1
|
Vieira B, Alcantara JB, Destro G, Guerra MES, Oliveira S, Lima CA, Longato GB, Hakansson AP, Leite LC, Darrieux M, R. Converso T. Role of the polyamine transporter PotABCD during biofilm formation by Streptococcus pneumoniae. PLoS One 2024; 19:e0307573. [PMID: 39110759 PMCID: PMC11305561 DOI: 10.1371/journal.pone.0307573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Streptococcus pneumoniae is a bacterium of great global importance, responsible for more than one million deaths per year. This bacterium is commonly acquired in the first years of life and colonizes the upper respiratory tract asymptomatically by forming biofilms that persist for extended times in the nasopharynx. However, under conditions that alter the bacterial environment, such as viral infections, pneumococci can escape from the biofilm and invade other niches, causing local and systemic disease of varying severity. The polyamine transporter PotABCD is required for optimal survival of the organism in the host. Immunization of mice with recombinant PotD can reduce subsequent bacterial colonization. PotD has also been suggested to be involved in pneumococcal biofilm development. Therefore, in this study we aimed to elucidate the role of PotABCD and polyamines in pneumococcal biofilm formation. First, the formation of biofilms was evaluated in the presence of exogenous polyamines-the substrate transported by PotABCD-added to culture medium. Next, a potABCD-negative strain was used to determine biofilm formation in different model systems using diverse levels of complexity from abiotic surface to cell substrate to in vivo animal models and was compared with its wild-type strain. The results showed that adding more polyamines to the medium stimulated biofilm formation, suggesting a direct correlation between polyamines and biofilm formation. Also, deletion of potABCD operon impaired biofilm formation in all models tested. Interestingly, more differences between wild-type and mutant strains were observed in the more complex model, which emphasizes the significance of employing more physiological models in studying biofilm formation.
Collapse
Affiliation(s)
- Brenda Vieira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Jessica B. Alcantara
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Giulia Destro
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria E. S. Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Sheila Oliveira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Carolina A. Lima
- Laboratório de Farmacologia Molecular e Compostos Bioativos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Giovanna B. Longato
- Laboratório de Farmacologia Molecular e Compostos Bioativos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Luciana C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago R. Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
2
|
Lee JH, Ayoola MB, Shack LA, Swiatlo E, Nanduri B. Characterization of an Arginine Decarboxylase from Streptococcus pneumoniae by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Biomolecules 2024; 14:463. [PMID: 38672479 PMCID: PMC11048482 DOI: 10.3390/biom14040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Polyamines are polycations derived from amino acids that play an important role in proliferation and growth in almost all living cells. In Streptococcus pneumoniae (the pneumococcus), modulation of polyamine metabolism not only plays an important regulatory role in central metabolism, but also impacts virulence factors such as the capsule and stress responses that affect survival in the host. However, functional annotation of enzymes from the polyamine biosynthesis pathways in the pneumococcus is based predominantly on computational prediction. In this study, we cloned SP_0166, predicted to be a pyridoxal-dependent decarboxylase, from the Orn/Lys/Arg family pathway in S. pneumoniae TIGR4 and expressed and purified the recombinant protein. We performed biochemical characterization of the recombinant SP_0166 and confirmed the substrate specificity. For polyamine analysis, we developed a simultaneous quantitative method using hydrophilic interaction liquid chromatography (HILIC)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) without derivatization. SP_0166 has apparent Km, kcat, and kcat/Km values of 11.3 mM, 715,053 min-1, and 63,218 min-1 mM-1, respectively, with arginine as a substrate at pH 7.5. We carried out inhibition studies of SP_0166 enzymatic activity with arginine as a substrate using chemical inhibitors DFMO and DFMA. DFMO is an irreversible inhibitor of ornithine decarboxylase activity, while DFMA inhibits arginine decarboxylase activity. Our findings confirm that SP_0166 is inhibited by DFMA and DFMO, impacting agmatine production. The use of arginine as a substrate revealed that the synthesis of putrescine by agmatinase and N-carbamoylputrescine by agmatine deiminase were both affected and inhibited by DFMA. This study provides experimental validation that SP_0166 is an arginine decarboxylase in pneumococci.
Collapse
Affiliation(s)
- Jung Hwa Lee
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Moses B. Ayoola
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Leslie A. Shack
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
3
|
Bui TI, Britt EA, Muthukrishnan G, Gill SR. Probiotic induced synthesis of microbiota polyamine as a nutraceutical for metabolic syndrome and obesity-related type 2 diabetes. Front Endocrinol (Lausanne) 2023; 13:1094258. [PMID: 36714575 PMCID: PMC9880209 DOI: 10.3389/fendo.2022.1094258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The gut microbiota regulates multiple facets of host metabolism and immunity through the production of signaling metabolites, such as polyamines which are small organic compounds that are essential to host cell growth and lymphocyte activation. Polyamines are most abundant in the intestinal lumen, where their synthesis by the gut microbiota is influenced by microbiome composition and host diet. Disruption of the host gut microbiome in metabolic syndrome and obesity-related type 2 diabetes (obesity/T2D) results in potential dysregulation of polyamine synthesis. A growing body of evidence suggests that restoration of the dysbiotic gut microbiota and polyamine synthesis is effective in ameliorating metabolic syndrome and strengthening the impaired immune responses of obesity/T2D. In this review, we discuss existing studies on gut microbiome determinants of polyamine synthesis, polyamine production in obesity/T2D, and evidence that demonstrates the potential of polyamines as a nutraceutical in obesity/T2D hosts.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Emily A. Britt
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
4
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
5
|
Kanojiya P, Joshi R, Saroj SD. Availability of polyamines affects virulence and survival of Neisseria meningitidis. J Microbiol 2022; 60:640-648. [DOI: 10.1007/s12275-022-1589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
|
6
|
Harmon MBA, Scicluna BP, Wiewel MA, Schultz MJ, Horn J, Cremer OL, van der Poll T, Joost Wiersinga W, Juffermans NP, the MARS consortium. Patients with hypothermic sepsis have a unique gene expression profile compared to patients with fever and sepsis. J Cell Mol Med 2022; 26:1896-1904. [PMID: 35934940 PMCID: PMC8980902 DOI: 10.1111/jcmm.17156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/13/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
The pathophysiology of hypothermia during sepsis is unclear. Using genomic profiling of blood leukocytes, we aimed to determine if hypothermia is associated with a different gene expression profile compared to fever during sepsis. Patients with sepsis and either hypothermia or fever within 24 hours after ICU admission were included in the study (n = 168). Hypothermia was defined as body temperature below 36 °C. Fever was defined as body temperature equal to or above 38.3°C. We compared blood gene expression (whole-genome transcriptome in leukocytes) in hypothermic septic compared to febrile septic patients in an unmatched analysis and matched for APACHE IV score and the presence of shock. In total, 67 septic patients were hypothermic and 101 patients were febrile. Hypothermia was associated with a distinct gene expression profile in both unmatched and matched analyses. There were significant differences related to the up- and downregulation of canonical signalling pathways. In the matched analysis, the top upregulated gene was cold-inducible mRNA binding protein (CIRBP) which plays a role in cold-induced suppression of cell proliferation. In addition, we found three signalling pathways significantly upregulated in hypothermic patients compared to febrile patients; tryptophan degradation X, phenylalanine degradation IV and putrescine degradation III. In conclusion, there are distinct signalling pathways and genes associated with hypothermia, including tryptophan degradation and CIRBP expression, providing a possible link to the modulation of body temperature and early immunosuppression. Future studies may focus on the canonical signalling pathways presented in this paper to further investigate spontaneous hypothermia in sepsis.
Collapse
Affiliation(s)
- Matthew B. A. Harmon
- Department of Intensive CareAmsterdam University Medical Centerslocation Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam University Medical Centerslocation Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Brendon P. Scicluna
- Center for Experimental & Molecular MedicineAmsterdam University Medical Centerslocation Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Maryse A. Wiewel
- Center for Experimental & Molecular MedicineAmsterdam University Medical Centerslocation Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marcus J. Schultz
- Department of Intensive CareAmsterdam University Medical Centerslocation Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam University Medical Centerslocation Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
- Mahidol Oxford Research UnitMahidol UniversityBangkokThailand
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Janneke Horn
- Department of Intensive CareAmsterdam University Medical Centerslocation Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam University Medical Centerslocation Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Olaf L. Cremer
- Department of Intensive Care MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Tom van der Poll
- Center for Experimental & Molecular MedicineAmsterdam University Medical Centerslocation Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - W. Joost Wiersinga
- Center for Experimental & Molecular MedicineAmsterdam University Medical Centerslocation Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Nicole P. Juffermans
- Department of Intensive CareAmsterdam University Medical Centerslocation Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam University Medical Centerslocation Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | | |
Collapse
|
7
|
Banerji R, Iyer P, Saroj SD. Spermidine enhances the survival of Streptococcus pyogenes M3 under oxidative stress. Mol Oral Microbiol 2022; 37:53-62. [PMID: 34994090 DOI: 10.1111/omi.12360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
Streptococcus pyogenes, a host-restricted gram-positive pathogen during infection, initially adheres to the epithelia of the nasopharynx and respiratory tract of the human host, followed by disseminating to other organs and evading the host immune system. Upon phagocytosis, S. pyogenes encounters oxidative stress inside the macrophages. The role of polyamines in regulating various physiological functions including stress resistance in bacteria has been reported widely. Since S. pyogenes lacks the machinery for the biosynthesis of polyamines, the study aimed to understand the role of extracellular polyamines in the survival of S. pyogenes under oxidative stress environments. S. pyogenes being a catalase-negative organism, we report that its survival within the macrophages and H2 O2 is enhanced by the presence of spermidine. The increased survival can be attributed to the upregulation of oxidative stress response genes such as sodM, npx, and mtsABC. In addition, spermidine influences the upregulation of virulence factors such as sagA, slo, and hasA. Also, spermidine leads to a decrease in hydrophobicity of the cell membrane and an increase in hyaluronic acid. This study suggests a role for extracellular spermidine in the survival of S. pyogenes under oxidative stress environments. Recognizing the factors that modulate S. pyogenes survival and virulence under stress will assist in understanding its interactions with the host.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Parvati Iyer
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
8
|
Nakamya MF, Ayoola MB, Shack LA, Swiatlo E, Nanduri B. The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome. Pathogens 2021; 10:pathogens10101322. [PMID: 34684271 PMCID: PMC8540371 DOI: 10.3390/pathogens10101322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Infections due to Streptococcus pneumoniae, a commensal in the nasopharynx, still claim a significant number of lives worldwide. Genome plasticity, antibiotic resistance, and limited serotype coverage of the available polysaccharide-based conjugate vaccines confounds therapeutic interventions to limit the spread of this pathogen. Pathogenic mechanisms that allow successful adaption and persistence in the host could be potential innovative therapeutic targets. Polyamines are ubiquitous polycationic molecules that regulate many cellular processes. We previously reported that deletion of polyamine transport operon potABCD, which encodes a putrescine/spermidine transporter (ΔpotABCD), resulted in an unencapsulated attenuated phenotype. Here, we characterize the transcriptome, metabolome, and stress responses of polyamine transport-deficient S. pneumoniae. Compared with the wild-type strain, the expression of genes involved in oxidative stress responses and the nucleotide sugar metabolism was reduced, while expression of genes involved in the Leloir, tagatose, and pentose phosphate pathways was higher in ΔpotABCD. A metabolic shift towards the pentose phosphate pathway will limit the synthesis of precursors of capsule polysaccharides. Metabolomics results show reduced levels of glutathione and pyruvate in the mutant. Our results also show that the potABCD operon protects pneumococci against hydrogen peroxide and nitrosative stress. Our findings demonstrate the importance of polyamine transport in pneumococcal physiology that could impact in vivo fitness. Thus, polyamine transport in pneumococci represents a novel target for therapeutic interventions.
Collapse
Affiliation(s)
- Mary F. Nakamya
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (M.F.N.); (M.B.A.); (L.A.S.)
| | - Moses B. Ayoola
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (M.F.N.); (M.B.A.); (L.A.S.)
| | - Leslie A. Shack
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (M.F.N.); (M.B.A.); (L.A.S.)
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA;
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (M.F.N.); (M.B.A.); (L.A.S.)
- Correspondence: ; Tel.: +1-662-325-5859; Fax: +1-662-325-1031
| |
Collapse
|
9
|
Nanduri B, Swiatlo E. The expansive effects of polyamines on the metabolism and virulence of Streptococcus pneumoniae. Pneumonia (Nathan) 2021; 13:4. [PMID: 33762024 PMCID: PMC7990898 DOI: 10.1186/s41479-021-00082-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
Polyamines are common intracellular metabolites of nearly all cells, and their conservation across a vast diversity of cells suggests critical roles for these compounds in cellular physiology. Most intracellular polyamines are associated with RNA and, subsequently, polyamines have significant effects on transcription and translation. Putrescine and spermidine are the most common polyamines in bacteria. Intracellular polyamine pools in bacteria are tightly controlled by both de novo synthesis and transport. Polyamine homeostasis is emerging as a critical parameter of multiple pathways and physiology with substantial impact on bacterial pathogenesis, including the important human pathogen Streptococcus pneumoniae. Modulation of polyamine metabolism in pneumococci is an important regulator of central metabolism. It has broad effects on virulence factors such as capsule as well as stress responses that ultimately impact the survival of pneumococcus in a host. Polyamine transport protein as a single antigen or in combination with other pneumococcal proteins is shown to be an efficacious immunogen that protects against nasopharyngeal colonization, and invasive disease. A comprehensive description of polyamine metabolic pathways and their intersection with pneumococcal pathogenesis will undoubtedly point to novel approaches for treatment and prevention of pneumococcal disease.
Collapse
Affiliation(s)
- Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, Mississippi State, USA. .,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70112, USA
| |
Collapse
|
10
|
Arginine Decarboxylase Is Essential for Pneumococcal Stress Responses. Pathogens 2021; 10:pathogens10030286. [PMID: 33801541 PMCID: PMC7998104 DOI: 10.3390/pathogens10030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.
Collapse
|
11
|
Banerji R, Kanojiya P, Patil A, Saroj SD. Polyamines in the virulence of bacterial pathogens of respiratory tract. Mol Oral Microbiol 2020; 36:1-11. [PMID: 32979241 DOI: 10.1111/omi.12315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Polyamines are positively charged hydrocarbons that are essential for the growth and cellular maintenance in prokaryotes and eukaryotes. Polyamines have been demonstrated to play a role in bacterial pathogenicity and biofilm formation. However, the role of extracellular polyamines as a signaling molecule in the regulation of virulence is not investigated in detail. The bacterial pathogens residing in the respiratory tract remain asymptomatic for an extended period; however, the factors that lead to symptomatic behavior are poorly understood. Further investigation to understand the relation between the host-secreted factors and virulence of pathogenic bacteria in the respiratory tract may provide insights into the pathogenesis of respiratory tract infections. Polyamines produced within the bacterial cell are generally sequestered. Therefore, the pool of extracellular polyamines formed by secretion of the commensals and the host may be one of the signaling molecules that might contribute toward the alterations in the expression of virulence factors in bacterial pathogens. Besides, convergent mechanisms of polyamine biosynthesis do exist across the border of species and genus level. Also, several novel polyamine transporters in the host and bacteria remain yet to be identified. The review focuses on the role of polyamines in the expression of virulence phenotypes and biofilm formation of the respiratory tract pathogens.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
12
|
Burcham LR, Hill RA, Caulkins RC, Emerson JP, Nanduri B, Rosch JW, Fitzkee NC, Thornton JA. Streptococcus pneumoniae metal homeostasis alters cellular metabolism. Metallomics 2020; 12:1416-1427. [PMID: 32676626 PMCID: PMC7530088 DOI: 10.1039/d0mt00118j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Streptococcus pneumoniae colonizes the human nasopharyngeal mucosa and is a leading cause of community-acquired pneumonia, acute otitis media, and bacterial meningitis. Metal ion homeostasis is vital to the survival of this pathogen across diverse biological sites and contributes significantly to colonization and invasive disease. Microarray and qRT-PCR analysis revealed an upregulation of an uncharacterized operon (SP1433-1438) in pneumococci subjected to metal-chelation by N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN). Supplementation of zinc, cobalt, and nickel following TPEN treatment significantly abrogated induction. BLASTP comparisons and protein topology analysis predicted this locus to encode components of ATP binding cassette (ABC) transporters involved in multidrug resistance (SP1434-1435) and energy-coupling factor (ECF) transporters (SP1436-1438). Inductively coupled plasma mass spectrometry (ICP-MS) analysis identified differences in intracellular metal content in a Δ1434-8 mutant strain compared to parental T4R. Further, analysis of the secreted metabolome of WT and Δ1434-8 strains identified significant changes in pneumococcal glycolytic and amino acid metabolic pathways, indicating a shift towards mixed acid fermentation. Additionally, proteomic analysis revealed differentially expressed proteins in the Δ1434-8 mutant strain, with nearly 20% regulated by the global catabolite repressor, CcpA. Based on these findings, we propose that the transporters encoded by SP1433-1438 are involved in regulating the central metabolism of S. pneumoniae and contributing to bacterial survival during metal stress.
Collapse
Affiliation(s)
- Lindsey R Burcham
- Department of Biological Sciences, Mississippi State University, Mississippi State MS 39762, USA.
| | - Rebecca A Hill
- Department of Chemistry, Mississippi State University, Mississippi State MS 39762, USA
| | - Rachel C Caulkins
- Department of Biological Sciences, Mississippi State University, Mississippi State MS 39762, USA.
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Mississippi State MS 39762, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State MS 39762, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State MS 39762, USA
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State MS 39762, USA.
| |
Collapse
|
13
|
Ayoola MB, Nakamya MF, Shack LA, Park S, Lim J, Lee JH, Ross MK, Eoh H, Nanduri B. SP_0916 Is an Arginine Decarboxylase That Catalyzes the Synthesis of Agmatine, Which Is Critical for Capsule Biosynthesis in Streptococcus pneumoniae. Front Microbiol 2020; 11:578533. [PMID: 33072045 PMCID: PMC7531197 DOI: 10.3389/fmicb.2020.578533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022] Open
Abstract
The global burden of invasive pneumococcal diseases, including pneumonia and sepsis, caused by Streptococcus pneumoniae, a Gram-positive bacterial pathogen, remains a major global health risk. The success of pneumococcus as a pathogen can be attributed to its ability to regulate the synthesis of capsular polysaccharide (CPS) during invasive disease. We previously reported that deletion of a putative lysine decarboxylase (LDC; ΔSP_0916) in pneumococcal serotype 4 (TIGR4) results in reduced CPS. SP_0916 locus is annotated as either an arginine or a LDC in pneumococcal genomes. In this study, by biochemical characterization of the recombinant SP_0916, we determined the substrate specificity of SP_0916 and show that it is an arginine decarboxylase (speA/ADC). We also show that deletion of the polyamine transporter (potABCD) predicted to import putrescine and spermidine results in reduced CPS, while deletion of spermidine synthase (speE) for the conversion of putrescine to spermidine had no impact on the capsule. Targeted metabolomics identified a correlation between reduced levels of agmatine and loss of capsule in ΔspeA and ΔpotABCD, while agmatine levels were comparable between the encapsulated TIGR4 and ΔspeE. Exogenous supplementation of agmatine restored CPS in both ΔpotABCD and ΔspeA. These results demonstrate that agmatine is critical for regulating the CPS, a predominant virulence factor in pneumococci.
Collapse
Affiliation(s)
- Moses B Ayoola
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mary F Nakamya
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Leslie A Shack
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Seongbin Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Juhyeon Lim
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Jung Hwa Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Matthew K Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hyungjin Eoh
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
14
|
Banerji R, Kanojiya P, Saroj SD. Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Crit Rev Microbiol 2020; 46:136-146. [DOI: 10.1080/1040841x.2020.1735991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
15
|
Harrison A, Hardison RL, Wallace RM, Fitch J, Heimlich DR, Bryan MO, Dubois L, John-Williams LS, Sebra RP, White P, Moseley MA, Thompson JW, Justice SS, Mason KM. Reprioritization of biofilm metabolism is associated with nutrient adaptation and long-term survival of Haemophilus influenzae. NPJ Biofilms Microbiomes 2019; 5:33. [PMID: 31700653 PMCID: PMC6831627 DOI: 10.1038/s41522-019-0105-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.
Collapse
Affiliation(s)
- Alistair Harrison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachael L. Hardison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachel M. Wallace
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - James Fitch
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - Derek R. Heimlich
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Meghan O’ Bryan
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Laura Dubois
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Lisa St. John-Williams
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Robert P. Sebra
- Icahn School of Medicine at Mount Sinai, Icahn Institute and Department of Genetics & Genomic Sciences, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter White
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - J. Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Sheryl S. Justice
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Kevin M. Mason
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
16
|
Short-chain diamines are the physiological substrates of PACE family efflux pumps. Proc Natl Acad Sci U S A 2019; 116:18015-18020. [PMID: 31416917 DOI: 10.1073/pnas.1901591116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter baumannii has rapidly emerged as a major cause of gram-negative hospital infections worldwide. A. baumannii encodes for the transport protein AceI, which confers resistance to chlorhexidine, a widely used antiseptic. AceI is also the prototype for the recently discovered proteobacterial antimicrobial compound efflux (PACE) family of transport proteins that confer resistance to a range of antibiotics and antiseptics in many gram-negative bacteria, including pathogens. The gene encoding AceI is conserved in the core genome of A. baumannii, suggesting that it has an important primordial function. This is incongruous with the sole characterized substrate of AceI, chlorhexidine, an entirely synthetic biocide produced only during the last century. Here we investigated a potential primordial function of AceI and other members of the PACE family in the transport of naturally occurring polyamines. Polyamines are abundant in living cells, where they have physiologically important functions and play multifaceted roles in bacterial infection. Gene expression studies revealed that the aceI gene is induced in A. baumannii by the short-chain diamines cadaverine and putrescine. Membrane transport experiments conducted in whole cells of A. baumannii and Escherichia coli and also in proteoliposomes showed that AceI mediates the efflux of these short-chain diamines when energized by an electrochemical gradient. Assays conducted using 8 additional diverse PACE family proteins identified 3 that also catalyze cadaverine transport. Taken together, these results demonstrate that short-chain diamines are common substrates for the PACE family of transport proteins, adding to their broad significance as a novel family of efflux pumps.
Collapse
|
17
|
Ferrer-Navarro M, Strehlitz A, Medina E, Vila J. Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Streptococcus pneumoniae Infection. Front Microbiol 2018; 9:928. [PMID: 29867838 PMCID: PMC5952171 DOI: 10.3389/fmicb.2018.00928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Infections by Streptococcus pneumoniae are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on S. pneumoniae are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from S. pneumoniae-infected mice with control mice by means of difference gel electrophoresis (DIGE) technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in S. pneumoniae infection.
Collapse
Affiliation(s)
- Mario Ferrer-Navarro
- Instituto Salud Global, Barcelona Centre, International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Anja Strehlitz
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jordi Vila
- Instituto Salud Global, Barcelona Centre, International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Nakamya MF, Ayoola MB, Park S, Shack LA, Swiatlo E, Nanduri B. The Role of Cadaverine Synthesis on Pneumococcal Capsule and Protein Expression. Med Sci (Basel) 2018; 6:E8. [PMID: 29351189 PMCID: PMC5872165 DOI: 10.3390/medsci6010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022] Open
Abstract
Invasive infections caused by Streptococcus pneumoniae, a commensal in the nasopharynx, pose significant risk to human health. Limited serotype coverage by the available polysaccharide-based conjugate vaccines coupled with increasing incidence of antibiotic resistance complicates therapeutic strategies. Bacterial physiology and metabolism that allows pathogens to adapt to the host are a promising avenue for the discovery of novel therapeutics. Intracellular polyamine concentrations are tightly regulated by biosynthesis, transport and degradation. We previously reported that deletion of cadA, a gene that encodes for lysine decarboxylase, an enzyme that catalyzes cadaverine synthesis results in an attenuated phenotype. Here, we report the impact of cadA deletion on pneumococcal capsule and protein expression. Our data show that genes for polyamine biosynthesis and transport are downregulated in ∆cadA. Immunoblot assays show reduced capsule in ∆cadA. Reduced capsule synthesis could be due to reduced transcription and availability of precursors for synthesis. The capsule is the predominant virulence factor in pneumococci and is critical for evading opsonophagocytosis and its loss in ∆cadA could explain the reported attenuation in vivo. Results from this study show that capsule synthesis in pneumococci is regulated by polyamine metabolism, which can be targeted for developing novel therapies.
Collapse
Affiliation(s)
- Mary F Nakamya
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Moses B Ayoola
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Seongbin Park
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Leslie A Shack
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA.
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
19
|
Functional Changes in the Gut Microbiome Contribute to Transforming Growth Factor β-Deficient Colon Cancer. mSystems 2017; 2:mSystems00065-17. [PMID: 28951889 DOI: 10.1128/msystems.00065-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most treatable cancers, with a 5-year survival rate of ~64%, yet over 50,000 deaths occur yearly in the United States. In 15% of cases, deficiency in mismatch repair leads to null mutations in transforming growth factor β (TGF-β) type II receptor, yet genotype alone is not responsible for tumorigenesis. Previous work in mice shows that disruptions in TGF-β signaling combined with Helicobacter hepaticus cause tumorigenesis, indicating a synergistic effect between genotype and microbial environment. Here, we examine functional shifts in the gut microbiome in CRC using integrated -omics approaches to untangle the role of host genotype, inflammation, and microbial ecology. We profile the gut microbiome of 40 mice with/without deficiency in TGF-β signaling from a Smad3 (mothers against decapentaplegic homolog-3) knockout and with/without inoculation with H. hepaticus. Clear functional differences in the microbiome tied to specific bacterial species emerge from four pathways related to human colon cancer: lipopolysaccharide (LPS) production, polyamine synthesis, butyrate metabolism, and oxidative phosphorylation (OXPHOS). Specifically, an increase in Mucispirillum schaedleri drives LPS production, which is associated with an inflammatory response. We observe a commensurate decrease in butyrate production from Lachnospiraceae bacterium A4, which could promote tumor formation. H. hepaticus causes an increase in OXPHOS that may increase DNA-damaging free radicals. Finally, multiple bacterial species increase polyamines that are associated with colon cancer, implicating not just diet but also the microbiome in polyamine levels. These insights into cross talk between the microbiome, host genotype, and inflammation could promote the development of diagnostics and therapies for CRC. IMPORTANCE Most research on the gut microbiome in colon cancer focuses on taxonomic changes at the genus level using 16S rRNA gene sequencing. Here, we develop a new methodology to integrate DNA and RNA data sets to examine functional shifts at the species level that are important to tumor development. We uncover several metabolic pathways in the microbiome that, when perturbed by host genetics and H. hepaticus inoculation, contribute to colon cancer. The work presented here lays a foundation for improved bioinformatics methodologies to closely examine the cross talk between specific organisms and the host, important for the development of diagnostics and pre/probiotic treatment.
Collapse
|
20
|
Pipkins HR, Bradshaw JL, Keller LE, Swiatlo E, McDaniel LS. Polyamine transporter potABCD is required for virulence of encapsulated but not nonencapsulated Streptococcus pneumoniae. PLoS One 2017; 12:e0179159. [PMID: 28586394 PMCID: PMC5460881 DOI: 10.1371/journal.pone.0179159] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/24/2017] [Indexed: 11/24/2022] Open
Abstract
Streptococcus pneumoniae is commonly found in the human nasopharynx and is the causative agent of multiple diseases. Since invasive pneumococcal infections are associated with encapsulated pneumococci, the capsular polysaccharide is the target of licensed pneumococcal vaccines. However, there is an increasing distribution of non-vaccine serotypes, as well as nonencapsulated S. pneumoniae (NESp). Both encapsulated and nonencapsulated pneumococci possess the polyamine oligo-transport operon (potABCD). Previous research has shown inactivation of the pot operon in encapsulated pneumococci alters protein expression and leads to a significant reduction in pneumococcal murine colonization, but the role of the pot operon in NESp is unknown. Here, we demonstrate deletion of potD from the NESp NCC1 strain MNZ67 does impact expression of the key proteins pneumolysin and PspK, but it does not inhibit murine colonization. Additionally, we show the absence of potD significantly increases biofilm production, both in vitro and in vivo. In a chinchilla model of otitis media (OM), the absence of potD does not significantly affect MNZ67 virulence, but it does significantly reduce the pathogenesis of the virulent encapsulated strain TIGR4 (serotype 4). Deletion of potD also significantly reduced persistence of TIGR4 in the lungs but increased persistence of PIP01 in the lungs. We conclude the pot operon is important for the regulation of protein expression and biofilm formation in both encapsulated and NCC1 nonencapsulated Streptococcus pneumoniae. However, in contrast to encapsulated pneumococcal strains, polyamine acquisition via the pot operon is not required for MNZ67 murine colonization, persistence in the lungs, or full virulence in a model of OM. Therefore, NESp virulence regulation needs to be further established to identify potential NESp therapeutic targets.
Collapse
Affiliation(s)
- Haley R. Pipkins
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Jessica L. Bradshaw
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Lance E. Keller
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Edwin Swiatlo
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
Pneumococcal infections continue to cause significant morbidity and mortality in patients throughout the world. This microorganism remains the most common bacterial cause of community-acquired pneumonia and is associated with a considerable burden of disease and health-care costs in both developed and developing countries. Emerging antibiotic resistance has been a concern because of its potential negative impact on the outcome of patients who receive standard antibiotic therapy. However, there have been substantial changes in the epidemiology of this pathogen in recent years, not least of which has been due to the use of pneumococcal conjugate vaccines in children, with subsequent herd protection in unvaccinated adults and children. Furthermore, much recent research has led to a better understanding of the virulence factors of this pathogen and their role in the pathogenesis of severe pneumococcal disease, including the cardiac complications, as well as the potential role of adjunctive therapy in the management of severely ill cases. This review will describe recent advances in our understanding of the epidemiology, virulence factors, and management of pneumococcal community-acquired pneumonia.
Collapse
Affiliation(s)
- Charles Feldman
- Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa
| | - Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|