1
|
Ping X, Chen Y, Wang H, Jin Z, Duan Q, Ren Z, Dong X. Whole-genome sequencing reveals patterns of runs of homozygosity underlying genetic diversity and selection in domestic rabbits. BMC Genomics 2025; 26:425. [PMID: 40301718 PMCID: PMC12042440 DOI: 10.1186/s12864-025-11616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Runs of homozygosity (ROH) are continuous segments of homozygous genotypes inherited from both parental lineages. These segments arise due to the transmission of identical haplotypes. The genome-wide patterns and hotspot regions of ROH provide valuable insights into genetic diversity, demographic history, and selection trends. In this study, we analyzed whole-genome resequencing data from 117 rabbits to identify ROH patterns and inbreeding level across eleven rabbit breeds, including seven Chinese indigenous breeds and four exotic breeds, and to uncover selective signatures based on ROH islands. RESULTS We detected a total of 31,429 ROHs across the autosomes of all breeds, with the number of ROHs (NROH) per breed ranging from 1316 to 7476. The mean sum of ROHs length (SROH) per individual was 493.84 Mb, covering approximately 22.79% of the rabbit autosomal genome. The majority of the detected ROHs ranged from 1 to 2 Mb in length, with an average ROH length (LROH) of 1.84 Mb. ROHs longer than 6 Mb constituted only 0.83% of the detected ROHs. The average inbreeding coefficient derived from ROHs (FROH) was 0.23, with FROH values ranging from 0.14 to 0.38 across breeds. Among Chinese indigenous breeds, the Jiuyishan rabbit exhibited the highest values of NROH, SROH, LROH, and FROH, whereas the Fujian Yellow rabbit had the lowest FROH values. In exotic rabbit breeds, the Japanese White rabbit displayed the highest values for NROH, SROH, LROH, and FROH, while the Flemish Giant rabbit had the lowest values for these metrics. Additionally, we identified 17 ROH islands in Chinese indigenous breeds and 22 ROH islands in exotic rabbit breeds, encompassing 124 and 186 genes, respectively. In Chinese indigenous breeds, we identified prominent genes associated with reproduction, including CFAP206, RNF133, CPNE4, ASTE1, and ATP2C1, as well as genes related to adaptation, namely CADPS2, FEZF1, and EPHA7. In contrast, the exotic breeds exhibited a prevalence of genes associated with fat deposition, such as ELOVL3 and NPM3, as well as growth and body weight related genes, including FAM184B, NSMCE2, and TWNK. CONCLUSIONS This study enhances our understanding of genetic diversity and selection pressures in domestic rabbits, offering valuable implications for breeding management and conservation strategies.
Collapse
Affiliation(s)
- Xinxin Ping
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuan Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhuoya Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qianting Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhanjun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xianggui Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Fekete Z, Német Z, Ninausz N, Fehér P, Schiller M, Alnajjar M, Szenes Á, Nagy T, Stéger V, Kontra L, Barta E. Whole-Genome Sequencing-Based Population Genetic Analysis of Wild and Domestic Rabbit Breeds. Animals (Basel) 2025; 15:775. [PMID: 40150307 PMCID: PMC11939179 DOI: 10.3390/ani15060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
The European rabbit exists in the wild and has several highly bred domesticated forms. There are well-separated wild European rabbit populations, and intensive breeding has resulted in various forms and utilizations. In this work, we aimed to carry out an extended WGS-based population genomics study on several wild European rabbit populations and selected breeds. Utilizing multiple methods, we showed that although domestic and wild populations were clearly separated, there was evidence of admixture between them in France and Hungary. The populations showed various levels of inbreeding, with one of the Hungarian subpopulations having excess runs of homozygosity. We identified numerous variants fixed in either domestic or wild animals, two of which were found to be fixed at different alleles in the two populations. Some putatively selected regions did not overlap with any known genes in the rabbit genome, suggesting some importance to these intergenic sites. The enrichment of selected regions in certain types of transcription factor binding sites suggests a possible role for these regulatory elements during domestication. In addition, the new high-coverage rabbit whole-genome sequences may provide helpful material for further population genetics analyses.
Collapse
Affiliation(s)
- Zsófia Fekete
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 2, 80100 Joensuu, Finland
| | - Zoltán Német
- Department of Pathology, University of Veterinary Medicine Budapest, Dóra major, H-2225 Üllő, Hungary; (Z.N.); (Á.S.)
| | - Nóra Ninausz
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
| | - Péter Fehér
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
| | - Mátyás Schiller
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
| | - Maher Alnajjar
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
| | - Áron Szenes
- Department of Pathology, University of Veterinary Medicine Budapest, Dóra major, H-2225 Üllő, Hungary; (Z.N.); (Á.S.)
| | - Tibor Nagy
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Viktor Stéger
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
| | - Levente Kontra
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
- Bioinformatics Core Facility, Institute of Experimental Medicine, Hungarian Research NetworkSzigony utca 43, H-1083 Budapest, Hungary
| | - Endre Barta
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, H-2100 Gödöllő, Hungary; (Z.F.); (N.N.); (P.F.); (M.S.); (M.A.); (T.N.); (V.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Xie K, Ning C, Yang A, Zhang Q, Wang D, Fan X. Resequencing Analyses Revealed Genetic Diversity and Selection Signatures during Rabbit Breeding and Improvement. Genes (Basel) 2024; 15:433. [PMID: 38674368 PMCID: PMC11049387 DOI: 10.3390/genes15040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Domestication has shaped the diverse characteristics of rabbits, including coat color, fur structure, body size, and various physiological traits. Utilizing whole-genome resequencing (DNBSEQ-T7), we analyzed the genetic diversity, population structure, and genomic selection across 180 rabbits from 17 distinct breeds to uncover the genetic basis of these traits. We conducted whole-genome sequencing on 17 rabbit breeds, identifying 17,430,184 high-quality SNPs and analyzing genomic diversity, patterns of genomic variation, population structure, and selection signatures related to coat color, coat structure, long hair, body size, reproductive capacity, and disease resistance. Through PCA and NJ tree analyses, distinct clusters emerged among Chinese indigenous rabbits, suggesting varied origins and domestication histories. Selective sweep testing pinpointed regions and genes linked to domestication and key morphological and economic traits, including those affecting coat color (TYR, ASIP), structure (LIPH), body size (INSIG2, GLI3), fertility (EDNRA, SRD5A2), heat stress adaptation (PLCB1), and immune response (SEC31A, CD86, LAP3). Our study identified key genomic signatures of selection related to traits such as coat color, fur structure, body size, and fertility; these findings highlight the genetic basis underlying phenotypic diversification in rabbits and have implications for breeding programs aiming to improve productive, reproductive, and adaptive traits. The detected genomic signatures of selection also provide insights into rabbit domestication and can aid conservation efforts for indigenous breeds.
Collapse
Affiliation(s)
- Kerui Xie
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Aiguo Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Dan Wang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xinzhong Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
4
|
Ma J, Zhang L, Shen F, Geng Y, Huang Y, Wu H, Fan Z, Hou R, Song Z, Yue B, Zhang X. Gene expressions between obligate bamboo-eating pandas and non-herbivorous mammals reveal converged specialized bamboo diet adaptation. BMC Genomics 2023; 24:23. [PMID: 36647013 PMCID: PMC9843897 DOI: 10.1186/s12864-023-09111-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It is inevitable to change the function or expression of genes during the environmental adaption of species. Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to Carnivora and have developed similar adaptations to the same dietary switch to bamboos at the morphological and genomic levels. However, the genetic adaptation at the gene expression level is unclear. Therefore, we aimed to examine the gene expression patterns of giant and red panda convergent specialized bamboo-diets. We examined differences in liver and pancreas transcriptomes between the two panda species and other non-herbivorous species. RESULTS The clustering and PCA plots suggested that the specialized bamboo diet may drive similar expression shifts in these two species of pandas. Therefore, we focused on shared liver and pancreas DEGs (differentially expressed genes) in the giant and red panda relative to other non-herbivorous species. Genetic convergence occurred at multiple levels spanning carbohydrate metabolism, lipid metabolism, and lysine degradation. The shared adaptive convergence DEGs in both organs probably be an evolutionary response to the high carbohydrate, low lipid and lysine bamboo diet. Convergent expression of those nutrient metabolism-related genes in both pandas was an intricate process and subjected to multi-level regulation, including DNA methylation and transcription factor. A large number of lysine degradation and lipid metabolism related genes were hypermethylated in promoter regions in the red panda. Most genes related to carbohydrate metabolism had reduced DNA methylation with increased mRNA expression in giant pandas. Unlike the red panda, the core gene of the lysine degradation pathway (AASS) doesn't exhibit hypermethylation modification in the giant panda, and dual-luciferase reporter assay showed that transcription factor, NR3C1, functions as a transcriptional activator in AASS transcription through the binding to AASS promoter region. CONCLUSIONS Our results revealed the adaptive expressions and regulations of the metabolism-related genes responding to the unique nutrients in bamboo food and provided data accumulation and research hints for the future revelation of complex mechanism of two pandas underlying convergent adaptation to a specialized bamboo diet.
Collapse
Affiliation(s)
- Jinnan Ma
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.410739.80000 0001 0723 6903College of Continuing Education, Yunnan Normal University, Kunming, 650092 China
| | - Liang Zhang
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Fujun Shen
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Yang Geng
- grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Zhenxin Fan
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Rong Hou
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Zhaobin Song
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Bisong Yue
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Xiuyue Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| |
Collapse
|
5
|
Fan J, Watanabe T. Atherosclerosis: Known and unknown. Pathol Int 2022; 72:151-160. [PMID: 35076127 DOI: 10.1111/pin.13202] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerotic disease, such as myocardial infarction and stroke, is the number one killer worldwide. Atherosclerosis is considered to be caused by multiple factors, including genetic and environmental factors. In humans, it takes several decades until the clinical complications develop. There are many known risk factors for atherosclerosis, including hypercholesterolemia, hypertension, diabetes and smoking, which are involved in the pathogenesis of atherosclerosis; however, it is generally believed that atherosclerosis is vascular chronic inflammation initiated by interactions of these risk factors and arterial wall cells. In the past 30 years, the molecular mechanisms underlying the pathogenesis of atherosclerosis have been investigated extensively using genetically modified animals, and lipid-reducing drugs, such as statins, have been demonstrated as the most effective for the prevention and treatment of atherosclerosis. However, despite this progress, questions regarding the pathogenesis of atherosclerosis remain and there is a need to develop new animal models and novel therapeutics to treat patients who cannot be effectively treated by statins. In this review, we will focus on two topics of atherosclerosis, "pathology" and "pathogenesis," and discuss unanswered questions.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medical Sciences, University of Yamanashi, Chuo, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Teruo Watanabe
- Division of Laboratory Medicine and Pathology, Fukuoka Wajiro Hospital, Fukuoka, Japan
| |
Collapse
|
6
|
Hu X, Wang F, Yang S, Yuan X, Yang T, Zhou Y, Li Y. Rabbit microbiota across the whole body revealed by 16S rRNA gene amplicon sequencing. BMC Microbiol 2021; 21:312. [PMID: 34758744 PMCID: PMC8579649 DOI: 10.1186/s12866-021-02377-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background Rabbit can produce meat, fur and leather, and serves as an important biomedical animal model. Understanding the microbial community of rabbits helps to raise rabbits healthily and better support their application as animal models. Results In this study, we selected 4 healthy Belgium gray rabbits to collect the microbial samples from 12 body sites, including skin, lung, uterus, mouth, stomach, duodenum, ileum, jejunum, colon, cecum, cecal appendix and rectum. The microbiota across rabbit whole body was investigated via 16S rRNA gene amplicon sequencing. After quality control, 46 samples were retained, and 3,148 qualified ASVs were obtained, representing 23 phyla and 264 genera. Based on the weighted UniFrac distances, these samples were divided into the large intestine (Lin), stomach and small intestine (SSin), uterus (Uter), and skin, mouth and lung (SML) groups. The diversity of Lin microbiota was the highest, followed by those of the SSin, Uter and SML groups. In the whole body, Firmicutes (62.37%), Proteobacteria (13.44%) and Bacteroidota (11.84%) were the most predominant phyla. The relative abundance of Firmicutes in the intestinal tract was significantly higher than that in the non-intestinal site, while Proteobacteria was significantly higher in the non-intestinal site. Among the 264 genera, 35 were the core microbiota distributed in all body sites. Sixty-one genera were specific in the SML group, while 13, 8 and 1 were specifically found in the Lin, SSin and Uter groups, respectively. The Lin group had the most difference with other groups, there were average 72 differential genera between the Lin and other groups. The functional prediction analysis showed that microbial function within each group was similar, but there was a big difference between the intestinal tracts and the non-intestinal group. Notably, the function of microorganism in uterus and mouth were the most different from those in the gastrointestinal sites; rabbit’s coprophagy of consuming soft feces possibly resulted in little differences of microbial function between stomach and large intestinal sites. Conclusion Our findings improve the knowledge about rabbit microbial communities throughout whole body and give insights into the relationship of microbial communities among different body sites in health rabbits. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02377-x.
Collapse
Affiliation(s)
- Xiaofen Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Fei Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shanshan Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xu Yuan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tingyu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yunxiao Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
7
|
McNally JS, de Havenon A, Kim SE, Wang C, Wang S, Zabriskie MS, Parker DL, Baradaran H, Alexander MD. Rabbit models of intracranial atherosclerotic disease for pathological validation of vessel wall MRI. Neuroradiol J 2021; 34:193-199. [PMID: 33325806 PMCID: PMC8165905 DOI: 10.1177/1971400920980153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Vessel wall magnetic resonance imaging can improve the evaluation of intracranial atherosclerotic disease. However, pathological validation is needed to improve vessel wall magnetic resonance imaging techniques. Human pathology samples are not practical for such analysis, so an animal model is therefore needed. MATERIALS AND METHODS Watanabe heritable hyperlipidemic rabbits and apolipoprotein E knockout rabbits were evaluated against New Zealand white wild-type rabbits. Evaluation of intracranial arteries was performed with vessel wall magnetic resonance imaging and pathological analysis, rating the presence and severity of disease in each segment. Two-tailed t-tests were performed to compare disease occurrence and severity prevalence among rabbit subtypes. Sensitivity and specificity were calculated to assess the diagnostic accuracy of vessel wall magnetic resonance imaging. RESULTS Seventeen rabbits (five Watanabe heritable hyperlipidemic, four apolipoprotein E knockout and eight New Zealand white) were analysed for a total of 51 artery segments. Eleven segments (five Watanabe heritable hyperlipidemic and six apolipoprotein E knockout) demonstrated intracranial atherosclerotic disease on pathology. Disease model animals had lesions more frequently than New Zealand white animals (P<0.001). The sensitivity and specificity of vessel wall magnetic resonance imaging for the detection of intracranial atherosclerotic disease were 68.8% and 95.2%, respectively. When excluding mild cases to assess vessel wall magnetic resonance imaging accuracy for detecting moderate to severe intracranial atherosclerotic disease lesions, sensitivity improved to 100% with unchanged specificity. CONCLUSION Intracranial atherosclerotic disease can be reliably produced and detected using 3T vessel wall magnetic resonance imaging-compatible Watanabe heritable hyperlipidemic and ApoE rabbit models. Further analysis is needed to characterize better the development and progression of the disease to correlate tissue-validated animal findings with those in human vessel wall magnetic resonance imaging studies.
Collapse
Affiliation(s)
- J Scott McNally
- Department of Radiology and Imaging Sciences, University of Utah, USA
| | | | - Seong-Eun Kim
- Department of Radiology and Imaging Sciences, University of Utah, USA
| | - Chuanzhuo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, China
| | - Shuping Wang
- Department of Radiology and Imaging Sciences, University of Utah, USA
| | | | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, USA
| | - Hediyeh Baradaran
- Department of Radiology and Imaging Sciences, University of Utah, USA
| | - Matthew D Alexander
- Department of Neurology, University of Utah, USA
- Department of Neurosurgery, University of Utah, USA
| |
Collapse
|
8
|
Ateya AI, Hendam BM, Radwan HA, Abo Elfadl EA, Al-Sharif MM. Using Linear Discriminant Analysis to Characterize Novel Single Nucleotide Polymorphisms and Expression Profile Changes in Genes of Three Breeds of Rabbit ( Oryctolagus cuniculus). Comp Med 2021; 71:222-234. [PMID: 34034856 DOI: 10.30802/aalas-cm-20-000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objectives of this study were to investigate polymorphisms and changes in expression patterns of the genes FGF5, PGAM2, TLR2 and IL10 in V-line, Baladi Black and Baladi Red rabbits. Blood samples were collected from 180 healthy rabbits (n = 60 for each breed) for DNA extraction and DNA sequencing. At 3 mo of age, 20 randomly selected females from each breed were euthanized for gene expression quantification in muscle and spleen samples. PCR-DNA sequencing revealed single nucleotide polymorphisms (SNPs) among the 3 breeds that provided a monomorphic pattern for 3 of the 4 genes analyzed. Linear discriminant analysis (LDA) was used to classify the SNPs of these genes in the 3 breeds. The overall percentage of correctly classified cases for the model was 75%, with percentages of 100% for FGF5, 63% for IL10, and 100% for TLR2. Breed was a significant predictor for gene classification with estimation (1.00). Expression profiles of the genes were higher in V-line as compared with Baladi Black or Baladi Red. The LDA discriminated the 3 breeds using results of the gene expression profile as predictors for classification. Overall, 73% of the cases were correctly classified by gene expression. The identified SNPs, along with changes in mRNA levels of FGF5, PGAM2, TLR2, and IL10, could provide a biomarker for efficient characterization of rabbit breeds and could thus help develop marker assisted selection for growth and immune traits in rabbits.
Collapse
Affiliation(s)
- Ahmed I Ateya
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt;,
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Hend A Radwan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Eman A Abo Elfadl
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Mona M Al-Sharif
- Department of Biology, College of Science, Jeddah University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Song J, Zhang J, Xu J, Garcia-Barrio M, Chen YE, Yang D. Genome engineering technologies in rabbits. J Biomed Res 2021; 35:135-147. [PMID: 32934190 PMCID: PMC8038526 DOI: 10.7555/jbr.34.20190133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The rabbit has been recognized as a valuable model in various biomedical and biological research fields because of its intermediate size and phylogenetic proximity to primates. However, the technology for precise genome manipulations in rabbit has been stalled for decades, severely limiting its applications in biomedical research. Novel genome editing technologies, especially CRISPR/Cas9, have remarkably enhanced precise genome manipulation in rabbits, and shown their superiority and promise for generating rabbit models of human genetic diseases. In this review, we summarize the brief history of transgenic rabbit technology and the development of novel genome editing technologies in rabbits.
Collapse
Affiliation(s)
- Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Minerva Garcia-Barrio
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Milenkovic D, Paslawski R, Gomulkiewicz A, Gladine C, Janczak D, Grzegorek I, Jablonska K, Drozdz K, Chmielewska M, Piotrowska A, Janiszewski A, Dziegiel P, Mazur A, Paslawska U, Szuba A. Alterations of aorta intima and media transcriptome in swine fed high-fat diet over 1-year follow-up period and of the switch to normal diet. Nutr Metab Cardiovasc Dis 2020; 30:1201-1215. [PMID: 32482453 DOI: 10.1016/j.numecd.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIM We previously showed that 12-month high-fat diet (HFD) in pigs led to fattening and increased artery intima-media-thickness, which were partly reversed after 3-month return to control diet (CD). The aim of this study was to decipher underlying mechanism of action by using transcriptomic analyses of intima and media of aorta. METHODS AND RESULTS Thirty-two pigs were divided into three groups: CD for 12 months; HFD for 12 months; switch diet group (regression diet; RD): HFD for 9 months followed by CD for 3 months. After 12 months, RNA was isolated from aorta intima and media for nutrigenomic analyses. HFD significantly affected gene expression in intima, while RD gene expression profile was distinct from the CD group. This suggests that switch to CD is not sufficient to correct gene expression alterations induced by HFD but counteracted expression of a group of genes. HFD also affected gene expression in media and as for intima, the expression profile of media of pigs on RD differed from that of these on CD. CONCLUSIONS This study revealed nutrigenomic modifications induced by long-term HFD consumption on arterial intima and media. The return to CD was not sufficient to counteract the genomic effect of HFD.
Collapse
Affiliation(s)
- D Milenkovic
- Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, F-63000, Clermont-Ferrand, France; Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, United States.
| | - R Paslawski
- Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - A Gomulkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - C Gladine
- Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| | - D Janczak
- Department of Vascular Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - I Grzegorek
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - K Jablonska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - K Drozdz
- Division of Angiology, Wroclaw Medical University, Wroclaw, Poland
| | - M Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Poland
| | - A Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - A Janiszewski
- Department of Internal Disease and Veterinary Diagnosis, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poland
| | - P Dziegiel
- Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - A Mazur
- Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| | - U Paslawska
- Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - A Szuba
- Division of Angiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
12
|
Zabriskie MS, Wang C, Wang S, Alexander MD. Apolipoprotein E knockout rabbit model of intracranial atherosclerotic disease. Animal Model Exp Med 2020; 3:208-213. [PMID: 32613180 PMCID: PMC7323697 DOI: 10.1002/ame2.12125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Intracranial atherosclerotic disease (ICAD) is the most common cause of ischemic stroke. Poor understanding of the disease due to limited human data leads to imprecise treatment. Apolipoprotein E knockout (ApoE-KO) rabbits were compared to an existing model, the Watanabe heritable hyperlipidemic (WHHL) rabbit, and wild-type New Zealand white (NZW) rabbit controls. Intracranial artery samples were assessed on histopathology for the presence of ICAD. Logistic and ordinal regression analyses were performed to assess for disease presence and severity, respectively. Eighteen rabbits and 54 artery segments were analyzed. Univariate logistic analysis confirmed the presence of ICAD in model rabbits (P < .001), while no difference was found between WHHL and ApoE-KO rabbits (P = .178). In multivariate analysis, only classification as a model vs wild-type animal (P < .001) was associated with the presence of ICAD. Univariate ordinal regression analysis demonstrated an association between ICAD severity and model animals (P = .001), with no difference was noted between WHHL and ApoE-KO rabbits (P = .528). In multivariate ordinal regression analysis, only classification as a model retained significance (P < .001). ICAD can be reliably produced in ApoE-KO rabbits, developing the disease comparably to the older WHHL model. Further analysis is warranted to optimize accelerated development of ICAD in ApoE-KO rabbits to more efficiently study this disease.
Collapse
Affiliation(s)
- Matthew S. Zabriskie
- Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUTUSA
| | - Chuanzhuo Wang
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shuping Wang
- Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUTUSA
| | - Matthew D. Alexander
- Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of NeurosurgeryUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
13
|
Yang W, Yang Y, Zhao C, Yang K, Wang D, Yang J, Niu X, Gong J. Animal-ImputeDB: a comprehensive database with multiple animal reference panels for genotype imputation. Nucleic Acids Res 2020; 48:D659-D667. [PMID: 31584087 PMCID: PMC6943029 DOI: 10.1093/nar/gkz854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Animal-ImputeDB (http://gong_lab.hzau.edu.cn/Animal_ImputeDB/) is a public database with genomic reference panels of 13 animal species for online genotype imputation, genetic variant search, and free download. Genotype imputation is a process of estimating missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs) and thus can be widely used in large-scale genome-wide association studies (GWASs) using relatively inexpensive and low-density SNP arrays. However, most animals except humans lack high-quality reference panels, which greatly limits the application of genotype imputation in animals. To overcome this limitation, we developed Animal-ImputeDB, which is dedicated to collecting genotype data and whole-genome resequencing data of nonhuman animals from various studies and databases. A computational pipeline was developed to process different types of raw data to construct reference panels. Finally, 13 high-quality reference panels including ∼400 million SNPs from 2265 samples were constructed. In Animal-ImputeDB, an easy-to-use online tool consisting of two popular imputation tools was designed for the purpose of genotype imputation. Collectively, Animal-ImputeDB serves as an important resource for animal genotype imputation and will greatly facilitate research on animal genomic selection and genetic improvement.
Collapse
Affiliation(s)
- Wenqian Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yanbo Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Cecheng Zhao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Kun Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Dongyang Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiajun Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaohui Niu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jing Gong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
14
|
Shiomi M. The History of the WHHL Rabbit, an Animal Model of Familial Hypercholesterolemia (I) - Contribution to the Elucidation of the Pathophysiology of Human Hypercholesterolemia and Coronary Heart Disease. J Atheroscler Thromb 2019; 27:105-118. [PMID: 31748469 PMCID: PMC7049476 DOI: 10.5551/jat.rv17038-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Animal models that closely resemble both human disease findings and their onset mechanism have contributed to the advancement of biomedical science. The Watanabe heritable hyperlipidemic (WHHL) rabbit and its advanced strains (the coronary atherosclerosis-prone and the myocardial infarction-prone WHHL rabbits) developed at Kobe University (Kobe, Japan), an animal model of human familial hypercholesterolemia, have greatly contributed to the elucidation of the pathophysiology of human lipoprotein metabolism, hypercholesterolemia, atherosclerosis, and coronary heart disease, as described below. 1) The main part of human lipoprotein metabolism has been elucidated, and the low-density lipoprotein (LDL) receptor pathway hypothesis derived from studies using fibroblasts was proven in vivo. 2) Oxidized LDL accumulates in the arterial wall, monocyte adhesion molecules are expressed on arterial endothelial cells, and monocyte-derived macrophages infiltrate the arterial intima, resulting in the formation and progression of atherosclerosis. 3) Coronary lesions differ from aortic lesions in lesion composition. 4) Factors involved in the development of atherosclerosis differ between the coronary arteries and aorta. 5) The rupture of coronary lesions requires secondary mechanical forces, such as spasm, in addition to vulnerable plaques. 6) Specific lipid molecules in the blood have been identified as markers of the progression of coronary lesions. At the end of the breeding of the WHHL rabbit family at Kobe University, this review summarizes the history of the development of the WHHL rabbit family and their contribution to biomedical science.
Collapse
Affiliation(s)
- Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine
| |
Collapse
|
15
|
El-Sabrout K, Aggag S, Souza Jr JBFD. Some recent applications of rabbit biotechnology – a review. Anim Biotechnol 2018; 31:76-80. [DOI: 10.1080/10495398.2018.1539005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Karim El-Sabrout
- Department of Poultry Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Sarah Aggag
- Department of Genetics, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
16
|
Fan J, Chen Y, Yan H, Liu B, Wang Y, Zhang J, Chen YE, Liu E, Liang J. Genomic and Transcriptomic Analysis of Hypercholesterolemic Rabbits: Progress and Perspectives. Int J Mol Sci 2018; 19:3512. [PMID: 30413026 PMCID: PMC6274909 DOI: 10.3390/ijms19113512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Rabbits (Oryctolagus cuniculus) are one of the most widely used animal models for the study of human lipid metabolism and atherosclerosis because they are more sensitive to a cholesterol diet than other experimental animals such as rodents. Currently, two hypercholesterolemic rabbit models are frequently used for atherosclerosis studies. One is a cholesterol-fed wild-type rabbit and the other is the Watanabe heritable hyperlipidemic (WHHL) rabbit, which is genetically deficient in low density lipoprotein (LDL) receptor function. Wild-type rabbits can be easily induced to develop severe hypercholesterolemia with a cholesterol-rich diet due to the marked increase in hepatically and intestinally derived remnant lipoproteins, called β-very low density lipoproteins (VLDL), which are rich in cholesteryl esters. WHHL rabbits are characterized by elevated plasma LDL levels on a standard chow diet, which resembles human familial hypercholesterolemia. Therefore, both rabbit models develop aortic and coronary atherosclerosis, but the elevated plasma cholesterol levels are caused by completely different mechanisms. In addition, cholesterol-fed rabbits but not WHHL rabbits exhibit different degrees of hepatosteatosis. Recently, we along with others have shown that there are many differentially expressed genes in the atherosclerotic lesions and livers of cholesterol-fed rabbits that are either significantly up- or down-regulated, compared with those in normal rabbits, including genes involved in the regulation of inflammation and lipid metabolism. Therefore, dietary cholesterol plays an important role not only in hypercholesterolemia and atherosclerosis but also in hepatosteatosis. In this review, we make an overview of the recent progress in genomic and transcriptomic analyses of hypercholesterolemic rabbits. These transcriptomic profiling data should provide novel insight into the relationship between hypercholesterolemia and atherosclerosis or hepatic dysfunction caused by dietary cholesterol.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi 409-3898, Japan.
- Department of Pathology, Xi'an Medical University, Xi'an 710021, China.
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi 409-3898, Japan.
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi 409-3898, Japan.
| | - Baoning Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an 710021, China.
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225001, China.
| |
Collapse
|
17
|
Zhou L, Xiao Q, Bi J, Wang Z, Li Y. RabGTD: a comprehensive database of rabbit genome and transcriptome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5053987. [PMID: 30010730 PMCID: PMC6047408 DOI: 10.1093/database/bay075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/22/2018] [Indexed: 12/28/2022]
Abstract
The rabbit is a very important species for both biomedical research and agriculture animal breeding. They are not only the most-used experimental animals for the production of antibodies, but also widely used for studying a variety of human diseases. Here we developed RabGTD, the first comprehensive rabbit database containing both genome and transcriptome data generated by next-generation sequencing. Genomic variations coming from 79 samples were identified and annotated, including 33 samples of wild rabbits and 46 samples of domestic rabbits with diverse populations. Gene expression profiles of 86 tissue samples were complied, including those from the most commonly used models for hyperlipidemia and atherosclerosis. RabGTD is a web-based and open-access resource, which also provides convenient functions and friendly interfaces of searching, browsing and downloading for users to explore the big data. Database URL: http://www.picb.ac.cn/RabGTD/
Collapse
Affiliation(s)
- Lu Zhou
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China.,University of Chinese Academy of Sciences, 52 Sanlihe Rd., Xicheng District, Beijing 100049, China
| | - Qingyu Xiao
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China.,University of Chinese Academy of Sciences, 52 Sanlihe Rd., Xicheng District, Beijing 100049, China
| | - Jie Bi
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China.,University of Chinese Academy of Sciences, 52 Sanlihe Rd., Xicheng District, Beijing 100049, China
| | - Zhen Wang
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China
| | - Yixue Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China.,Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, 1278 Keyuan Rd., Pudong District, Shanghai 201203, China.,Collaborative Innovation Center for Genetics and Development, Fudan University, 2005 Songhu Rd., Yangpu District, Shanghai 200433, China
| |
Collapse
|
18
|
Wu L, Yao Q, Lin P, Li Y, Li H. Comparative transcriptomics reveals specific responding genes associated with atherosclerosis in rabbit and mouse models. PLoS One 2018; 13:e0201618. [PMID: 30067832 PMCID: PMC6070260 DOI: 10.1371/journal.pone.0201618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022] Open
Abstract
Mouse and rabbit are frequently employed species for atherosclerosis research. With respect to modeling human atherosclerosis, it has been observed that variations in phenotype under commonly used atherogenic conditions are partial or no congruence between two species. However, genome-wide molecular variations are still lacking. To understand the differences between rabbit and mouse in developing atherosclerosis, here from aspect of orthologs, we compared the genome-wide expression profiles of two species under the same atherosclerosis driven factors: high-fat diet or LDLR deficiency. Our results illuminated that: 1) LDLR-deficiency induced different gene expression changes in rabbit and mouse. WHHL rabbit had more significantly differential expressed genes and the most of genes were down-regulated. 2) Some genes and functions were commonly dysregulated in high-fat fed rabbit and mouse models, such as lipid metabolism and inflammation process. However, high-fat intake in rabbit produced more differentially expressed genes and more serious functional effects. 3) Specific differential expression genes were revealed for rabbit and mouse related with high-fat intake. In the aspect of lipoprotein metabolism, APOA4 and APOB was the major responding gene in rabbit and mice, respectively. The expression change of APOA4 and APOB in human atherosclerosis was more similar to rabbit, and therefore rabbit might be a better animal model for investigating human lipoprotein metabolism related diseases. In conclusion, our comparative transcriptome analysis revealed species-specific expression regulation that could partially explain the different phenotypes between rabbit and mouse, which was helpful for model selection to study atherosclerosis.
Collapse
Affiliation(s)
- Leilei Wu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qianlan Yao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Lin
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Liu B, Zhang Y, Wang R, An Y, Gao W, Bai L, Li Y, Zhao S, Fan J, Liu E. Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids Health Dis 2018; 17:159. [PMID: 30021609 PMCID: PMC6052692 DOI: 10.1186/s12944-018-0811-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbiota plays an important role in many metabolic diseases such as diabetes and atherosclerosis. Apolipoprotein E (apoE) knock-out (KO) mice are frequently used for the study of hyperlipidemia and atherosclerosis. However, it is unknown whether apoE KO mice have altered gut microbiota when challenged with a Western diet. METHODS In the current study, we assessed the gut microbiota profiling of apoE KO mice and compared with wild-type mice fed either a normal chow or Western diet for 12 weeks using 16S pyrosequencing. RESULTS On a western diet, the gut microbiota diversity was significantly decreased in apoE KO mice compared with wild type (WT) mice. Firmicutes and Erysipelotrichaceae were significantly increased in WT mice but Erysipelotrichaceae was unchanged in apoE KO mice on a Western diet. The weighted UniFrac principal coordinate analysis exhibited clear separation between WT and apoE KO mice on the first vector (58.6%) with significant changes of two dominant phyla (Bacteroidetes and Firmicutes) and seven dominant families (Porphyromonadaceae, Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, Helicobacteraceae, Erysipelotrichaceae and Veillonellaceae). Lachnospiraceae was significantly enriched in apoE KO mice on a Western diet. In addition, Lachnospiraceae and Ruminococcaceae were positively correlated with relative atherosclerosis lesion size in apoE KO. CONCLUSIONS Collectively, our study showed that there are marked changes in the gut microbiota of apoE KO mice, particularly challenged with a Western diet and these alterations may be possibly associated with atherosclerosis.
Collapse
Affiliation(s)
- Baoning Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yali Zhang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Rong Wang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yingfeng An
- Shaanxi Province Centre for Disease Control and Prevention, Xi’an, 710054 Shaanxi China
| | - Weiman Gao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
| | - Liang Bai
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Yandong Li
- Department of Pathology, First Affiliated Hospital of Xi’an Medical University, Xi’an, 710000 Shaanxi China
| | - Sihai Zhao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898 Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, 710061 Shaanxi China
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, 710061 Shaanxi China
| |
Collapse
|
20
|
Wang W, Chen Y, Bai L, Zhao S, Wang R, Liu B, Zhang Y, Fan J, Liu E. Transcriptomic analysis of the liver of cholesterol-fed rabbits reveals altered hepatic lipid metabolism and inflammatory response. Sci Rep 2018; 8:6437. [PMID: 29692426 PMCID: PMC5915436 DOI: 10.1038/s41598-018-24813-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Rabbits are a suitable animal model for atherosclerosis due to their sensitivity to dietary cholesterol. Moreover, rabbits have lipoprotein profiles that are more similar to humans than those of other laboratory animals. However, little is known about the transcriptomic information related to atherosclerosis in rabbits. We aimed to determine the changes in the livers of rabbits fed a normal chow diet (control) or high cholesterol diet (HCD) by histological examinations and RNA sequencing analysis. Compared with the control group, the lipid levels and small LDL subfractions in plasma were increased, and aortic atherosclerotic plaques were formed in the HCD group. Most importantly, HCD resulted in lipid accumulation and inflammation in the livers. Transcriptomic analysis of the liver showed that HCD induces 1183 differentially expressed genes (DEGs) that mainly participate in the regulation of inflammation and lipid metabolism. Furthermore, the signaling pathways involved in inflammation and lipid metabolism were enriched by KEGG pathway analysis. In addition, hepatic DEGs of the HCD group were further validated by real-time PCR. These results suggest that HCD causes liver lipid accumulation and inflammatory response. Although the relationships between these hepatic changes and atherogenesis need further investigation, these findings provide a fundamental framework for future research on human atherosclerosis using rabbit models.
Collapse
Affiliation(s)
- Weirong Wang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yulong Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Liang Bai
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Rong Wang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Baoning Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yali Zhang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi, 710061, China.
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
21
|
Progression of calcific aortic valve sclerosis in WHHLMI rabbits. Atherosclerosis 2018; 273:8-14. [PMID: 29654986 DOI: 10.1016/j.atherosclerosis.2018.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Aortic valve stenosis (AS) is the most common valvular heart disease and can be life-threatening. The pathogenesis of aortic valve calcification remains largely unknown, primarily due to the lack of an adequate animal model. The high-cholesterol diet-induced AS model in rabbits is one of the established models, but it has the significant limitation of liver dysfunction leading to low survival rates. We hypothesized that a myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbit, an animal model of familial hypercholesterolemia and atherosclerosis, is a useful animal model of AS. METHODS WHHLMI rabbits, aged 20 months and 30 months (n = 19), and control Japanese White rabbits (n = 4), aged 30 months, were used and evaluated by echocardiography under anesthesia. Pathological evaluation and quantitative analyses by polymerase chain reaction (PCR) were also performed. RESULTS The lipid profile was similar between 20 months and 30 months. Two rabbits died due to spontaneous myocardial infarction during the study. Thirty-month-old WHHLMI rabbits exhibited significantly smaller aortic valve area (0.22 ± 0.006 cm2vs. 0.12 ± 0.01 cm2, p < 0.05) and higher maximal transvalvular pressure gradient (7.0 ± 0.32 vs. 9.9 ± 0.95 mmHg, p < 0.05) than 20 month-old rabbits. Macroscopic examination of excised aortic valves demonstrated thickened and degenerated valve leaflets at 30 months. Histological evaluation confirmed thickened leaflets with calcified nodules at 30 months. Real-time PCR of resected aortic valve also showed increased expression level of calcification-related molecules including osteopontin, Sox9, Bmp2, RANKL, osteoprotegerin, and Runx2 (p < 0.05 each) in 30-month-old rabbits. CONCLUSIONS WHHLMI rabbits may be useful models of early-stage AS in vivo.
Collapse
|
22
|
Fan J, Chen Y, Yan H, Niimi M, Wang Y, Liang J. Principles and Applications of Rabbit Models for Atherosclerosis Research. J Atheroscler Thromb 2018; 25:213-220. [PMID: 29046488 PMCID: PMC5868506 DOI: 10.5551/jat.rv17018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 02/02/2023] Open
Abstract
Rabbits are one of the most used experimental animals for biomedical research, particularly as a bioreactor for the production of antibodies. However, many unique features of the rabbit have also made it as an excellent species for examining a number of aspects of human diseases such as atherosclerosis. Rabbits are phylogenetically closer to humans than rodents, in addition to their relatively proper size, tame disposition, and ease of use and maintenance in the laboratory facility. Due to their short life spans, short gestation periods, high numbers of progeny, low cost (compared with other large animals) and availability of genomics and proteomics, rabbits usually serve to bridge the gap between smaller rodents (mice and rats) and larger animals, such as dogs, pigs and monkeys, and play an important role in many translational research activities such as pre-clinical testing of drugs and diagnostic methods for patients. The principle of using rabbits rather than other animals as an experimental model is very simple: rabbits should be used for research, such as translational research, that is difficult to accomplish with other species. Recently, rabbit genome sequencing and transcriptomic profiling of atherosclerosis have been successfully completed, which has paved a new way for researchers to use this model in the future. In this review, we provide an overview of the recent progress using rabbits with specific reference to their usefulness for studying human atherosclerosis.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Jingyan Liang
- Research Center for Vascular Biology, Yangzhou University School of Medicine, Yangzhou, China
| |
Collapse
|
23
|
Tan L, Wang Z, Li Y. Rabbit models provide insights into bone formation related biological process in atherosclerotic vascular calcification. Biochem Biophys Res Commun 2018; 496:1369-1375. [PMID: 29421657 DOI: 10.1016/j.bbrc.2018.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/04/2018] [Indexed: 01/12/2023]
Abstract
Featured as ectopic mineralization along blood vessels, vascular calcification is a major risk factor for a number of prevalent diseases including atherosclerosis. As recent studies identify vascular calcification as a tightly regulated process recapitulating embryonic bone formation, in this study, RNA-seq data generated from rabbit models with inherited or induced hyperlipidemia and atherosclerosis were used, to investigate bone formation related signals and biological processes in atherosclerotic vascular calcification. Evident activation of bone formation was found, together with presence and functioning of bone resorption cell osteoclasts, which were found to possibly also promote bone formation in this disease. Resistance of bone formation and calcification were also found, through down-regulation of pro-ossification regulators and up-regulation of protective inhibitors and Wnt antagonists. Levels of activation and resistance of bone formation differed between the two disease models, suggesting different underlying mechanisms and corresponding treatments. In addition, loss-of-function of protective inhibitors KL and SOST, and possibly crucial role of GPNMB were also highlighted for treatment or further study.
Collapse
Affiliation(s)
- Linuo Tan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Zhen Wang
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| | - Yixue Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China; Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, Shanghai, PR China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, PR China.
| |
Collapse
|
24
|
Li J, Yao Q, Feng F, He S, Lin P, Yang L, Yang C, Li H, Li Y. Systematic identification of rabbit LncRNAs reveals functional roles in atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2266-2273. [PMID: 29317334 DOI: 10.1016/j.bbadis.2017.12.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been gradually emerging as important regulators in various biological processes and diseases, while the contributions of lncRNAs to atherosclerosis remain largely unknown. Our previous work has discovered atherosclerosis associated protein-coding genes by transcriptome sequencing of rabbit models. Here we investigated the roles of lncRNAs in atherosclerosis. We defined a stringent set of 3736 multi-exonic lncRNA transcripts in rabbits. All lncRNAs are firstly reported and 609 (16.3%) of them are conserved in 13 species. Rabbit lncRNAs have similar characteristics to lncRNAs in other mammals, such as relatively short length, low expression, and highly tissue-specificity. The integrative analysis of lncRNAs and co-expressed genes characterize diverse functions of lncRNAs. Comparing two kinds of atherosclerosis models (LDLR-deficient WHHL rabbits and cholesterol-fed NZW rabbits) with their corresponding controls, we found the expression changes of two rabbit models were similar in aorta in but different in liver. The shared change in aorta revealed a subset of lncRNAs involved in immune response, while the cholesterol-fed NZW rabbits showed broader lncRNA expression changes in skeletal muscle system compared to WHHL rabbits. These atherosclerosis-associated lncRNAs and genes provide hits for the experimental validation of lncRNA functions. In summary, our study systematically identified rabbit lncRNAs for the first time and provides new insights for understanding the functions of lncRNAs in atherosclerosis. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Jia Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qianlan Yao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Fangyoumin Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng He
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Lin
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liguang Yang
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuhua Yang
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yixue Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computing Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200031, China.
| |
Collapse
|