1
|
Carpi M, Mercuri NB, Liguori C. Orexin Receptor Antagonists for the Prevention and Treatment of Alzheimer's Disease and Associated Sleep Disorders. Drugs 2024; 84:1365-1378. [PMID: 39365407 PMCID: PMC11602839 DOI: 10.1007/s40265-024-02096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Orexins/hypocretins are neuropeptides produced by the hypothalamic neurons, binding two G-protein coupled receptors (orexin 1 and orexin 2 receptors) and playing a critical role in regulating arousal, wakefulness, and various physiological functions. Given the high prevalence of sleep disturbances in Alzheimer's disease (AD) and their reported involvement in AD pathophysiology, the orexin system is hypothesized to contribute to the disease pathogenesis. Specifically, recent evidence suggests that orexin's influence may extend beyond sleep regulation, potentially affecting amyloid-β and tau pathologies. Dual orexin receptor antagonists (DORAs), namely suvorexant, lemborexant, and daridorexant, demonstrated efficacy in treating chronic insomnia disorder across diverse clinical populations. Considering their stabilizing effects on sleep parameters and emerging evidence of a possible neuroprotective role, these agents represent a promising strategy for AD management. This leading article reviews the potential use of orexin receptor antagonists in AD, particularly focusing on their effect in modulating disease-associated sleep disturbances and clinical outcomes. Overall, clinical studies support the use of DORAs to enhance sleep quality in patients with AD with comorbid sleep and circadian sleep-wake rhythm disorders. Preliminary results also suggest that these compounds might influence AD pathology, potentially affecting disease progression. Conversely, research on selective orexin receptor antagonists in AD is currently limited. Further investigation is needed to explore orexin antagonism not only as a symptomatic treatment for sleep disturbances, but also for its broader implications in modifying AD neurodegeneration, emphasizing mechanisms of action and long-term outcomes.
Collapse
Affiliation(s)
- Matteo Carpi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.
- Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.
| |
Collapse
|
2
|
Metha J, Ji Y, Braun C, Nicholson JR, De Lecea L, Murawski C, Hoyer D, Jacobson LH. Hypocretin-1 receptor antagonism improves inhibitory control during the Go/No-Go task in highly motivated, impulsive male mice. Psychopharmacology (Berl) 2024; 241:2171-2187. [PMID: 38886189 PMCID: PMC11442560 DOI: 10.1007/s00213-024-06628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
RATIONALE Motivation and inhibitory control are dominantly regulated by the dopaminergic (DA) and noradrenergic (NA) systems, respectively. Hypothalamic hypocretin (orexin) neurons provide afferent inputs to DA and NA nuclei and hypocretin-1 receptors (HcrtR1) are implicated in reward and addiction. However, the role of the HcrtR1 in inhibitory control is not well understood. OBJECTIVES To determine the effects of HcrtR1 antagonism and motivational state in inhibitory control using the go/no-go task in mice. METHODS n = 23 male C57Bl/6JArc mice were trained in a go/no-go task. Decision tree dendrogram analysis of training data identified more and less impulsive clusters of animals. A HcrtR1 antagonist (BI001, 12.5 mg/kg, per os) or vehicle were then administered 30 min before go/no-go testing, once daily for 5 days, under high (food-restricted) and low (free-feeding) motivational states in a latin-square crossover design. Compound exposure levels were assessed in a satellite group of animals. RESULTS HcrtR1 antagonism increased go accuracy and decreased no-go accuracy in free-feeding animals overall, whereas it decreased go accuracy and increased no-go accuracy only in more impulsive, food restricted mice. HcrtR1 antagonism also showed differential effects in premature responding, which was increased in response to the antagonist in free-feeding, less impulsive animals, and decreased in food restricted, more impulsive animals. HcrtR1 receptor occupancy by BI001 was estimated at ~ 66% during the task. CONCLUSIONS These data indicate that hypocretin signalling plays roles in goal-directed behaviour and inhibitory control in a motivational state-dependant manner. While likely not useful in all settings, HcrtR1 antagonism may be beneficial in improving inhibitory control in impulsive subpopulations.
Collapse
Affiliation(s)
- Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Finance, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Yijun Ji
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Circadian Misalignment and Shift Work Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Notting Hill, VIC, 3162, Australia
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Janet R Nicholson
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Luis De Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Carsten Murawski
- Department of Finance, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Sayson LV, Campomayor NB, Ortiz DM, Lee HJ, Balataria S, Park S, Lim J, Kang H, Kim HJ, Kim M. Extracts of Prunella vulgaris Enhanced Pentobarbital-Induced Sleeping Behavior in Mice Potentially via Adenosine A2A Receptor Activity. PLANTA MEDICA 2024; 90:864-875. [PMID: 39047773 DOI: 10.1055/a-2360-9639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The increasing prevalence of sleep dysregulation cases has prompted the search for effective and safe sleep-enhancing agents. Numerous medications used in the treatment of sleep disorders function by enhancing γ-aminobutyric acid neurotransmitter activity. Unfortunately, these substances may induce significant adverse effects in chronic users, such as dependence and motor behavior impairments. Consequently, there is a growing interest in exploring therapeutic sleep-enhancing agents derived from natural sources, with the anticipation of causing less severe side effects. Prunella vulgaris (PV), a perennial plant indigenous to South Korea, exhibits various pharmacological effects, likely attributed to its chemical composition. Rosmarinic acid, one of its components, has previously demonstrated sleep-potentiating properties, suggesting the potential for PV to exhibit similar pharmacological effects. This study aims to investigate the potential effects of repeated administration of PV extract on the sleep behavior, brainwave activity, sleep-wake cycle, and physiological behavior of mice. Findings indicate that PV extracts exhibit sleep-enhancing effects in mice, characterized by prolonged sleep duration and a reduced onset time of pentobarbital-induced sleep. However, PV extracts only reduced alpha wave powers, with minor alterations in wakefulness and rapid-eye-movement sleep duration. In contrast to diazepam, PV extracts lack adverse effects on locomotor activity, motor coordination, or anxiety in mice. Receptor-binding assay and caffeine treatment support the potential involvement of adenosine A2A receptors in the effects of PV, suggesting distinct mechanisms of action compared to diazepam, despite both exhibiting sleep-altering effects. Overall, our results suggest that PV holds promise as a potential source of sleep-aiding agents.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Nicole Bon Campomayor
- Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Sweetie Balataria
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Sangsu Park
- Naturescience Inc., Seoul, Republic of Korea
| | - Jeongin Lim
- Naturescience Inc., Seoul, Republic of Korea
| | - Heejin Kang
- Naturescience Inc., Seoul, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
- Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
5
|
Hu XH, Yu KY, Li XX, Zhang JN, Jiao JJ, Wang ZJ, Cai HY, Wang L, He YX, Wu MN. Selective Orexin 2 Receptor Blockade Alleviates Cognitive Impairments and the Pathological Progression of Alzheimer's Disease in 3xTg-AD Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae115. [PMID: 38682858 DOI: 10.1093/gerona/glae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 05/01/2024] Open
Abstract
The orexin system is closely related to the pathogenesis of Alzheimer's disease (AD). Orexin-A aggravates cognitive dysfunction and increases amyloid β (Aβ) deposition in AD model mice, but studies of different dual orexin receptor (OXR) antagonists in AD have shown inconsistent results. Our previous study revealed that OX1R blockade aggravates cognitive deficits and pathological progression in 3xTg-AD mice, but the effects of OX2R and its potential mechanism in AD have not been reported. In the present study, OX2R was blocked by oral administration of the selective OX2R antagonist MK-1064, and the effects of OX2R blockade on cognitive dysfunction and neuropsychiatric symptoms in 3xTg-AD mice were evaluated via behavioral tests. Then, immunohistochemistry, western blotting, and ELISA were used to detect Aβ deposition, tau phosphorylation, and neuroinflammation, and electrophysiological and wheel-running activity recording were recorded to observe hippocampal synaptic plasticity and circadian rhythm. The results showed that OX2R blockade ameliorated cognitive dysfunction, improved LTP depression, increased the expression of PSD-95, alleviated anxiety- and depression-like behaviors and circadian rhythm disturbances in 3xTg-AD mice, and reduced Aβ pathology, tau phosphorylation, and neuroinflammation in the brains of 3xTg-AD mice. These results indicated that chronic OX2R blockade exerts neuroprotective effects in 3xTg-AD mice by reducing AD pathology at least partly through improving circadian rhythm disturbance and the sleep-wake cycle and that OX2R might be a potential target for the prevention and treatment of AD; however, the potential mechanism by which OX2R exerts neuroprotective effects on AD needs to be further investigated.
Collapse
Affiliation(s)
- Xiao-Hong Hu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Xin Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jin-Nan Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Juan-Juan Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lei Wang
- Department of Geriatrics, Shanxi Bethune Hospital, Taiyuan, People's Republic of China
| | - Ye-Xin He
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
6
|
Lee K, Hong KS, Park J, Park W. Readjustment of circadian clocks by exercise intervention is a potential therapeutic target for sleep disorders: a narrative review. Phys Act Nutr 2024; 28:35-42. [PMID: 39097996 PMCID: PMC11298283 DOI: 10.20463/pan.2024.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 08/06/2024] Open
Abstract
PURPOSE Circadian clocks are evolved endogenous biological systems that communicate with environmental cues to optimize physiological processes, such as the sleep-wake cycle, which is nearly related to quality of life. Sleep disorders can be treated using pharmacological strategies targeting melatonin, orexin, or core clock genes. Exercise has been widely explored as a behavioral treatment because it challenges homeostasis in the human body and affects the regulation of core clock genes. Exercise intervention at the appropriate time of the day can induce a phase shift in internal clocks. Although exercise is a strong external time cue for resetting the circadian clock, exercise therapy for sleep disorders remains poorly understood. METHODS This review focused on exercise as a potential treatment for sleep disorders by tuning the internal circadian clock. We used scientific paper depositories, including Google Scholar, PubMed, and the Cochrane Library, to identify previous studies that investigated the effects of exercise on circadian clocks and sleep disorders. RESULTS The exercise-induced adjustment of the circadian clock phase depended on exercise timing and individual chronotypes. Adjustment of circadian clocks through scheduled morning exercises can be appropriately prescribed for individuals with delayed sleep phase disorders. Individuals with advanced sleep phase disorders can synchronize their internal clocks with their living environment by performing evening exercises. Exercise-induced physiological responses are affected by age, sex, and current fitness conditions. CONCLUSION Personalized approaches are necessary when implementing exercise interventions for sleep disorders.
Collapse
Affiliation(s)
- Kwangjun Lee
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kwang-Seok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Republic of Korea
| | - Jonghoon Park
- Department of Physical Education, Korea University, Seoul, Republic of Korea
| | - Wonil Park
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Borgatti DA, Rowlett JK, Berro LF. Effects of methamphetamine on actigraphy-based sleep parameters in female rhesus monkeys: Orexin receptor mechanisms. Drug Alcohol Depend 2024; 259:111285. [PMID: 38636173 PMCID: PMC11111337 DOI: 10.1016/j.drugalcdep.2024.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The orexin system has been implicated as a mechanism underlying insomnia and methamphetamine-induced sleep disruptions, with a potential role for OX2 receptors in the sleep-modulating effects of orexin. The aim of the present study was to investigate the extent to which orexin receptors mediate the effects of acute methamphetamine administration on actigraphy-based sleep in female rhesus monkeys. METHODS Actigraphy-based sleep measures were obtained in female rhesus monkeys (n=5) under baseline and acute test conditions. First, morning (10h) i.m. injections of methamphetamine (0.03 - 0.56mg/kg) were administered to determine the effects of methamphetamine alone. Then, saline or methamphetamine (0.3mg/kg) were administered at 10h, and evening (17h30) oral treatments with vehicle, the non-selective orexin receptor antagonist suvorexant (1 - 10mg/kg, p.o.), or the OX2-selective orexin receptor antagonist MK-1064 (1 - 10mg/kg, p.o.) were given. The ability of suvorexant and MK-1064 (10mg/kg, p.o.) to improve actigraphy-based sleep was also assessed in a group of female monkeys quantitatively identified with "short-duration sleep" (n=4). RESULTS Methamphetamine dose-dependently disrupted actigraphy-based sleep parameters. Treatment with either suvorexant or MK-1064 dose-dependently improved actigraphy-based sleep in monkeys treated with methamphetamine. Additionally, both suvorexant and MK-1064 promoted actigraphy-based sleep in a group of monkeys with baseline short actigraphy-based sleep. CONCLUSIONS These findings suggest that orexin-mediated mechanisms play a role in the effects of methamphetamine on actigraphy-based sleep in female monkeys. Targeting the orexin system, in particular OX2 receptors, could be an effective option for treating sleep disruptions observed in individuals with methamphetamine use disorder.
Collapse
Affiliation(s)
- Daniel A Borgatti
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA; Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA; Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
8
|
Imamura K, Akagi KI, Miyanoiri Y, Tsujimoto H, Hirokawa T, Ashida H, Murakami K, Inoue A, Suno R, Ikegami T, Sekiyama N, Iwata S, Kobayashi T, Tochio H. Interaction modes of human orexin 2 receptor with selective and nonselective antagonists studied by NMR spectroscopy. Structure 2024; 32:352-361.e5. [PMID: 38194963 DOI: 10.1016/j.str.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Orexin neuropeptides have many physiological roles in the sleep-wake cycle, feeding behavior, reward demands, and stress responses by activating cognitive receptors, the orexin receptors (OX1R and OX2R), distributed in the brain. There are only subtle differences between OX1R and OX2R in the orthosteric site, which has hindered the rational development of subtype-selective antagonists. In this study, we utilized solution-state NMR to capture the structural plasticity of OX2R labeled with 13CH3-ε-methionine in complex with antagonists. Mutations in the orthosteric site allosterically affected the intracellular tip of TM6. Ligand exchange experiments with the subtype-selective EMPA and the nonselective suvorexant identified three methionine residues that were substantially perturbed. The NMR spectra suggested that the suvorexant-bound state exhibited more structural plasticity than the EMPA-bound state, which has not been foreseen from the close similarity of their crystal structures, providing insights into dynamic features to be considered in understanding the ligand recognition mode.
Collapse
Affiliation(s)
- Kayo Imamura
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ken-Ichi Akagi
- Section of Laboratory Equipment, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirokazu Tsujimoto
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hideo Ashida
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kaori Murakami
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Naotaka Sekiyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - So Iwata
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hidehito Tochio
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Bergamini G, Durkin S, Steiner MA. Selective orexin 1 receptor antagonism does not affect effort-based responding for sucrose reward in rats. J Psychopharmacol 2024; 38:305-308. [PMID: 38327032 DOI: 10.1177/02698811241229523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In rodents, orexin neuropeptides regulate motivation and reward-seeking via orexin 1 receptor (OX1R) signaling in the mesolimbic dopaminergic system. This role is clearly established for rewards inherent to drugs of abuse but less so for natural rewards. Reported effects of the selective OX1R antagonist (SO1RA) SB-334867 on motivation for palatable food are ambiguous. In our experimental conditions neither SB-334867, nor two additional, structurally different SO1RAs, ACT-335827 and the clinical development candidate nivasorexant, affected effort-based responding for sucrose in rats. The positive control lisdexamfetamine, approved for psychiatric disorders associated with altered reward sensitivity such as binge eating disorder, increased effort-based responding.
Collapse
Affiliation(s)
- Giorgio Bergamini
- CNS Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Sean Durkin
- CNS Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | |
Collapse
|
10
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
11
|
Brotschi C, Bolli MH, Gatfield J, Roch C, Sifferlen T, Treiber A, Williams JT, Boss C. Pyrazole derivatives as selective orexin-2 receptor antagonists (2-SORA): synthesis, structure-activity-relationship, and sleep-promoting properties in rats. RSC Med Chem 2024; 15:344-354. [PMID: 38283232 PMCID: PMC10809354 DOI: 10.1039/d3md00573a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2024] Open
Abstract
Selective orexin 2 receptor antagonists (2-SORA) such as seltorexant (15) are in clinical development for the treatment of insomnia and other conditions such as depression. Herein, we report our structure-activity-relationship (SAR) optimization efforts starting from an HTS hit (1) (N-(1-((5-acetylfuran-2-yl)methyl)-1H-pyrazol-4-yl)-5-(m-tolyl)oxazole-4-carboxamide) that was derived from an unrelated in-house GPCR-agonist program. Medicinal chemistry efforts focused on the optimization of orexin 2 receptor (OX2R) antagonistic activity, stability in liver microsomes, time dependent CYP3A4 inhibition, and aqueous solubility. Compounds were assessed for their brain-penetrating potential in in vivo experiments to select the most promising compounds for our in vivo sleep model. Our lead optimization efforts led to the discovery of the potent, brain penetrating and orally active, 2-SORA (N-(1-(2-(5-methoxy-1H-pyrrolo[3,2-b]pyridin-3-yl)ethyl)-1H-pyrazol-4-yl)-5-(m-tolyl)oxazole-4-carboxamide) 43 with efficacy in a sleep model in rats comparable to 15.
Collapse
Affiliation(s)
- Christine Brotschi
- Idorsia Pharmaceuticals Ltd, Drug Discovery and Preclinical Development Hegenheimermattweg 91 4123 Allschwil Basel-Landschaft Switzerland
| | - Martin H Bolli
- Idorsia Pharmaceuticals Ltd, Drug Discovery and Preclinical Development Hegenheimermattweg 91 4123 Allschwil Basel-Landschaft Switzerland
| | - John Gatfield
- Idorsia Pharmaceuticals Ltd, Drug Discovery and Preclinical Development Hegenheimermattweg 91 4123 Allschwil Basel-Landschaft Switzerland
| | - Catherine Roch
- Idorsia Pharmaceuticals Ltd, Drug Discovery and Preclinical Development Hegenheimermattweg 91 4123 Allschwil Basel-Landschaft Switzerland
| | - Thierry Sifferlen
- Idorsia Pharmaceuticals Ltd, Drug Discovery and Preclinical Development Hegenheimermattweg 91 4123 Allschwil Basel-Landschaft Switzerland
| | - Alexander Treiber
- Idorsia Pharmaceuticals Ltd, Drug Discovery and Preclinical Development Hegenheimermattweg 91 4123 Allschwil Basel-Landschaft Switzerland
| | - Jodi T Williams
- Idorsia Pharmaceuticals Ltd, Drug Discovery and Preclinical Development Hegenheimermattweg 91 4123 Allschwil Basel-Landschaft Switzerland
| | - Christoph Boss
- Idorsia Pharmaceuticals Ltd, Drug Discovery and Preclinical Development Hegenheimermattweg 91 4123 Allschwil Basel-Landschaft Switzerland
| |
Collapse
|
12
|
Keenan RJ, Daykin H, Metha J, Cornthwaite-Duncan L, Wright DK, Clarke K, Oberrauch S, Brian M, Stephenson S, Nowell CJ, Allocca G, Barnham KJ, Hoyer D, Jacobson LH. Orexin 2 receptor antagonism sex-dependently improves sleep/wakefulness and cognitive performance in tau transgenic mice. Br J Pharmacol 2024; 181:87-106. [PMID: 37553894 DOI: 10.1111/bph.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Finance, Faculty of Business and Economics, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kyra Clarke
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison Brian
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Stephenson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Somnivore Inc. Ltd Pty, Bacchus Marsh, Victoria, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Feldmeyer D. Structure and function of neocortical layer 6b. Front Cell Neurosci 2023; 17:1257803. [PMID: 37744882 PMCID: PMC10516558 DOI: 10.3389/fncel.2023.1257803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Cortical layer 6b is considered by many to be a remnant of the subplate that forms during early stages of neocortical development, but its role in the adult is not well understood. Its neuronal complement has only recently become the subject of systematic studies, and its axonal projections and synaptic input structures have remained largely unexplored despite decades of research into neocortical function. In recent years, however, layer 6b (L6b) has attracted increasing attention and its functional role is beginning to be elucidated. In this review, I will attempt to provide an overview of what is currently known about the excitatory and inhibitory neurons in this layer, their pre- and postsynaptic connectivity, and their functional implications. Similarities and differences between different cortical areas will be highlighted. Finally, layer 6b neurons are highly responsive to several neuropeptides such as orexin/hypocretin, neurotensin and cholecystokinin, in some cases exclusively. They are also strongly controlled by neurotransmitters such as acetylcholine and norepinephrine. The interaction of these neuromodulators with L6b microcircuitry and its functional consequences will also be discussed.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine 10 (INM-10), Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
14
|
Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Saab E, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Quaglia W. Targeting orexin receptors: Recent advances in the development of subtype selective or dual ligands for the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:1607-1667. [PMID: 37036052 DOI: 10.1002/med.21959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
15
|
Xia L, Liu HY, Wang BY, Lin HN, Wang MC, Ren JX. A review of physiological functions of orexin: From instinctive responses to subjective cognition. Medicine (Baltimore) 2023; 102:e34206. [PMID: 37390267 PMCID: PMC10313292 DOI: 10.1097/md.0000000000034206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Orexin, also known as hypocretin, is an excitatory neuropeptide secreted by the hypothalamus. Orexin is divided into orexin-A (OXA) and orexin-B (OXB), which are derived from a common precursor secreted by hypothalamic neurons. Orexin acts on orexin receptor-1 (OX1R) and orexin receptor-2 (OX2R). Orexin neurons, as well as receptors, are widely distributed in various regions of the brain as well as in the peripheral system and have a wider range of functions. This paper reviews the latest research results of orexin in the aspects of food intake, sleep, addiction, depression and anxiety. Because orexin has certain physiological functions in many systems, we further explored the possibility of orexin as a new target for the treatment of bulimia, anorexia nervosa, insomnia, lethargy, anxiety and depression. It is precisely because orexin has physiological functions in multiple systems that orexin, as a new target for the treatment of the above diseases, has potential contradictions. For example, it promotes the function of 1 system and may inhibit the function of another system. How to study a new drug, which can not only treat the diseases of this system, but also do not affect other system functions, is what we need to focus on.
Collapse
Affiliation(s)
- LiBo Xia
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Yan Liu
- Department of Medical Section, Changchun Second Hospital, Changchun, China
| | - Bi Yan Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Ning Lin
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Meng Chen Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Ji-Xiang Ren
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
17
|
Saadati N, Bananej M, Khakpai F, Zarrindast MR, Alibeik H. The effects of citalopram, SB-334867 and orexin-1, alone or in various combinations, on the anxiogenic-like effects of REM sleep deprivation in male mice. Behav Pharmacol 2022; 33:559-566. [PMID: 36165531 DOI: 10.1097/fbp.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep deprivation may induce anxiety. On the other hand, anxiety disorders elicit main changes in the quality of sleep. Moreover, orexin and citalopram play a role in the modulation of insomnia and mood diseases. Thus, we planned preclinical research to evaluate the effect of combinations of orexin agents and citalopram on anxiety behavior in rapid eye movement (REM) sleep-deprived mice. For drug intracerebroventricular (i.c.v.) infusion, the guide cannula was surgically implanted in the left lateral ventricle of mice. REM sleep deprivation was conducted via water tank apparatus for 24 h. The anxiety behavior of mice was evaluated using the elevated plus maze (EPM). Our results revealed that REM sleep deprivation reduced the percentage of open arm time (%OAT) and the percentage of the open arm entries (%OAE) but not closed arm entries (locomotor activity) in the EPM test, presenting an anxiogenic response ( P < 0.05). We found a sub-threshold dose of SB-334867, orexin-1 receptor antagonist, and orexin-1 which did not alter anxiety reaction in the REM sleep-deprived mice ( P > 0.05). Intraperitoneal (i.p.) injections of citalopram (5 and 10 mg/kg) increased both %OAT and %OAE ( P < 0.001) representing an anxiolytic effect, but not locomotor activity in the REM sleep-deprived mice. Interestingly, co-treatment of citalopram (1, 5 and 10 mg/kg; i.p.) and SB-334867 (0.1 µg/mouse; i.c.v.) potentiated the anxiolytic effect in the REM sleep-deprived mice. On the other hand, co-treatment of different dosages of citalopram along with a sub-threshold dose of orexin-1 did not alter %OAT, %OAE, and locomotor activity in the REM sleep-deprived mice. We found a synergistic anxiolytic effect of citalopram and SB-334867 in the REM sleep-deprived mice. These results suggested an interaction between citalopram and SB-334867 to prevent anxiogenic behavior in the REM sleep-deprived mice.
Collapse
Affiliation(s)
- Naghmeh Saadati
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| | - Maryam Bananej
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine
- Iranian National Center for Addiction Studies
- Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Alibeik
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| |
Collapse
|
18
|
Pizza F, Barateau L, Dauvilliers Y, Plazzi G. The orexin story, sleep and sleep disturbances. J Sleep Res 2022; 31:e13665. [PMID: 35698789 DOI: 10.1111/jsr.13665] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
The orexins, also known as hypocretins, are two neuropeptides (orexin A and B or hypocretin 1 and 2) produced by a few thousand neurons located in the lateral hypothalamus that were independently discovered by two research groups in 1998. Those two peptides bind two receptors (orexin/hypocretin receptor 1 and receptor 2) that are widely distributed in the brain and involved in the central physiological regulation of sleep and wakefulness, orexin receptor 2 having the major role in the maintenance of arousal. They are also implicated in a multiplicity of other functions, such as reward seeking, energy balance, autonomic regulation and emotional behaviours. The destruction of orexin neurons is responsible for the sleep disorder narcolepsy with cataplexy (type 1) in humans, and a defect of orexin signalling also causes a narcoleptic phenotype in several animal species. Orexin discovery is unprecedented in the history of sleep research, and pharmacological manipulations of orexin may have multiple therapeutic applications. Several orexin receptor antagonists were recently developed as new drugs for insomnia, and orexin agonists may be the next-generation drugs for narcolepsy. Given the broad range of functions of the orexin system, these drugs might also be beneficial for treating various conditions other than sleep disorders in the near future.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
19
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
20
|
Abstract
The hypocretins (Hcrts), also known as orexins, are two neuropeptides produced exclusively in the lateral hypothalamus. They act on two specific receptors that are widely distributed across the brain and involved in a myriad of neurophysiological functions that include sleep, arousal, feeding, reward, fear, anxiety and cognition. Hcrt cell loss in humans leads to narcolepsy with cataplexy (narcolepsy type 1), a disorder characterized by intrusions of sleep into wakefulness, demonstrating that the Hcrt system is nonredundant and essential for sleep/wake stability. The causal link between Hcrts and arousal/wakefulness stabilisation has led to the development of a new class of drugs, Hcrt receptor antagonists to treat insomnia, based on the assumption that blocking orexin-induced arousal will facilitate sleep. This has been clinically validated: currently, two Hcrt receptor antagonists are approved to treat insomnia (suvorexant and lemborexant), with a New Drug Application recently submitted to the US Food and Drug Administration for a third drug (daridorexant). Other therapeutic applications under investigation include reduction of cravings in substance-use disorders and prevention of neurodegenerative disorders such as Alzheimer's disease, given the apparent bidirectional relationship between poor sleep and worsening of the disease. Circuit neuroscience findings suggest that the Hcrt system is a hub that integrates diverse inputs modulating arousal (e.g., circadian rhythms, metabolic status, positive and negative emotions) and conveys this information to multiple output regions. This neuronal architecture explains the wealth of physiological functions associated with Hcrts and highlights the potential of the Hcrt system as a therapeutic target for a number of disorders. We discuss present and future possible applications of drugs targeting the Hcrt system for the treatment of circuit-related neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci 2022; 23:ijms23094599. [PMID: 35562990 PMCID: PMC9103574 DOI: 10.3390/ijms23094599] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep and wakefulness are basic behavioral states that require coordination between several brain regions, and they involve multiple neurochemical systems, including neuropeptides. Neuropeptides are a group of peptides produced by neurons and neuroendocrine cells of the central nervous system. Like traditional neurotransmitters, neuropeptides can bind to specific surface receptors and subsequently regulate neuronal activities. For example, orexin is a crucial component for the maintenance of wakefulness and the suppression of rapid eye movement (REM) sleep. In addition to orexin, melanin-concentrating hormone, and galanin may promote REM sleep. These results suggest that neuropeptides play an important role in sleep–wake regulation. These neuropeptides can be divided into three categories according to their effects on sleep–wake behaviors in rodents and humans. (i) Galanin, melanin-concentrating hormone, and vasoactive intestinal polypeptide are sleep-promoting peptides. It is also noticeable that vasoactive intestinal polypeptide particularly increases REM sleep. (ii) Orexin and neuropeptide S have been shown to induce wakefulness. (iii) Neuropeptide Y and substance P may have a bidirectional function as they can produce both arousal and sleep-inducing effects. This review will introduce the distribution of various neuropeptides in the brain and summarize the roles of different neuropeptides in sleep–wake regulation. We aim to lay the foundation for future studies to uncover the mechanisms that underlie the initiation, maintenance, and end of sleep–wake states.
Collapse
|
22
|
Lefter R, Cojocariu RO, Ciobica A, Balmus IM, Mavroudis I, Kis A. Interactions between Sleep and Emotions in Humans and Animal Models. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:274. [PMID: 35208598 PMCID: PMC8877042 DOI: 10.3390/medicina58020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Recently, increased interest and efforts were observed in describing the possible interaction between sleep and emotions. Human and animal model studies addressed the implication of both sleep patterns and emotional processing in neurophysiology and neuropathology in suggesting a bidirectional interaction intimately modulated by complex mechanisms and factors. In this context, we aimed to discuss recent evidence and possible mechanisms implicated in this interaction, as provided by both human and animal models in studies. In addition, considering the affective component of brain physiological patterns, we aimed to find reasonable evidence in describing the two-way association between comorbid sleep impairments and psychiatric disorders. The main scientific literature databases (PubMed/Medline, Web of Science) were screened with keyword combinations for relevant content taking into consideration only English written papers and the inclusion and exclusion criteria, according to PRISMA guidelines. We found that a strong modulatory interaction between sleep processes and emotional states resides on the activity of several key brain structures, such as the amygdala, prefrontal cortex, hippocampus, and brainstem nuclei. In addition, evidence suggested that physiologically and behaviorally related mechanisms of sleep are intimately interacting with emotional perception and processing which could advise the key role of sleep in the unconscious character of emotional processes. However, further studies are needed to explain and correlate the functional analysis with causative and protective factors of sleep impairments and negative emotional modulation on neurophysiologic processing, mental health, and clinical contexts.
Collapse
Affiliation(s)
- Radu Lefter
- Center of Biomedical Research, Romanian Academy, Iasi Branch, B dul Carol I, no. 8, 700506 Iasi, Romania;
| | - Roxana Oana Cojocariu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, no 11, 700506 Iasi, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, no 11, 700506 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, B dul Carol I, no 8, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Alexandru Lapusneanu Street, no. 26, 700057 Iasi, Romania
| | - Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds LS2 9JT, UK;
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, 1117 Budapest, Hungary;
| |
Collapse
|
23
|
Keenan RJ, Daykin H, Chu J, Cornthwaite-Duncan L, Allocca G, Hoyer D, Jacobson LH. Differential sleep/wake response and sex effects following acute suvorexant, MK-1064 and zolpidem administration in the rTg4510 mouse model of tauopathy. Br J Pharmacol 2022; 179:3403-3417. [PMID: 35112344 PMCID: PMC9302982 DOI: 10.1111/bph.15813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose Transgenic mouse models of tauopathy display prominent sleep/wake disturbances which manifest primarily as a hyperarousal phenotype during the active phase, suggesting that tau pathology contributes to sleep/wake changes. However, no study has yet investigated the effect of sleep‐promoting compounds in these models. Such information has implications for the use of hypnotics as potential therapeutic tools in tauopathy‐related disorders. Experimental Approach This study examined polysomnographic recordings in 6‐6.5‐month‐old male and female rTg4510 mice following acute administration of suvorexant (50 mg·kg−1), MK‐1064 (30 mg·kg−1) or zolpidem (10 mg·kg−1), administered at the commencement of the active phase. Key Results Suvorexant, a dual OX receptor antagonist, promoted REM sleep in rTg4510 mice, without affecting wake or NREM sleep. MK‐1064, a selective OX2 receptor antagonist, reduced wake and increased NREM and total sleep time. MK‐1064 normalised the hyperarousal phenotype of male rTg4510 mice, whereas female rTg4510 mice exhibited a more transient response. Zolpidem, a GABAA receptor positive allosteric modulator, decreased wake and increased NREM sleep in both male and female rTg4510 mice. Of the three compounds, the OX2 receptor antagonist MK‐1064 promoted and normalised physiologically normal sleep, especially in male rTg4510 mice. Conclusions and Implications Our findings indicate that hyperphosphorylated tau accumulation and associated hyperarousal does not significantly alter the responses of tauopathy mouse models to hypnotics. However, the sex differences observed in the sleep/wake response of rTg4510 mice to MK‐1064, but not suvorexant or zolpidem, raise questions about therapeutic implications for the use of OX2 receptor antagonists in human neurodegenerative disorders.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jiahui Chu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Somnivore Inc. Ltd. Pty, Bacchus Marsh, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Revell VL, Della Monica C, Mendis J, Hassanin H, Halter RJ, Chaplan SR, Dijk DJ. Effects of the selective orexin-2 receptor antagonist JNJ-48816274 on sleep initiated in the circadian wake maintenance zone: a randomised trial. Neuropsychopharmacology 2022; 47:719-727. [PMID: 34628482 PMCID: PMC8782905 DOI: 10.1038/s41386-021-01175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
The effects of orexinergic peptides are diverse and are mediated by orexin-1 and orexin-2 receptors. Antagonists that target both receptors have been shown to promote sleep initiation and maintenance. Here, we investigated the role of the orexin-2 receptor in sleep regulation in a randomised, double-blind, placebo-controlled, three-period crossover clinical trial using two doses (20 and 50 mg) of a highly selective orexin-2 receptor antagonist (2-SORA) (JNJ-48816274). We used a phase advance model of sleep disruption where sleep initiation is scheduled in the circadian wake maintenance zone. We assessed objective and subjective sleep parameters, pharmacokinetic profiles and residual effects on cognitive performance in 18 healthy male participants without sleep disorders. The phase advance model alone (placebo condition) resulted in disruption of sleep at the beginning of the sleep period compared to baseline sleep (scheduled at habitual time). Compared to placebo, both doses of JNJ-48816274 significantly increased total sleep time, REM sleep duration and sleep efficiency, and reduced latency to persistent sleep, sleep onset latency, and REM latency. All night EEG spectral power density for both NREM and REM sleep were unaffected by either dose. Participants reported significantly better quality of sleep and feeling more refreshed upon awakening following JNJ-48816274 compared to placebo. No significant residual effects on objective performance measures were observed and the compound was well tolerated. In conclusion, the selective orexin-2 receptor antagonist JNJ-48816274 rapidly induced sleep when sleep was scheduled earlier in the circadian cycle and improved self-reported sleep quality without impact on waking performance.
Collapse
Affiliation(s)
- Victoria L Revell
- Surrey Sleep Research Centre, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | - Ciro Della Monica
- Surrey Sleep Research Centre, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | - Jeewaka Mendis
- Surrey Clinical Trials Unit, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | - Hana Hassanin
- Surrey Clinical Research Facility, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | | | | | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, Surrey, GU2 7XP, UK.
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
25
|
Dong YJ, Jiang NH, Zhan LH, Teng X, Fang X, Lin MQ, Xie ZY, Luo R, Li LZ, Li B, Zhang BB, Lv GY, Chen SH. Soporific effect of modified Suanzaoren Decoction on mice models of insomnia by regulating Orexin-A and HPA axis homeostasis. Biomed Pharmacother 2021; 143:112141. [PMID: 34509822 DOI: 10.1016/j.biopha.2021.112141] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
AIM Modified Suanzaoren Decoction (MSZRD) is obtained by improving Suanzaoren Decoction (SZRT), a traditional Chinese herbal prescription that has been used to treat insomnia for more than thousands of years. Our previous study showed that MSZRD can improve the gastrointestinal discomfort related insomnia by regulating Orexin-A. This study is the first study to evaluate the effects and possible mechanisms of MSZRD in mice with insomnia caused by p-chlorophenylalanine (PCPA) combined with multifactor random stimulation. METHODS After 14 days of multifactor stimulation to ICR mice, a PCPA suspension (30 mg/mL) was injected intraperitoneally for two consecutive days to establish an insomnia model. Three different doses of MSZRD (3.6, 7.2, and 14.4 g/kg/day) were given to ICR mice for 24 days. The food intake and back temperature were measured, and behavioral tests and pentobarbital sodium-induced sleep tests were conducted. The levels of Orexin-A, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and adrenocortical hormones (CORT) in the serum and 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in hypothalamus were measured using enzyme-linked immunosorbent assay (ELISA) kits. The levels of γ-aminobutyric acid (GABA) and glutamic acid (Glu) were measured by high-performance liquid chromatography (HPLC). The expression of 5HT1A receptor (5-HTRIA) and orexin receptor 2 antibody (OX2R) was measured by Western blot (WB) and immunohistochemical staining (ICH). Hematoxylin and eosin (H&E) staining and Nissl staining were used to assess the histological changes in hypothalamus tissue. RESULTS Of note, MSZRD can shorten the sleep latency of insomnia mice (P < 0.05, 0.01), prolonged the sleep duration of mice (P < 0.05, 0.01), and improve the circadian rhythm disorder relative to placebo-treated animals. Furthermore, MSZRD effectively increased the content of 5-HT and 5-HTR1A protein in the hypothalamus of insomnia mice (P < 0.05, 0.01), while downregulated the content of DA and NE (P < 0.05, 0.01). Importantly, serum GABA concentration was increased by treatment with MSZRD (P < 0.05), as reflected by a decreased Glu/GABA ratio (P < 0.05). Moreover, MSZRD decreased the levels of CORT, ACTH, and CRH related hormones in HPA axis (P < 0.05, 0.01). At the same time, MSZRD significantly downregulated the serum Orexin-A content in insomnia mice (P < 0.05), as well as hypothalamic OX2R expression (P < 0.05). In addition, MSZRD also improved the histopathological changes in hypothalamus in insomnia mice. CONCLUSION MSZRD has sleep-improvement effect in mice model of insomnia. The mechanism may be that regulating the expression of Orexin-A affects the homeostasis of HPA axis and the release of related neurotransmitters in mice with insomnia.
Collapse
Affiliation(s)
- Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Nanhu District, Jaxing, Zhejiang 314001, China
| | - Liang-Hui Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Xi Teng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Xi Fang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Min-Qiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Zhi-Yi Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Lin-Zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Bei-Bei Zhang
- Center for Food Evaluation, State Administrition for Market Regulation, No. 188 Western Road of South Fourth Ring Road, Fengtai District, Beijing 100070, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
26
|
Zhan D, Perrer DA, Decker AM, Langston TL, Mavanji V, Harris DL, Kotz CM, Zhang Y. Discovery of Arylsulfonamides as Dual Orexin Receptor Agonists. J Med Chem 2021; 64:8806-8825. [PMID: 34101446 PMCID: PMC8994207 DOI: 10.1021/acs.jmedchem.1c00841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Loss of orexin-producing neurons results in narcolepsy with cataplexy, and orexin agonists have been shown to increase wakefulness and alleviate narcolepsy symptoms in animal models. Several OX2R agonists have been reported but with little or no activity at OX1R. We conducted structure-activity relationship studies on the OX2R agonist YNT-185 (2) and discovered dual agonists such as RTOXA-43 (40) with EC50's of 24 nM at both OX2R and OX1R. Computational modeling studies based on the agonist-bound OX2R cryogenic electron microscopy structures showed that 40 bound in the same binding pocket and interactions of the pyridylmethyl group of 40 with OX1R may have contributed to its high OX1R potency. Intraperitoneal injection of 40 increased time awake, decreased time asleep, and increased sleep/wake consolidation in 12-month old mice. This work provides a promising dual small molecule agonist and supports development of orexin agonists as potential treatments for orexin-deficient disorders such as narcolepsy.
Collapse
Affiliation(s)
- Dehui Zhan
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - David A. Perrer
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - Ann M. Decker
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | | | - Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417
| | - Danni L. Harris
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - Catherine M. Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
- Geriatric, Research, Education and Clinical Center, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| |
Collapse
|
27
|
Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. FRONTIERS OF NEUROLOGY AND NEUROSCIENCE 2021; 45:117-127. [PMID: 34052815 PMCID: PMC8324012 DOI: 10.1159/000514965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023]
Abstract
Significant sleep impairments often accompany substance use disorders (SUDs). Sleep disturbances in SUD patients are associated with poor clinical outcomes and treatment adherence, emphasizing the importance of normalizing sleep when treating SUDs. Orexins (hypocretins) are neuropeptides exclusively produced by neurons in the posterior hypothalamus that regulate various behavioral and physiological processes, including sleep-wakefulness and motivated drug taking. Given its dual role in sleep and addiction, the orexin system represents a promising therapeutic target for treating SUDs and their comorbid sleep deficits. Here, we review the literature on the role of the orexin system in sleep and drug addiction and discuss the therapeutic potential of orexin receptor antagonists for SUDs. We argue that orexin receptor antagonists may be effective therapeutics for treating addiction because they target orexin's regulation of sleep (top-down) and motivation (bottom-up) pathways.
Collapse
Affiliation(s)
- Jennifer E Fragale
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Morgan H James
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Jorge A Avila
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Andrea M Spaeth
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - R Nisha Aurora
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Langleben
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
28
|
Sun Y, Tisdale RK, Kilduff TS. Hypocretin/Orexin Receptor Pharmacology and Sleep Phases. FRONTIERS OF NEUROLOGY AND NEUROSCIENCE 2021; 45:22-37. [PMID: 34052813 DOI: 10.1159/000514963] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
The hypocretins/orexins are two excitatory neuropeptides, alternately called HCRT1 or orexin-A and HCRT2 or orexin-B, that are the endogenous ligands for two G-protein-coupled receptors, HCRTR1/OX1R and HCRTR2/OX2R. Shortly after the discovery of this system, degeneration of hypocretin/orexin-producing neurons was implicated in the etiology of the sleep disorder narcolepsy. The involvement of this system in a disorder characterized by the loss of control over arousal state boundaries also suggested its role as a critical component of endogenous sleep-wake regulatory circuitry. The broad projections of the hypocretin/orexin-producing neurons, along with differential expression of the two receptors in the projection fields of these neurons, suggest distinct roles for these receptors. While HCRTR1/OX1R is associated with regulation of motivation, reward, and autonomic functions, HCRTR2/OX2R is strongly linked to sleep-wake control. The association of hypocretin/orexin with these physiological processes has led to intense interest in the therapeutic potential of compounds targeting these receptors. Agonists and antagonists for the hypocretin/orexin receptors have shown potential for the treatment of disorders of excessive daytime somnolence and nocturnal hyperarousal, respectively, with the first antagonists approved by the US Food and Drug Administration (FDA) in 2014 and 2019 for the treatment of insomnia. These and related compounds have also been useful tools to advance hypocretin/orexin neurobiology.
Collapse
Affiliation(s)
- Yu Sun
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California, USA
| | - Ryan K Tisdale
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California, USA
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California, USA
| |
Collapse
|
29
|
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov 2021; 20:287-307. [PMID: 33589815 DOI: 10.1038/s41573-020-00109-w] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
The circadian clock evolved in diverse organisms to integrate external environmental changes and internal physiology. The clock endows the host with temporal precision and robust adaptation to the surrounding environment. When circadian rhythms are perturbed or misaligned, as a result of jet lag, shiftwork or other lifestyle factors, adverse health consequences arise, and the risks of diseases such as cancer, cardiovascular diseases or metabolic disorders increase. Although the negative impact of circadian rhythm disruption is now well established, it remains underappreciated how to take advantage of biological timing, or correct it, for health benefits. In this Review, we provide an updated account of the circadian system and highlight several key disease areas with altered circadian signalling. We discuss environmental and lifestyle modifications of circadian rhythm and clock-based therapeutic strategies, including chronotherapy, in which dosing time is deliberately optimized for maximum therapeutic index, and pharmacological agents that target core clock components and proximal regulators. Promising progress in research, disease models and clinical applications should encourage a concerted effort towards a new era of circadian medicine.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
30
|
von Schantz M, Leocadio-Miguel MA, McCarthy MJ, Papiol S, Landgraf D. Genomic perspectives on the circadian clock hypothesis of psychiatric disorders. ADVANCES IN GENETICS 2020; 107:153-191. [PMID: 33641746 DOI: 10.1016/bs.adgen.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian rhythm disturbances are frequently described in psychiatric disorders such as major depressive disorder, bipolar disorder, and schizophrenia. Growing evidence suggests a biological connection between mental health and circadian rhythmicity, including the circadian influence on brain function and mood and the requirement for circadian entrainment by external factors, which is often impaired in mental illness. Mental (as well as physical) health is also adversely affected by circadian misalignment. The marked interindividual differences in this combined susceptibility, in addition to the phenotypic spectrum in traits related both to circadian rhythms and mental health, suggested the possibility of a shared genetic background and that circadian clock genes may also be candidate genes for psychiatric disorders. This hypothesis was further strengthened by observations in animal models where clock genes had been knocked out or mutated. The introduction of genome-wide association studies (GWAS) enabled hypothesis-free testing. GWAS analysis of chronotype confirmed the prominent role of circadian genes in these phenotypes and their extensive polygenicity. However, in GWAS on psychiatric traits, only one clock gene, ARNTL (BMAL1) was identified as one of the few loci differentiating bipolar disorder from schizophrenia, and macaque monkeys where the ARNTL gene has been knocked out display symptoms similar to schizophrenia. Another lesson from genomic analyses is that chronotype has an important genetic correlation with several psychiatric disorders and that this effect is unidirectional. We conclude that the effect of circadian disturbances on psychiatric disorders probably relates to modulation of rhythm parameters and extend beyond the core clock genes themselves.
Collapse
Affiliation(s)
- Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Mario A Leocadio-Miguel
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Sergi Papiol
- Department of Psychiatry, University Hospital, Munich, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Munich, Germany
| |
Collapse
|
31
|
Clark JW, Brian ML, Drummond SP, Hoyer D, Jacobson LH. Effects of orexin receptor antagonism on human sleep architecture: A systematic review. Sleep Med Rev 2020; 53:101332. [DOI: 10.1016/j.smrv.2020.101332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
|
32
|
Mahoney CE, Mochizuki T, Scammell TE. Dual orexin receptor antagonists increase sleep and cataplexy in wild type mice. Sleep 2020; 43:zsz302. [PMID: 31830270 PMCID: PMC7294412 DOI: 10.1093/sleep/zsz302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
Orexin receptor antagonists are clinically useful for treating insomnia, but thorough blockade of orexin signaling could cause narcolepsy-like symptoms. Specifically, while sleepiness is a desirable effect, an orexin antagonist could also produce cataplexy, sudden episodes of muscle weakness often triggered by strong, positive emotions. In this study, we examined the effects of dual orexin receptor antagonists (DORAs), lemborexant (E2006) and almorexant, on sleep-wake behavior and cataplexy during the dark period in wild-type (WT) mice and prepro-orexin knockout (OXKO) mice. In WT mice, lemborexant at 10 and 30 mg/kg quickly induced NREM sleep in a dose-dependent fashion. In contrast, lemborexant did not alter sleep-wake behavior in OXKO mice. Under the baseline condition, cataplexy was rare in lemborexant-treated WT mice, but when mice were given chocolate as a rewarding stimulus, lemborexant dose-dependently increased cataplexy. Almorexant produced similar results. Collectively, these results demonstrate that DORAs potently increase NREM and REM sleep in mice via blockade of orexin signaling, and higher doses can cause cataplexy when co-administered with a likely rewarding stimulus.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Takatoshi Mochizuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Japan
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Amodeo LR, Wills DN, Sanchez-Alavez M, Ehlers CL. Effects of an Orexin-2 Receptor Antagonist on Sleep and Event-Related Oscillations in Female Rats Exposed to Chronic Intermittent Ethanol During Adolescence. Alcohol Clin Exp Res 2020; 44:1378-1388. [PMID: 32424852 DOI: 10.1111/acer.14361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Alcohol use is on the rise among women in the United States which is especially concerning since women who drink have a higher risk of alcohol-related problems. Orexin (hypocretin) receptor antagonists may have some therapeutic value for alcohol-induced insomnia; however, the use of this class of drugs following female adolescent binge drinking is limited. The current study will address whether adolescent intermittent ethanol (AIE) in female rats can result in lasting changes in sleep pathology and whether orexin-targeted treatment can alleviate these deficits. METHODS Following a 5-week AIE vapor model, young adult rats were evaluated on waking event-related oscillations (EROs) and EEG sleep. Subsequently, AIE rats were treated with orexin receptor 2 (OX2 R) antagonist (MK-1064; 10, 20mg/kg) to test for modifications in sleep pathology and waking ERO. RESULTS Female AIE rats exhibited lasting changes in sleep compared to controls. This was demonstrated by increased fragmentation of slow wave sleep (SWS) and rapid eye movement sleep, as well as reductions in delta and theta power during SWS. There was no impact of AIE on waking EROs. Acute MK-1064 hastened SWS onset and increased the number of SWS episodes, without increasing sleep fragmentation in AIE and controls. While treatment with MK-1064 did not impact sleep EEG spectra, waking ERO energy was increased in delta, theta, and beta frequency bands. CONCLUSIONS These results demonstrate that AIE can produce lasting changes in sleep in female rats, highly similar to what we previously found in males. Additionally, while the OX2 R antagonist promoted sleep in both alcohol-exposed and unexposed rats, it did not reverse most of the alcohol-induced disruptions in sleep. Thus, OX2 R antagonism may serve as a potential therapeutic strategy for the treatment of insomnia, but not the specific signs of alcohol-induced insomnia.
Collapse
Affiliation(s)
- Leslie R Amodeo
- From the, Department of Psychology, (LRA), California State University San Bernardino, San Bernardino, California
| | - Derek N Wills
- Department of Neuroscience, (DNW, MS-A, CLE), The Scripps Research Institute, La Jolla, California
| | - Manuel Sanchez-Alavez
- Department of Neuroscience, (DNW, MS-A, CLE), The Scripps Research Institute, La Jolla, California
| | - Cindy L Ehlers
- Department of Neuroscience, (DNW, MS-A, CLE), The Scripps Research Institute, La Jolla, California
| |
Collapse
|
34
|
Svetnik V, Wang TC, Xu Y, Hansen BJ, V. Fox S. A Deep Learning Approach for Automated Sleep-Wake Scoring in Pre-Clinical Animal Models. J Neurosci Methods 2020; 337:108668. [DOI: 10.1016/j.jneumeth.2020.108668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 02/04/2023]
|
35
|
Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020; 10:brainsci10040226. [PMID: 32290110 PMCID: PMC7225970 DOI: 10.3390/brainsci10040226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Prescription opioids are potent analgesics that are used for clinical pain management. However, the nonmedical use of these medications has emerged as a major concern because of dramatic increases in abuse and overdose. Therefore, effective strategies to prevent prescription opioid use disorder are urgently needed. The orexin system has been implicated in the regulation of motivation, arousal, and stress, making this system a promising target for the treatment of substance use disorder. This review discusses recent preclinical studies that suggest that orexin receptor blockade could be beneficial for the treatment of prescription opioid use disorder.
Collapse
|
36
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
37
|
Rappas M, Ali AAE, Bennett KA, Brown JD, Bucknell SJ, Congreve M, Cooke RM, Cseke G, de Graaf C, Doré AS, Errey JC, Jazayeri A, Marshall FH, Mason JS, Mould R, Patel JC, Tehan BG, Weir M, Christopher JA. Comparison of Orexin 1 and Orexin 2 Ligand Binding Modes Using X-ray Crystallography and Computational Analysis. J Med Chem 2020; 63:1528-1543. [PMID: 31860301 PMCID: PMC7050010 DOI: 10.1021/acs.jmedchem.9b01787] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 12/20/2022]
Abstract
The orexin system, which consists of the two G protein-coupled receptors OX1 and OX2, activated by the neuropeptides OX-A and OX-B, is firmly established as a key regulator of behavioral arousal, sleep, and wakefulness and has been an area of intense research effort over the past two decades. X-ray structures of the receptors in complex with 10 new antagonist ligands from diverse chemotypes are presented, which complement the existing structural information for the system and highlight the critical importance of lipophilic hotspots and water molecules for these peptidergic GPCR targets. Learnings from the structural information regarding the utility of pharmacophore models and how selectivity between OX1 and OX2 can be achieved are discussed.
Collapse
Affiliation(s)
- Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Ammar A. E. Ali
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Kirstie A. Bennett
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Jason D. Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Sarah J. Bucknell
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Miles Congreve
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Robert M. Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Gabriella Cseke
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | - Andrew S. Doré
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | | | | | | | - Jonathan S. Mason
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | | | - Jayesh C. Patel
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | | | - Malcolm Weir
- Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, U.K.
| | | |
Collapse
|
38
|
Brotschi C, Bolli MH, Gatfield J, Heidmann B, Jenck F, Roch C, Sifferlen T, Treiber A, Williams JT, Boss C. From Oxadiazole to Triazole Analogues: Optimization toward a Dual Orexin Receptor Antagonist with Improved in vivo Efficacy in Dogs. ChemMedChem 2020; 15:430-448. [DOI: 10.1002/cmdc.201900618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/13/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Christine Brotschi
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - Martin H. Bolli
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - John Gatfield
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - Bibia Heidmann
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - Francois Jenck
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - Catherine Roch
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - Thierry Sifferlen
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - Alexander Treiber
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - Jodi T. Williams
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| | - Christoph Boss
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil, BL Switzerland
| |
Collapse
|
39
|
Watanabe H, Matsushita N, Shimizu Y, Iikuni S, Nakamoto Y, Togashi K, Ono M. Synthesis and characterization of a novel 18F-labeled 2,5-diarylnicotinamide derivative targeting orexin 2 receptor. MEDCHEMCOMM 2019; 10:2126-2130. [PMID: 32904113 PMCID: PMC7451066 DOI: 10.1039/c9md00397e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
Orexin 2 receptor (OX2R) is thought to play an important role in the arousal-promoting function, but its distribution and function in the pathophysiology of orexin-mediated disorders remains to be fully elucidated. In the present study, we synthesized and characterized a novel 18F-labeled 2,5-diarylnicotinamide (DAN) derivative as a potential positron emission tomography (PET) probe for in vivo imaging of OX2R. In in vitro binding experiments, [18F]DAN-1 selectively bound to OX2R. In a biodistribution study using normal mice, [18F]DAN-1 displayed moderate brain uptake (2.10% ID per g at 10 min post-injection). In addition, the radioactivity in the mouse brain at 30 min post-injection was significantly decreased by co-injection with nonradioactive DAN-1, but high nonspecific binding was observed. These results suggested that further structural modifications of [18F]DAN-1 are needed to use it for imaging OX2R in the brain.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis , Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho, Sakyo-ku , Kyoto 606-8501 , Japan . ; ; ; Tel: +81 75 753 4566
| | - Naoki Matsushita
- Department of Patho-Functional Bioanalysis , Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho, Sakyo-ku , Kyoto 606-8501 , Japan . ; ; ; Tel: +81 75 753 4566
| | - Yoichi Shimizu
- Department of Patho-Functional Bioanalysis , Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho, Sakyo-ku , Kyoto 606-8501 , Japan . ; ; ; Tel: +81 75 753 4566
- Department of Diagnostic Imaging and Nuclear Medicine , Graduate School of Medicine , Kyoto University , 54 Shogoin Kawahara-cho, Sakyo-ku , Kyoto 606-8507 , Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis , Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho, Sakyo-ku , Kyoto 606-8501 , Japan . ; ; ; Tel: +81 75 753 4566
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine , Graduate School of Medicine , Kyoto University , 54 Shogoin Kawahara-cho, Sakyo-ku , Kyoto 606-8507 , Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine , Graduate School of Medicine , Kyoto University , 54 Shogoin Kawahara-cho, Sakyo-ku , Kyoto 606-8507 , Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis , Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho, Sakyo-ku , Kyoto 606-8501 , Japan . ; ; ; Tel: +81 75 753 4566
| |
Collapse
|
40
|
Ehrenberg AJ, Suemoto CK, França Resende EDP, Petersen C, Leite REP, Rodriguez RD, Ferretti-Rebustini REDL, You M, Oh J, Nitrini R, Pasqualucci CA, Jacob-Filho W, Kramer JH, Gatchel JR, Grinberg LT. Neuropathologic Correlates of Psychiatric Symptoms in Alzheimer's Disease. J Alzheimers Dis 2019; 66:115-126. [PMID: 30223398 DOI: 10.3233/jad-180688] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Clarifying the relationships between neuropsychiatric symptoms and Alzheimer's disease (AD)-related pathology may open avenues for effective treatments. Here, we investigate the odds of developing neuropsychiatric symptoms across increasing burdens of neurofibrillary tangle and amyloid-β pathology. Participants who passed away between 2004 and 2014 underwent comprehensive neuropathologic evaluation at the Biobank for Aging Studies from the Faculty of Medicine at the University of São Paulo. Postmortem interviews with reliable informants were used to collect information regarding neuropsychiatric and cognitive status. Of 1,092 cases collected, those with any non-Alzheimer pathology were excluded, bringing the cohort to 455 cases. Braak staging was used to evaluate neurofibrillary tangle burden, and the CERAD neuropathology score was used to evaluate amyloid-β burden. The 12-item neuropsychiatric inventory was used to evaluate neuropsychiatric symptoms and CDR-SOB score was used to evaluate dementia status. In Braak I/II, significantly increased odds were detected for agitation, anxiety, appetite changes, depression, and sleep disturbances, compared to controls. Increased odds of agitation continue into Braak III/IV. Braak V/VI is associated with higher odds for delusions. No increased odds for neuropsychiatric symptoms were found to correlate with amyloid-β pathology. Increased odds of neuropsychiatric symptoms are associated with early neurofibrillary tangle pathology, suggesting that subcortical neurofibrillary tangle accumulation with minimal cortical pathology is sufficient to impact quality of life and that neuropsychiatric symptoms are a manifestation of AD biological processes.
Collapse
Affiliation(s)
- Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Elisa de Paula França Resende
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Cathrine Petersen
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Michelle You
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Oh
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Joel H Kramer
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,University of São Paulo Medical School, São Paulo, Brazil.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019; 24:1284-1295. [PMID: 30377299 PMCID: PMC6491268 DOI: 10.1038/s41380-018-0291-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Sleep and wakefulness control in the mammalian brain requires the coordination of various discrete interconnected neurons. According to the most conventional sleep model, wake-promoting neurons (WPNs) and sleep-promoting neurons (SPNs) compete for network dominance, creating a systematic "switch" that results in either the sleep or awake state. WPNs and SPNs are ubiquitous in the brainstem and diencephalon, areas that together contain <1% of the neurons in the human brain. Interestingly, many of these WPNs and SPNs co-express and co-release various types of the neurotransmitters that often have opposing modulatory effects on the network. Co-transmission is often beneficial to structures with limited numbers of neurons because it provides increasing computational capability and flexibility. Moreover, co-transmission allows subcortical structures to bi-directionally control postsynaptic neurons, thus helping to orchestrate several complex physiological functions such as sleep. Here, we present an in-depth review of co-transmission in hypothalamic WPNs and SPNs and discuss its functional significance in the sleep-wake network.
Collapse
|
42
|
Shariq AS, Rosenblat JD, Alageel A, Mansur RB, Rong C, Ho RC, Ragguett RM, Pan Z, Brietzke E, McIntyre RS. Evaluating the role of orexins in the pathophysiology and treatment of depression: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:1-7. [PMID: 30576764 DOI: 10.1016/j.pnpbp.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Orexins are neuropeptides that are postulated to play a central role in the regulation of the sleep-wake cycle, appetite, affect, and reward circuitry. The objectives of the current review are to comprehensively evaluate (1) the potential role of orexins in the pathophysiology of major depressive disorders (MDD) and (2) the orexin system as a novel target in the treatment of MDD. Dysfunction of the sleep-wake cycle is observed as a central feature of MDD pathophysiology. Orexin system disturbances produce sleep-wake dysfunction, as observed in MDD. Orexin antagonists have been shown to treat insomnia effectively without disrupting normal sleep architecture in both preclinical (e.g., animal models) and clinical studies. Orexin antagonists are generally safe, well-tolerated, and associated with an acceptable long-term adverse effect profile with relatively low propensity for tolerance or dependence. Orexin antagonists have also been shown to possess antidepressant-like properties in some animal models of MDD. Extant evidence indicates that orexin-modulating treatments exert pleiotropic effects on multiple neural systems implicated in the phenomenology of mood disorders and suggests orexins as a promising target for investigation and intervention in mood disorders. To date, no human clinical trials evaluating the antidepressant effects of orexin antagonists in MDD have been completed. Given the promising results from preclinical studies, clinical trials are merited to evaluate the antidepressant effects of orexin antagonists in MDD.
Collapse
Affiliation(s)
- Aisha S Shariq
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, Texas Tech University Health Science Center, Paul L. Foster SOM, El Paso, TX 79905, USA
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Asem Alageel
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, College of Medicine, Imam University, Riyadh, Saudi Arabia
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Carola Rong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Roger C Ho
- National University of Singapore, 119077, Singapore; National University of Hong Kong, 999077, Hong Kong
| | - Renee-Marie Ragguett
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo 14021-001, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pharmacology, University of Toronto, Toronto, ON M5S 1A1, Canada; Brain and Cognition Discovery Foundation (BCDF), Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
43
|
Brotschi C, Roch C, Gatfield J, Treiber A, Williams JT, Sifferlen T, Heidmann B, Jenck F, Bolli MH, Boss C. Oxadiazole Derivatives as Dual Orexin Receptor Antagonists: Synthesis, Structure–Activity Relationships, and Sleep‐Promoting Properties in Rats. ChemMedChem 2019; 14:1257-1270. [DOI: 10.1002/cmdc.201900242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Christine Brotschi
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - Catherine Roch
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - John Gatfield
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - Alexander Treiber
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - Jodi T. Williams
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - Thierry Sifferlen
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - Bibia Heidmann
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - Francois Jenck
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - Martin H. Bolli
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| | - Christoph Boss
- Drug Discovery and Preclinical Research & DevelopmentIdorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil BL Switzerland
| |
Collapse
|
44
|
Brooks S, Jacobs GE, de Boer P, Kent JM, Van Nueten L, van Amerongen G, Zuiker R, Kezic I, Luthringer R, van der Ark P, van Gerven JM, Drevets W. The selective orexin-2 receptor antagonist seltorexant improves sleep: An exploratory double-blind, placebo controlled, crossover study in antidepressant-treated major depressive disorder patients with persistent insomnia. J Psychopharmacol 2019; 33:202-209. [PMID: 30644312 DOI: 10.1177/0269881118822258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insomnia is common in patients with major depressive disorder. Although antidepressants improve mood, insomnia often persists as a result of physiological hyperarousal. The orexin-2 receptor is increasingly being recognized as a new target for the treatment of persistent insomnia in major depressive disorder . AIM This exploratory study investigated the effects of seltorexant on objective sleep parameters and subjective depressive symptoms in antidepressant treated major depressive disorder patients with persistent insomnia. METHODS Twenty male and female patients received a single dose of 10, 20, 40 mg seltorexant and placebo with a washout period of seven days in a double-blind four-way crossover study. Effects on latency to persistent sleep, total sleep time and sleep efficiency were assessed with polysomnography. Subjective changes in mood were explored by the Quick Inventory of Depressive Symptomatology Self-Report. Safety was recorded and suicidal ideation and behavior were assessed with the Columbia Suicide Severity Rating Scale. RESULTS Latency to persistent sleep was significantly shorter for all doses of seltorexant compared to placebo. Placebo least square mean was 61.05 min with least square mean ratios treatment/placebo (80% confidence interval) of 0.32 (0.24-0.44), 0.15 (0.11-0.2) and 0.17 (0.12-0.23) 19.69, 9.2, 10.15 for 10, 20 and 40 mg seltorexant respectively, (all p<0.001). Total sleep time was significantly longer for all doses of seltorexant compared to placebo. Sleep efficiency was significantly improved. The Quick Inventory of Depressive Symptomatology Self-Report demonstrated a trend to mood-improvement for the 40 mg group. CONCLUSIONS Seltorexant showed a statistically significant, dose-dependent decrease in latency to persistent sleep, and increase in total sleep time and sleep efficiency combined with a tendency toward subjectively improved mood.
Collapse
Affiliation(s)
- Sander Brooks
- 1 Clinical Pharmacology, Centre for Human Drug Research, Leiden, The Netherlands
| | - Gabriël E Jacobs
- 1 Clinical Pharmacology, Centre for Human Drug Research, Leiden, The Netherlands
| | - Peter de Boer
- 2 Neuroscience Development, Janssen Research and Development, Beerse, Belgium
| | | | - Luc Van Nueten
- 2 Neuroscience Development, Janssen Research and Development, Beerse, Belgium
| | - Guido van Amerongen
- 1 Clinical Pharmacology, Centre for Human Drug Research, Leiden, The Netherlands
| | - Rob Zuiker
- 1 Clinical Pharmacology, Centre for Human Drug Research, Leiden, The Netherlands
| | - Iva Kezic
- 4 Quantitative Sciences, Janssen Research and Development, Beerse, Belgium
| | | | - Peter van der Ark
- 2 Neuroscience Development, Janssen Research and Development, Beerse, Belgium
| | - Joop Ma van Gerven
- 1 Clinical Pharmacology, Centre for Human Drug Research, Leiden, The Netherlands
| | - Wayne Drevets
- 6 Neuroscience Development, Janssen Research and Development, San Diego, CA, USA
| |
Collapse
|
45
|
Winsky-Sommerer R, de Oliveira P, Loomis S, Wafford K, Dijk DJ, Gilmour G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: Insights from studies in patient populations and animal models. Neurosci Biobehav Rev 2019; 97:112-137. [DOI: 10.1016/j.neubiorev.2018.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
|
46
|
Eacret D, Grafe LA, Dobkin J, Gotter AL, Renger JJ, Winrow CJ, Bhatnagar S. Orexin signaling during social defeat stress influences subsequent social interaction behaviour and recognition memory. Behav Brain Res 2019; 356:444-452. [DOI: 10.1016/j.bbr.2018.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
|
47
|
Herring WJ, Roth T, Krystal AD, Michelson D. Orexin receptor antagonists for the treatment of insomnia and potential treatment of other neuropsychiatric indications. J Sleep Res 2018; 28:e12782. [DOI: 10.1111/jsr.12782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Thomas Roth
- Sleep Disorders and Research Center Henry Ford Hospital Detroit MI USA
| | - Andrew D. Krystal
- Department of Psychiatry University of California San Francisco California USA
| | - David Michelson
- Clinical ResearchMerck & Co., Inc. Kenilworth New Jersey USA
| |
Collapse
|
48
|
Li SB, Nevárez N, Giardino WJ, de Lecea L. Optical probing of orexin/hypocretin receptor antagonists. Sleep 2018; 41:5060288. [PMID: 30060151 PMCID: PMC6454482 DOI: 10.1093/sleep/zsy141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/10/2018] [Indexed: 01/17/2023] Open
Abstract
Study Objectives The present study investigated the function of Hypocretin (Hcrt or Orexin/OX) receptor antagonists in sleep modulation and memory function with optical methods in transgenic mice. Methods We used Hcrt-IRES-Cre knock-in mice and AAV vectors expressing channelrhodopsin-2 (ChR2) to render Hcrt neurons sensitive to blue light stimulation. We optogenetically stimulated Hcrt neurons and measured latencies to wakefulness in the presence or absence of OX1/2R antagonists and Zolpidem. We also examined endogenous Hcrt neuronal activity with fiber photometry. Changes in memory after optogenetic sleep disruption were evaluated by the novel object recognition test (NOR) and compared for groups treated with vehicle, OX1/2R antagonists, or Zolpidem. We also analyzed electroencephalogram (EEG) power spectra of wakefulness, rapid eye movement (REM) sleep, and non-REM (NREM) sleep following the injections of vehicle, OX1/2R antagonists, and Zolpidem in young adult mice. Results Acute optogenetic stimulation of Hcrt neurons at different frequencies resulted in wakefulness. Treatment with dual OX1/2R antagonists (DORAs) DORA12 and MK6096, as well as selective OX2R antagonist MK1064 and Zolpidem, but not selective OX1R antagonist 1SORA1, significantly reduced the bout length of optogenetic stimulation-evoked wakefulness episode. Fiber photometry recordings of GCaMP6f signals showed that Hcrt neurons are active during wakefulness, even in the presence of OXR antagonists. Treatment with dual OX1/2R antagonists improved memory function despite optogenetic sleep fragmentation caused impaired memory function in a NOR test. Conclusions Our results show DORAs and selective OX2R antagonists stabilize sleep and improve sleep-dependent cognitive processes even when challenged by optogenetic stimulation mimicking highly arousing stimuli.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Natalie Nevárez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
49
|
Orexin 2 receptor stimulation enhances resilience, while orexin 2 inhibition promotes susceptibility, to social stress, anxiety and depression. Neuropharmacology 2018; 143:79-94. [PMID: 30240784 DOI: 10.1016/j.neuropharm.2018.09.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
Knockdown of orexin/hypocretin 2 receptor (Orx2) in the basolateral amygdala (BLA) affects anxious and depressive behavior. We use a new behavioral paradigm, the Stress Alternatives Model (SAM), designed to improve translational impact. The SAM induces social stress in adult male mice by aggression from larger mice, allowing for adaptive decision-making regarding escape. In this model, mice remain (Stay) in the oval SAM arena or escape from social aggression (Escape) via routes only large enough for the smaller mouse. We hypothesized intracerebroventricular (icv) stimulation of Orx2 receptors would be anxiolytic and antidepressive in SAM-related social behavior and the Social Interaction/Preference (SIP) test. Conversely, we predicted that icv antagonism of Orx2 receptors would promote anxious and depressive behavior in these same tests. Anxious behaviors such as freezing (both cued and conflict) and startle are exhibited more often in Stay compared with Escape phenotype mice. Time spent attentive to the escape route is more frequent in Escape mice. In Stay mice, stimulation of Orx2 receptors reduces fear conditioning, conflict freezing and startle, and promotes greater attention to the escape hole. This anxiolysis was accompanied by activation of a cluster of inhibitory neurons in the amygdala. A small percentage of those Stay mice also begin escaping; whereas Escape is reversed by the Orx2 antagonist. Escape mice were also Resilient, and Stay mice Susceptible to stress (SIP), with both conditions reversed by Orx2 antagonism or stimulation respectively. Together, these results suggest that the Orx2 receptor may be a useful potential target for anxiolytic or antidepressive therapeutics.
Collapse
|
50
|
Coleman PJ, Gotter AL, Herring WJ, Winrow CJ, Renger JJ. The Discovery of Suvorexant, the First Orexin Receptor Drug for Insomnia. Annu Rev Pharmacol Toxicol 2017; 57:509-533. [PMID: 27860547 DOI: 10.1146/annurev-pharmtox-010716-104837] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Historically, pharmacological therapies have used mechanisms such as γ-aminobutyric acid A (GABAA) receptor potentiation to drive sleep through broad suppression of central nervous system activity. With the discovery of orexin signaling loss as the etiology underlying narcolepsy, a disorder associated with hypersomnolence, orexin antagonism emerged as an alternative approach to attenuate orexin-induced wakefulness more selectively. Dual orexin receptor antagonists (DORAs) block the activity of orexin 1 and 2 receptors to both reduce the threshold to transition into sleep and attenuate orexin-mediated arousal. Among DORAs evaluated clinically, suvorexant has pharmacokinetic properties engineered for a plasma half-life appropriate for rapid sleep onset and maintenance at low to moderate doses. Unlike GABAA receptor modulators, DORAs promote both non-rapid eye movement (NREM) and REM sleep, do not disrupt sleep stage-specific quantitative electroencephalogram spectral profiles, and allow somnolence indistinct from normal sleep. The preservation of cognitive performance and the ability to arouse to salient stimuli after DORA administration suggest further advantages over historical therapies.
Collapse
Affiliation(s)
- Paul J Coleman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486;
| | - Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - W Joseph Herring
- Department of Clinical Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Christopher J Winrow
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| |
Collapse
|