1
|
Qi Z, Liu F, Li D, Yin J, Wang D, Ahmed N, Ma Y, Zhou JJ, Chen Z. Phenazine-1-Carboxamide Regulates Pyruvate Dehydrogenase of Phytopathogenic Fungi to Control Tea Leaf Spot Caused by Didymella segeticola. PHYTOPATHOLOGY 2025; 115:139-150. [PMID: 39437361 DOI: 10.1094/phyto-07-24-0209-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Due to a lack of understanding of the disease epidemiology and comprehensive control measures, tea leaf spot caused by Didymella segeticola has a significant negative impact on tea yield and quality in the tea plantations of Southwest China. Phenazine-1-carboxamide (PCN) is a phenazine compound derived from Pseudomonas species that exhibits antimicrobial activity against various pathogens. However, its inhibitory mechanism is not yet clear. The current study evaluated the inhibitory activity of PCN against various phytopathogenic fungi and found that PCN has inhibitory activity against multiple pathogens, with a half-maximal effective concentration value for D. segeticola of 16.11 μg/ml in vitro and a maximum in-vivo curative activity of 72.28% toward tea leaf spot. Morphological changes in the hyphae after exposure to PCN were observed through microstructure and ultrastructure analysis and indicated that PCN causes abnormalities in the hyphae, such as cytoplasmic coagulation, shortened hyphal inter-septum distances, and unclear boundaries of organelles. Transcriptomic analysis revealed that PCN upregulated the expression of genes related to energy metabolism. PCN significantly reduced the ATP concentration in the hyphae and decreased mitochondrial membrane potential. Molecular docking analysis indicated that PCN binds to one of the candidate target proteins, pyruvate dehydrogenase, with lower free energy of -10.7 kcal/mol. This study indicated that PCN can interfere with energy metabolism, reducing ATP generation and ultimately affecting hyphal growth. Overall, PCN shows potential for future application in the control of tea leaf spot due to its excellent antifungal activity and unique mode of action.
Collapse
Affiliation(s)
- Zeqi Qi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Fenghua Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Dongxue Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jiayu Yin
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nazeer Ahmed
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jing-Jiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, U.K
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Giacalone D, Schutt E, McRose DL. The phospho-ferrozine assay: a tool to study bacterial redox-active metabolites produced at the plant root. Appl Environ Microbiol 2025; 91:e0219424. [PMID: 39688434 PMCID: PMC11784245 DOI: 10.1128/aem.02194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Soil microbial communities are pivotal to plant health and nutrient acquisition. It is becoming increasingly clear that many interactions, both among and between microbes and plants, are governed by small bioactive molecules or "secondary metabolites" that can aid in communication, competition, and nutrient uptake. Yet, secondary metabolite biogeography - who makes what, where, and why-is in its infancy. Further, secondary metabolite biosynthesis genes are often silent or weakly expressed under standard laboratory conditions, making it incredibly difficult to study these small molecules. To begin to address these dual challenges, we focused on redox-active metabolites (RAMs), a specific class of small molecules, and took advantage of recent findings that many RAMs aid in acquiring phosphorus and that their production is frequently stimulated by stress for this macronutrient. We developed a screen for RAM-producing bacteria that leverages phosphorus limitation to stimulate metabolite biosynthesis and uses a colorimetric (ferrozine) iron-reduction assay to identify redox activity. We isolated 557 root-associated bacteria from grasses collected at sites across the United States (Santa Rita Experimental Range [AZ], Konza Prairie Biological Station [KS], and Harvard Forest [MA]) and from commercial tomato plants and screened them for RAM production. We identified 128 soil isolates of at least 19 genera across Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes that produced RAMs under phosphorus stress. Our work reveals that the production of RAMs under phosphorus stress is common across diverse soil bacteria and provides an approach to screen for these small molecules rapidly.IMPORTANCEBy secreting secondary metabolites, bacteria at the plant root can defend against diseases and help acquire essential nutrients. However, the genes that synthesize secondary metabolites are typically inactive or are weakly expressed under standard laboratory conditions. This fact makes it difficult to study these small molecules and hinders the discovery of novel small molecules that may play crucial roles in agricultural and biomedical settings. Here, we focus on redox-active metabolites (RAMs), a class of secondary metabolites that can help bacteria solubilize phosphorus and are often produced when phosphorus is limited. We developed a screen that rapidly identifies RAM-producing bacteria by utilizing a colorimetric iron-reduction assay in combination with phosphorus limitation to stimulate biosynthesis. The screen reveals that RAM-producing bacteria are far more prevalent in soil than previously appreciated and that this approach can be used to identify RAM producers.
Collapse
Affiliation(s)
- David Giacalone
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emilly Schutt
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Darcy L. McRose
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
González‐Valdez A, Escalante A, Soberón‐Chávez G. Heterologous production of rhamnolipids in Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 based on the endogenous production of N-acyl-homoserine lactones. Microb Biotechnol 2024; 17:e14377. [PMID: 38041625 PMCID: PMC10832566 DOI: 10.1111/1751-7915.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Rhamnolipids (RL) are biosurfactants naturally produced by the opportunistic pathogen Pseudomonas aeruginosa. Currently, RL are commercialized for various applications and produced by Pseudomonas putida due to the health risks associated with their large-scale production by P. aeruginosa. In this work, we show that RL containing one or two rhamnose moieties (mono-RL or di-RL, respectively) can be produced by the innocuous soil-bacterium Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 at titres up to 66 mg/L (about 86% of the production of P. aeruginosa PAO1 in the same culture conditions). The production of RL depends on the expression of P. aeruginosa PAO1 genes encoding the enzymes RhlA, RhlB and RhlC. These genes were introduced in a plasmid, together with a transcriptional regulator (rhlR) forming part of the same operon, with and without RhlC. We show that the activation of rhlAB by RhlR depends on its interaction with P. chlororaphis endogenous acyl-homoserine lactones, which are synthetized by either PhzI or CsaI autoinducer synthases (producing 3-hydroxy-hexanoyl homoserine lactone, 3OH-C6-HSL, or 3-oxo-hexanoyl homoserine lactone, 3O-C6-HSL, respectively). P. chlororaphis transcriptional regulator couple with 3OH-C6-HSL is the primary activator of gene expression for phenazine-1-carboxylic acid (PCA) and phenazine-1-carboxamide (PCN) production in this soil bacterium. We show that RhlR coupled with 3OH-C6-HSL or 3O-C6-HSL promotes RL production and increases the production of PCA in P. chlororaphis. However, PhzR/3OH-C6-HSL or CsaR/3O-C6-HSL cannot activate the expression of the rhlAB operon to produce mono-RL. These results reveal a complex regulatory interaction between RhlR and P. chlororaphis quorum-sensing signals and highlight the biotechnology potential of P. chlororaphis ATCC 9446 expressing P. aeruginosa rhlAB-R or rhlAB-R-C for the industrial production of RL.
Collapse
Affiliation(s)
- Abigail González‐Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Gloria Soberón‐Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
| |
Collapse
|
4
|
Navarro-Monserrat ED, Taylor CG. T6SS: A Key to Pseudomonas's Success in Biocontrol? Microorganisms 2023; 11:2718. [PMID: 38004732 PMCID: PMC10673566 DOI: 10.3390/microorganisms11112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteria from the genus Pseudomonas have been extensively studied for their capacity to act as biological control agents of disease and pests and for their ability to enhance and promote crop production in agricultural systems. While initial research primarily focused on the human pathogenic bacteria Pseudomonas aeruginosa, recent studies indicate the significance of type VI secretion (T6SS) in other Pseudomonas strains for biocontrol purposes. This system possibly plays a pivotal role in restricting the biological activity of target microorganisms and may also contribute to the bolstering of the survival capabilities of the bacteria within their applied environment. The type VI secretion system is a phage-like structure used to translocate effectors into both prokaryotic and eukaryotic target cells. T6SSs are involved in a myriad of interactions, some of which have direct implications in the success of Pseudomonas as biocontrol agents. The prevalence of T6SSs in the genomes of Pseudomonas species is notably greater than the estimated 25% occurrence rate found in Gram-negative bacteria. This observation implies that T6SS likely plays a pivotal role in the survival and fitness of Pseudomonas. This review provides a brief overview of T6SS, its role in Pseudomonas with biocontrol applications, and future avenues of research within this subject matter.
Collapse
Affiliation(s)
| | - Christopher G. Taylor
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA;
| |
Collapse
|
5
|
Guo S, Zhao Q, Hu H, Wang W, Bilal M, Fei Q, Zhang X. Metabolic Degradation and Bioactive Derivative Synthesis of Phenazine-1-Carboxylic Acid by Genetically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37247609 DOI: 10.1021/acs.jafc.3c01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) secreted by Pseudomonas chlororaphis has been commercialized and widely employed as an antifungal pesticide. However, it displays potential hazards to nontarget microorganisms and the environment. Although the PCA degradation characteristics have received extensive attention, the biodegradation efficiency is still insufficient to address the environmental risks. In this study, an engineered Pseudomonas capable of degrading PCA was constructed by introducing heterologous PCA 1,2-dioxygenase (PcaA1A2A3A4). By integrating the PCA degradation module in the chemical mutagenesis mutant P3, 7.94 g/L PCA can be degraded in 60 h, which exhibited the highest PCA degradation efficiency to date and was 35.4-fold higher than that of the PCA natural degraders. Additionally, PCA was converted to 1-methoxyphenazine through structure modification by introducing the functional enzymes PhzSPa and PhzMLa, which has good antifungal activity and environmental compatibility. This work demonstrates new possibilities for developing PCA-derived biopesticides and enables targeted control of the impact of PCA in diverse environments.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Serafim B, Bernardino AR, Freitas F, Torres CAV. Recent Developments in the Biological Activities, Bioproduction, and Applications of Pseudomonas spp. Phenazines. Molecules 2023; 28:molecules28031368. [PMID: 36771036 PMCID: PMC9919295 DOI: 10.3390/molecules28031368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Phenazines are a large group of heterocyclic nitrogen-containing compounds with demonstrated insecticidal, antimicrobial, antiparasitic, and anticancer activities. These natural compounds are synthesized by several microorganisms originating from diverse habitats, including marine and terrestrial sources. The most well-studied producers belong to the Pseudomonas genus, which has been extensively investigated over the years for its ability to synthesize phenazines. This review is focused on the research performed on pseudomonads' phenazines in recent years. Their biosynthetic pathways, mechanism of regulation, production processes, bioactivities, and applications are revised in this manuscript.
Collapse
Affiliation(s)
- Bruno Serafim
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Ana R. Bernardino
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Filomena Freitas
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Cristiana A. V. Torres
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
- Correspondence:
| |
Collapse
|
7
|
Guo S, Hu H, Wang W, Bilal M, Zhang X. Production of Antibacterial Questiomycin A in Metabolically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7742-7750. [PMID: 35708224 DOI: 10.1021/acs.jafc.2c03216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pseudomonas chlororaphis has been demonstrated as a valuable source of antimicrobial metabolites for plant disease biocontrol and biopesticide development. Although phenazine-1-carboxylic acid (PCA) secreted by P. chlororaphis has been commercialized as an antifungal biopesticide, it shows poor antibacterial activity. Questiomycin A, with versatile antibacterial activities, is mainly discovered in some well-known phenazine-producing strains but not in Pseudomonas. Its low titer hinders practical applications. In this work, a metabolite was first identified as Questiomycin A in P. chlororaphis-derived strain HT66ΔphzBΔNat. Subsequently, Questiomycin A has been elucidated to share the same biosynthesis process with PCA by gene deletion and in vitro assays. Through rational metabolic engineering, heterologous phenoxazinone synthase introduction, and medium optimization, the titer reached 589.78 mg/L in P. chlororaphis, the highest production reported to date. This work contributes to a better understanding of Questiomycin A biosynthesis and demonstrates a promising approach to developing a new antibacterial biopesticide in Pseudomonas.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Yue SJ, Huang P, Li S, Cai YY, Wang W, Zhang XH, Nikel PI, Hu HB. Developing a CRISPR-assisted base-editing system for genome engineering of Pseudomonas chlororaphis. Microb Biotechnol 2022; 15:2324-2336. [PMID: 35575623 PMCID: PMC9437888 DOI: 10.1111/1751-7915.14075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas chlororaphis is a non‐pathogenic, plant growth‐promoting rhizobacterium that secretes phenazine compounds with broad‐spectrum antibiotic activity. Currently available genome‐editing methods for P. chlororaphis are based on homologous recombination (HR)‐dependent allelic exchange, which requires both exogenous DNA repair proteins (e.g. λ‐Red–like systems) and endogenous functions (e.g. RecA) for HR and/or providing donor DNA templates. In general, these procedures are time‐consuming, laborious and inefficient. Here, we established a CRISPR‐assisted base‐editing (CBE) system based on the fusion of a rat cytidine deaminase (rAPOBEC1), enhanced‐specificity Cas9 nickase (eSpCas9ppD10A) and uracil DNA glycosylase inhibitor (UGI). This CBE system converts C:G into T:A without DNA strands breaks or any donor DNA template. By engineering a premature STOP codon in target spacers, the hmgA and phzO genes of P. chlororaphis were successfully interrupted at high efficiency. The phzO‐inactivated strain obtained by base editing exhibited identical phenotypic features as compared with a mutant obtained by HR‐based allelic exchange. The use of this CBE system was extended to other P. chlororaphis strains (subspecies LX24 and HT66) and also to P. fluorescens 10586, with an equally high editing efficiency. The wide applicability of this CBE method will accelerate bacterial physiology research and metabolic engineering of non‐traditional bacterial hosts.
Collapse
Affiliation(s)
- Sheng-Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Song Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Yuan Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Enhanced Phenazine-1-Carboxamide Production in Pseudomonas chlororaphis H5△fleQ△relA through Fermentation Optimization. FERMENTATION 2022. [DOI: 10.3390/fermentation8040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phenazine-1-carboxamide (PCN) is effective to control many plant pathogens, and improving PCN production would be of great significance in promoting its development as a biopesticide. This study was conducted to improve the PCN production of Pseudomonas chlororaphis H5△fleQ△relA through fermentation optimization in both shake flask and bioreactor. The PCN production of H5△fleQ△relA was improved from 2.75 ± 0.23 g/L to 5.51 ± 0.17 g/L by medium optimization in shake flask using Plackett-Burman design, the path of steepest ascent experiment and central composite design. Then, PCN production reached 8.58 ± 0.25 g/L through optimizing pH in 1 L bioreactor. After pH optimization, the transcriptional levels of ccoO_2 and ccoQ_2 genes related to microbial aerobic respiration were significantly upregulated, and the relative abundance of 3-oxo-C14-HSL was significantly enhanced 15-fold, and these changes were vital for cell activity and metabolites production. Furthermore, the PCN production reached 9.58 ± 0.57 g/L after optimization of the fed-batch fermentation strategy in 1 L bioreactor. Finally, the fermentation scale-up of the optimal medium and optimal feeding strategy were conducted in 30 L bioreactor at the optimal pH, and their PCN production reached 9.17 g/L and 9.62 g/L respectively, which were comparable to that in 1 L bioreactor. In this study, the high PCN production was achieved from the shake-flask fermentation to 30 L bioreactor, and the optimal feeding strategy improved PCN production in bioreactor without increasing total glycerol compared with in shake flask. It provides promising pathways for the optimization of processes for the production of other phenazines.
Collapse
|
10
|
Liu Y, Yue S, Bilal M, Jan M, Wang W, Hu H, Zhang X. Development of Artificial Synthetic Pathway of Endophenazines in Pseudomonas chlororaphis P3. BIOLOGY 2022; 11:biology11030363. [PMID: 35336738 PMCID: PMC8945225 DOI: 10.3390/biology11030363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Terpenoid phenazines generally produced in Streptomyces exhibit potential antitumor and antibacterial activities. In this study, we designed and constructed an artificial biosynthetic pathway for the synthesis of terpenoid phenazines in Pseudomonas chlororaphis P3. We successfully synthesized endophenazine A and endophenazine A1 for the first time in Pseudomonas by introducing the prenyltransferase PpzP. Moreover, we revealed the biosynthetic pathway of endophenazine A1 in P. chlororaphis P3. This study enriches the diversity of phenazines in P. chlororaphis P3 and provides a reference for the heterologous synthesis of terpenoid phenazines. Abstract Endophenazine A is a terpenoid phenazine with phenazine-1-carboxylic acid (PCA), and dimethylallyl diphosphate (DMAPP) derived from the 2-methyl-D-erythritol-4-phosphate (MEP) pathway as the precursor, which shows good antimicrobial activity against several Gram-positive bacteria and fungi. However, the highest yield of endophenazine A was about 20 mg/L in Streptomyces, limiting its large-scale industrial development. Pseudomonas chlororaphis P3, possessing an efficient PCA synthesis and MEP pathways, is a suitable chassis to synthesize endophenazine A. Herein, we designed an artificial biosynthetic pathway for the synthesis of endophenazine A in P. chlororaphis P3. Primarily, the prenyltransferase PpzP from Streptomyces anulatus 9663 was introduced into P. chlororaphis P3 and successfully synthesized endophenazine A. Another phenazine compound, endophenazine A1, was discovered and identified as a leakage of the intermediate 4-hydroxy-3-methyl-2-butene pyrophosphate (HMBPP). Finally, the yield of endophenazine A reached 279.43 mg/L, and the yield of endophenazine A1 reached 189.2 mg/L by metabolic engineering and medium optimization. In conclusion, we successfully synthesized endophenazine A and endophenazine A1 in P. chlororaphis P3 for the first time and achieved the highest titer, which provides a reference for the heterologous synthesis of terpenoid phenazines.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (S.Y.); (M.J.); (W.W.); (H.H.)
| | - Shengjie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (S.Y.); (M.J.); (W.W.); (H.H.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Malik Jan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (S.Y.); (M.J.); (W.W.); (H.H.)
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (S.Y.); (M.J.); (W.W.); (H.H.)
- Shanghai Nongle Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (S.Y.); (M.J.); (W.W.); (H.H.)
- Shanghai Nongle Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (S.Y.); (M.J.); (W.W.); (H.H.)
- Shanghai Nongle Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-3420-6742
| |
Collapse
|
11
|
Uncovering the Role of PhzC as DAHP Synthase in Shikimate Pathway of Pseudomonas chlororaphis HT66. BIOLOGY 2022; 11:biology11010086. [PMID: 35053084 PMCID: PMC8772962 DOI: 10.3390/biology11010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary This study investigated PhzC, one essential 3-Deoxy-D-arabino-heptulosnate-7-phosphate (DAHP) synthase that catalyzes the first step of the shikimate pathway in Pseudomonas chlororaphis. We identified and characterized phzC, which is different from the reported DAHP synthase encoding genes aroF, aroG and aroH in E. coli. PhzC accounts for approximately 90% of the total DAHP synthase activities in P. chlororaphis and it plays the most critical role in four DAHP synthases in the shikimate pathway. Moreover, the results showed that phzC in P. chlororaphis HT66 is not sensitive to feedback inhibition. This study demonstrated that PhzC is essential for phenazine-1-carboxamide (PCN) biosynthesis without inhibition in feedback by PCN production. It highlighted the importance of PhzC and applying P. chlororaphis for shikimate pathway-derived high-value biological production. Abstract DAHP synthase catalyzes the first step in the shikimate pathway, deriving the biosynthesis of aromatic amino acids (Trp, Phe and Tyr), phenazine-1-carboxamide, folic acid, and ubiquinone in Pseudomonas chlororaphis. In this study, we identified and characterized one DAHP synthase encoding gene phzC, which differs from the reported DAHP synthase encoding genes aroF, aroG and aroH in E. coli. PhzC accounts for approximately 90% of the total DAHP synthase activities in P. chlororaphis HT66 and plays the most critical role in four DAHP synthases in the shikimate pathway. Inactivation of phzC resulted in the reduction of PCN production by more than 90%, while the absence of genes aroF, aroG and aroH reduced PCN yield by less than 15%, and the production of PCN was restored after the complementation of gene phzC. Moreover, the results showed that phzC in P. chlororaphis HT66 is not sensitive to feedback inhibition. This study demonstrated that gene phzC is essential for PCN biosynthesis. The expression level of both phzC and phzE genes are not inhibited in feedback by PCN production due to the absence of a loop region required for allosteric control reaction. This study highlighted the importance of PhzC and applying P. chlororaphis for shikimate pathway-derived high-value biological production.
Collapse
|
12
|
Liu K, Li L, Yao W, Wang W, Huang Y, Wang R, Li P. Genetic engineering of Pseudomonas chlororaphis Lzh-T5 to enhance production of trans-2,3-dihydro-3-hydroxyanthranilic acid. Sci Rep 2021; 11:16451. [PMID: 34385485 PMCID: PMC8361184 DOI: 10.1038/s41598-021-94674-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid used for the synthesis of non-natural peptides and chiral materials. And it is an intermediate product of phenazine production in Pseudomonas spp. Lzh-T5 is a P. chlororaphis strain isolated from tomato rhizosphere found in China. It can synthesize three antifungal phenazine compounds. Disruption the phzF gene of P. chlororaphis Lzh-T5 results in DHHA accumulation. Several strategies were used to improve production of DHHA: enhancing the shikimate pathway by overexpression, knocking out negative regulatory genes, and adding metal ions to the medium. In this study, three regulatory genes (psrA, pykF, and rpeA) were disrupted in the genome of P. chlororaphis Lzh-T5, yielding 5.52 g/L of DHHA. When six key genes selected from the shikimate, pentose phosphate, and gluconeogenesis pathways were overexpressed, the yield of DHHA increased to 7.89 g/L. Lastly, a different concentration of Fe3+ was added to the medium for DHHA fermentation. This genetically engineered strain increased the DHHA production to 10.45 g/L. According to our result, P. chlororaphis Lzh-T5 could be modified as a microbial factory to produce DHHA. This study laid a good foundation for the future industrial production and application of DHHA.
Collapse
Affiliation(s)
- Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Ling Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China.
| | - Wentao Yao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yujie Huang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| |
Collapse
|
13
|
Wang Z, Huang X, Jan M, Kong D, Pan J, Zhang X. The global regulator Hfq exhibits far more extensive and intensive regulation than Crc in Pseudomonas protegens H78. MOLECULAR PLANT PATHOLOGY 2021; 22:921-938. [PMID: 33963656 PMCID: PMC8295515 DOI: 10.1111/mpp.13070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/22/2021] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
The biocontrol rhizobacterium Pseudomonas protegens H78 can produce a large array of antimicrobial secondary metabolites, including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). Our preliminary study showed that the biosynthesis of antibiotics including Plt is activated by the RNA chaperone Hfq in P. protegens H78. This prompted us to explore the global regulatory mechanism of Hfq, as well as the catabolite repression control (Crc) protein in H78. The antimicrobial capacity of H78 was positively controlled by Hfq while slightly down-regulated by knockout of crc. Similarly, cell growth of H78 was significantly impaired by deletion of hfq and slightly inhibited by knockout of crc. Transcriptomic profiling revealed that hfq mutation resulted in significant down-regulation of 688 genes and up-regulation of 683 genes. However, only 113 genes were significantly down-regulated and 105 genes up-regulated by the crc mutation in H78. Hfq positively regulated the expression of gene clusters involved in secondary metabolism (plt, prn, phl, hcn, and pvd), the type VI secretion system, and aromatic compound degradation. However, Crc only positively regulated the biosynthesis of Plt but not other antibiotics. Hfq also regulated expression of genes involved in oxidative phosphorylation and flagellar biogenesis. In addition, Hfq and Crc activated transcription of crcY/Z sRNAs by feedback. In summary, Hfq processes far more extensive and intensive regulatory capacity than Crc and shows small cross-regulation with Crc in H78. This study lays the foundation for clarifying the Hfq and/or Crc-dependent global regulatory network and improving antibiotic production by genetic engineering in P. protegens.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xianqing Huang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Malik Jan
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Deyu Kong
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jingwen Pan
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xuehong Zhang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
14
|
Wang Z, Huang X, Jan M, Kong D, Wang W, Zhang X. Lon protease downregulates phenazine-1-carboxamide biosynthesis by degrading the quorum sensing signal synthase PhzI and exhibits negative feedback regulation of Lon itself in Pseudomonas chlororaphis HT66. Mol Microbiol 2021; 116:690-706. [PMID: 34097792 DOI: 10.1111/mmi.14764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
Pseudomonas chlororaphis HT66 exhibits strong antagonistic activity against various phytopathogenic fungi due to its main antibiotic phenazine-1-carboxamide (PCN). PCN gene cluster consists of phzABCDEFG, phzH, phzI, and phzR operons. phzABCDEFG transcription is activated by the PhzI/R quorum sensing system. Deletion of the lon gene encoding an ATP-dependent protease resulted in significant enhancement of PCN production in strain HT66. However, the regulatory pathway and mechanism of Lon on PCN biosynthesis remain unknown. Here, lon mutation was shown to significantly improve antimicrobial activity of strain HT66. The N-acyl-homoserine lactone synthase PhzI mediates the negative regulation of PCN biosynthesis and phzABCDEFG transcription by Lon. Western blot showed that PhzI protein abundance and stability were significantly enhanced by lon deletion. The in vitro degradation assay suggested that Lon could directly degrade PhzI protein. However, Lon with an amino acid replacement (S674 -A) could not degrade PhzI protein. Lon-recognized region was located within the first 50 amino acids of PhzI. In addition, Lon formed a new autoregulatory feedback circuit to modulate its own degradation by other potential proteases. In summary, we elucidated the Lon-regulated pathway mediated by PhzI during PCN biosynthesis and the molecular mechanism underlying the degradation of PhzI by Lon in P. chlororaphis HT66.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Malik Jan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Deyu Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
McRose DL, Newman DK. Redox-active antibiotics enhance phosphorus bioavailability. Science 2021; 371:1033-1037. [PMID: 33674490 DOI: 10.1126/science.abd1515] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.
Collapse
Affiliation(s)
- Darcy L McRose
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Wang S, Fu C, Liu K, Cui J, Hu H, Wang W, Zhang X. Engineering a Synthetic Pathway for Gentisate in Pseudomonas Chlororaphis P3. Front Bioeng Biotechnol 2021; 8:622226. [PMID: 33553126 PMCID: PMC7862547 DOI: 10.3389/fbioe.2020.622226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas chlororaphis P3 has been well-engineered as a platform organism for biologicals production due to enhanced shikimate pathway and excellent physiological and genetic characteristics. Gentisate displays high antiradical and antioxidant activities and is an important intermediate that can be used as a precursor for drugs. Herein, a plasmid-free biosynthetic pathway of gentisate was constructed by connecting the endogenous degradation pathway from 3-hydroxybenzoate in Pseudomonas for the first time. As a result, the production of gentisate reached 365 mg/L from 3-HBA via blocking gentisate conversion and enhancing the gentisate precursors supply through the overexpression of the rate-limiting step. With a close-up at the future perspectives, a series of bioactive compounds could be achieved by constructing synthetic pathways in conventional Pseudomonas to establish a cell factory.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Li L, Li Z, Yao W, Zhang X, Wang R, Li P, Yang K, Wang T, Liu K. Metabolic Engineering of Pseudomonas chlororaphis Qlu-1 for the Enhanced Production of Phenazine-1-carboxamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14832-14840. [PMID: 33287542 DOI: 10.1021/acs.jafc.0c05746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phenazine-1-carboxylic acid (PCA), the primary active ingredient of Shenqinmycin, was awarded the China Pesticide Certificate in 2011 due to its excellent antibacterial action. Phenazine-1-carboxamide (PCN) is a derivative of PCA, which is modified by the phzH gene, and its anti-bacterial effect is better than that of PCA. At present, PCN can be produced via Pseudomonas fermentation using an opportunistic pathogen, Pseudomonas aeruginosa. Qlu-1 is an environmentally friendly strain of Pseudomonas chlororaphis that can produce phenazine derivatives. We replaced the phzO gene with the phzH gene from P. aeruginosa to achieve PCN accumulation. Different strategies were used to enhance PCN production: knocking out of negative regulatory factors, enhancing the shikimate pathway by gene overexpression and gene knocking, and using fed-batch fermentation. Finally, an engineered strain of P. chlororaphis was produced, which produced 11.45 g/L PCN. This achievement indicates that Qlu-1 could be modified as a potential microbial cell factory for PCN production by metabolic engineering.
Collapse
Affiliation(s)
- Ling Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250013, People's Republic of China
| | - Zhenghua Li
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, People's Republic of China
| | - Wentao Yao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Kai Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250013, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
18
|
Schwanemann T, Otto M, Wierckx N, Wynands B. Pseudomonasas Versatile Aromatics Cell Factory. Biotechnol J 2020; 15:e1900569. [DOI: 10.1002/biot.201900569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Tobias Schwanemann
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Maike Otto
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Nick Wierckx
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Benedikt Wynands
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| |
Collapse
|
19
|
Wang S, Cui J, Bilal M, Hu H, Wang W, Zhang X. Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Crit Rev Biotechnol 2020; 40:1232-1249. [PMID: 32907412 DOI: 10.1080/07388551.2020.1809990] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, there has been increasing interest in microbial biotechnology for the production of value-added compounds from renewable resources. Pseudomonas species have been proposed as a suitable workhorse for high-value secondary metabolite production because of their unique characteristics for fast growth on sustainable carbon sources, a clear inherited background, versatile intrinsic metabolism with diverse enzymatic capacities, and their robustness in an extreme environment. It has also been demonstrated that metabolically engineered Pseudomonas strains can produce several industrially valuable aromatic chemicals and natural products such as phenazines, polyhydroxyalkanoates, rhamnolipids, and insecticidal proteins from renewable feedstocks with remarkably high yields suitable for commercial application. In this review, we summarize cell factory construction in Pseudomonas for the biosynthesis of native and non-native bioactive compounds in P. putida, P. chlororaphis, P. aeruginosa, as well as pharmaceutical proteins production by P. fluorescens. Additionally, some novel strategies together with metabolic engineering strategies in order to improve the biosynthetic abilities of Pseudomonas as an ideal chassis are discussed. Finally, we proposed emerging opportunities, challenges, and essential strategies to enable the successful development of Pseudomonas as versatile microbial cell factories for the bioproduction of diverse bioactive compounds.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Huasong P, Qingwen H, Bilal M, Wang W, Zhang X. Kinetics, mechanism, and identification of photodegradation products of phenazine-1-carboxylic acid. ENVIRONMENTAL TECHNOLOGY 2020; 41:1848-1856. [PMID: 30477396 DOI: 10.1080/09593330.2018.1551429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) is a broad-spectrum antibiotic against many plant pathogens, produced by Pseudomonas and other species. The biosynthesis and regulation of PCA has been well documented, but there is no report about its photochemical properties. Herein, the photodegradation of PCA was carried out in an aqueous solution under the irradiation of visible light to investigate the kinetics, mechanism, and identification of photodegradation products of PCA. Results revealed that photodegradation of PCA accorded well with first-order reaction kinetics. The measured half-life of PCA was 2.2 days at pH 5.0 and increased to 37.6 days at pH 6.8 when exposed to visible light. When oxygen was removed from its solution, the half-life of PCA was doubled. Different units of superoxide dismutase (SOD) enzyme (i.e. 0, 300, and 3000 units) and varying concentrations of sodium azide (i.e. 0 mg, 5 mg, 10 mg, and 20 mg) were used to decipher the mechanism for PCA photodegradation. Hydroxyl PCA and hydroxy phenazine were tentatively identified as the degradation products of PCA photodegradation process by high-performance liquid chromatography (HPLC). The obtained degradation products were further characterized and confirmed by HPLC-mass spectrometry and LC-MS/MS-based analytical approaches. In conclusion, the degradation of PCA was found to be light dependent, which could be accelerated by hydrogen ion and oxidant in the solution. The results suggest that PCA was more stable when stored in a neutral or alkaline environment or in the dark. Therefore, it is important to modify the PCA structure or use a suitable dosage for its broad-spectrum applications.
Collapse
Affiliation(s)
- Peng Huasong
- State Key Laboratory of Microbial Metabolism, Ministry of Education, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huan Qingwen
- State Key Laboratory of Microbial Metabolism, Ministry of Education, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, Ministry of Education, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Ministry of Education, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66. Microb Cell Fact 2020; 19:105. [PMID: 32430011 PMCID: PMC7236291 DOI: 10.1186/s12934-020-01364-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background 2-Acetamidophenol (AAP) is an aromatic compound with the potential for antifungal, anti-inflammatory, antitumor, anti-platelet, and anti-arthritic activities. Due to the biosynthesis of AAP is not yet fully understood, AAP is mainly produced by chemical synthesis. Currently, metabolic engineering of natural microbial pathway to produce valuable aromatic compound has remarkable advantages and exhibits attractive potential. Thus, it is of paramount importance to develop a dominant strain to produce AAP by elucidating the AAP biosynthesis pathway. Result In this study, the active aromatic compound AAP was first purified and identified in gene phzB disruption strain HT66ΔphzB, which was derived from Pseudomonas chlororaphis HT66. The titer of AAP in the strain HT66ΔphzB was 236.89 mg/L. Then, the genes involved in AAP biosynthesis were determined. Through the deletion of genes phzF, Nat and trpE, AAP was confirmed to have the same biosynthesis route as phenazine-1-carboxylic (PCA). Moreover, a new arylamine N-acetyltransferases (NATs) was identified and proved to be the key enzyme required for generating AAP by in vitro assay. P. chlororaphis P3, a chemical mutagenesis mutant strain of HT66, has been demonstrated to have a robust ability to produce antimicrobial phenazines. Therefore, genetic engineering, precursor addition, and culture optimization strategies were used to enhance AAP production in P. chlororaphis P3. The inactivation of phzB in P3 increased AAP production by 92.4%. Disrupting the phenazine negative regulatory genes lon and rsmE and blocking the competitive pathway gene pykA in P3 increased AAP production 2.08-fold, which also confirmed that AAP has the same biosynthesis route as PCA. Furthermore, adding 2-amidophenol to the KB medium increased AAP production by 64.6%, which suggested that 2-amidophenol is the precursor of AAP. Finally, by adding 5 mM 2-amidophenol and 2 mM Fe3+ to the KB medium, the production of AAP reached 1209.58 mg/L in the engineered strain P3ΔphzBΔlonΔpykAΔrsmE using a shaking-flask culture. This is the highest microbial-based AAP production achieved to date. Conclusion In conclusion, this study clarified the biosynthesis process of AAP in Pseudomonas and provided a promising host for industrial-scale biosynthesis of AAP from renewable resources. ![]()
Collapse
|
22
|
Guo S, Liu R, Wang W, Hu H, Li Z, Zhang X. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine N-Oxide in Pseudomonas chlororaphis HT66. ACS Synth Biol 2020; 9:883-892. [PMID: 32197042 DOI: 10.1021/acssynbio.9b00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aromatic N-oxides are valuable due to their versatile chemical, pharmaceutical, and agricultural applications. Natural phenazine N-oxides possess potent biological activities and can be applied in many ways; however, few N-oxides have been identified. Herein, we developed a microbial system to synthesize phenazine N-oxides via an artificial pathway. First, the N-monooxygenase NaphzNO1 was predicted and screened in Nocardiopsis sp. 13-12-13 through a product comparison and gene sequencing. Subsequently, according to similarities in the chemical structures of substrates, an artificial pathway for the synthesis of a phenazine N-oxide in Pseudomonas chlororaphis HT66 was designed and established using three heterologous enzymes, a monooxygenase (PhzS) from P. aeruginosa PAO1, a monooxygenase (PhzO) from P. chlororaphis GP72, and the N-monooxygenase NaphzNO1. A novel phenazine derivative, 1-hydroxyphenazine N'10-oxide, was obtained in an engineered strain, P. chlororaphis HT66-SN. The phenazine N-monooxygenase NaphzNO1 was identified by metabolically engineering the phenazine-producing platform P. chlororaphis HT66. Moreover, the function of NaphzNO1, which can catalyze the conversion of 1-hydroxyphenazine but not that of 2-hydroxyphenazine, was confirmed in vitro. Additionally, 1-hydroxyphenazine N'10-oxide demonstrated substantial cytotoxic activity against two human cancer cell lines, MCF-7 and HT-29. Furthermore, the highest microbial production of 1-hydroxyphenazine N'10-oxide to date was achieved at 143.4 mg/L in the metabolically engineered strain P3-SN. These findings demonstrate that P. chlororaphis HT66 has the potential to be engineered as a platform for phenazine-modifying gene identification and derivative production. The present study also provides a promising alternative for the sustainable synthesis of aromatic N-oxides with unique chemical structures by N-monooxygenase.
Collapse
Affiliation(s)
- Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongfeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Anderson AJ, Kim YC. Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates. J Med Microbiol 2020; 69:361-371. [DOI: 10.1099/jmm.0.001157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas chlororaphisisolates have been studied intensively for their beneficial traits.P. chlororaphisspecies function as probiotics in plants and fish, offering plants protection against microbes, nematodes and insects. In this review, we discuss the classification ofP. chlororaphisisolates within four subspecies; the shared traits include the production of coloured antimicrobial phenazines, high sequence identity between housekeeping genes and similar cellular fatty acid composition. The direct antimicrobial, insecticidal and nematocidal effects ofP. chlororaphisisolates are correlated with known metabolites. Other metabolites prime the plants for stress tolerance and participate in microbial cell signalling events and biofilm formation among other things. Formulations ofP. chlororaphisisolates and their metabolites are currently being commercialized for agricultural use.
Collapse
Affiliation(s)
- Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan UT84322, USA
| | - Young Cheol Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
24
|
Guo S, Wang Y, Bilal M, Hu H, Wang W, Zhang X. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in Pseudomonas chlororaphis GP72AN. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2373-2380. [PMID: 32013409 DOI: 10.1021/acs.jafc.9b07657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pseudomonas chlororaphis have been demonstrated to be environmentally friendly biocontrol strains, and most of them can produce phenazine compounds. Phenazine-1,6-dicarboxylic acid (PDC), with a potential antibacterial activity, is generally found in Streptomyces but not in Pseudomonas. The present study aimed to explore the feasibility of PDC synthesis and the function of PhzG in Pseudomonas. A PDC producer was constructed by replacing phzG in P. chlororaphis with lphzG from Streptomyces lomondensis. Through gene deletion, common start codon changing, gene silence, and in vitro assay, our result revealed that the yield of PDC in P. chlororaphis is associated with the relative expression of phzG to phzA and phzB. In addition, it is found that PDC can be spontaneously synthesized without PhzG. This study provides an efficient way for PDC production and promotes a better understanding of PhzG function in PDC biosynthesis. Moreover, this study gives an alternative opportunity for developing new antibacterial biopesticides.
Collapse
Affiliation(s)
- Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yining Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
- National Experimental Teaching Center for Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
25
|
Sun S, Fan Z, Zhao Y, Guo L, Dai Y. A Novel Nutrient Deprivation-Induced Neonicotinoid Insecticide Acetamiprid Degradation by Ensifer adhaerens CGMCC 6315. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:63-71. [PMID: 30576131 DOI: 10.1021/acs.jafc.8b06154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradation of pesticide pollution is often restricted by environmental pressures, such as nutrient deprivation. Ensifer adhaerens CGMCC 6315 could overcome this issue and degrade neonicotinoid acetamiprid (ACE) efficiently under low nutrient stimuli. The ACE degradation rate improved by 33.1-fold when the lysogeny broth content for cell culture was decreased to 1/15-fold. Resting cells of CGMCC 6315 degraded 94.4% of 200 mg/L ACE in 12 h and quickly eliminated 87.8% of 5 mg/kg of residual soil ACE within 2 d. ACE degradation by CGMCC 6315 was via a nitrile hydratase (NHase) pathway. Genome sequencing showed that CGMCC 6315 had two NHase genes ( cnhA and pnhA). PnhA had the highest reported activity of 28.8 U/mg for ACE. QPCR and proteomic analysis showed that the improved ACE degradation ability was attributed to the up-regulated expression of PnhA. This biodegradation system of CGMCC 6315 has great potential for use in pesticide pollution remediation.
Collapse
Affiliation(s)
- Shilei Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Zhixia Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yunxiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Leilei Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
26
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019:1-35. [DOI: 10.1007/978-981-13-6986-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Wang S, Fu C, Bilal M, Hu H, Wang W, Zhang X. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3. Microb Cell Fact 2018; 17:174. [PMID: 30414616 PMCID: PMC6230248 DOI: 10.1186/s12934-018-1022-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Arbutin is a plant-derived glycoside with potential antioxidant, antibacterial and anti-inflammatory activities. Currently, it is mainly produced by plant extraction or enzymatic processes, which suffers from expensive processing cost and low product yield. Metabolic engineering of microbes is an increasingly powerful method for the high-level production of valuable biologicals. Since Pseudomonas chlororaphis has been widely engineered as a phenazine-producing platform organism due to its well-characterized genetics and physiology, and faster growth rate using glycerol as a renewable carbon source, it can also be engineered as the cell factory using strong shikimate pathway on the basis of synthetic biology. RESULTS In this work, a plasmid-free biosynthetic pathway was constructed in P. chlororaphis P3 for elevated biosynthesis of arbutin from sustainable carbon sources. The arbutin biosynthetic pathway was expressed under the native promoter Pphz using chromosomal integration. Instead of being plasmid and inducer dependent, the metabolic engineering approach used to fine-tune the biosynthetic pathway significantly enhanced the arbutin production with a 22.4-fold increase. On the basis of medium factor optimization and mixed fed-batch fermentation of glucose and 4-hydroxybenzoic acid, the engineered P. chlororaphis P3-Ar5 strain led to the highest arbutin production of 6.79 g/L with the productivity of 0.094 g/L/h, with a 54-fold improvement over the initial strain. CONCLUSIONS The results suggested that the construction of plasmid-free synthetic pathway displays a high potential for improved biosynthesis of arbutin and other shikimate pathway derived biologicals in P. chlororaphis.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cong Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,National Experimental, Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
28
|
Ma X, Wang Y. Anammox bacteria exhibit capacity to withstand long-term starvation stress: A proteomic-based investigation of survival mechanisms. CHEMOSPHERE 2018; 211:952-961. [PMID: 30119026 DOI: 10.1016/j.chemosphere.2018.07.185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Although anammox bacteria are commonly exposed to long-term starvation during transportation and preservation process, physiological changes in these organisms during long-term starvation are not well understood, nor are the molecular bases of their starvation survival strategies. To reveal survival mechanisms during long-term anaerobic and anoxic starvation (60 days at 20 ± 1 °C), metaproteomic technology was utilized to identify differentially expressed proteins in Candidatus Kuenenia stuttgartiensis. Our results showed that Candidatus Kuenenia stuttgartiensis exhibits a capacity to withstand long-term starvation stress. Although activity decay rates of 0.0129 d-1 and 0.0049 d-1 were observed for anammox sludge in anoxic and anaerobic starvation, the relative abundance of Candidatus Kuenenia stuttgartiensis, the shape of anammox granules, and the fraction of viable cells remained constant under both anaerobic and anoxic starvation conditions. Metaproteomics results illustrated that Candidatus Kuenenia stuttgartiensis maintained stable levels of most intracellular proteins, especially enzymes involved in principal metabolic pathways after 60-d of anaerobic or anoxic starvation, thereby allowing cells to regain metabolic activities once substrates became available. Induction of starvation proteins could be a survival strategy employed by Candidatus Kuenenia stuttgartiensis to resist long-term starvation stresses. During anaerobic starvation, 34 proteins were upregulated, five of which were associated with carbohydrate catabolism and oxidation of organic compounds, thereby increasing potential for utilization of endogenous carbon sources to produce energy. During anoxic starvation, only two proteins were upregulated, which may be attributed to insufficient energy for the synthesis of starvation-induced proteins.
Collapse
Affiliation(s)
- Xiao Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Insititue of Pollution Contrl and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Insititue of Pollution Contrl and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
29
|
Bilal M, Wang S, Iqbal HMN, Zhao Y, Hu H, Wang W, Zhang X. Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments. Appl Microbiol Biotechnol 2018; 102:7759-7773. [PMID: 30014168 DOI: 10.1007/s00253-018-9222-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/08/2023]
Abstract
Shikimic acid is an important intermediate for the manufacture of the antiviral drug oseltamivir (Tamiflu®) and many other pharmaceutical compounds. Much of its existing supply is obtained from the seeds of Chinese star anise (Illicium verum). Nevertheless, plants cannot supply a stable source of affordable shikimate along with laborious and cost-expensive extraction and purification process. Microbial biosynthesis of shikimate through metabolic engineering and synthetic biology approaches represents a sustainable, cost-efficient, and environmentally friendly route than plant-based methods. Metabolic engineering allows elevated shikimate production titer by inactivating the competing pathways, increasing intracellular level of key precursors, and overexpressing rate-limiting enzymes. The development of synthetic and systems biology-based novel technologies have revealed a new roadmap for the construction of high shikimate-producing strains. This review elaborates the enhanced biosynthesis of shikimate by utilizing an array of traditional metabolic engineering along with novel advanced technologies. The first part of the review is focused on the mechanistic pathway for shikimate production, use of recombinant and engineered strains, improving metabolic flux through the shikimate pathway, chemically inducible chromosomal evolution, and bioprocess engineering strategies. The second part discusses a variety of industrially pertinent compounds derived from shikimate with special reference to aromatic amino acids and phenazine compound, and main engineering strategies for their production in diverse bacterial strains. Towards the end, the work is wrapped up with concluding remarks and future considerations.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL, Mexico
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
30
|
Peng H, Tan J, Bilal M, Wang W, Hu H, Zhang X. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. World J Microbiol Biotechnol 2018; 34:129. [DOI: 10.1007/s11274-018-2501-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
|
31
|
Development of an efficient method for separation and purification of trans -2,3-dihydro-3-hydroxyanthranilic acid from Pseudomonas chlororaphis GP72 fermentation broth. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Peng H, Zhang P, Bilal M, Wang W, Hu H, Zhang X. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Microb Cell Fact 2018; 17:117. [PMID: 30045743 PMCID: PMC6060551 DOI: 10.1186/s12934-018-0962-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Phenazine-1-carboxamide (PCN), a phenazine derivative, is strongly antagonistic to fungal phytopathogens. The high PCN biocontrol activity fascinated researcher's attention in isolating and identifying novel bacterial strains combined with engineering strategies to target PCN as a lead molecule. The chemical route for phenazines biosynthesis employs toxic chemicals and display low productivities, require harsh reaction conditions, and generate toxic by-products. Phenazine biosynthesis using some natural phenazine-producers represent remarkable advantages of non-toxicity and possibly high yield in environmentally-friendlier settings. RESULTS A biocontrol bacterium with antagonistic activity towards fungal plant pathogens, designated as strain HT66, was isolated from the rice rhizosphere. The strain HT66 was identified as Pseudomonas chlororaphis based on the colony morphology, gas chromatography of cellular fatty acids and 16S rDNA sequence analysis. The secondary metabolite produced by HT66 strain was purified and identified as PCN through mass spectrometry, and 1H, 13C nuclear magnetic resonance spectrum. The yield of PCN by wild-type strain HT66 was 424.87 mg/L at 24 h. The inactivation of psrA and rpeA increased PCN production by 1.66- and 3.06-fold, respectively, which suggests that psrA and rpeA are PCN biosynthesis repressors. qRT-PCR analysis showed that the expression of phzI, phzR, and phzE was markedly increased in the psrA and rpeA double mutant than in psrA or rpeA mutant. However, the transcription level of rpeA and rpeB in strain HT66ΔpsrA increased by 3.52- and 11.58-folds, respectively. The reduced psrA expression in HT66ΔrpeA strain evidenced a complex regulation mechanism for PCN production in HT66. CONCLUSION In conclusion, the results evidence that P. chlororaphis HT66 could be modified as a potential cell factory for industrial-scale biosynthesis of PCN and other phenazine derivatives by metabolic engineering strategies.
Collapse
Affiliation(s)
- Huasong Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Pingyuan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.,National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| |
Collapse
|
33
|
Liu Y, Wang Z, Bilal M, Hu H, Wang W, Huang X, Peng H, Zhang X. Enhanced Fluorescent Siderophore Biosynthesis and Loss of Phenazine-1-Carboxamide in Phenotypic Variant of Pseudomonas chlororaphis HT66. Front Microbiol 2018; 9:759. [PMID: 29740409 PMCID: PMC5924801 DOI: 10.3389/fmicb.2018.00759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas chlororaphis HT66 is a plant-beneficial bacterium that exhibits wider antagonistic spectrum against a variety of plant pathogenic fungi due to its main secondary metabolite, i.e., phenazine-1-carboxamide (PCN). In the present study, a spontaneous phenotypic variant designated as HT66-FLUO was isolated from the fermentation process of wild-type HT66 strain. The newly isolated phenotypic variant was morphologically distinct from the wild-type strain such as larger cell size, semi-transparent, non-production of PCN (Green or yellow crystals) and enhanced fluorescence under UV light. The whole-genome, RNA-sequencing, and phenotypic assays were performed to identify the reason of phenotypic variation in HT66-FLUO as compared to the HT66. Transcriptomic analysis revealed that 1,418 genes, representing approximately 22% of the 6393 open reading frames (ORFs) had undergone substantial reprogramming of gene expression in the HT66-FLUO. The whole-genome sequence indicated no gene alteration in HT66-FLUO as compared to HT66 according to the known reference sequence. The levels of global regulatory factor gacA and gacS expression were not significantly different between HT66 and HT66-FLUO. It was observed that overexpressing gacS rather than gacA in HT66-FLUO can recover switching of the variant to HT66. The β-galactosidase (LacZ) activity and qRT-PCR results indicate the downregulated expression of rsmX, rsmY, and rsmZ in HT66-FLUO as compared to HT66. Overexpressing three small RNAs in HT66-FLUO can revert switching of colony phenotype toward wild-type HT66 up to a certain degree, restore partial PCN production and reduces the fluorescent siderophores yield. However, the origin of the spontaneous phenotypic variant was difficult to be determined. In conclusion, this study helps to understand the gene regulatory effect in the spontaneous phenotypic variant.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huasong Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Wang S, Bilal M, Zong Y, Hu H, Wang W, Zhang X. Development of a Plasmid-Free Biosynthetic Pathway for Enhanced Muconic Acid Production in Pseudomonas chlororaphis HT66. ACS Synth Biol 2018; 7:1131-1142. [PMID: 29608278 DOI: 10.1021/acssynbio.8b00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Muconic acid is a platform chemical and an important intermediate in the degradation process of a series of aromatic compounds. Herein, a plasmid-free synthetic pathway in Pseudomonas chlororaphis HT66 is constructed for the enhanced biosynthesis of muconic acid by connecting endogenous ubiquinone biosynthesis pathway with protocatechuate degradation pathway using chromosomal integration. Instead of being plasmid and inducer dependent, the engineered strains could steadily produce the high muconic acid using glycerol as a carbon source. The engineered strain HT66-MA6 achieved a 3376 mg/L muconic acid production with a yield of 187.56 mg/g glycerol via the following strategies: (1) block muconic acid conversion and enhance muconic acid efflux pumping with phenazine biosynthesis cluster; (2) increase the muconic acid precursors supply through overexpressing the rate-limiting step, and (3) coexpress the "3-dehydroshikimate-derived" route in parallel with the "4-hydroxybenzoic acid-derived" route to create a synthetic "metabolic funnel". Finally, on the basis of the glycerol feeding strategies, the muconic acid yield reached 0.122 mol/mol glycerol. The results suggest that the construction of synthetic pathway with a plasmid-free strategy in P. chlororaphis displays a high biotechnological perspective.
Collapse
|
35
|
Peng H, Ouyang Y, Bilal M, Wang W, Hu H, Zhang X. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66. Microb Cell Fact 2018; 17:9. [PMID: 29357848 PMCID: PMC5776774 DOI: 10.1186/s12934-017-0854-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas chlororaphis HT66 isolated from the rice rhizosphere is an important plant growth-promoting rhizobacteria that produce phenazine-1-carboxamide (PCN) in high yield. Phenazine production is regulated by a quorum sensing (QS) system that involves the N-acylated homoserine lactones (AHLs)-a prevalent type of QS molecule. RESULTS Three QS signals were detected by thin layer chromatography (TLC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS), which identified to be N-(3-hydroxy hexanoyl)-L-homoserine lactone (3-OH-C6-HSL), N-(3-hydroxy octanoyl)-L-homoserine lactone (3-OH-C8-HSL) and N-(3-hydroxy decanoyl)-L-homoserine lactone (3-OH-C10-HSL). The signal types and methods of synthesis were different from that in other phenazine-producing Pseudomonas strains. By non-scar deletion and heterologous expression techniques, the biosynthesis of the AHL-signals was confirmed to be only catalyzed by PhzI, while other AHLs synthases i.e., CsaI and HdtS were not involved in strain HT66. In comparison to wild-type HT66, PCN production was 2.3-folds improved by over-expression of phzI, however, phzI or phzR mutant did not produce PCN. The cell growth of HT66∆phzI mutant was significantly decreased, and the biofilm formation in phzI or phzR inactivated strains of HT66 decreased to various extents. CONCLUSION In conclusion, the results demonstrate that PhzI-PhzR system plays a critical role in numerous biological processes including phenazine production.
Collapse
Affiliation(s)
- Huasong Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Yi Ouyang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| |
Collapse
|
36
|
Yao R, Pan K, Peng H, Feng L, Hu H, Zhang X. Engineering and systems-level analysis of Pseudomonas chlororaphis for production of phenazine-1-carboxamide using glycerol as the cost-effective carbon source. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:130. [PMID: 29755589 PMCID: PMC5934903 DOI: 10.1186/s13068-018-1123-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/19/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glycerol, an inevitable byproduct of biodiesel, has become an attractive feedstock for the production of value-added chemicals due to its availability and low price. Pseudomonas chlororaphis HT66 can use glycerol to synthesize phenazine-1-carboxamide (PCN), a phenazine derivative, which is strongly antagonistic to fungal phytopathogens. A systematic understanding of underlying mechanisms for the PCN overproduction will be important for the further improvement and industrialization. RESULTS We constructed a PCN-overproducing strain (HT66LSP) through knocking out three negative regulatory genes, lon, parS, and prsA in HT66. The strain HT66LSP produced 4.10 g/L of PCN with a yield of 0.23 (g/g) from glycerol, which was of the highest titer and the yield obtained among PCN-producing strains. We studied gene expression, metabolomics, and dynamic 13C tracer in HT66 and HT66LSP. In response to the phenotype changes, the transcript levels of phz biosynthetic genes, which are responsible for PCN biosynthesis, were all upregulated in HT66LSP. Central carbon was rerouted to the shikimate pathway, which was shown by the modulation of specific genes involved in the lower glycolysis, the TCA cycle, and the shikimate pathway, as well as changes in abundances of intracellular metabolites and flux distribution to increase the precursor availability for PCN biosynthesis. Moreover, dynamic 13C-labeling experiments revealed that the presence of metabolite channeling of 3-phosphoglyceric acid to phosphoenolpyruvate and shikimate to trans-2,3-dihydro-3-hydroxyanthranilic acid in HT66LSP could enable high-yielding synthesis of PCN. CONCLUSIONS The integrated analysis of gene expression, metabolomics, and dynamic 13C tracer enabled us to gain a more in-depth insight into complex mechanisms for the PCN overproduction. This study provides important basis for further engineering P. chlororaphis for high PCN production and efficient glycerol conversion.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Keli Pan
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Huasong Peng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
37
|
Bilal M, Guo S, Iqbal HMN, Hu H, Wang W, Zhang X. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World J Microbiol Biotechnol 2017; 33:191. [PMID: 28975557 DOI: 10.1007/s11274-017-2356-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/22/2017] [Indexed: 02/08/2023]
Abstract
Pseudomonas strains are increasingly attracting considerable attention as a valuable bacterial host both for basic and applied research. It has been considered as a promising candidate to produce a variety of bioactive secondary metabolites, particularly phenazines. Apart from the biotechnological perspective, these aromatic compounds have the notable potential to inhibit plant-pathogenic fungi and thus are useful in controlling plant diseases. Nevertheless, phenazines production is quite low by the wild-type strains that necessitated its yield improvement for large-scale agricultural applications. Metabolic engineering approaches with the advent of plentiful information provided by systems-level genomic and transcriptomic analyses enabled the development of new biological agents functioning as potential cell factories for producing the desired level of value-added bioproducts. This study presents an up-to-date overview of recombinant Pseudomonas strains as the preferred choice of host organisms for the biosynthesis of natural phenazines. The biosynthetic pathway and regulatory mechanism involved in the phenazine biosynthesis are comprehensively discussed. Finally, a summary of biological functionalities and biotechnological applications of the phenazines is also provided.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
38
|
Guo S, Wang Y, Dai B, Wang W, Hu H, Huang X, Zhang X. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66. Appl Microbiol Biotechnol 2017; 101:7165-7175. [PMID: 28871340 DOI: 10.1007/s00253-017-8474-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 11/29/2022]
Abstract
Natural phenazines are versatile secondary metabolites that are mainly produced by Pseudomonas and Streptomyces. All phenazine-type metabolites originate from two precursors: phenazine-1-carboxylic acid (PCA) in Pseudomonas or phenazine-1,6-dicarboxylic acid (PDC) in Streptomyces and other bacteria. Although the biosynthesis of PCA in Pseudomonas has been extensively studied, the origin of PDC still remains unclear. Comparing the phenazine biosynthesis operons of different species, we found that the phzA gene was restricted to Pseudomonas in which PCA is produced. By generating phzA-inactivated mutant, we found a new compound obviously accumulated; it was then isolated and identified as PDC. Protein sequence alignment showed that PhzA proteins from Pseudomonas form a separate group that is recognized by H73L and S77L mutations. Generating mutations of L73 into H73 and L77 into S77 resulted in a significant increase in PDC production. These findings suggest that phzA may act as a shunt switch of PDC biosynthesis in Pseudomonas and distinguish the pathway producing only PCA from the pathway forming PCA plus PDC. Using real-time PCR analysis, we suggested that the phzA, phzB, and phzG genes either directly or indirectly regulate the production of PDC, and phzA plays the most significant regulatory role. This is the first description of phzA in the biosynthesis of PDC, and the first-time substantial PDC was obtained in Pseudomonas. Therefore, this study not only provides valuable clues to better understand the biosynthesis of PCA and PDC in Pseudomonas but also introduces a method to produce PDC derivatives by genetically engineered strains.
Collapse
Affiliation(s)
- Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yining Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bona Dai
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
iTRAQ-based quantitative proteomic analysis reveals potential virulence factors of Erysipelothrix rhusiopathiae. J Proteomics 2017; 160:28-37. [DOI: 10.1016/j.jprot.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 12/28/2022]
|
40
|
Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole. Sci Rep 2016; 6:37730. [PMID: 27883048 PMCID: PMC5121901 DOI: 10.1038/srep37730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 01/15/2023] Open
Abstract
Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92 of 863 identified proteins in B. odoriphaga exhibited altered levels of expression, among which 14 proteins were related to the action mechanism of benzothiazole, 11 proteins were involved in stress responses, and 67 proteins were associated with the adaptation of B. odoriphaga to benzothiazole. Further bioinformatics analysis indicated that the reduction in energy metabolism, inhibition of the detoxification process and interference with DNA and RNA synthesis were potentially associated with the mode of action of benzothiazole. The myosin heavy chain, succinyl-CoA synthetase and Ca+-transporting ATPase proteins may be related to the stress response. Increased expression of proteins involved in carbohydrate metabolism, energy production and conversion pathways was responsible for the adaptive response of B. odoriphaga. The results of this study provide novel insight into the molecular mechanisms of benzothiazole at a large-scale translation level and will facilitate the elucidation of the mechanism of action of benzothiazole.
Collapse
|