1
|
McNeill MC, Li Mow Chee F, Ebrahimighaei R, Sala-Newby GB, Newby AC, Hathway T, Annaiah AS, Joseph S, Carrabba M, Bond M. Substrate stiffness promotes vascular smooth muscle cell calcification by reducing the levels of nuclear actin monomers. J Mol Cell Cardiol 2024; 187:65-79. [PMID: 38181546 DOI: 10.1016/j.yjmcc.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Vascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. METHODS Using hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo, we investigated the role of substrate stiffness in the regulation of VSMC calcification. RESULTS We demonstrate that increased substrate stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of substrate stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft substrate, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). CONCLUSION This work highlights for the first time the role of nuclear actin in mediating substrate stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes.
Collapse
Affiliation(s)
- M C McNeill
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - F Li Mow Chee
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - R Ebrahimighaei
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - G B Sala-Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A C Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - T Hathway
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A S Annaiah
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - S Joseph
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - M Carrabba
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - M Bond
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
2
|
Laowtammathron C, Lorthongpanich C, Jiamvoraphong N, Srisook P, Klaihmon P, Kheolamai P, Luanpitpong S, Issaragrisil S. Role of YAP in hematopoietic differentiation and erythroid lineage specification of human-induced pluripotent stem cells. Stem Cell Res Ther 2023; 14:279. [PMID: 37775798 PMCID: PMC10543272 DOI: 10.1186/s13287-023-03508-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND In vitro production of hematopoietic stem/progenitor cells (HSPCs) from human-induced pluripotent stem cells (hiPSCs) provides opportunities for fundamental research, disease modeling, and large-scale production of HLA-matched HSPCs for therapeutic applications. However, a comprehensive understanding of the signaling mechanisms that regulate human hematopoiesis is needed to develop a more effective procedure for deriving HSPCs from hiPSCs. METHODS In this study, we investigate the role of YAP during the hematopoietic differentiation of hiPSCs to HSPCs and erythrocytes using the isogenic YAP-overexpressing (YAP-S5A) and YAP-depleting (YAP-KD) hiPSCs to eliminate the effects of a genetic background variation. RESULTS Although YAP is dispensable for maintaining the self-renewal and pluripotency of these hiPSCs, it affects the early cell-fate determination and hematopoietic differentiation of hiPSCs. Depleting YAP enhances the derivation efficiency of HSPCs from hiPSCs by inducing the mesodermal lineage commitment, promoting hematopoietic differentiation, and preventing the differentiation toward endothelial lineage. On the contrary, the overexpression of YAP reduced HSPCs yield by inducing the endodermal lineage commitment, suppressing hematopoietic differentiation, and promoting the differentiation toward endothelial lineage. CONCLUSIONS Expression of YAP is crucial for the differentiation of hiPSC-derived HSPCs toward mature erythrocytes. We believe that by manipulating YAP activity using small molecules, the efficiency of the large-scale in vitro production system for generating hematopoietic stem/progenitor cells for future therapeutic use could be improved.
Collapse
Affiliation(s)
- Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Nittaya Jiamvoraphong
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pimonwan Srisook
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
3
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
4
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
5
|
Kondo Y, Iwamoto R, Takahashi T, Suganuma K, Kato H, Nakamura H, Yukita A. Diversity of cortical bone morphology in anuran amphibians. Dev Growth Differ 2023; 65:16-22. [PMID: 36517455 DOI: 10.1111/dgd.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/16/2022]
Abstract
The cortical bones of mammals, birds, and reptiles are composed of a complex of woven bone and lamellar bone (fibrolamellar bone) organized into a variety of different patterns; however, it remains unclear whether amphibians possess similar structures. Importantly, to understand the evolutionary process of limb bones in tetrapods, it is necessary to compare the bone structure of amphibians (aquatic to terrestrial) with that of amniotes (mostly terrestrial). Therefore, this study compared the cortical bones in the long bones of several frog species before and after metamorphosis. Using micro-computed tomography (CT), we found that the cortical bones in the fibrolamellar bone of Xenopus tropicalis (Pipoidea superfamily) and Lithobates catesbeianus (Ranoidea superfamily) froglets are dense, whereas those of Ceratophrys cranwelli (Hyloidea superfamily) are porous. To clarify whether these features are common to their superfamily or sister group, four other frog species were examined. Histochemical analyses revealed porous cortical bones in C. ornata and Lepidobatrachus laevis (belonging to the same family, Ceratophryidae, as C. cranwelli). However, the cortical bones of Dryophytes japonicus (Hylidae, a sister group of Ceratophryidae in the Hyloidea superfamily), Microhyla okinavensis (Microhylidae, independent of the Hyloidea superfamily), and Pleurodeles waltl, a newt as an outgroup of anurans, are dense with no observed cavities. Our findings demonstrate that at least three members of the Ceratophryidae family have porous cortical bones similar to those of reptiles, birds, and mammals, suggesting that the process of fibrolamellar bone formation arose evolutionarily in amphibians and is conserved in the common ancestor of amniotes.
Collapse
Affiliation(s)
- Yoshiaki Kondo
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Rina Iwamoto
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Takumi Takahashi
- Graduate School of Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Kaito Suganuma
- Department of Education (Sciences), Shizuoka University, Shizuoka, Japan
| | - Hideaki Kato
- Department of Education (Sciences), Shizuoka University, Shizuoka, Japan
| | - Hiroaki Nakamura
- Department of Oral Histology, Matsumoto Dental University, Nagano, Japan
| | - Akira Yukita
- Department of Education (Sciences), Shizuoka University, Shizuoka, Japan.,Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
6
|
Kageyama T, Akieda H, Sonoyama Y, Sato K, Yoshikawa H, Isono H, Hirota M, Kitajima H, Chun YS, Maruo S, Fukuda J. Bone Beads Enveloped with Vascular Endothelial Cells for Bone Regenerative Medicine. Acta Biomater 2022:S1742-7061(22)00520-7. [PMID: 36030051 DOI: 10.1016/j.actbio.2022.08.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
The transplantation of pre-vascularized bone grafts is a promising strategy to improve the efficacy of engraftment and bone regeneration. We propose a hydrogel microbead-based approach for preparing vascularized and high-density tissue grafts. Mesenchymal stem cell-encapsulated collagen microgels (2 µL), termed bone beads, were prepared through spontaneous constriction, which improved the density of the mesenchymal stem cells and collagen molecules by more than 15-fold from the initial day of culture. Constriction was attributed to cell-attractive forces and involved better osteogenic differentiation of mesenchymal stem cells than that of spheroids. This approach was scalable, and ∼2,000 bone beads were prepared semi-automatically using a liquid dispenser and spinner flask. The mechanical stimuli in the spinner flask further improved the osteogenic differentiation of the mesenchymal stem cells in the bone beads compared with that in static culture. Vascular endothelial cells readily attach to and cover the surface of bone beads. The in vitro assembly of the endothelial cell-enveloped bone beads resulted in microchannel formation in the interspaces between the bone beads. Significant effects of endothelialization on in vivo bone regeneration were shown in rats with cranial bone defects. The use of endothelialized bone beads may be a scalable and robust approach for treating large bone defects. STATEMENT OF SIGNIFICANCE: A unique aspect of this study is that the hMSC-encapsulated collagen microgels were prepared through spontaneous constriction, leading to the enrichment of collagen and cell density. This constriction resulted in favorable microenvironments for the osteogenic differentiation of hMSCs, which is superior to conventional spheroid culture. The microgel beads were then enveloped with vascular endothelial cells and assembled to fabricate a tissue graft with vasculature in the interspaces among the beads. The significant effects of endothelialization on in vivo bone regeneration were clearly demonstrated in rats with cranial bone defects. We believe that microgel beads covered with vascular endothelial cells provide a promising approach for engineering better tissue grafts for bone-regenerative medicine.
Collapse
Affiliation(s)
- Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, JAPAN
| | - Hikaru Akieda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN
| | - Yukie Sonoyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN
| | - Ken Sato
- Department of Chemistry, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama City, Saitama 338-8570, JAPAN
| | - Hiroshi Yoshikawa
- Department of Chemistry, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama City, Saitama 338-8570, JAPAN
| | - Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku Yokohama, Kanagawa 236-0004, JAPAN
| | - Makoto Hirota
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Ura-fune, Minami-ku Yokohama, Kanagawa 232-0024, JAPAN
| | - Hiroaki Kitajima
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Ura-fune, Minami-ku Yokohama, Kanagawa 232-0024, JAPAN
| | - Yang-Sook Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, KOREA
| | - Shoji Maruo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, JAPAN; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, JAPAN.
| |
Collapse
|
7
|
Pham DH, Dai CR, Lin B, Butcher JT. Local fluid shear stress operates a molecular switch to drive fetal semilunar valve extension. Dev Dyn 2022; 251:481-497. [PMID: 34535945 PMCID: PMC8891031 DOI: 10.1002/dvdy.419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND While much is known about the genetic regulation of early valvular morphogenesis, mechanisms governing fetal valvular growth and remodeling remain unclear. Hemodynamic forces strongly influence morphogenesis, but it is unknown whether or how they interact with valvulogenic signaling programs. Side-specific activity of valvulogenic programs motivates the hypothesis that shear stress pattern-specific endocardial signaling controls the elongation of leaflets. RESULTS We determined that extension of the semilunar valve occurs via fibrosa sided endocardial proliferation. Low OSS was necessary and sufficient to induce canonical Wnt/β-catenin activation in fetal valve endothelium, which in turn drives BMP receptor/ligand expression, and pSmad1/5 activity essential for endocardial proliferation. In contrast, ventricularis endocardial cells expressed active Notch1 but minimal pSmad1/5. Endocardial monolayers exposed to LSS attenuate Wnt signaling in a Notch1 dependent manner. CONCLUSIONS Low OSS is transduced by endocardial cells into canonical Wnt signaling programs that regulate BMP signaling and endocardial proliferation. In contrast, high LSS induces Notch signaling in endocardial cells, inhibiting Wnt signaling and thereby restricting growth on the ventricular surface. Our results identify a novel mechanically regulated molecular switch, whereby fluid shear stress drives the growth of valve endothelium, orchestrating the extension of the valve in the direction of blood flow.
Collapse
Affiliation(s)
- Duc H. Pham
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Charles R. Dai
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Belle Lin
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jonathan T. Butcher
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Corresponding author:
| |
Collapse
|
8
|
Role of Yes-associated protein (YAP) in regulation of mesenchymal stem cell tenogenic differentiation. J Mol Histol 2022; 53:273-283. [DOI: 10.1007/s10735-022-10059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
9
|
Shear Stress Alterations Activate BMP4/pSMAD5 Signaling and Induce Endothelial Mesenchymal Transition in Varicose Veins. Cells 2021; 10:cells10123563. [PMID: 34944071 PMCID: PMC8700678 DOI: 10.3390/cells10123563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic venous diseases, including varicose veins, are characterized by hemodynamic disturbances due to valve defects, venous insufficiency, and orthostatism. Veins are physiologically low shear stress systems, and how altered hemodynamics drives focal endothelial dysfunction and causes venous remodeling is unknown. Here we demonstrate the occurrence of endothelial to mesenchymal transition (EndMT) in human varicose veins. Moreover, the BMP4-pSMAD5 pathway was robustly upregulated in varicose veins. In vitro flow-based assays using human vein, endothelial cells cultured in microfluidic chambers show that even minimal disturbances in shear stress as may occur in early stages of venous insufficiency induce BMP4-pSMAD5-based phenotype switching. Furthermore, low shear stress at uniform laminar pattern does not induce EndMT in venous endothelial cells. Targeting the BMP4-pSMAD5 pathway with small molecule inhibitor LDN193189 reduced SNAI1/2 expression in venous endothelial cells exposed to disturbed flow. TGFβ inhibitor SB505124 was less efficient in inhibiting EndMT in venous endothelial cells exposed to disturbed flow. We conclude that disturbed shear stress, even in the absence of any oscillatory flow, induces EndMT in varicose veins via activation of BMP4/pSMAD5-SNAI1/2 signaling. The present findings serve as a rationale for the possible use of small molecular mechanotherapeutics in the management of varicose veins.
Collapse
|
10
|
Abaricia JO, Whitehead AJ, Kandalam S, Shah AH, Hotchkiss KM, Morandini L, Olivares-Navarrete R. E-cigarette Aerosol Mixtures Inhibit Biomaterial-Induced Osseointegrative Cell Phenotypes. MATERIALIA 2021; 20:101241. [PMID: 34778733 PMCID: PMC8589285 DOI: 10.1016/j.mtla.2021.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Smoking is a known contributor to the failure of dental implants. Despite a decline in cigarette use, the popularity of e-cigarettes has exploded. However, little is known about how e-cigarettes affect the biologic response to implants. This study examines the effect of e-cigarette aerosol mixtures (ecig-AM) on macrophage activation and osteoblastogenesis of mesenchymal stem cells (MSCs) in response to titanium (Ti) implant surfaces. METHODS Ecig-AMs were prepared by bubbling aerosol through PBS. Human-derived MSCs or murine-derived macrophages were plated on smooth, rough-hydrophobic, or rough-hydrophilic Ti surfaces in media supplemented with ecig-AM. In macrophages, expression of inflammatory markers was measured by qPCR and macrophage immunophenotype characterized by flow cytometry after 24 hours of exposure. In MSCs, expression of osteogenic markers and inflammatory cytokines was measured by qPCR and ELISA, while alkaline phosphatase activity (ALP) was determined by colorimetric assay. RESULTS Ecig-AM polarized primary macrophages into a pro-inflammatory state with higher effect on ecig-AM with flavorants and nicotine. Metabolic activity of MSCs decreased in a concentration dependent fashion and was stronger in ecig-AM containing nicotine. MSCs reduced expression of osteogenic markers in response to ecig-AM, but increased RANKL secretion, particularly at the highest ecig-AM concentrations. The effect of ecig-AM exposure was lessened when macrophages or MSCs were cultured on rough-hydrophilic substrates. SIGNIFICANCE Ecig-AM activated macrophages into a pro-inflammatory phenotype and impaired MSC-to-osteoblast differentiation in response to Ti implant surfaces. These effects were potentiated by flavorants and nicotine, suggesting that e-cigarette use may compromise the osseointegration of dental implants.
Collapse
Affiliation(s)
| | | | - Suraj Kandalam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Arth H. Shah
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lais Morandini
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
11
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
12
|
Zamuner A, Brun P, Ciccimarra R, Ravanetti F, Veschini L, Elsayed H, Sivolella S, Iucci G, Porzionato A, Silvio LD, Cacchioli A, Bernardo E, Dettin M. Biofunctionalization of bioactive ceramic scaffolds to increase the cell response for bone regeneration. Biomed Mater 2021; 16. [PMID: 34271554 DOI: 10.1088/1748-605x/ac1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Biofunctionalization was investigated for polymers and metals considering their scarce integration ability. On the contrary few studies dealt with ceramic biofunctionalization because the bioactive and bioresorbable surfaces of ceramics are able to positively interact with biological environment. In this study the cell-response improvement on biofunctionalized wollastonite and diopside-based scaffolds was demonstrated. The ceramics were first obtained by heat treatment of a silicone embedding reactive oxide fillers and then biofunctionalized with adhesive peptides mapped on vitronectin. The most promisingin vitroresults, in terms of h-osteoblast proliferation and bone-related gene expression, were reached anchoring selectively a peptide stable toward proteolytic degradation induced by serum-enriched medium. Inin vivoassays the anchoring of this protease-stable adhesive peptide was combined with self-assembling peptides, for increasing cell viability and angiogenesis. The results demonstrated external and internal cell colonization of biofunctionalized scaffolds with formation of new blood vessels (neoangiogenesis) and stimulation of ectopic mineralization.
Collapse
Affiliation(s)
- Annj Zamuner
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova 35131, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, Padova 35127, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Lorenzo Veschini
- Academic Centre of Reconstructive Sciences, King's College, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Hamada Elsayed
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova 35131, Italy.,Ceramics Department, National Research Centre, El-Bohous Street, Cairo 12622, Egypt
| | - Stefano Sivolella
- Department of Neurosciences, University of Padova, Via Nicolò Giustiniani, 5, Padova 35128, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Andrea Porzionato
- Department of Neurosciences, University of Padova, Via Nicolò Giustiniani, 5, Padova 35128, Italy
| | - Lucy Di Silvio
- Centre for Oral Clinical and Translational Sciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Antonio Cacchioli
- Department of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Enrico Bernardo
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova 35131, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova 35131, Italy
| |
Collapse
|
13
|
Abstract
Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
Collapse
Affiliation(s)
- Bo Li
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan-Wei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
14
|
Liu H, Han X, Yang H, Cao Y, Zhang C, Du J, Diao S, Fan Z. GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. Connect Tissue Res 2021; 62:325-336. [PMID: 32151168 DOI: 10.1080/03008207.2020.1736054] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Adipose-derived stem cells (ADSCs) are ideal for cell-based therapies to support bone regeneration. It is vital to understand the critical genes and molecular mechanisms involved in the functional regulation of ADSCs for enhancing bone regeneration. In the present study, we investigated the Gremlin 1 (GREM1) effect on ADSCs osteogenic differentiation and senescence.Materials and methods: The in vitro ADSCs osteogenic differentiation potential was evaluated by determining alkaline phosphatase (ALP) activity, mineralization ability, and the expression of osteogenic markers. Cell senescence is determined by SA-β-gal staining, telomerase assay, and the expression of aging markers.Results: GREM1 overexpression in ADSCs reduced ALP activity and mineralization, inhibited the expression of osteogenic related genes OCN, OPN, DSPP, DMP1, and BSP, and key transcription factors, RUNX2 and OSX. GREM1 knockdown in ADSCs enhanced ALP activity and mineralization, promoted the expression of OCN, OPN, DSPP, DMP1, BSP, RUNX2, and OSX. GREM1 overexpression in ADSCs reduced the percent SA-β-Gal positive cells, P16 and P53 expressions, and increased telomerase activity. GREM1 knockdown in ADSCs increased the percentage of SA-β-Gal positive cells, P16 and P53 expressions, and reduced telomerase activity. Furthermore, GREM1 reduced the mRNA expression levels of BMP2, BMP6, and BMP7.Conclusions: In summary, our findings suggested that GREM1 inhibited ADSCs senescence and osteogenic differentiation and antagonized BMP transcription.
Collapse
Affiliation(s)
- Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao Han
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shu Diao
- Department of Pediatric Dentistry, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. MICROMACHINES 2021; 12:mi12030287. [PMID: 33800485 PMCID: PMC8000586 DOI: 10.3390/mi12030287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.
Collapse
Affiliation(s)
- Ye Lin Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| |
Collapse
|
16
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
17
|
da Silva Madaleno C, Jatzlau J, Knaus P. BMP signalling in a mechanical context - Implications for bone biology. Bone 2020; 137:115416. [PMID: 32422297 DOI: 10.1016/j.bone.2020.115416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) are extracellular multifunctional signalling cytokines and members of the TGFβ super family. These pleiotropic growth factors crucially promote bone formation, remodeling and healing after injury. Additionally, bone homeostasis is systematically regulated by mechanical inputs from the environment, which are incorporated into the bone cells' biochemical response. These inputs range from compression and tension induced by the movement of neighboring muscle, to fluid shear stress induced by interstitial fluid flow in the canaliculi and in the vascular system. Although BMPs are widely applied in a clinic context to promote fracture healing, it is still elusive how mechanical inputs modulate this signalling pathway, hindering an efficient and side-effect free application of these ligands in bone healing. This review aims to summarize the current understanding in how mechanical cues (tension, compression, shear force and hydrostatic pressure) and substrate stiffness modulate BMP signalling. We highlight the time-dependent effects in modulating immediate early up to long-term effects of mechano-BMP crosstalk during bone formation and remodeling, considering the interplay with other already established mechanosensitive pathways, such as MRTF/SRF and Hippo signalling.
Collapse
Affiliation(s)
- Carolina da Silva Madaleno
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Jerome Jatzlau
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
18
|
Chen X, Yuan W, Li Y, Luo J, Hou N. Role of Hippo-YAP1/TAZ pathway and its crosstalk in cardiac biology. Int J Biol Sci 2020; 16:2454-2463. [PMID: 32760212 PMCID: PMC7378646 DOI: 10.7150/ijbs.47142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway undertakes a pivotal role in organ size control and the process of physiology and pathology in tissue. Its downstream effectors YAP1 and TAZ receive upstream stimuli and exert transcription activity to produce biological output. Studies have demonstrated that the Hippo pathway contributes to maintenance of cardiac homeostasis and occurrence of cardiac disease. And these cardiac biological events are affected by crosstalk among Hippo-YAP1/TAZ, Wnt/β-catenin, Bone morphogenetic protein (BMP) and G-protein-coupled receptor (GPCR) signaling, which provides new insights into the Hippo pathway in heart. This review delineates the interaction among Hippo, Wnt, BMP and GPCR pathways and discusses the effects of these pathways in cardiac biology.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
19
|
Zhang L, Sun H, Zhang J, Song F, Huang L, Cao Z, Huang C. Yes-associated protein promotes tumour necrosis factor α-treated cementoblast mineralization partly by inactivating NF-κB pathway. J Cell Mol Med 2020; 24:7939-7948. [PMID: 32510818 PMCID: PMC7348144 DOI: 10.1111/jcmm.15426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/14/2019] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
Cementum regeneration, as one of the most difficult challenges of periodontal regeneration, is influenced by inflammatory factors. Inflammation may hamper or promote periodontal tissue repair under different circumstances, as it is found to do in dentin‐pulp complex and bone tissue. Our team demonstrated that YAP promotes mineralization of OCCM, a cementoblast cell line. However, the effect of YAP on its mineralization under inflammatory microenvironment is unclear. In this study, cementogenesis in vitro was up‐regulated after transient TNF‐α treatment for 30 minutes. YAP expression also was increased by TNF‐α treatment. YAP overexpression promoted OCCM mineralization after the cells were transiently treated with TNF‐α because YAP overexpression inhibited NF‐κB pathway activity, while YAP knockdown elevated it. The inhibited mineralization potential and activated NF‐κB pathway activity by YAP knockdown also were partly rescued by the application of the NF‐κB inhibitor Bay 11‐7082. These results demonstrated that YAP plays a positive role in the mineralization of TNF‐α transiently treated cementoblast, partly by inhibiting the NF‐κB pathway activity.
Collapse
Affiliation(s)
- Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Periodontics, Yantai Stomatological Hospital, Yantai, China
| | - Fangfang Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liyuan Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Sivaraj KK, Dharmalingam B, Mohanakrishnan V, Jeong HW, Kato K, Schröder S, Adams S, Koh GY, Adams RH. YAP1 and TAZ negatively control bone angiogenesis by limiting hypoxia-inducible factor signaling in endothelial cells. eLife 2020; 9:50770. [PMID: 31958058 PMCID: PMC6970532 DOI: 10.7554/elife.50770] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Blood vessels are integrated into different organ environments with distinct properties and physiology (Augustin and Koh, 2017). A striking example of organ-specific specialization is the bone vasculature where certain molecular signals yield the opposite effect as in other tissues (Glomski et al., 2011; Kusumbe et al., 2014; Ramasamy et al., 2014). Here, we show that the transcriptional coregulators Yap1 and Taz, components of the Hippo pathway, suppress vascular growth in the hypoxic microenvironment of bone, in contrast to their pro-angiogenic role in other organs. Likewise, the kinase Lats2, which limits Yap1/Taz activity, is essential for bone angiogenesis but dispensable in organs with lower levels of hypoxia. With mouse genetics, RNA sequencing, biochemistry, and cell culture experiments, we show that Yap1/Taz constrain hypoxia-inducible factor 1α (HIF1α) target gene expression in vivo and in vitro. We propose that crosstalk between Yap1/Taz and HIF1α controls angiogenesis depending on the level of tissue hypoxia, resulting in organ-specific biological responses.
Collapse
Affiliation(s)
- Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Backialakshmi Dharmalingam
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Katsuhiro Kato
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Silke Schröder
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Gou Young Koh
- Center for Vascular Research, Institute of Basic Science (IBS), Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Lee E, Ko JY, Kim J, Park JW, Lee S, Im GI. Osteogenesis and angiogenesis are simultaneously enhanced in BMP2-/VEGF-transfected adipose stem cells through activation of the YAP/TAZ signaling pathway. Biomater Sci 2019; 7:4588-4602. [DOI: 10.1039/c9bm01037h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While bone has the capability to heal itself, there is a great difficulty in reconstituting large bone defects created by heavy trauma or the resection of malignant tumors.
Collapse
Affiliation(s)
- Eugene Lee
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
- Department of Orthopaedics
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Juyoung Kim
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Jeong-Won Park
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Songhee Lee
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
- Department of Orthopaedics
| |
Collapse
|
22
|
Li CJ, Xiao Y, Yang M, Su T, Sun X, Guo Q, Huang Y, Luo XH. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest 2018; 128:5251-5266. [PMID: 30352426 DOI: 10.1172/jci99044] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-related lineage switch between osteogenic and adipogenic fates, which contributes to bone loss and adiposity. Here we identified a long noncoding RNA, Bmncr, which regulated the fate of BMSCs during aging. Mice depleted of Bmncr (Bmncr-KO) showed decreased bone mass and increased bone marrow adiposity, whereas transgenic overexpression of Bmncr (Bmncr-Tg) alleviated bone loss and bone marrow fat accumulation. Bmncr regulated the osteogenic niche of BMSCs by maintaining extracellular matrix protein fibromodulin (FMOD) and activation of the BMP2 pathway. Bmncr affected local 3D chromatin structure and transcription of Fmod. The absence of Fmod modified the bone phenotype of Bmncr-Tg mice. Further analysis revealed that Bmncr would serve as a scaffold to facilitate the interaction of TAZ and ABL, and thus facilitate the assembly of the TAZ and RUNX2/PPARG transcriptional complex, promoting osteogenesis and inhibiting adipogenesis. Adeno-associated viral-mediated overexpression of Taz in osteoprogenitors alleviated bone loss and marrow fat accumulation in Bmncr-KO mice. Furthermore, restoring BMNCR levels in human BMSCs reversed the age-related switch between osteoblast and adipocyte differentiation. Our findings indicate that Bmncr is a key regulator of the age-related osteogenic niche alteration and cell fate switch of BMSCs.
Collapse
Affiliation(s)
- Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan, China.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xi Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan, China
| |
Collapse
|
23
|
Chang B, Ma C, Liu X. Nanofibers Regulate Single Bone Marrow Stem Cell Osteogenesis via FAK/RhoA/YAP1 Pathway. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33022-33031. [PMID: 30188689 PMCID: PMC6436105 DOI: 10.1021/acsami.8b11449] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding cell-material interactions is a prerequisite for the development of bio-inspired materials for tissue regeneration. While nanofibrous biomaterials have been widely used in tissue regeneration, the effects of nanofibrous architecture on stem cell behaviors are largely ambiguous because the previous biomaterial systems used for nanofiber-cell interactions could not exclude the interference of cell-cell interactions. In this study, we developed a unique micropatterning technology to confine one single stem cell in a microisland of the nanofibrous micropatterned matrix; therefore, eliminating any potential intercellular communications. The nanofibrous micropatterned matrix, which mimicked both the physical architecture and chemical composition of natural extracellular matrix, was fabricated by a combination of electrospinning, chemical crosslinking, and UV-initiated photolithography. Compared to the non-nanofibrous architecture, a bone marrow mesenchymal stem cell (BMSC) cultured on the nanofibrous microisland exhibited a more in vivo-like morphology, a smaller spreading area, less focal adhesion, and fewer stress fibers. The BMSC cultured on the nanofibrous microisland also had higher alkaline phosphatase activity, indicating nanofibrous architecture promoted BMSC differentiation. A mechanistic study reveals that nanofibers regulate single BMSC osteogenesis via the FAK/RhoA/YAP1 pathway. The nanofibrous micropatterned matrix developed in this study is an excellent platform to promote the fundamental understanding of cell-matrix interactions, ultimately provide valuable insights for the development of novel bio-inspired scaffolds for tissue regeneration.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
| |
Collapse
|
24
|
Brunner M, Mandier N, Gautier T, Chevalier G, Ribba AS, Guardiola P, Block MR, Bouvard D. β1 integrins mediate the BMP2 dependent transcriptional control of osteoblast differentiation and osteogenesis. PLoS One 2018; 13:e0196021. [PMID: 29677202 PMCID: PMC5909894 DOI: 10.1371/journal.pone.0196021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/05/2022] Open
Abstract
Osteoblast differentiation is a highly regulated process that requires coordinated information from both soluble factors and the extracellular matrix. Among these extracellular stimuli, chemical and physical properties of the matrix are sensed through cell surface receptors such as integrins and transmitted into the nucleus to drive specific gene expression. Here, we showed that the conditional deletion of β1 integrins in the osteo-precursor population severely impacts bone formation and homeostasis both in vivo and in vitro. Mutant mice displayed a severe bone deficit characterized by bone fragility and reduced bone mass. We showed that β1 integrins are required for proper BMP2 dependent signaling at the pre-osteoblastic stage, by positively modulating Smad1/5-dependent transcriptional activity at the nuclear level. The lack of β1 integrins results in a transcription modulation that relies on a cooperative defect with other transcription factors rather than a plain blunted BMP2 response. Our results point to a nuclear modulation of Smad1/5 transcriptional activity by β1 integrins, allowing a tight control of osteoblast differentiation.
Collapse
Affiliation(s)
- Molly Brunner
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Noémie Mandier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Thierry Gautier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Genevieve Chevalier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Anne-Sophie Ribba
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Philippe Guardiola
- Centre Hospitalier Universitaire and University of Angers, SNP Plateform, Institute for Biological Health, Transcriptome and Epigenomic, Angers, France
| | - Marc R. Block
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Daniel Bouvard
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
- * E-mail:
| |
Collapse
|
25
|
Abstract
Craniofacial bones, separate from the appendicular skeleton, bear a significant amount of strain and stress generated from mastication-related muscles. Current research on the regeneration of craniofacial bone focuses on the reestablishment of an elaborate vascular network. In this review, current challenges and efforts particularly in advances of scaffold properties and techniques for vascularization remodeling in craniofacial bone tissue engineering will be discussed. A microenvironment of ischemia and hypoxia in the biomaterial core drives propagation and reorganization of endothelial progenitor cells (EPCs) to assemble into a primitive microvascular framework. Co-culture strategies and delivery of vasculogenic molecules enhance EPCs' differentiation and stimulate the host regenerative response to promote vessel sprouting and strength. To optimize structural and vascular integration, well-designed microstructures of scaffolds are biologically considered. Proper porous structures, matrix stiffness, and surface morphology of scaffolds have a profound influence on cell behaviors and thus affect revascularization. In addition, advanced techniques facilitating angiogenesis and vaculogenesis have also been discussed. Oxygen delivery biomaterials, scaffold-free cell sheet techniques, and arteriovenous loop-induced axial vascularization strategies bring us new understanding and powerful strategies to manage revascularization of large craniofacial bone defects. Although promising histological results have been achieved, the efficient perfusion and functionalization of newly formed vessels are still challenging.
Collapse
Affiliation(s)
- T Tian
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Zhang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Cai
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Wang J, Cao Y, Qiu B, Du J, Wang T, Wang C, Deng R, Shi X, Gao K, Xie Z, Yong W. Ablation of protein phosphatase 5 (PP5) leads to enhanced both bone and cartilage development in mice. Cell Death Dis 2018; 9:214. [PMID: 29434189 PMCID: PMC5833428 DOI: 10.1038/s41419-017-0254-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the role of protein phosphatase 5 (PP5) on bone and cartilage development using both in vivo and in vitro approaches. Six- to 8-week- old male PP5 knockout mice (KO) and their wild-type (WT) littermate controls were randomly selected for this study, and their body weights and bone (femur) lengths were measured. Micro-computed tomography scanning (Micro-CT) was performed to determine femoral bone density and micro-architecture. Mesenchymal stem cells (MSCs) isolated from bone marrow were used to examine the effects of PP5 on osteogenesis in vitro. Whole-mount Alcian blue and Alizarin red staining were used to detect cartilage formation in newborn vertebrae, limbs, and feet. Hematoxylin and eosin (H&E) staining was performed to determine growth plate thickness. Real-time PCR analysis, western blotting, and immunohistochemistry were used to detect the expression of genes and proteins in bone marrow-derived MSCs as well as in bone and cartilage tissues. The results showed PP5 KO mice exhibited significantly reduced body weight and shorter femur length compared to WT controls. The KO mice also had significantly higher volumetric bone mineral density (BMD), trabecular bone volume, and cortical thickness in the femur. The deficiency of PP5 significantly enhanced the formation of cartilage in vertebrae, limbs, and feet. In addition, KO mice possessed a wider distal femur growth plates containing significantly more chondrocytes than WT mice. Furthermore, higher expressions of several cartilage-specific genes were observed in the articular cartilage of PP5 KO mice. Immunohistochemical labeling of growth plates demonstrated that phospho-PPARγ, Runx1, and Runx2 levels were considerably higher in the KO mice. In conclusion, PP5 is a significant negative regulator on the regulation of bone and cartilage development.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, 646000, China
| | - Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jianyong Du
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Tingting Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Chao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xudong Shi
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kai Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
27
|
Zhu WQ, Ming PP, Qiu J, Shao SY, Yu YJ, Chen JX, Yang J, Xu LN, Zhang SM, Tang CB. Effect of titanium ions on the Hippo/YAP signaling pathway in regulating biological behaviors of MC3T3-E1 osteoblasts. J Appl Toxicol 2018; 38:824-833. [PMID: 29377205 DOI: 10.1002/jat.3590] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Titanium (Ti) and its corresponding alloys have been widely applied in dental and orthopedic implants. Owing to abrasion and corrosion of implants in the unfavorable electrolytic aqueous environment of the host body, Ti ions could be released from implants and accumulated in local tissues. Recent studies have found that excessive Ti ions were toxic to osteoblasts in adjacent bone tissues and subsequently influenced long-term effects on implant prostheses. However, the potential molecular mechanisms underlying the damage to osteoblasts induced by Ti ions remained unclear. Hippo signaling has been confirmed to be involved in organ size and tissue regeneration in many organs, while its roles in osteoblasts differentiation and bone repair remained elusive. Therefore, we hypothesize that YAP, a regulator of Hippo pathway, inhibited osteoblast growth, skeletal development and bone repair, as well as excessive Ti ions promoted the progression of YAP activation. This study aimed to explore the role of Hippo/YAP signaling pathway in the biotoxicity effect of Ti ions on osteoblast behaviors. Here, we confirmed that 10 ppm Ti ions, a minimum concentration gradient previously reported that was capable of suppressing osteoblasts growth, induced nuclear expression of YAP in osteoblasts in our study. Furthermore, 10 ppm Ti ion-induced YAP activation was found to downregulate osteogenic differentiation of MC3T3-E1 cells. Most importantly, the hypothesis we proposed that knockdown of YAP did reverse the inhibitory effect of 10 ppm Ti ions on osteogenesis has been verified. Taken together, our work provides insights into the mechanism of which YAP is involved in regulating osteoblast behaviors under the effect of Ti ions, which may help to develop therapeutic applications for Ti implant failures and peri-implantitis.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Pan-Pan Ming
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Juan Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jia-Xi Chen
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Yang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li-Na Xu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Song-Mei Zhang
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Chun-Bo Tang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Moon KH, Kim HT, Lee D, Rao MB, Levine EM, Lim DS, Kim JW. Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Dev Cell 2017; 44:13-28.e3. [PMID: 29249622 DOI: 10.1016/j.devcel.2017.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Mahesh B Rao
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Dae-Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
29
|
Yang B, Sun H, Song F, Wu Y, Wang J. Yes-associated protein 1 promotes the differentiation and mineralization of cementoblast. J Cell Physiol 2017; 233:2213-2224. [DOI: 10.1002/jcp.26089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Fangfang Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| |
Collapse
|
30
|
Nakajima H, Mochizuki N. Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 2017; 16:1893-1901. [PMID: 28820314 DOI: 10.1080/15384101.2017.1364324] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Blood flow provides endothelial cells (ECs) lining the inside of blood vessels with mechanical stimuli as well as humoral stimuli. Fluid shear stress, the frictional force between flowing blood and ECs, is recognized as an essential mechanical cue for vascular growth, remodeling, and homeostasis. ECs differentially respond to distinct flow patterns. High laminar shear flow leads to inhibition of cell cycle progression and stabilizes vessels, whereas low shear flow or disturbed flow leads to increased turnover of ECs and inflammatory responses of ECs prone to atherogenic. These differences of EC responses dependent on flow pattern are mainly ascribed to distinct patterns of gene expression. In this review, we highlight flow pattern-dependent transcriptional regulation in ECs by focusing on KLF2 and NFκB, major transcription factors responding to laminar flow and disturbed flow, respectively. Moreover, we introduce roles of a new flow-responsive transcriptional co-regulator, YAP, in blood vessel maintenance and discuss how these transcriptional regulators are spatiotemporally regulated by flow and then regulate EC functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan
| | - Naoki Mochizuki
- a Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan.,b AMED-CREST. National Cerebral and Cardiovascular Center , Suita , Osaka , Japan
| |
Collapse
|
31
|
Nakajima H, Yamamoto K, Agarwala S, Terai K, Fukui H, Fukuhara S, Ando K, Miyazaki T, Yokota Y, Schmelzer E, Belting HG, Affolter M, Lecaudey V, Mochizuki N. Flow-Dependent Endothelial YAP Regulation Contributes to Vessel Maintenance. Dev Cell 2017; 40:523-536.e6. [PMID: 28350986 DOI: 10.1016/j.devcel.2017.02.019] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/16/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022]
Abstract
Endothelial cells (ECs) line the inside of blood vessels and respond to mechanical cues generated by blood flow. Mechanical stimuli regulate the localization of YAP by reorganizing the actin cytoskeleton. Here we demonstrate blood-flow-mediated regulation of endothelial YAP in vivo. We indirectly monitored transcriptional activity of Yap1 (zebrafish YAP) and its spatiotemporal localization in living zebrafish and found that Yap1 entered the nucleus and promoted transcription in response to blood flow. In cultured human ECs, laminar shear stress induced nuclear import of YAP and its transcriptional activity in a manner independent of Hippo signaling. We uncovered a molecular mechanism by which flow induced the nuclear translocation of YAP through the regulation of filamentous actin and angiomotin. Yap1 mutant zebrafish showed a defect in vascular stability, indicating an essential role for Yap1 in blood vessels. Our data imply that endothelial Yap1 functions in response to flow to maintain blood vessels.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Sobhika Agarwala
- Developmental Biology, SFB850, Institute for Biology I, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8315, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Nippon Medical School, Kawasaki, Kanagawa 211-8533, Japan
| | - Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Yasuhiro Yokota
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Etienne Schmelzer
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Virginie Lecaudey
- Department of Developmental Biology of Vertebrates, Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, 60438 Frankfurt, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan; AMED-CREST, National Cerebral and Cardiovascular Center, 5-7-1, Suita, Osaka 565-8565, Japan.
| |
Collapse
|