran S, Chey WD, Kashyap P, Chang L, Mayer EA, Wouters MM, Boeckxstaens G, Camilleri M, Franke A, D'Amato M. Increased Prevalence of Rare Sucrase-isomaltase Pathogenic Variants in Irritable Bowel Syndrome Patients. Clin Gastroenterol Hepatol 2018; 16:1673-1676. [PMID: 29408290 PMCID: PMC6103908 DOI: 10.1016/j.cgh.2018.01.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
Abstract
Patients with irritable bowel syndrome (IBS) often associate their symptoms to certain foods. In congenital sucrase-isomaltase deficiency (CSID), recessive mutations in the SI gene (coding for the disaccharidase digesting sucrose and 60% of dietary starch)1 cause clinical features of IBS through colonic accumulation of undigested carbohydrates, triggering bowel symptoms.2 Hence, in a previous study,3 we hypothesized that CSID variants reducing SI enzymatic activity may contribute to development of IBS symptoms. We detected association with increased risk of IBS for 4 rare loss-of-function variants typically found in (homozygous) CSID patients, because carriers (heterozygous) of these rare variants were more common in patients than in controls.1,4 Through a 2-step computational and experimental strategy, the present study aimed to determine whether other (dys-)functional SI variants are associated with risk of IBS in addition to known CSID mutations. We first aimed to identify all SI rare pathogenic variants (SI-RPVs) on the basis of integrated Mendelian Clinically Applicable Pathogenicity (M-CAP) and Combined Annotation Dependent Depletion (CADD) predictive (clinically relevant) scores; next, we inspected genotype data currently available for 2207 IBS patients from a large ongoing project to compare SI-RPV case frequencies with ethnically matched population frequencies from the Exome Aggregation Consortium (ExAC).
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tenghao Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ferdinando Bonfiglio
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Luis Bujanda
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Aldona Dlugosz
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Greger Lindberg
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Peter T Schmidt
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Pontus Karling
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital, Department of Internal Medicine, Lund, Sweden
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna Walter
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Rosario Cuomo
- Digestive Motility Diseases, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Paolo Usai-Satta
- S.C. Gastroenterologia, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | | | - Matteo Neri
- Department of Medicine and Aging Sciences and CESI, G. D'Annunzio University and Foundation, Chieti, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology (DIMO), Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - Massimo Bellini
- Gastroenterology Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, St Orsola - Malpighi Hospital, Bologna, Italy
| | - Daisy Jonkers
- Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Shanti Eswaran
- Division of Gastroenterology, University of Michigan, Michigan Medicine, Ann Arbor, Michigan
| | - William D Chey
- Division of Gastroenterology, University of Michigan, Michigan Medicine, Ann Arbor, Michigan
| | - Purna Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Mira M Wouters
- Translational Research Center for Gastro Intestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for Gastro Intestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Mauro D'Amato
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; IKERBASQUE, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
24
|
Bonfiglio F, Zheng T, Garcia-Etxebarria K, Hadizadeh F, Bujanda L, Bresso F, Agreus L, Andreasson A, Dlugosz A, Lindberg G, Schmidt PT, Karling P, Ohlsson B, Simren M, Walter S, Nardone G, Cuomo R, Usai-Satta P, Galeazzi F, Neri M, Portincasa P, Bellini M, Barbara G, Latiano A, Hübenthal M, Thijs V, Netea MG, Jonkers D, Chang L, Mayer EA, Wouters MM, Boeckxstaens G, Camilleri M, Franke A, Zhernakova A, D'Amato M. Female-Specific Association Between Variants on Chromosome 9 and Self-Reported Diagnosis of Irritable Bowel Syndrome. Gastroenterology 2018; 155:168-179. [PMID: 29626450 PMCID: PMC6035117 DOI: 10.1053/j.gastro.2018.03.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genetic factors are believed to affect risk for irritable bowel syndrome (IBS), but there have been no sufficiently powered and adequately sized studies. To identify DNA variants associated with IBS risk, we performed a genome-wide association study (GWAS) of the large UK Biobank population-based cohort, which includes genotype and health data from 500,000 participants. METHODS We studied 7,287,191 high-quality single nucleotide polymorphisms in individuals who self-reported a doctor's diagnosis of IBS (cases; n = 9576) compared to the remainder of the cohort (controls; n = 336,499) (mean age of study subjects, 40-69 years). Genome-wide significant findings were further investigated in 2045 patients with IBS from tertiary centers and 7955 population controls from Europe and the United States, and a small general population sample from Sweden (n = 249). Functional annotation of GWAS results was carried out by integrating data from multiple biorepositories to obtain biological insights from the observed associations. RESULTS We identified a genome-wide significant association on chromosome 9q31.2 (single nucleotide polymorphism rs10512344; P = 3.57 × 10-8) in a region previously linked to age at menarche, and 13 additional loci of suggestive significance (P < 5.0×10-6). Sex-stratified analyses revealed that the variants at 9q31.2 affect risk of IBS in women only (P = 4.29 × 10-10 in UK Biobank) and also associate with constipation-predominant IBS in women (P = .015 in the tertiary cohort) and harder stools in women (P = .0012 in the population-based sample). Functional annotation of the 9q31.2 locus identified 8 candidate genes, including the elongator complex protein 1 gene (ELP1 or IKBKAP), which is mutated in patients with familial dysautonomia. CONCLUSIONS In a sufficiently powered GWAS of IBS, we associated variants at the locus 9q31.2 with risk of IBS in women. This observation may provide additional rationale for investigating the role of sex hormones and autonomic dysfunction in IBS.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Tenghao Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Koldo Garcia-Etxebarria
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Luis Bujanda
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Universidad del País Vasco, San Sebastián, Spain
| | - Francesca Bresso
- Gastoenterology Unit, Tema inflammation and infection, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Agreus
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Andreasson
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Greger Lindberg
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Peter T Schmidt
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Karling
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital, Department of Internal Medicine, Lund, Sweden
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna Walter
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Rosario Cuomo
- Digestive Motility Diseases, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Paolo Usai-Satta
- SC Gastroenterologia, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | | | - Matteo Neri
- Department of Medicine and Aging Sciences and Center for Excellence on Aging, G. D'Annunzio University and Foundation, Chieti, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy
| | - Massimo Bellini
- Gastroenterology Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola, Malpighi Hospital, Bologna, Italy
| | - Anna Latiano
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vincent Thijs
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Daisy Jonkers
- Department of Internal Medicine, Nutrition and Toxicology Research Institute Maastricht, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Mira M Wouters
- Translational Research Center for Gastro Intestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for Gastro Intestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mauro D'Amato
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
25
|
Vork L, Weerts ZZRM, Mujagic Z, Kruimel JW, Hesselink MAM, Muris JWM, Keszthelyi D, Jonkers DMAE, Masclee AAM. Rome III vs Rome IV criteria for irritable bowel syndrome: A comparison of clinical characteristics in a large cohort study. Neurogastroenterol Motil 2018; 30. [PMID: 28804974 DOI: 10.1111/nmo.13189] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Rome criteria for irritable bowel syndrome (IBS) have been revised and are expected to apply only to the subset of Rome III IBS subjects with abdominal pain as predominant symptom, occurring at least once a week. The aim of this study was to determine the percentage of Rome III IBS subjects that fulfills Rome IV criteria and to evaluate differences between Rome IV-positive and Rome IV-negative subjects. METHODS Four hundred and four Rome III IBS subjects completed a 14-day end-of-day symptom diary, the Gastrointestinal Symptom Rating Scale (GSRS), Hospital Anxiety and Depression Scale, and RAND 36-item Short-Form Health Survey (SF-36). Diary-based surrogate Rome IV criteria were defined as occurrence of abdominal pain at least 1 day each week with a severity of ≥2 (mild; definition 1) or ≥3 (considerable; definition 2). KEY RESULTS Using surrogate Rome IV criteria, 353 (87.4%, definition 1) and 249 (61.6%, definition 2) subjects were defined as Rome IV positive. These patients were more often female, younger, and recruited from secondary/tertiary care compared with Rome IV-negative subjects. They also presented with higher abdominal pain scores and gastrointestinal (GI) symptom severity on both end-of-day diary and GSRS, higher psychological symptom scores, and lower quality of life compared with Rome IV-negative subjects. CONCLUSIONS AND INFERENCES The Rome IV IBS population likely reflects a subgroup of Rome III IBS patients with more severe GI symptomatology, psychological comorbidities, and lower quality of life. This implies that results from Rome III IBS studies may not be directly comparable to those from Rome IV IBS populations.
Collapse
Affiliation(s)
- L Vork
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Z Z R M Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Z Mujagic
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W Kruimel
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M A M Hesselink
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W M Muris
- Department of Family Medicine, CAPHRI Care And Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - D Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - D M A E Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
26
|
Tigchelaar EF, Mujagic Z, Zhernakova A, Hesselink MAM, Meijboom S, Perenboom CWM, Masclee AAM, Wijmenga C, Feskens EJM, Jonkers DMAE. Habitual diet and diet quality in Irritable Bowel Syndrome: A case-control study. Neurogastroenterol Motil 2017; 29. [PMID: 28714091 DOI: 10.1111/nmo.13151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/09/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Diet is considered to be a key factor in symptom generation in Irritable Bowel Syndrome (IBS) and patients tend to exclude food products from their diet in pursue of symptom relief, which may impair diet quality. METHODS We evaluated habitual dietary intake in IBS patients with regard to nutrients and food products using an extensive food frequency questionnaire. One hundred ninety-four IBS patients were compared to 186 healthy controls using multiple logistic regression analysis. An overall diet quality score was calculated for each participant based on the criteria of the Dutch Healthy Diet (DHD) index. KEY RESULTS A lower DHD-score was found for IBS (mean [SD]: 52.9 [9.6]) vs controls (55.1 [9.2], P=.02). The diet of patients was lower in fibers (21 g vs 25 g per day, P=.002) and fructose (14 g vs 16 g, P=.033), while higher in total fat (37% vs 36% of total energy intake, P=.010) and added sugars (46 g vs 44 g, P=.029). Differences in daily intake of food products included lower consumption of apples (40 g vs 69 g, P<.001), pasta (28 vs 37 g, P=.029) and alcoholic beverages (130 g vs 193 g, P=.024) and higher consumption of processed meat (38 g vs 29 g, P<.001). Some of these findings correlated with gastrointestinal symptoms, showing differences between IBS subtypes. CONCLUSIONS AND INFERENCES Differences in habitual diet were described, showing lower diet quality in IBS patients compared to controls, with increased consumption of fat and lower intake of fibers and fructose. Our data support the importance of personalized and professional nutritional guidance of IBS patients.
Collapse
Affiliation(s)
- E F Tigchelaar
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Z Mujagic
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.,Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A Zhernakova
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - M A M Hesselink
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - S Meijboom
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - C W M Perenboom
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - A A M Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - C Wijmenga
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - E J M Feskens
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.,Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - D M A E Jonkers
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.,Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
27
|
Mujagic Z, Jonkers DMAE, Ludidi S, Keszthelyi D, Hesselink MA, Weerts ZZRM, Kievit RN, Althof JF, Leue C, Kruimel JW, van Schooten FJ, Masclee AAM. Biomarkers for visceral hypersensitivity in patients with irritable bowel syndrome. Neurogastroenterol Motil 2017; 29. [PMID: 28675524 DOI: 10.1111/nmo.13137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Increased visceral sensitivity is observed in up to 60% of patients with Irritable Bowel Syndrome (IBS). Mucosal inflammation, altered neuroendocrine activity and intraluminal metabolic processes may contribute to the development of visceral hypersensitivity. Previously, we demonstrated that biomarkers, indicative for these biological processes, were altered in IBS patients compared to healthy controls. However, how these processes relate to visceral hypersensitivity is unknown. AIM The aim of this study was to provide insight in biological processes associated with visceral hypersensitivity. Fecal and plasma biomarkers were measured in normosensitive and hypersensitive IBS patients. METHODS A total of 167 IBS patients underwent a rectal barostat procedure to assess visceral sensitivity to pain. Based on the outcome, patients were classified into a normosensitive or hypersensitive group. Calprotectin, human β-defensin 2 (HBD2), chromogranin A (CgA), and short chain fatty acids (SCFAs) were measured in feces, citrulline in plasma, and serotonin and its main metabolite 5-hydroxyindoleacetic acid (5-HIAA) in platelet-poor plasma. KEY RESULTS Fecal markers and plasma citrulline were measured in 83 hypersensitive and 84 normosensitive patients, while platelet-poor plasma for the assessment of serotonin and 5-HIAA was available for a subgroup, i.e. 53 hypersensitive and 42 normosensitive patients. No statistically significant differences were found in concentrations of biomarkers between groups. Adjustment of the analyses for potential confounders, such as medication use, did not alter this conclusion. CONCLUSIONS & INFERENCES Our findings do not support a role for the biological processes as ascertained by biomarkers in visceral hypersensitivity in IBS patients. This study is registered in the US National Library of Medicine (clinicaltrials.gov, NCT00775060).
Collapse
Affiliation(s)
- Z Mujagic
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
- Top Institute Food & Nutrition (TiFN), Wageningen, The Netherlands
| | - D M A E Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
- Top Institute Food & Nutrition (TiFN), Wageningen, The Netherlands
| | - S Ludidi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - D Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M A Hesselink
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Z Z R M Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - R N Kievit
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J F Althof
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - C Leue
- Department of Psychiatry and Psychology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W Kruimel
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F J van Schooten
- Top Institute Food & Nutrition (TiFN), Wageningen, The Netherlands
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
28
|
Igbinedion SO, Ansari J, Vasikaran A, Gavins FN, Jordan P, Boktor M, Alexander JS. Non-celiac gluten sensitivity: All wheat attack is not celiac. World J Gastroenterol 2017; 23:7201-7210. [PMID: 29142467 PMCID: PMC5677194 DOI: 10.3748/wjg.v23.i40.7201] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Currently, 1% of the United States population holds a diagnosis for celiac disease (CD), however, a more recently recognized and possibly related condition, "non-celiac gluten sensitivity" (NCGS) has been suggested to affect up to 6% of the United States public. While reliable clinical tests for CD exist, diagnosing individuals affected by NCGS is still complicated by the lack of reliable biomarkers and reliance upon a broad set of intestinal and extra intestinal symptoms possibly provoked by gluten. NCGS has been proposed to exhibit an innate immune response activated by gluten and several other wheat proteins. At present, an enormous food industry has developed to supply gluten-free products (GFP) with GFP sales in 2014 approaching $1 billion, with estimations projecting sales to reach $2 billion in the year 2020. The enormous demand for GFP also reflects a popular misconception among consumers that gluten avoidance is part of a healthy lifestyle choice. Features of NCGS and other gluten related disorders (e.g., irritable bowel syndrome) call for a review of current distinctive diagnostic criteria that distinguish each, and identification of biomarkers selective or specific for NCGS. The aim of this paper is to review our current understanding of NCGS, highlighting the remaining challenges and questions which may improve its diagnosis and treatment.
Collapse
Affiliation(s)
- Samuel O Igbinedion
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | - Junaid Ansari
- Department of Molecular and Cellular Physiology, Louisiana State University, School of Medicine, Shreveport, LA 71103, United States
| | - Anush Vasikaran
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | - Felicity N Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University, School of Medicine, Shreveport, LA 71103, United States
| | - Paul Jordan
- Department of Gastroenterology and Hepatology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | - Moheb Boktor
- Department of Gastroenterology and Hepatology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University, School of Medicine, Shreveport, LA 71103, United States
| |
Collapse
|
29
|
Use of Rome criteria for the diagnosis of irritable bowel syndrome in primary care: a survey among European countries. Eur J Gastroenterol Hepatol 2017; 29:651-656. [PMID: 28125426 DOI: 10.1097/meg.0000000000000848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES The majority of patients with irritable bowel syndrome (IBS) are diagnosed and treated in primary care. The aim of this study was to investigate the implementation of the Rome criteria in daily primary care clinical practice and adherence of general practitioners (GPs) to recommended diagnostic approaches for IBS. PATIENTS AND METHODS A survey consisting of 18 questions was distributed across 11 European countries and was used to assess GPs' diagnostic approach of IBS, the use of Rome criteria in daily practice and GPs' perspective on the aetiology of the disorder. RESULTS Overall, 185 GPs completed the survey. In daily clinical practice, 32% of GPs reported that they usually make a positive diagnosis on the basis of symptoms only, whereas 36% of GPs reported regular use of the Rome criteria to diagnose IBS. Furthermore, 62% of the responders reported that they applied additional diagnostics, such as blood tests, 31% found it necessary to perform endoscopy to make a positive diagnosis of IBS and 29% referred patients with IBS to a specialist. Psychological factors were the most frequently selected potential aetiological factor of IBS (88% of GPs). Overall, 52% of GPs reported systematically including questions on psychological symptoms in the assessment of history of IBS. CONCLUSION Only about one-third of GPs regularly used the Rome criteria to diagnose IBS. In daily primary care practice, IBS largely remains a diagnosis of exclusion. This has implications in terms of GPs' specialty training and questions the applicability of IBS guidelines in daily care, which advocate an early, positive, symptom-based diagnosis.
Collapse
|
30
|
Camilleri M, Halawi H, Oduyebo I. Biomarkers as a diagnostic tool for irritable bowel syndrome: where are we? Expert Rev Gastroenterol Hepatol 2017; 11:303-316. [PMID: 28128666 DOI: 10.1080/17474124.2017.1288096] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a common condition in clinical practice. There are currently no objective tests to rule in the disease, but rather tests to rule out other diseases. Biomarkers in IBS may provide the tools needed for diagnosis, prognosis and therapy. These include identification of differences in microbial composition, immune activation, bile acid composition, colonic transit, and alteration in sensation in subgroups of IBS patients. Areas covered: Studies included in our review were chosen based on a PubMed search for 'biomarkers' and 'IBS'. We have reviewed the literature on biomarkers to appraise their accuracy, validity and whether they are actionable. We have not covered genetic associations as biomarkers in this review. Expert commentary: There is significant promise in the usefulness of biomarkers for IBS. The most promising actionable biomarkers are markers of changes in bile acid balance, such as elevated bile acid in the stool, and altered colonic transit. However, there is also potential for microbial studies and mucosal proteases as future actionable biomarkers.
Collapse
Affiliation(s)
- Michael Camilleri
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| | - Houssam Halawi
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| | - Ibironke Oduyebo
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| |
Collapse
|
31
|
Kim JH, Lin E, Pimentel M. Biomarkers of Irritable Bowel Syndrome. J Neurogastroenterol Motil 2017; 23:20-26. [PMID: 27817184 PMCID: PMC5216630 DOI: 10.5056/jnm16135] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022] Open
Abstract
Traditionally, irritable bowel syndrome (IBS) has not been regarded as an organic disease, and the pathophysiology of IBS is heterogeneous. Currently, the diagnosis of IBS is based upon the Rome diagnostic criteria. The performance of these criteria is only modest in predicting IBS, and moreover their validation is lacking. Additionally, as functional symptoms are common in the general population, healthy controls or volunteers are difficult to define and there is currently no definition of “normal” in the Rome criteria. Due to the weaknesses of the current diagnostic criteria, patients and doctors expect new gold standard diagnostic tools. Various etiologic mechanisms result in potential biomarkers. The focus of this research has been to find non-invasive biomarkers from serum, breath gas, and fecal materials. Though biomarkers should be based on biological and pathogenic processes, most biomarkers for IBS have been developed to identify organic diseases and therefore eliminate IBS. To date, these types of biomarkers for IBS have been disappointing. The purposes of developing biomarkers include improvement of diagnosis, differentiation from other organic diseases, and discrimination of IBS subtypes. A true mechanistic biomarker would make it possible to rule in IBS, rather than to rule out other organic diseases. New serologic biomarkers for diarrhea-predominant IBS have been introduced based on the pathophysiologic findings from a rat model and validation in a large-scale clinical trial. Further investigations of abnormal organic findings from each subtype of IBS would enable the development of new, simple subtype-specific biomarkers.
Collapse
Affiliation(s)
- Jae Hak Kim
- Department of Internal Medicine, Ilsan Hospital, Dongguk University, Goyang, Gyeonggi-do, Korea
| | - Eugenia Lin
- GI Motility Program, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Pimentel
- GI Motility Program, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|