1
|
Luo Y, Liu T, Pei J, Xu S, Liu J, Yu J. Emerging strategies and translational advancements of DDR1 in oncology. Discov Oncol 2025; 16:428. [PMID: 40159417 PMCID: PMC11955443 DOI: 10.1007/s12672-025-02107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Discoidin domain receptor 1 (DDR1) has emerged as a promising therapeutic target in oncology due to its unique role in tumor-stroma interactions and its involvement in key signaling pathways that drive cancer progression. DDR1 is homologous to the transmembrane receptor tyrosine kinase (RTK) family and uniquely requires binding to collagen for its activation. It regulates several cellular processes related to tumor cell proliferation, metabolism, migration, stromal remodeling, and epithelial-mesenchymal transition (EMT), ultimately influencing patient survival. Dysregulation of DDR1 may contribute to cancer progression, neurodegenerative diseases, fibrotic conditions, and atherosclerosis. Moreover, DDR1 has been shown to affect a wide variety of cancers, including lung, breast, stomach, colon, ovarian, and pancreatic cancers, underscoring its potential as a therapeutic target. Various small-molecule tyrosine kinase inhibitors aimed at DDR1 have been developed and have demonstrated significant effectiveness in reducing tumor growth. This review focuses on the structure, function, and mechanism of DDR1, as well as its involvement in cancer progression. Additionally, it examines the development and therapeutic potential of DDR1 inhibitors, offering a comprehensive overview of their application in cancer treatment. By synthesizing current knowledge, this article provides valuable insights to guide future research and innovation in targeting DDR1 for clinical therapeutic advancement.
Collapse
Affiliation(s)
- Yuxi Luo
- Department of Oncology, College of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117, China
| | - Tianxin Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinli Pei
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117, China
| | - Shengnan Xu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117, China
| | - Jie Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117, China.
- Shandong Luye Pharmaceutical Co., Ltd., Yantai, 264003, People's Republic of China.
| | - Jinming Yu
- Department of Oncology, College of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China.
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117, China.
| |
Collapse
|
2
|
Wang J, Wang L, Qiang W, Ge W. The role of DDR1 in cancer and the progress of its selective inhibitors. Bioorg Chem 2025; 154:108018. [PMID: 39642752 DOI: 10.1016/j.bioorg.2024.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a member of the receptor tyrosine kinase superfamily, which mainly activates downstream signaling pathways through binding to collagen. The abnormal expression of DDR1 is closely related to the occurrence and development of various tumors, and it is one of the potential targets for molecular targeted therapy. At present, specific antibodies and selective small molecule inhibitors against DDR1 have been approved for Phase I clinical trials. In this review, we summarized the effects of DDR1 on tumor cell proliferation, survival, migration, invasion, energy metabolism and tumor microenvironment, and combed the research progress of selective DDR1 small molecule inhibitors in the field of anti-tumor. It is hoped that more DDR1 inhibitors with excellent performance will be developed to provide more treatment options for tumor patients.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 210008, China.
| | - Lele Wang
- Department of pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 210008, China.
| | - Weijie Qiang
- Department of pharmacy, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province 210008, China.
| | - Weihong Ge
- Department of pharmacy, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province 210008, China.
| |
Collapse
|
3
|
Vymola P, Garcia‐Borja E, Cervenka J, Balaziova E, Vymolova B, Veprkova J, Vodicka P, Skalnikova H, Tomas R, Netuka D, Busek P, Sedo A. Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination. Brain Pathol 2024; 34:e13265. [PMID: 38705944 PMCID: PMC11483521 DOI: 10.1111/bpa.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.
Collapse
Affiliation(s)
- Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Elena Garcia‐Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Laboratory of proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Barbora Vymolova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jana Veprkova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Helena Skalnikova
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Laboratory of proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Robert Tomas
- Department of NeurosurgeryNa Homolce HospitalPragueCzech Republic
| | - David Netuka
- Department of Neurosurgery and Neurooncology, First Faculty of MedicineCharles University and Military University HospitalPragueCzech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
4
|
Olatunji G, Aderinto N, Adefusi T, Kokori E, Akinmoju O, Yusuf I, Olusakin T, Muzammil MA. Efficacy of tumour-treating fields therapy in recurrent glioblastoma: A narrative review of current evidence. Medicine (Baltimore) 2023; 102:e36421. [PMID: 38050252 PMCID: PMC10695547 DOI: 10.1097/md.0000000000036421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Recurrent Glioblastoma presents a formidable challenge in oncology due to its aggressive nature and limited treatment options. Tumour-Treating Fields (TTFields) Therapy, a novel therapeutic modality, has emerged as a promising approach to address this clinical conundrum. This review synthesizes the current evidence surrounding the efficacy of TTFields Therapy in the context of recurrent Glioblastoma. Diverse academic databases were explored to identify relevant studies published within the last decade. Strategic keyword selection facilitated the inclusion of studies focusing on TTFields Therapy's efficacy, treatment outcomes, and patient-specific factors. The review reveals a growing body of evidence suggesting the potential clinical benefits of TTFields Therapy for patients with recurrent Glioblastoma. Studies consistently demonstrate its positive impact on overall survival (OS) and progression-free survival (PFS). The therapy's safety profile remains favorable, with mild to moderate skin reactions being the most commonly reported adverse events. Our analysis highlights the importance of patient selection criteria, with emerging biomarkers such as PTEN mutation status influencing therapy response. Additionally, investigations into combining TTFields Therapy with other treatments, including surgical interventions and novel approaches, offer promising avenues for enhancing therapeutic outcomes. The synthesis of diverse studies underscores the potential of TTFields Therapy as a valuable addition to the armamentarium against recurrent Glioblastoma. The narrative review comprehensively explains the therapy's mechanisms, clinical benefits, adverse events, and future directions. The insights gathered herein serve as a foundation for clinicians and researchers striving to optimize treatment strategies for patients facing the challenging landscape of recurrent Glioblastoma.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Tobi Olusakin
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
5
|
Vaz-Salgado MA, Villamayor M, Albarrán V, Alía V, Sotoca P, Chamorro J, Rosero D, Barrill AM, Martín M, Fernandez E, Gutierrez JA, Rojas-Medina LM, Ley L. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers (Basel) 2023; 15:4279. [PMID: 37686553 PMCID: PMC10487236 DOI: 10.3390/cancers15174279] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma is a disease with a poor prognosis. Multiple efforts have been made to improve the long-term outcome, but the 5-year survival rate is still 5-10%. Recurrence of the disease is the usual way of progression. In this situation, there is no standard treatment. Different treatment options can be considered. Among them would be reoperation or reirradiation. There are different studies that have assessed the impact on survival and the selection of patients who may benefit most from these strategies. Chemotherapy treatments have also been considered in several studies, mainly with alkylating agents, with data mostly from phase II studies. On the other hand, multiple studies have been carried out with target-directed treatments. Bevacizumab, a monoclonal antibody with anti-angiogenic activity, has demonstrated activity in several studies, and the FDA has approved it for this indication. Several other TKI drugs have been evaluated in this setting, but no clear benefit has been demonstrated. Immunotherapy treatments have been shown to be effective in other types of tumors, and several studies have evaluated their efficacy in this disease, both immune checkpoint inhibitors, oncolytic viruses, and vaccines. This paper reviews data from different studies that have evaluated the efficacy of different forms of relapsed glioblastoma.
Collapse
Affiliation(s)
- Maria Angeles Vaz-Salgado
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - María Villamayor
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Albarrán
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Alía
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Pilar Sotoca
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Jesús Chamorro
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Diana Rosero
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Ana M. Barrill
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Mercedes Martín
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - Eva Fernandez
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - José Antonio Gutierrez
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Mariano Rojas-Medina
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Ley
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| |
Collapse
|
6
|
Li X, Chen H, Zhang D. Discoidin domain receptor 1 may be involved in biological barrier homeostasis. J Clin Pharm Ther 2022; 47:2397-2407. [PMID: 35665520 DOI: 10.1111/jcpt.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase involved in the pathological processes of several diseases, such as keloid formation, renal fibrosis, atherosclerosis, tumours, and inflammatory processes. The biological barrier is the first line of defence against pathogens, and its disruption is closely related to diseases. In this review, we attempt to elucidate the relationship between DDR1 and the biological barrier, explore the potential biological value of DDR1, and review the current research status and clinical potential of DDR1-selective inhibitors. METHODS We conducted an extensive literature search on PubMed to collect studies on the relevance of DDR1 to biological barriers and DDR1-selective inhibitors. With these studies, we explored the relationship between DDR1 and biological barriers and briefly reviewed representative DDR1-selective inhibitors that have been reported in recent years. RESULTS AND DISCUSSION First, the review of the potential mechanisms by which DDR1 regulates biological barriers, including the epithelial, vascular, glomerular filtration, blood-labyrinth, and blood-brain barriers. In the body, DDR1 dysfunction and aberrant expression may be involved in the homeostasis of the biological barrier. Secondly, the review of DDR1 inhibitors reported in recent years shows that DDR1-targeted inhibition is an attractive and promising pharmacological intervention. WHAT IS NEW AND CONCLUSIONS This review shows that DDR1 is involved in various physiological and pathological processes and in the regulation of biological barrier homeostasis. However, studies on DDR1 and biological barriers are still scarce, and further studies are needed to elucidate their specific mechanisms. The development of targeted inhibitors provides a new direction and idea to study the mechanism of DDR1.
Collapse
Affiliation(s)
- Xiaoli Li
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Huiling Chen
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, LanZhou University, Lanzhou, China
| |
Collapse
|
7
|
Fabro F, Kannegieter NM, de Graaf EL, Queiroz K, Lamfers MLM, Ressa A, Leenstra S. Novel kinome profiling technology reveals drug treatment is patient and 2D/3D model dependent in glioblastoma. Front Oncol 2022; 12:1012236. [PMID: 36408180 PMCID: PMC9670801 DOI: 10.3389/fonc.2022.1012236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the deadliest brain cancer. One of the main reasons for poor outcome resides in therapy resistance, which adds additional challenges in finding an effective treatment. Small protein kinase inhibitors are molecules that have become widely studied for cancer treatments, including glioblastoma. However, none of these drugs have demonstrated a therapeutic activity or brought more benefit compared to the current standard procedure in clinical trials. Hence, understanding the reasons of the limited efficacy and drug resistance is valuable to develop more effective strategies toward the future. To gain novel insights into the method of action and drug resistance in glioblastoma, we established in parallel two patient-derived glioblastoma 2D and 3D organotypic multicellular spheroids models, and exposed them to a prolonged treatment of three weeks with temozolomide or either the two small protein kinase inhibitors enzastaurin and imatinib. We coupled the phenotypic evidence of cytotoxicity, proliferation, and migration to a novel kinase activity profiling platform (QuantaKinome™) that measured the activities of the intracellular network of kinases affected by the drug treatments. The results revealed a heterogeneous inter-patient phenotypic and molecular response to the different drugs. In general, small differences in kinase activation were observed, suggesting an intrinsic low influence of the drugs to the fundamental cellular processes like proliferation and migration. The pathway analysis indicated that many of the endogenously detected kinases were associated with the ErbB signaling pathway. We showed the intertumoral variability in drug responses, both in terms of efficacy and resistance, indicating the importance of pursuing a more personalized approach. In addition, we observed the influence derived from the application of 2D or 3D models in in vitro studies of kinases involved in the ErbB signaling pathway. We identified in one 3D sample a new resistance mechanism derived from imatinib treatment that results in a more invasive behavior. The present study applied a new approach to detect unique and specific drug effects associated with pathways in in vitro screening of compounds, to foster future drug development strategies for clinical research in glioblastoma.
Collapse
Affiliation(s)
- Federica Fabro
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Martine L. M. Lamfers
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | | | - Sieger Leenstra
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
- *Correspondence: Sieger Leenstra,
| |
Collapse
|
8
|
Saurty-Seerunghen MS, Daubon T, Bellenger L, Delaunay V, Castro G, Guyon J, Rezk A, Fabrega S, Idbaih A, Almairac F, Burel-Vandenbos F, Turchi L, Duplus E, Virolle T, Peyrin JM, Antoniewski C, Chneiweiss H, El-Habr EA, Junier MP. Glioblastoma cell motility depends on enhanced oxidative stress coupled with mobilization of a sulfurtransferase. Cell Death Dis 2022. [PMID: 36310164 DOI: 10.1038/s41419-022-05358-8.pmid:36310164;pmcid:pmc9618559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cell motility is critical for tumor malignancy. Metabolism being an obligatory step in shaping cell behavior, we looked for metabolic weaknesses shared by motile cells across the diverse genetic contexts of patients' glioblastoma. Computational analyses of single-cell transcriptomes from thirty patients' tumors isolated cells with high motile potential and highlighted their metabolic specificities. These cells were characterized by enhanced mitochondrial load and oxidative stress coupled with mobilization of the cysteine metabolism enzyme 3-Mercaptopyruvate sulfurtransferase (MPST). Functional assays with patients' tumor-derived cells and -tissue organoids, and genetic and pharmacological manipulations confirmed that the cells depend on enhanced ROS production and MPST activity for their motility. MPST action involved protection of protein cysteine residues from damaging hyperoxidation. Its knockdown translated in reduced tumor burden, and a robust increase in mice survival. Starting from cell-by-cell analyses of the patients' tumors, our work unravels metabolic dependencies of cell malignancy maintained across heterogeneous genomic landscapes.
Collapse
Affiliation(s)
- Mirca S Saurty-Seerunghen
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Thomas Daubon
- CNRS UMR5095, Inserm U1029, Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Team Bioenergetics and dynamics of mitochondria, Bordeaux, France
| | - Léa Bellenger
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Virgile Delaunay
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Gloria Castro
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Joris Guyon
- Inserm U1312, Université de Bordeaux, Pessac, France
| | - Ahmed Rezk
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Sylvie Fabrega
- Plateforme Vecteurs Viraux et Transfert de Gènes, Université Paris Descartes-Structure Fédérative de Recherche Necker, CNRS UMS3633, Inserm US24, Paris, France
| | - Ahmed Idbaih
- CNRS UMR 7225, Inserm U1127, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Fabien Almairac
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
- Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, Nice, 06107, France
| | - Fanny Burel-Vandenbos
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
- Service d'anatomopathologie, Hôpital Pasteur, CHU de Nice, Nice, 06107, France
| | - Laurent Turchi
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
- DRCI, CHU de Nice, Nice, 06107, France
| | - Eric Duplus
- CNRS UMR8256, INSERM ERL1164, Sorbonne Université, Biological adaptation and aging-IBPS Laboratory, Team Integrated cellular aging and inflammation, Paris, France
| | - Thierry Virolle
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
| | - Jean-Michel Peyrin
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Axonal degeneration and regeneration, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Elias A El-Habr
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France.
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France.
| |
Collapse
|
9
|
Saurty-Seerunghen MS, Daubon T, Bellenger L, Delaunay V, Castro G, Guyon J, Rezk A, Fabrega S, Idbaih A, Almairac F, Burel-Vandenbos F, Turchi L, Duplus E, Virolle T, Peyrin JM, Antoniewski C, Chneiweiss H, El-Habr EA, Junier MP. Glioblastoma cell motility depends on enhanced oxidative stress coupled with mobilization of a sulfurtransferase. Cell Death Dis 2022; 13:913. [PMID: 36310164 PMCID: PMC9618559 DOI: 10.1038/s41419-022-05358-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/23/2023]
Abstract
Cell motility is critical for tumor malignancy. Metabolism being an obligatory step in shaping cell behavior, we looked for metabolic weaknesses shared by motile cells across the diverse genetic contexts of patients' glioblastoma. Computational analyses of single-cell transcriptomes from thirty patients' tumors isolated cells with high motile potential and highlighted their metabolic specificities. These cells were characterized by enhanced mitochondrial load and oxidative stress coupled with mobilization of the cysteine metabolism enzyme 3-Mercaptopyruvate sulfurtransferase (MPST). Functional assays with patients' tumor-derived cells and -tissue organoids, and genetic and pharmacological manipulations confirmed that the cells depend on enhanced ROS production and MPST activity for their motility. MPST action involved protection of protein cysteine residues from damaging hyperoxidation. Its knockdown translated in reduced tumor burden, and a robust increase in mice survival. Starting from cell-by-cell analyses of the patients' tumors, our work unravels metabolic dependencies of cell malignancy maintained across heterogeneous genomic landscapes.
Collapse
Affiliation(s)
- Mirca S. Saurty-Seerunghen
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Thomas Daubon
- grid.462122.10000 0004 1795 2841CNRS UMR5095, Inserm U1029, Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Team Bioenergetics and dynamics of mitochondria, Bordeaux, France
| | - Léa Bellenger
- grid.503253.20000 0004 0520 7190ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Virgile Delaunay
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Gloria Castro
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Joris Guyon
- grid.412041.20000 0001 2106 639XInserm U1312, Université de Bordeaux, Pessac, France
| | - Ahmed Rezk
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Sylvie Fabrega
- grid.508487.60000 0004 7885 7602Plateforme Vecteurs Viraux et Transfert de Gènes, Université Paris Descartes-Structure Fédérative de Recherche Necker, CNRS UMS3633, Inserm US24, Paris, France
| | - Ahmed Idbaih
- grid.425274.20000 0004 0620 5939CNRS UMR 7225, Inserm U1127, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Fabien Almairac
- grid.461605.0Université Côte D’Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France ,grid.464719.90000 0004 0639 4696Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, Nice, 06107 France
| | - Fanny Burel-Vandenbos
- grid.461605.0Université Côte D’Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France ,grid.464719.90000 0004 0639 4696Service d’anatomopathologie, Hôpital Pasteur, CHU de Nice, Nice, 06107 France
| | - Laurent Turchi
- grid.461605.0Université Côte D’Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France ,grid.410528.a0000 0001 2322 4179DRCI, CHU de Nice, Nice, 06107 France
| | - Eric Duplus
- grid.462844.80000 0001 2308 1657CNRS UMR8256, INSERM ERL1164, Sorbonne Université, Biological adaptation and aging-IBPS Laboratory, Team Integrated cellular aging and inflammation, Paris, France
| | - Thierry Virolle
- grid.461605.0Université Côte D’Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity, Nice, France
| | - Jean-Michel Peyrin
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Axonal degeneration and regeneration, Paris, France
| | - Christophe Antoniewski
- grid.503253.20000 0004 0520 7190ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Hervé Chneiweiss
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Elias A. El-Habr
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| | - Marie-Pierre Junier
- grid.462844.80000 0001 2308 1657CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Paris, France
| |
Collapse
|
10
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
11
|
Zippel S, Dilger N, Chatterjee C, Raic A, Brenner-Weiß G, Schadzek P, Rapp BE, Lee-Thedieck C. A parallelized, perfused 3D triculture model of leukemia for in vitro drug testing of chemotherapeutics. Biofabrication 2022; 14. [PMID: 35472717 DOI: 10.1088/1758-5090/ac6a7e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Leukemia patients undergo chemotherapy to combat the leukemic cells (LCs) in the bone marrow. During therapy not only the LCs, but also the blood-producing hematopoietic stem and progenitor cells (HSPCs) may be destroyed. Chemotherapeutics targeting only the LCs are urgently needed to overcome this problem and minimize life-threatening side-effects. Predictive in vitro drug testing systems allowing simultaneous comparison of various experimental settings would enhance the efficiency of drug development. Here, we present a 3D human leukemic bone marrow model perfused using a magnetic, parallelized culture system to ensure media exchange. Chemotherapeutic treatment of the acute myeloid leukemia cell line KG-1a in 3D magnetic hydrogels seeded with mesenchymal stem/stromal cells (MSCs) revealed a greater resistance of KG-1a compared to 2D culture. In 3D tricultures with HSPCs, MSCs and KG-1a, imitating leukemic bone marrow, HSPC proliferation decreased while KG-1a cells remained unaffected post treatment. Non-invasive metabolic profiling enabled continuous monitoring of the system. Our results highlight the importance of using biomimetic 3D platforms with proper media exchange and co-cultures for creating in vivo-like conditions to enable in vitro drug testing. This system is a step towards drug testing in biomimetic, parallelized in vitro approaches, facilitating the discovery of new anti-leukemic drugs.
Collapse
Affiliation(s)
- Sabrina Zippel
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Nadine Dilger
- Institute of Cell Biology and Biophysics, Leibniz University Hanover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Chandralekha Chatterjee
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Annamarija Raic
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Gerald Brenner-Weiß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Württemberg, 76344, GERMANY
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Stadtfelddamm 34, Hannover, Niedersachsen, 30625, GERMANY
| | - Bastian E Rapp
- Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universitat Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| |
Collapse
|
12
|
Belyaeva E, Kharwar RK, Ulasov IV, Karlina I, Timashev P, Mohammadinejad R, Acharya A. Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance. Mol Cell Biochem 2022; 477:593-604. [PMID: 34854022 DOI: 10.1007/s11010-021-04308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
Autophagy is the process of recycling and utilization of degraded organelles and macromolecules in the cell compartments formed during the fusion of autophagosomes with lysosomes. During autophagy induction the healthy and tumor cells adapt themselves to harsh conditions such as cellular stress or insufficient supply of nutrients in the cell environment to maintain their homeostasis. Autophagy is currently seen as a form of programmed cell death along with apoptosis and necroptosis. In recent years multiple studies have considered the autophagy as a potential mechanism of anticancer therapy in malignant glioma. Although, subsequent steps in autophagy development are known and well-described, on molecular level the mechanism of autophagosome initiation and maturation using autophagy-related proteins is under investigation. This article reviews current state about the mechanism of autophagy, its molecular pathways and the most recent studies on roles of autophagy-related proteins and their isoforms in glioma progression and its treatment.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Rajesh Kumar Kharwar
- Endocrine Research Laboratory, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, UP, India
| | - Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991.
| | - Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Petr Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation, 119991
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin st., Moscow, Russian Federation, 119991
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russian Federation, 119991
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arbind Acharya
- Tumor Immunology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
13
|
Comba A, Faisal SM, Varela ML, Hollon T, Al-Holou WN, Umemura Y, Nunez FJ, Motsch S, Castro MG, Lowenstein PR. Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Front Oncol 2021; 11:703764. [PMID: 34422657 PMCID: PMC8377724 DOI: 10.3389/fonc.2021.703764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.
Collapse
Affiliation(s)
- Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J Nunez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sebastien Motsch
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Taghvaei S, Sabouni F, Minuchehr Z. Evidence of Omics, Immune Infiltration, and Pharmacogenomic for SENP1 in the Pan-Cancer Cohort. Front Pharmacol 2021; 12:700454. [PMID: 34276383 PMCID: PMC8280523 DOI: 10.3389/fphar.2021.700454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Sentrin specific-protease 1 (SENP1) is a protein involved in deSUMOylation that is almost overexpressed in cancer. SENP1 has a determinative role in the activation of transcription programs in the innate immune responses and the development B of and C lymphocytes. We found, SENP1 possibly plays a critical role in immune infiltration and acts as an expression marker in PAAD, ESCA, and THYM. CD4+ T cells, CD8+ T cells, and macrophages were more key-related immune cells, indicating that SENP1 might be introduced as a potential target for cancer immunotherapy. We further showed that dysregulation of SENP1 is powerfully associated with decreased patient survival and clinical stage. Total SENP1 protein also increases in cancer. SENP1 is also controlled by transcription factors (TFs) CREB1, KDM5A, REST, and YY1 that regulates apoptosis, cell cycle, cell proliferation, invasion, tumorigenesis, and metastasis. These TFs were in a positive correlation with SENP1. MiR-138-5p, miR-129-1-3p, and miR-129-2-3p also inhibit tumorigenesis through targeting of SENP1. The SENP1 expression level positively correlated with the expression levels of UBN1, SP3, SAP130, NUP98, NUP153 in 32 tumor types. SENP1 and correlated and binding genes: SAP130, NUP98, and NUP153 activated cell cycle. Consistent with this finding, drug analysis was indicated SENP1 is sensitive to cell cycle, apoptosis, and RTK signaling regulators. In the end, SENP1 and its expression-correlated and functional binding genes were enriched in cell cycle, apoptosis, cellular response to DNA damage stimulus. We found that the cell cycle is the main way for tumorigenesis by SENP1. SENP1 attenuates the effect of inhibitory drugs on the cell cycle. We also introduced effective FDA-Approved drugs that can inhibit SENP1. Therefore in the treatments in which these drugs are used, SENP1 inhibition is a suitable approach. This study supplies a wide analysis of the SENP1 across The Cancer Genome Atlas (CGA) cancer types. These results suggest the potential roles of SENP1 as a biomarker for cancer. Since these drugs and the drugs that cause to resistance are applied to cancer treatment, then these two class drugs can use to inhibition of SENP1.
Collapse
Affiliation(s)
- Somayye Taghvaei
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzaneh Sabouni
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
15
|
Puxeddu M, Shen H, Bai R, Coluccia A, Bufano M, Nalli M, Sebastiani J, Brancaccio D, Da Pozzo E, Tremolanti C, Martini C, Orlando V, Biagioni S, Sinicropi MS, Ceramella J, Iacopetta D, Coluccia AML, Hamel E, Liu T, Silvestri R, La Regina G. Discovery of pyrrole derivatives for the treatment of glioblastoma and chronic myeloid leukemia. Eur J Med Chem 2021; 221:113532. [PMID: 34052717 DOI: 10.1016/j.ejmech.2021.113532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022]
Abstract
Long-term survivors of glioblastoma multiforme (GBM) are at high risk of developing second primary neoplasms, including leukemia. For these patients, the use of classic tyrosine kinase inhibitors (TKIs), such as imatinib mesylate, is strongly discouraged, since this treatment causes a tremendous increase of tumor and stem cell migration and invasion. We aimed to develop agents useful for the treatment of patients with GBM and chronic myeloid leukemia (CML) using an alternative mechanism of action from the TKIs, specifically based on the inhibition of tubulin polymerization. Compounds 7 and 25, as planned, not only inhibited tubulin polymerization, but also inhibited the proliferation of both GMB and CML cells, including those expressing the T315I mutation, at nanomolar concentrations. In in vivo experiments in BALB/cnu/nu mice injected subcutaneously with U87MG cells, in vivo, 7 significantly inhibited GBM cancer cell proliferation, in vivo tumorigenesis, and tumor growth, tumorigenesis and angiogenesis. Compound 7 was found to block human topoisomerase II (hTopoII) selectively and completely, at a concentration of 100 μM.
Collapse
Affiliation(s)
- Michela Puxeddu
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Hongliang Shen
- Department of Urology, Capital Medical University Beijing Friendship Hospital, Beijing, 100050, China
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Jessica Sebastiani
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples"Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Viviana Orlando
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036, Rende, Cosenza, Italy
| | | | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Te Liu
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100, Lecce, Italy; Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
16
|
Tilak M, Holborn J, New LA, Lalonde J, Jones N. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2021; 22:1831. [PMID: 33673213 PMCID: PMC7918566 DOI: 10.3390/ijms22041831] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.
Collapse
Affiliation(s)
| | | | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.T.); (J.H.); (L.A.N.); (J.L.)
| |
Collapse
|
17
|
El-Khayat SM, Arafat WO. Therapeutic strategies of recurrent glioblastoma and its molecular pathways 'Lock up the beast'. Ecancermedicalscience 2021; 15:1176. [PMID: 33680090 PMCID: PMC7929780 DOI: 10.3332/ecancer.2021.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis-despite aggressive primary treatment composed of surgery, radiotherapy and chemotherapy, median survival is still around 15 months. It starts to grow again after a year of treatment and eventually nothing is effective at this stage. Recurrent GBM is one of the most disappointing fields for researchers in which their efforts have gained no benefit for patients. They were directed for a long time towards understanding the molecular basis that leads to the development of GBM. It is now known that GBM is a heterogeneous disease and resistance comes mainly from the regrowth of malignant cells after eradicating specific clones by targeted treatment. Epidermal growth factor receptor, platelet derived growth factor receptor, vascular endothelial growth factor receptor are known to be highly active in primary and recurrent GBM through different underlying pathways, despite this bevacizumab is the only Food and Drug Administration (FDA) approved drug for recurrent GBM. Immunotherapy is another important promising modality of treatment of GBM, after proper understanding of the microenvironment of the tumour and overcoming the reasons that historically stigmatise GBM as an 'immunologically cold tumour'. Radiotherapy can augment the effect of immunotherapy by different mechanisms. Also, dual immunotherapy which targets immune pathways at different stages and through different receptors further enhances immune stimulation against GBM. Delivery of pro-drugs to be activated at the tumour site and suicidal genes by gene therapy using different vectors shows promising results. Despite using neurotropic viral vectors specifically targeting glial cells (which are the cells of origin of GBM), no significant improvement of overall-survival has been seen as yet. Non-viral vectors 'polymeric and non-polymeric' show significant tumour shrinkage in pre-clinical trials and now at early-stage clinical trials. To this end, in this review, we aim to study the possible role of different molecular pathways that are involved in GBM's recurrence, we will also review the most relevant and recent clinical experience with targeted treatments and immunotherapies. We will discuss trials utilised tyrosine receptor kinase inhibitors, immunotherapy and gene therapy in recurrent GBM pointing to the causes of potential disappointing preliminary results of some of them. Additionally, we are suggesting a possible future treatment based on recent successful clinical data that could alter the outcome for GBM patients.
Collapse
Affiliation(s)
- Shaimaa M El-Khayat
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria 21568, Egypt
| | - Waleed O Arafat
- Alexandria Clinical Oncology Department, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
18
|
Wisniewski L, French V, Lockwood N, Valdivia LE, Frankel P. P130Cas/bcar1 mediates zebrafish caudal vein plexus angiogenesis. Sci Rep 2020; 10:15589. [PMID: 32973180 PMCID: PMC7518251 DOI: 10.1038/s41598-020-71753-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
P130CAS/BCAR1 belongs to the CAS family of adaptor proteins, with important regulatory roles in cell migration, cell cycle control, and apoptosis. Previously, we and others showed that P130CAS mediates VEGF-A and PDGF signalling in vitro, but its cardiovascular function in vivo remains relatively unexplored. We characterise here a novel deletion model of P130CAS in zebrafish. Using in vivo microscopy and transgenic vascular reporters, we observed that while bcar1−/− zebrafish showed no arterial angiogenic or heart defects during development, they strikingly failed to form the caudal vein plexus (CVP). Endothelial cells (ECs) within the CVP of bcar1−/− embryos produced fewer filopodial structures and did not detach efficiently from neighbouring cells, resulting in a significant reduction in ventral extension and overall CVP area. Mechanistically, we show that P130Cas mediates Bmp2b-induced ectopic angiogenic sprouting of ECs in the developing embryo and provide pharmacological evidence for a role of Src family kinases in CVP development.
Collapse
Affiliation(s)
- Laura Wisniewski
- Division of Medicine, University College London, 5 University Street, London, WC1E 6JF, UK. .,Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Vanessa French
- Institute of Cardiovascular Science, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Nicola Lockwood
- Division of Medicine, University College London, 5 University Street, London, WC1E 6JF, UK.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Leonardo E Valdivia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Paul Frankel
- Institute of Cardiovascular Science, University College London, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
19
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
20
|
Kim G, Ko YT. Small molecule tyrosine kinase inhibitors in glioblastoma. Arch Pharm Res 2020; 43:385-394. [PMID: 32239429 DOI: 10.1007/s12272-020-01232-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, with poor survival despite treatment with surgery, radiotherapy, and chemotherapy with temozolomide. Little progress has been made over the last two decades, and there remain unmet medical needs. Approximately 45% of patients with GBM carry EGFR mutations, and 13% of them possess altered PDGFR genes. Moreover, VEGF/VEGFR mutations are also observed in the patient population. Tyrosine kinase inhibitors (TKIs) are emerging cancer therapy drugs that inhibit signal transduction cascades affecting cell proliferation, migration, and angiogenesis. Indications for small molecule TKIs have been successfully expanded to multiple types of cancer; however, none of the TKIs have been approved for patients with GBM. In this review, we summarize clinical trials of small molecule TKIs in patients with GBM and plausible hypotheses for negative clinical study results. We also discuss the potential TKI candidates that presented significant preclinical outcomes in patients with GBM.
Collapse
Affiliation(s)
- Gayoung Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, 21936, South Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, 21936, South Korea.
| |
Collapse
|
21
|
Alexandru O, Horescu C, Sevastre AS, Cioc CE, Baloi C, Oprita A, Dricu A. Receptor tyrosine kinase targeting in glioblastoma: performance, limitations and future approaches. Contemp Oncol (Pozn) 2020; 24:55-66. [PMID: 32514239 PMCID: PMC7265959 DOI: 10.5114/wo.2020.94726] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
From all central nervous system tumors, gliomas are the most common. Nowadays, researchers are looking for more efficient treatments for these tumors, as well as ways for early diagnosis. Receptor tyrosine kinases (RTKs) are major targets for oncology and the development of small-molecule RTK inhibitors has been proven successful in cancer treatment. Mutations or aberrant activation of the RTKs and their intracellular signaling pathways are linked to several malignant diseases, including glioblastoma. The progress in the understanding of malignant glioma evolution has led to RTK targeted therapies with high capacity to improve the therapeutic response while reducing toxicity. In this review, we present the most important RTKs (i.e. EGFR, IGFR, PDGFR and VEGFR) currently used for developing cancer therapeutics together with the potential of RTK-related drugs in glioblastoma treatment. Also, we focus on some therapeutic agents that are currently at different stages of research or even in clinical phases and proved to be suitable as re-purposing candidates for glioblastoma treatment.
Collapse
Affiliation(s)
- Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova and Clinical Hospital of Neuropsychiatry Craiova, Craiova, Romania
| | - Cristina Horescu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ani-Simona Sevastre
- Unit of Pharmaceutical Technology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Catalina Elena Cioc
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Carina Baloi
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alexandru Oprita
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anica Dricu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
22
|
Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front Oncol 2019; 9:963. [PMID: 31616641 PMCID: PMC6775189 DOI: 10.3389/fonc.2019.00963] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumour in humans and has a very poor prognosis. The existing treatments have had limited success in increasing overall survival. Thus, identifying and understanding the key molecule(s) responsible for the malignant phenotype of GBM will yield new potential therapeutic targets. The treatment of brain tumours faces unique challenges, including the presence of the blood brain barrier (BBB), which limits the concentration of drugs that can reach the site of the tumour. Nevertheless, several promising treatments have been shown to cross the BBB and have shown promising pre-clinical results. This review will outline the status of several of these promising targeted therapies.
Collapse
Affiliation(s)
- Olivia G Taylor
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Joshua S Brzozowski
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kathryn A Skelding
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
23
|
Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123773. [PMID: 30486451 PMCID: PMC6320836 DOI: 10.3390/ijms19123773] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme is the most malignant and aggressive type of brain tumor, with a mean life expectancy of less than 15 months. This is due in part to the high resistance to apoptosis and moderate resistant to autophagic cell death in glioblastoma cells, and to the poor therapeutic response to conventional therapies. Autophagic cell death represents an alternative mechanism to overcome the resistance of glioblastoma to pro-apoptosis-related therapies. Nevertheless, apoptosis induction plays a major conceptual role in several experimental studies to develop novel therapies against brain tumors. In this review, we outline the different components of the apoptotic and autophagic pathways and explore the mechanisms of resistance to these cell death pathways in glioblastoma cells. Finally, we discuss drugs with clinical and preclinical use that interfere with the mechanisms of survival, proliferation, angiogenesis, migration, invasion, and cell death of malignant cells, favoring the induction of apoptosis and autophagy, or the inhibition of the latter leading to cell death, as well as their therapeutic potential in glioma, and examine new perspectives in this promising research field.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Norma Serrano-Garcia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Ángel Escamilla-Ramírez
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
- Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, Mexico.
| | | | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico.
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Minerva Calvillo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Mayra A Alvarez-Lemus
- División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, C.P. 86040 Tabasco, Mexico.
| | - Athenea Flores-Nájera
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaria de Salud, 14000 Ciudad de México, Mexico.
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Julio Sotelo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| |
Collapse
|
24
|
Gritsenko PG, Friedl P. Adaptive adhesion systems mediate glioma cell invasion in complex environments. J Cell Sci 2018; 131:jcs216382. [PMID: 29991514 PMCID: PMC6104823 DOI: 10.1242/jcs.216382] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022] Open
Abstract
Diffuse brain invasion by glioma cells prevents effective surgical or molecular-targeted therapy and underlies a detrimental outcome. Migrating glioma cells are guided by complex anatomical brain structures but the exact mechanisms remain poorly defined. To identify adhesion receptor systems and matrix structures supporting glioma cell invasion into brain-like environments we used 2D and 3D organotypic invasion assays in combination with antibody-, peptide- and RNA-based interference. Combined interference with β1 and αV integrins abolished the migration of U-251 and E-98 glioma cells on reconstituted basement membrane; however, invasion into primary brain slices or 3D astrocyte-based scaffolds and migration on astrocyte-deposited matrix was only partly inhibited. Any residual invasion was supported by vascular structures, as well as laminin 511, a central constituent of basement membrane of brain blood vessels. Multi-targeted interference against β1, αV and α6 integrins expressed by U-251 and E-98 cells proved insufficient to achieve complete migration arrest. These data suggest that mechanocoupling by integrins is relatively resistant to antibody- or peptide-based targeting, and cooperates with additional, as yet unidentified adhesion systems in mediating glioma cell invasion in complex brain stroma.
Collapse
Affiliation(s)
- Pavlo G Gritsenko
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, 77030 Texas, USA
- Cancer Genomics Centre (CGC.nl), 3584 Utrecht, The Netherlands
| |
Collapse
|
25
|
Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018; 62:75-88. [DOI: 10.1016/j.mam.2017.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
26
|
Alterations in Cell Motility, Proliferation, and Metabolism in Novel Models of Acquired Temozolomide Resistant Glioblastoma. Sci Rep 2018; 8:7222. [PMID: 29740146 PMCID: PMC5940876 DOI: 10.1038/s41598-018-25588-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive and incurable tumor of the brain with limited treatment options. Current first-line standard of care is the DNA alkylating agent temozolomide (TMZ), but this treatment strategy adds only ~4 months to median survival due to the rapid development of resistance. While some mechanisms of TMZ resistance have been identified, they are not fully understood. There are few effective strategies to manage therapy resistant GBM, and we lack diverse preclinical models of acquired TMZ resistance in which to test therapeutic strategies on TMZ resistant GBM. In this study, we create and characterize two new GBM cell lines resistant to TMZ in vitro, based on the 8MGBA and 42MGBA cell lines. Analysis of the TMZ resistant (TMZres) variants in conjunction with their parental, sensitive cell lines shows that acquisition of TMZ resistance is accompanied by broad phenotypic changes, including increased proliferation, migration, chromosomal aberrations, and secretion of cytosolic lipids. Importantly, each TMZ resistant model captures a different facet of the “go” (8MGBA-TMZres) or “grow” (42MGBA-TMZres) hypothesis of GBM behavior. These in vitro model systems will be important additions to the available tools for investigators seeking to define molecular mechanisms of acquired TMZ resistance.
Collapse
|
27
|
Abstract
Paxillin is a group III LIM domain protein that is best characterized as a cytoplasmic scaffold/adaptor protein that functions primarily as a mediator of focal adhesion. However, emerging studies indicate that paxillin's functions are far broader. Not only does paxillin appear to regulate cytoplasmic kinase signaling, but it also cycles between the cytoplasm and nucleus, and may serve as an important regulator of mRNA trafficking and subsequent translation. Herein, we provide some insights suggesting that paxillin, like its relative Hic-5, has nuclear binding partners and mediates critical processes within the nucleus, at least in part functioning as coregulator of nuclear receptors and nuclear kinases to mediate genomic signaling.
Collapse
Affiliation(s)
- Xiaoting Ma
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| | - Stephen R Hammes
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
28
|
Meirson T, Genna A, Lukic N, Makhnii T, Alter J, Sharma VP, Wang Y, Samson AO, Condeelis JS, Gil-Henn H. Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors. Oncotarget 2018; 9:22158-22183. [PMID: 29774130 PMCID: PMC5955141 DOI: 10.18632/oncotarget.25243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/08/2018] [Indexed: 12/14/2022] Open
Abstract
Metastatic dissemination of cancer cells from the primary tumor and their spread to distant sites in the body is the leading cause of mortality in breast cancer patients. While researchers have identified treatments that shrink or slow metastatic tumors, no treatment that permanently eradicates metastasis exists at present. Here, we show that the ABL kinase inhibitors imatinib, nilotinib, and GNF-5 impede invadopodium precursor formation and cortactin-phosphorylation dependent invadopodium maturation, leading to decreased actin polymerization in invadopodia, reduced extracellular matrix degradation, and impaired matrix proteolysis-dependent invasion. Using a mouse xenograft model we demonstrate that, while primary tumor size is not affected by ABL kinase inhibitors, the in vivo matrix metalloproteinase (MMP) activity, tumor cell invasion, and consequent spontaneous metastasis to lungs are significantly impaired in inhibitor-treated mice. Further proteogenomic analysis of breast cancer patient databases revealed co-expression of the Abl-related gene (Arg) and cortactin across all hormone- and human epidermal growth factor receptor 2 (HER2)-receptor status tumors, which correlates synergistically with distant metastasis and poor patient prognosis. Our findings establish a prognostic value for Arg and cortactin as predictors of metastatic dissemination and suggest that therapeutic inhibition of ABL kinases may be used for blocking breast cancer metastasis.
Collapse
Affiliation(s)
- Tomer Meirson
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.,Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Alessandro Genna
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Nikola Lukic
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Tetiana Makhnii
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Joel Alter
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| |
Collapse
|
29
|
Roskoski R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol Res 2018; 129:65-83. [DOI: 10.1016/j.phrs.2018.01.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
|
30
|
Contreras O, Villarreal M, Brandan E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet Muscle 2018; 8:5. [PMID: 29463296 PMCID: PMC5819301 DOI: 10.1186/s13395-018-0150-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) are effective therapies with demonstrated antineoplastic activity. Nilotinib is a second-generation FDA-approved TKI designed to overcome Imatinib resistance and intolerance in patients with chronic myelogenous leukemia (CML). Interestingly, TKIs have also been shown to be an efficient treatment for several non-malignant disorders such fibrotic diseases, including those affecting skeletal muscles. Methods We investigated the role of Nilotinib on skeletal myogenesis using the well-established C2C12 myoblast cell line. We evaluated the impact of Nilotinib during the time course of skeletal myogenesis. We compared the effect of Nilotinib with the well-known p38 MAPK inhibitor SB203580. MEK1/2 UO126 and PI3K/AKT LY294002 inhibitors were used to identify the signaling pathways involved in Nilotinib-related effects on myoblast. Adult primary myoblasts were also used to corroborate the inhibition of myoblasts fusion and myotube-nuclei positioning by Nilotinib. Results We found that Nilotinib inhibited myogenic differentiation, reducing the number of myogenin-positive myoblasts and decreasing myogenin and MyoD expression. Furthermore, Nilotinib-mediated anti-myogenic effects impair myotube formation, myosin heavy chain expression, and compromise myotube-nuclei positioning. In addition, we found that p38 MAPK is a new off-target protein of Nilotinib, which causes inhibition of p38 phosphorylation in a similar manner as the well-characterized p38 inhibitor SB203580. Nilotinib induces the activation of ERK1/2 and AKT on myoblasts but not in myotubes. We also found that Nilotinib stimulates myoblast proliferation, a process dependent on ERK1/2 and AKT activation. Conclusions Our findings suggest that Nilotinib may have important negative effects on muscle homeostasis, inhibiting myogenic differentiation but stimulating myoblasts proliferation. Additionally, we found that Nilotinib stimulates the activation of ERK1/2 and AKT. On the other hand, we suggest that p38 MAPK is a new off-target of Nilotinib. Thus, there is a necessity for future studies to investigate the long-term effects of TKIs on skeletal muscle homeostasis, along with potential detrimental effects in cell differentiation and proliferation in patients receiving TKI therapies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0150-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|
31
|
Montor WR, Salas AROSE, Melo FHMD. Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol Cancer 2018; 17:55. [PMID: 29455659 PMCID: PMC5817866 DOI: 10.1186/s12943-018-0792-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/23/2022] Open
Abstract
Searching for targets that allow pharmacological inhibition of cell proliferation in over-proliferative states, such as cancer, leads us to finely understand the complex mechanisms orchestrating the perfect control of mitosis number, frequency and pace as well as the molecular arrangements that induce cells to enter functional quiescence and brings them back to cycling in specific conditions. Although the mechanisms regulating cell proliferation have been described several years ago, never before has so much light been shed over this machinery as during the last decade when therapy targets have been explored and molecules, either synthetic or in the form of antibodies with the potential of becoming cancer drugs were produced and adjusted for specific binding and function. Proteins containing tyrosine kinase domains, either membrane receptors or cytoplasmic molecules, plus the ones activated by those in downstream pathways, having tyrosine kinase domains or not, such as RAS which is a GTPase and serine/threonine kinases such as RAF, play crucial role in conducting proliferation information from cell surroundings to the nucleus where gene expression takes place. Tyrosine kinases phosphorylate tyrosine residues in an activating mode and are found in important growth factor receptors, such as for ligands from families collectively known as VEGF, PDGF and EGF, to name a few and in intracellular downstream molecules. They all play important roles in normal physiology and are commonly found mutated or overexpressed in neoplastic states. Our objective here is to present such kinases as druggable targets for cancer therapy, highlighting the ones for which the pharmacological arsenal is available, discussing specificity, resistance mechanisms and treatment alternatives in cases of resistance, plus listing potential targets that have not been successfully worked yet.
Collapse
Affiliation(s)
- Wagner Ricardo Montor
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
32
|
Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma. Histochem Cell Biol 2017; 148:395-406. [PMID: 28825130 PMCID: PMC5602046 DOI: 10.1007/s00418-017-1604-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 01/22/2023]
Abstract
Diffuse invasion of glioma cells into the brain parenchyma leads to nonresectable brain tumors and poor prognosis of glioma disease. In vivo, glioma cells can adopt a range of invasion strategies and routes, by moving as single cells, collective strands and multicellular networks along perivascular, perineuronal and interstitial guidance cues. Current in vitro assays to probe glioma cell invasion, however, are limited in recapitulating the modes and adaptability of glioma invasion observed in brain parenchyma, including collective behaviours. To mimic in vivo-like glioma cell invasion in vitro, we here applied three tissue-inspired 3D environments combining multicellular glioma spheroids and reconstituted microanatomic features of vascular and interstitial brain structures. Radial migration from multicellular glioma spheroids of human cell lines and patient-derived xenograft cells was monitored using (1) reconstituted basement membrane/hyaluronan interfaces representing the space along brain vessels; (2) 3D scaffolds generated by multi-layered mouse astrocytes to reflect brain interstitium; and (3) freshly isolated mouse brain slice culture ex vivo. The invasion patterns in vitro were validated using histological analysis of brain sections from glioblastoma patients and glioma xenografts infiltrating the mouse brain. Each 3D assay recapitulated distinct aspects of major glioma invasion patterns identified in mouse xenografts and patient brain samples, including individually migrating cells, collective strands extending along blood vessels, and multicellular networks of interconnected glioma cells infiltrating the neuropil. In conjunction, these organotypic assays enable a range of invasion modes used by glioma cells and will be applicable for mechanistic analysis and targeting of glioma cell dissemination.
Collapse
|
33
|
Jaraíz-Rodríguez M, Tabernero MD, González-Tablas M, Otero A, Orfao A, Medina JM, Tabernero A. A Short Region of Connexin43 Reduces Human Glioma Stem Cell Migration, Invasion, and Survival through Src, PTEN, and FAK. Stem Cell Reports 2017; 9:451-463. [PMID: 28712848 PMCID: PMC5549880 DOI: 10.1016/j.stemcr.2017.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
Connexin43 (CX43), a protein that forms gap junction channels and hemichannels in astrocytes, is downregulated in high-grade gliomas. Its relevance for glioma therapy has been thoroughly explored; however, its positive effects on proliferation are counterbalanced by its effects on migration and invasion. Here, we show that a cell-penetrating peptide based on CX43 (TAT-Cx43266-283) inhibited c-Src and focal adhesion kinase (FAK) and upregulated phosphatase and tensin homolog in glioma stem cells (GSCs) derived from patients. Consequently, TAT-Cx43266-283 reduced GSC motility, as analyzed by time-lapse microscopy, and strongly reduced their invasive ability. Interestingly, we investigated the effects of TAT-Cx43266-283 on freshly removed surgical specimens as undissociated glioblastoma blocks, which revealed a dramatic reduction in the growth, migration, and survival of these cells. In conclusion, a region of CX43 (amino acids 266–283) exerts an important anti-tumor effect in patient-derived glioblastoma models that includes impairment of GSC migration and invasion. TAT-Cx43266-283 exerts anti-tumor effects in patient-derived glioblastoma models TAT-Cx43266-283 targets Src, PTEN, and FAK TAT-Cx43266-283 inhibits glioma stem cell migration and invasion
Collapse
Affiliation(s)
- Myriam Jaraíz-Rodríguez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Ma Dolores Tabernero
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - María González-Tablas
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alvaro Otero
- Neurosurgery Service, Hospital Universitario de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Alberto Orfao
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jose M Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain.
| |
Collapse
|
34
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|