1
|
Agyekum DVA, Dastogeer KMG, Okazaki S. Deciphering the rhizosphere microbiota composition of nature farming soybean (Glycine max L.) with different nodulation phenotypes. BMC PLANT BIOLOGY 2025; 25:520. [PMID: 40275151 PMCID: PMC12020032 DOI: 10.1186/s12870-025-06566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Nature farming, a sustainable agricultural method which avoids agrochemicals and untreated organic amendments, promotes both agricultural productivity and ecological conservation. This system may foster unique plant-microbiota interactions for growth and fitness; however, the microbiota of nature-farmed plants remains largely unexplored. Second, root nodule symbiosis (RNS) is crucial for nitrogen fixation in legumes; however, its broader impact on rhizosphere microbiota assembly is not well understood. This study examined the dynamics between impaired nodule symbiosis, soil management, and the rhizosphere microbiota composition and growth of soybean (Glycine max L.). RESULTS We evaluated the growth and characterized the rhizosphere bacterial and fungal communities of soybean by comparing wildtype soybeans (Enrei) with the non-nodulating mutants (En1282) across four soils under conventional and nature farming, including fumigated and unfumigated conditions. We found that the non-nodulating soybean mutants (En1282) exhibited reduced growth compared with wild-type (Enrei) plants, especially in untreated soils. Soil fumigation decreased microbial diversity and reshaped rhizosphere community composition with a significant reduction in plant growth and nodulation in all soils. Restriction in RNS increased bacterial diversity in untreated soils, possibly as a compensatory mechanism for nitrogen acquisition, whereas fungal diversity remained relatively stable. Nature farming promoted beneficial microbes like Rhizobium, Trichoderma, and Chloridium, whereas conventional soil plants favored Bacillus and Aspergillus. Notably, differential enrichment analysis identified distinct associations for each nodulation phenotype, with Enrei predominantly enriched for Pseudomonas, and En1282 associated primarily with oligotrophic microbes. CONCLUSION Our study sheds light on the complex interplay between legume symbiosis and rhizosphere microbiota assembly and highlights the significance of eco-friendly farming methods like nature farming in cultivating a healthy rhizosphere for plant growth. The results paves way for future strategies to manipulate rhizosphere microbiota, ultimately promoting robust and sustainable farming systems that reduce reliance on chemical inputs.
Collapse
Affiliation(s)
- Dominic V A Agyekum
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Khondoker M G Dastogeer
- Microbiome Research Lab, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan.
| |
Collapse
|
2
|
Basu A, Chalasani D, Sarma PVSRN, Uikey S, Chenna VR, Choudhari PL, Podile AR. Influence of genotype, nodule position, and edaphic factors on microbial diversity and assembly of pigeonpea (Cajanus cajan) root nodules in Indian soils. ENVIRONMENTAL MICROBIOME 2025; 20:41. [PMID: 40270064 PMCID: PMC12016423 DOI: 10.1186/s40793-025-00707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Pigeonpea (Cajanus cajan) is an important legume crop in semi-arid regions with multiple uses. The microbial diversity within its root nodules in Indian soils remains poorly explored. We investigated the bacterial diversity of pigeonpea root nodules across different genotypes and soil types to identify the factors driving their assembly. Using a metagenomic approach and high-throughput sequencing of the 16S rRNA gene, we analyzed the nodule microbiomes of three pigeonpea genotypes (Asha, Durga, and Mannem Konda Kandi) grown in three different soil types (Alfisol, Vertisol, and Inceptisol) and wild pigeonpea (C. scarabaeoides) in its native soil. RESULTS Our results indicated that pigeonpea nodules harbor diverse rhizobial and non-rhizobial endophytes and that host genotype, nodule position, soil type, and other edaphic factors influence significant variation in the microbial community structure. The core nodule microbiome was dominated by Proteobacteria and Bacteroidetes. Bradyrhizobium and Ensifer were predominant among the rhizobial taxa, and non-rhizobial genera such as Pseudomonas, Chitinophaga, and Limnobacter were also abundant. Edaphic factors, particularly soil type, pH, and nutrient availability, had a stronger influence on the nodule bacterial community composition than the host genotype. Although bulk soil exhibited higher bacterial diversity, nodule microbiomes were less diverse but more specialized, indicating host-mediated selection. A comparison of the nodule microbiomes of wild and cultivated pigeonpea revealed distinct differences, with the core nodule microbiome of wild pigeonpea dominated by Bradyrhizobium, while that of cultivated pigeonpea exhibited a diverse bacterial community. CONCLUSIONS These findings demonstrate that soil properties play a more critical role than host genetics in shaping the pigeonpea nodule microbiome, emphasizing the importance of environmental conditions in symbiotic interactions. The differences between wild and cultivated genotypes suggest that domestication has altered microbial recruitment strategies. This study provides foundational insights into the factors driving microbial assembly in pigeonpea nodules, with implications for improving crop productivity through targeted microbial management. Future research should explore the functional roles of these microbial communities to optimize their use in sustainable agriculture.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Danteswari Chalasani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - P V S R N Sarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Sheetal Uikey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Vijaya Ranganatha Chenna
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, Telangana, India
| | - Pushpajeet Lokpal Choudhari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
3
|
Chouhan V, Thalor S, Charishma K, Javed M, Kumar S, Sharma J, Munjal V, Kumar A. Microbiome succession on the pomegranate phylloplane during bacterial blight dysbiosis: Functional implications for blight suppression. Microbiol Res 2025; 293:128050. [PMID: 39817928 DOI: 10.1016/j.micres.2025.128050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae poses significant challenges to sustainable cultivation, necessitating eco-friendly management strategies, and this study explores the role of the phylloplane microbiome in disease suppression through metabarcoding, traditional microbiology, and antibacterial screening of microbial candidates. Here, we mapped the phylloplane microbiome of pomegranate cultivar 'Bhagwa' during bacterial blight development using metabarcoding sequencing (2443,834 reads), traditional microbiological methods (nutrient-rich and minimal media), and scanning electron microscopy. We observed shifts in microbial diversity, with Xanthomonas typically released through stomata as the blight progressed from water-soaked early lesion to advanced necrotic lesion. The Shannon diversity index peaked at 2.6 in early necrotic stages but dropped to 2.1 in advanced blight. Proteobacteria and Firmicutes were the dominant phyla, with significant compositional changes between disease stages. Bacillus species were prevalent throughout, peaking in both early and severe lesions. Pantoea and Curtobacterium increased during severe blight, while Exiguobacterium thrived on the abaxial surface. A core microbiome, including Pantoea, Enterobacter, and Pseudomonas, remained consistent across stages. Antibacterial screening of 116 bacterial candidates, dominated by Pantoea (32), Bacillus (18), and Pseudomonas (11), revealed multipronged activities against X. axonopodis pv. punicae. Bacillus amyloliquefaciens P2-1 and Pantoea dispersa Pg-Slp-6 suppressed the pathogen through secreted metabolites, while Pantoea dispersa Pg-Slp-6, Pseudomonas oryzihabitans Pg-Slp-82, and Pantoea dispersa Pg-slp-117 exhibited volatile-mediated suppression. Among these, Bacillus amyloliquefaciens P2-1 and Pantoea dispersa Pg-slp-6 showed 55 % and 42 % blight suppression, respectively, highlighting their potential as biocontrol agents.
Collapse
Affiliation(s)
- Vinod Chouhan
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Thalor
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K Charishma
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mohammed Javed
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanu Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyotsana Sharma
- ICAR-National Research Center for Pomegranate, Solapur, Maharashtra, India
| | - Vibuthi Munjal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
4
|
López Romo G, Santamaría RI, Bustos P, Echavarría F, Reveles Torres LR, Van Cauwenberghe J, González V. The rhizosphere of Phaseolus vulgaris L. cultivars hosts a similar bacterial community in local agricultural soils. PLoS One 2025; 20:e0319172. [PMID: 40111988 PMCID: PMC11925306 DOI: 10.1371/journal.pone.0319172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/29/2025] [Indexed: 03/22/2025] Open
Abstract
This study aimed to investigate the impact of various common beans (Phaseolus vulgaris L.) cultivars on the bacterial communities in the rhizosphere under local agricultural conditions. Even though the differences in cultivation history and physicochemical properties of nearby agriculture plots, the bacterial community in the bulk soil was quite similar and more diverse than that of the rhizosphere. The bacterial community of the rhizosphere was closely similar between Black and Bayo common bean cultivars but differs from Pinto Saltillo common beans collected in a different season. A shared bacterial group within the rhizosphere community across cultivars and specific taxa responding uniquely to each cultivar suggests a balance between responses to soil and plant cultivars. Nevertheless, rhizosphere composition was substantially influenced by the pre-existing soil bacterial community, whose diversity remained consistently similar under the studied field conditions. These findings provide a more comprehensive characterization of the rhizosphere across a limited range of domesticated common beans and agronomic soils that can be expanded to more common bean cultivars and soils to guide appropriate field interventions.
Collapse
Affiliation(s)
- Griselda López Romo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rosa Isela Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Francisco Echavarría
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Calera, Zacatecas, Mexico
| | | | - Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Afridi MS, Kumar A, Javed MA, Dubey A, de Medeiros FHV, Santoyo G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol Res 2024; 279:127564. [PMID: 38071833 DOI: 10.1016/j.micres.2023.127564] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
6
|
Kumar A, Solanki MK, Wang Z, Solanki AC, Singh VK, Divvela PK. Revealing the seed microbiome: Navigating sequencing tools, microbial assembly, and functions to amplify plant fitness. Microbiol Res 2024; 279:127549. [PMID: 38056172 DOI: 10.1016/j.micres.2023.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
Microbial communities within seeds play a vital role in transmitting themselves to the next generation of plants. These microorganisms significantly impact seed vigor and early seedling growth, for successful crop establishment. Previous studies reported on seed-associated microbial communities and their influence on processes like dormancy release, germination, and disease protection. Modern sequencing and conventional methods reveal microbial community structures and environmental impacts, these information helps in microbial selection and manipulation. These studies form the foundation for using seed microbiomes to enhance crop resilience and productivity. While existing research has primarily focused on characterizing microbiota in dried mature seeds, a significant gap exists in understanding how these microbial communities assemble during seed development. The review also discusses applying seed-associated microorganisms to improve crops in the context of climate change. However, limited knowledge is available about the microbial assembly pattern on seeds, and their impact on plant growth. The review provides insight into microbial composition, functions, and significance for plant health, particularly regarding growth promotion and pest control.
Collapse
Affiliation(s)
- Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Anjali Chandrol Solanki
- Department of Agriculture, Mansarover Global University, Bhopal, Madhya Pradesh 462042, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, Uttar Pradesh, India
| | | |
Collapse
|
7
|
Zhang S, Han W, Liu T, Feng C, Jiang Q, Zhang B, Chen Y, Zhang Y. Tetracycline inhibits the nitrogen fixation ability of soybean (Glycine max (L.) Merr.) nodules in black soil by altering the root and rhizosphere bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168047. [PMID: 37918730 DOI: 10.1016/j.scitotenv.2023.168047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Tetracycline is a widely used antibiotic and may thus also be an environmental contaminant with an influence on plant growth. The aim of this study was to investigate the inhibition mechanisms of tetracycline in relation to soybean growth and ecological networks in the roots and rhizosphere. To this end, we conducted a pot experiment in which soybean seedlings were grown in soil treated with 0, 10, or 25 mg/kg tetracycline. The effects of tetracycline pollution on growth, productivity, oxidative stress, and nitrogenase activity were evaluated. We further identified the changes in microbial taxa composition and structure at the genus and species levels by sequencing the 16S rRNA gene region. The results showed that tetracycline activates the antioxidant defense system in soybeans, which reduces the abundance of Bradyrhizobiaceae, inhibits the nitrogen-fixing ability, and decreases the nitrogen content in the root system. Tetracycline was also found to suppress the formation of the rhizospheric environment and decrease the complexity and stability of bacterial networks. Beta diversity analysis showed that the community structure of the root was markedly changed by the addition of tetracycline, which predominantly affected stochastic processes. These findings demonstrate that the influence of tetracycline on soybean roots could be attributed to the decreased stability of the bacterial community structure, which limits the number of rhizobium nodules and inhibits the nitrogen-fixing capacity. This exploration of the inhibitory mechanisms of tetracycline in relation to soybean root development emphasises the potential risks of tetracycline pollution to plant growth in an agricultural setting. Furthermore, this study provides a theoretical foundation from which to improve our understanding of the physiological toxicity of antibiotics in farmland.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tianqi Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chengcheng Feng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qun Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yukun Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Ansari WA, Kumar M, Krishna R, Singh A, Zeyad MT, Tiwari P, Kumar SC, Chakdar H, Srivastava AK. Influence of rice-wheat and sugarcane-wheat rotations on microbial diversity and plant growth promoting bacteria: Insights from high-throughput sequencing and soil analysis. Microbiol Res 2024; 278:127533. [PMID: 37924641 DOI: 10.1016/j.micres.2023.127533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Wheat is a staple food crop, primarily grown in India's Indo-Gangetic plains, crucial for sustaining the region. Soil quality, vitality, and microbial inhabitants' interplay are pivotal. However, very little information is available on the impacts of agricultural practices, such as crop rotation and cropping systems, on the diversity of both bulk soil (BS) and rhizospheric soil (RS) microbiota. The impact of two different cropping systems, rice-wheat (RW) and sugarcane-wheat (SW) on soil properties, microbial diversity, and plant growth-promoting bacteria (PGPB) in wheat cultivation was investigated in the Indo-Gangetic plains of India. Microbial richness and diversity were analyzed using 16S rRNA sequencing, which reveals distinct clustering patterns between RS and BS, with higher diversity in BS of RW and higher richness in RS of SW. Notably, Proteobacteria dominated across all samples, along with Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Firmicutes, Planctomycetes, candidate division TM7, Cyanobacteria, and Nitrospirae. Intriguingly, the RS associated with the SW system exhibited the presence of 67 distinct genera, whereas the RS under the RW system showed 48 such genera. Within the realm of specific microbial genera exhibiting plant growth-promoting (PGP) activity, a higher abundance was noted in the RS (17.48%), as opposed to the BS (15.21%). Moreover, certain genera such as Haliangium, Iamia, Bacillus, Gaiella, Candidatus_Entotheonella, Anaerolinea, and Anaeromyxobacter, were found to be positively correlated with the availability of nitrogen, phosphorus, potassium, iron, and sulfur. The study sheds light on the intricate relationships between cropping practices, soil properties, and microbial dynamics, contributing to the development of sustainable agricultural practices for wheat cultivation.
Collapse
Affiliation(s)
- Waquar Akhter Ansari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India.
| | - Ram Krishna
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, Uttar Pradesh, India
| | - Arjun Singh
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow 226002, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Pushpendra Tiwari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Shiv Charan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| |
Collapse
|
9
|
Arnhold J, Grunwald D, Braun-Kiewnick A, Koch HJ. Effect of crop rotational position and nitrogen supply on root development and yield formation of winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1265994. [PMID: 37936943 PMCID: PMC10626475 DOI: 10.3389/fpls.2023.1265994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
The lower yield of wheat grown after wheat (second wheat) compared with the first wheat after a break crop is frequently attributed to fungal disease occurrence, but has also been found without visible disease infection; thus, other factors might be responsible for the lower yield of the second wheat. The aims of this study were to analyze the effects of growing wheat as first and second wheat after oilseed rape, as well as monoculture in a long-term field experiment over three years on (i) aboveground biomass formation, root development and nutrient acquisition during the growing season, (ii) take-all occurrence, and (iii) grain yield and yield components. Subsoil root length density of winter wheat was significantly higher after oilseed rape as pre-crop than after wheat, which was independent of take-all occurrence. Differences in wheat aboveground biomass occurred at early growth stages and were persistent until harvest. Grain yield loss correlated well with take-all disease severity in a wet year but yield differences among crop rotational positions occurred also in a dry year without visible fungal infection. Thus, an effect of the crop rotational position of wheat beyond take-all disease pressure can be assumed. Overall, wheat root length density might be the key to understand wheat biomass formation and grain yield in different crop rotational positions.
Collapse
Affiliation(s)
- Jessica Arnhold
- Department of Agronomy, Institute of Sugar Beet Research, Göttingen, Germany
| | - Dennis Grunwald
- Department of Agronomy, Institute of Sugar Beet Research, Göttingen, Germany
| | - Andrea Braun-Kiewnick
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Heinz-Josef Koch
- Department of Agronomy, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
10
|
Ali S, Tyagi A, Mir RA, Rather IA, Anwar Y, Mahmoudi H. Plant beneficial microbiome a boon for improving multiple stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1266182. [PMID: 37767298 PMCID: PMC10520250 DOI: 10.3389/fpls.2023.1266182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Beneficial microbes or their products have been key drivers for improving adaptive and growth features in plants under biotic and abiotic stress conditions. However, the majority of these studies so far have been utilized against individual stressors. In comparison to individual stressors, the combination of many environmental stresses that plants experience has a greater detrimental effect on them and poses a threat to their existence. Therefore, there is a need to explore the beneficial microbiota against combined stressors or multiple stressors, as this will offer new possibilities for improving plant growth and multiple adaptive traits. However, recognition of the multifaceted core beneficial microbiota from plant microbiome under stress combinations will require a thorough understanding of the functional and mechanistic facets of plant microbiome interactions under different environmental conditions in addition to agronomic management practices. Also, the development of tailored beneficial multiple stress tolerant microbiota in sustainable agriculture necessitates new model systems and prioritizes agricultural microbiome research. In this review, we provided an update on the effect of combined stressors on plants and their microbiome structure. Next, we discussed the role of beneficial microbes in plant growth promotion and stress adaptation. We also discussed how plant-beneficial microbes can be utilized for mitigating multiple stresses in plants. Finally, we have highlighted some key points that warrant future investigation for exploring plant microbiome interactions under multiple stressors.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Enagbonma BJ, Fadiji AE, Ayangbenro AS, Babalola OO. Communication between Plants and Rhizosphere Microbiome: Exploring the Root Microbiome for Sustainable Agriculture. Microorganisms 2023; 11:2003. [PMID: 37630562 PMCID: PMC10458600 DOI: 10.3390/microorganisms11082003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Plant roots host numerous microorganisms around and inside their roots, forming a community known as the root microbiome. An increasing bulk of research is underlining the influences root-associated microbial communities can have on plant health and development. However, knowledge on how plant roots and their associated microbes interact to bring about crop growth and yield is limited. Here, we presented (i) the communication strategies between plant roots and root-associated microbes and (ii) the applications of plant root-associated microbes in enhancing plant growth and yield. This review has been divided into three main sections: communications between root microbiome and plant root; the mechanism employed by root-associated microbes; and the chemical communication mechanisms between plants and microbes and their application in plant growth and yield. Understanding how plant root and root-associated microbes communicate is vital in designing ecofriendly strategies for targeted disease suppression and improved plant growth that will help in sustainable agriculture. Ensuring that plants become healthy and productive entails keeping plants under surveillance around the roots to recognize disease-causing microbes and similarly exploit the services of beneficial microorganisms in nutrient acquisition, stress mitigation, and growth promotion.
Collapse
Affiliation(s)
| | | | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
12
|
Kumar M, Ansari WA, Zeyad MT, Singh A, Chakdar H, Kumar A, Farooqi MS, Sharma A, Srivastava S, Srivastava AK. Core microbiota of wheat rhizosphere under Upper Indo-Gangetic plains and their response to soil physicochemical properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1186162. [PMID: 37255554 PMCID: PMC10226189 DOI: 10.3389/fpls.2023.1186162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely cultivated in the Indo-Gangetic plains of India and forms the major staple food in the region. Understanding microbial community structure in wheat rhizosphere along the Indo-Gangetic plain and their association with soil properties can be an important base for developing strategies for microbial formulations. In the present study, an attempt was made to identify the core microbiota of wheat rhizosphere through a culture-independent approach. Rhizospheric soil samples were collected from 20 different sites along the upper Indo-Gangetic plains and their bacterial community composition was analyzed based on sequencing of the V3-V4 region of the 16S rRNA gene. Diversity analysis has shown significant variation in bacterial diversity among the sites. The taxonomic profile identified Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Firmicutes, and Cyanobacteria as the most dominant phyla in the wheat rhizosphere in the region. Core microbiota analysis revealed 188 taxa as core microbiota of wheat rhizosphere with eight genera recording more than 0.5% relative abundance. The order of most abundant genera in the core microbiota is Roseiflexus> Flavobacterium> Gemmatimonas> Haliangium> Iamia> Flavisolibacter> Ohtaekwangia> Herpetosiphon. Flavobacterium, Thermomonas, Massilia, Unclassified Rhizobiaceae, and Unclassified Crenarchaeota were identified as keystone taxa of the wheat rhizosphere. Correlation studies revealed, pH, organic carbon content, and contents of available nitrogen, phosphorus, and iron as the major factors driving bacterial diversity in the wheat rhizosphere. Redundancy analysis has shown the impact of different soil properties on the relative abundance of different genera of the core microbiota. The results of the present study can be used as a prelude to be developing microbial formulations based on core microbiota.
Collapse
Affiliation(s)
- Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Waquar Akhter Ansari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Arjun Singh
- ICAR-Central Soil Salinity Research Institute, Regional Research Station (RRS), Lucknow, Uttar Pradesh, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Adarsh Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | | | - Anu Sharma
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| |
Collapse
|
13
|
Yang S, Liu H, Xie P, Wen T, Shen Q, Yuan J. Emerging Pathways for Engineering the Rhizosphere Microbiome for Optimal Plant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4441-4449. [PMID: 36890647 DOI: 10.1021/acs.jafc.2c08758] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing impacts of global climate change on crop performance pose a significant threat to global food security. The rhizosphere microbiomes intimately interact with the plant and can largely facilitate plants in growth promotion and stress resistance via multiple mechanisms. This review focuses on approaches for harnessing the rhizosphere microbiomes to produce beneficial effects toward enhanced crop productivity, including the use of organic and inorganic amendments, and microbial inoculants. Emerging methods, such as the utilization of synthetic microbial consortia, host-mediated microbiome engineering, prebiotics made from specific plant root exudates, and crop breeding to promote beneficial plant-microbiome interactions, are highlighted. Updating our knowledge in this field is critical for understanding and improving plant-microbiome interactions, thereby enhancing plant adaptiveness to changing environmental conditions.
Collapse
Affiliation(s)
- Shengdie Yang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Penghao Xie
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yuan
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Plant Protection Mediated Through an Array of Metabolites Produced by Pantoea dispersa Isolated from Pitcher Plant. Appl Biochem Biotechnol 2023; 195:1607-1629. [PMID: 36350486 DOI: 10.1007/s12010-022-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
In the study, the bacterial isolate NhPB54 purified from the pitcher of Nepenthes plant was observed to have activity against Pythium aphanidermatum by dual culture and well diffusion. Hence, it was subjected to 16S rDNA sequencing and BLAST analysis, where the NhPB54 was found to have 100% identity to Pantoea dispersa. Upon screening for the plant beneficial properties, Pantoea dispersa NhPB54 was found to be positive for phosphate, potassium and zinc solubilization, nitrogen fixation, indole-3-acetic acid, ammonia, 1-aminocyclopropane-1-carboxylate deaminase, biofilm and biosurfactant production. Further to this, Solanum lycopersicum seedlings primed with P. dispersa NhPB54 were studied for the improved plant growth and disease protection. Here, the seedlings pre-treated with the NhPB54 culture supernatant were found to have enhanced plant growth and protection from damping off and fruit rot caused by P. aphanidermatum. From the LC-QTOF-MS/MS and GC MS analysis, P. dispersa NhPB54 was found to produce a blend of chemicals including 1-hydroxyphenazine, surfactin, and other bioactive metabolites with the likely basis of its observed antifungal and plant growth-promoting properties. From the results of the study, plants with unique adaptations can expect to harbor microbial candidates with beneficial applications.
Collapse
|
15
|
Abstract
The genus Bacillus has been widely applied in contemporary agriculture as an environmentally-friendly biological agent. However, the real effect of commercial Bacillus-based fertilizers and pesticides varies immensely in the field. To harness Bacillus for efficient wheat production, we reviewed the diversity, functionality, and applicability of wheat-associated native Bacillus for the first time. Our main findings are: (i) Bacillus spp. inhabit the rhizosphere, root, stem, leaf, and kernel of wheat; (ii) B. subtilis and B. velezensis are the most widely endophytic species that can be isolated from both below and aboveground tissues; (iii) major functions of these representative strains are promotion of plant growth and alleviation of both abiotic and biotic stresses in wheat; (iv) stability and effectiveness are 2 major challenges during field application; (v) a STVAE pipeline that includes 5 processes, namely, Screen, Test, Validation, Application, and Evaluation, has been proposed for the capture and refinement of wheat-associated Bacillus spp. In particular, this review comprehensively addresses possible solutions, concerns, and criteria during the development of native Bacillus-based inoculants for sustainable wheat production.
Collapse
|
16
|
Orozco-Mosqueda MDC, Kumar A, Fadiji AE, Babalola OO, Puopolo G, Santoyo G. Agroecological Management of the Grey Mould Fungus Botrytis cinerea by Plant Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:637. [PMID: 36771719 PMCID: PMC9919678 DOI: 10.3390/plants12030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Botrytis cinerea is the causal agent of grey mould and one of the most important plant pathogens in the world because of the damage it causes to fruits and vegetables. Although the application of botrycides is one of the most common plant protection strategies used in the world, the application of plant-beneficial bacteria might replace botrycides facilitating agroecological production practices. Based on this, we reviewed the different stages of B. cinerea infection in plants and the biocontrol mechanisms exerted by plant-beneficial bacteria, including the well-known plant growth-promoting bacteria (PGPB). Some PGPB mechanisms to control grey mould disease include antibiosis, space occupation, nutrient uptake, ethylene modulation, and the induction of plant defence mechanisms. In addition, recent studies on the action of anti-Botrytis compounds produced by PGPB and how they damage the conidial and mycelial structures of the pathogen are reviewed. Likewise, the advantages of individual inoculations of PGPB versus those that require the joint action of antagonist agents (microbial consortia) are discussed. Finally, it should be emphasised that PGPB are an excellent option to prevent grey mould in different crops and their use should be expanded for environmentally friendly agricultural practices.
Collapse
Affiliation(s)
| | - Ajay Kumar
- Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gerardo Puopolo
- Center Agriculture Food Environment (C3A), University of Trento, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mich, Mexico
| |
Collapse
|
17
|
Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed RZ, Hasanuzzaman M. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. PLANTA 2022; 257:27. [PMID: 36583789 DOI: 10.1007/s00425-022-04052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.
Collapse
Affiliation(s)
- Shalini Rai
- Department of Biotechnology, SHEPA, Varanasi, India.
| | - Ayman F Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia.
- Department of Plant Pathology, Plant Pathology and Biotechnology Laboratory and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Alka Sagar
- Department of Microbiology, MIET, Meerut, India
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - R Z Sayyed
- Asian PGPR Society, Auburn Venture, Auburn, AL, USA.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University (SAU), Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|
18
|
Abera S, Shimels M, Tessema T, Raaijmakers JM, Dini-Andreote F. Back to the roots: defining the core microbiome of Sorghum bicolor in agricultural field soils from the centre of origin. FEMS Microbiol Ecol 2022; 98:6845733. [PMID: 36423338 DOI: 10.1093/femsec/fiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Sorghum is a major staple crop in sub-Saharan Africa with yields severely impacted by biotic and abiotic factors. Here, we analysed the taxonomic diversity and biogeographical distribution of bacterial taxa of 48 agricultural fields along a transect of approximately 2000 km across the Ethiopian sorghum belt, the centre of origin of sorghum. The ultimate goal is to identify-yet-unexplored-beneficial plant-microbe associations. Based on bulk soil bacterial communities and DArT-SNP analyses of 59 sorghum accessions, we selected three microbiologically distinct field soils and 12 sorghum genotypes, including commercial varieties, wild relatives, and farmer-preferred landraces. The results showed a core rhizosphere microbiome of 2125 amplicon sequence variants (ASVs), belonging to eight bacterial families consistently found across the three soil types and the 12 sorghum genotypes. Integration of the rhizosphere bacterial community analysis with DArT-SNP sorghum genotyping revealed the association of differentially abundant ASVs with sorghum genotypic traits, including the distinct recruitment of Pseudomonadaceae by the stay-green, drought-tolerant, and wild sorghum genotypes. Collectively, these results provide new insights into the core and accessory bacterial taxa in the sorghum rhizosphere in the centre of origin, setting a baseline for targeted isolation and functional characterization of putative beneficial rhizobacteria.
Collapse
Affiliation(s)
- Sewunet Abera
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands.,Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands.,Ethiopian Institute of Agricultural Research (EIAR), 5689 Addis Ababa, Ethiopia
| | - Mahdere Shimels
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Taye Tessema
- Ethiopian Institute of Agricultural Research (EIAR), 5689 Addis Ababa, Ethiopia
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands.,Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, United States
| |
Collapse
|
19
|
Kumaishi K, Usui E, Suzuki K, Kobori S, Sato T, Toda Y, Takanashi H, Shinozaki S, Noda M, Takakura A, Matsumoto K, Yamasaki Y, Tsujimoto H, Iwata H, Ichihashi Y. High throughput method of 16S rRNA gene sequencing library preparation for plant root microbial community profiling. Sci Rep 2022; 12:19289. [PMID: 36369356 PMCID: PMC9652414 DOI: 10.1038/s41598-022-23943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Microbiota are a major component of agroecosystems. Root microbiota, which inhabit the inside and surface of plant roots, play a significant role in plant growth and health. As next-generation sequencing technology allows the capture of microbial profiles without culturing the microbes, profiling of plant microbiota has become a staple tool in plant science and agriculture. Here, we have increased sample handling efficiency in a two-step PCR amplification protocol for 16S rRNA gene sequencing of plant root microbiota, improving DNA extraction using AMPure XP magnetic beads and PCR purification using exonuclease. These modifications reduce sample handling and capture microbial diversity comparable to that obtained by the manual method. We found a buffer with AMPure XP magnetic beads enabled efficient extraction of microbial DNA directly from plant roots. We also demonstrated that purification using exonuclease before the second PCR step enabled the capture of higher degrees of microbial diversity, thus allowing for the detection of minor bacteria compared with the purification using magnetic beads in this step. In addition, our method generated comparable microbiome profile data in plant roots and soils to that of using common commercially available DNA extraction kits, such as DNeasy PowerSoil Pro Kit and FastDNA SPIN Kit for Soil. Our method offers a simple and high-throughput option for maintaining the quality of plant root microbial community profiling.
Collapse
Affiliation(s)
- Kie Kumaishi
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Erika Usui
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Kenta Suzuki
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Shungo Kobori
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Takumi Sato
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Yusuke Toda
- grid.26999.3d0000 0001 2151 536XGraduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657 Japan
| | - Hideki Takanashi
- grid.26999.3d0000 0001 2151 536XGraduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657 Japan
| | - Satoshi Shinozaki
- MAYEKAWA Research Institute Co., LTD, Koto-Ku, Tokyo, 135-8482 Japan
| | - Munehiro Noda
- MAYEKAWA Research Institute Co., LTD, Koto-Ku, Tokyo, 135-8482 Japan
| | - Akiko Takakura
- MAYEKAWA Research Institute Co., LTD, Koto-Ku, Tokyo, 135-8482 Japan
| | - Kayoko Matsumoto
- MAYEKAWA Research Institute Co., LTD, Koto-Ku, Tokyo, 135-8482 Japan
| | - Yuji Yamasaki
- grid.265107.70000 0001 0663 5064Arid Land Research Center, Tottori University, Tottori, 680-0001 Japan
| | - Hisashi Tsujimoto
- grid.265107.70000 0001 0663 5064Arid Land Research Center, Tottori University, Tottori, 680-0001 Japan
| | - Hiroyoshi Iwata
- grid.26999.3d0000 0001 2151 536XGraduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657 Japan
| | - Yasunori Ichihashi
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| |
Collapse
|
20
|
Microbiome of Nodules and Roots of Soybean and Common Bean: Searching for Differences Associated with Contrasting Performances in Symbiotic Nitrogen Fixation. Int J Mol Sci 2022; 23:ijms231912035. [PMID: 36233333 PMCID: PMC9570480 DOI: 10.3390/ijms231912035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 01/10/2023] Open
Abstract
Biological nitrogen fixation (BNF) is a key process for the N input in agriculture, with outstanding economic and environmental benefits from the replacement of chemical fertilizers. However, not all symbioses are equally effective in fixing N2, and a major example relies on the high contribution associated with the soybean (Glycine max), contrasting with the low rates reported with the common bean (Phaseolus vulgaris) crop worldwide. Understanding these differences represents a major challenge that can help to design strategies to increase the contribution of BNF, and next-generation sequencing (NGS) analyses of the nodule and root microbiomes may bring new insights to explain differential symbiotic performances. In this study, three treatments evaluated in non-sterile soil conditions were investigated in both legumes: (i) non-inoculated control; (ii) inoculated with host-compatible rhizobia; and (iii) co-inoculated with host-compatible rhizobia and Azospirillum brasilense. In the more efficient and specific symbiosis with soybean, Bradyrhizobium presented a high abundance in nodules, with further increases with inoculation. Contrarily, the abundance of the main Rhizobium symbiont was lower in common bean nodules and did not increase with inoculation, which may explain the often-reported lack of response of this legume to inoculation with elite strains. Co-inoculation with Azospirillum decreased the abundance of the host-compatible rhizobia in nodules, probably because of competitiveness among the species at the rhizosphere, but increased in root microbiomes. The results showed that several other bacteria compose the nodule microbiomes of both legumes, including nitrogen-fixing, growth-promoters, and biocontrol agents, whose contribution to plant growth deserves further investigation. Several genera of bacteria were detected in root microbiomes, and this microbial community might contribute to plant growth through a variety of microbial processes. However, massive inoculation with elite strains should be better investigated, as it may affect the root microbiome, verified by both relative abundance and diversity indices, that might impact the contribution of microbial processes to plant growth.
Collapse
|
21
|
Microbial co-occurrence network in the rhizosphere microbiome: its association with physicochemical properties and soybean yield at a regional scale. J Microbiol 2022; 60:986-997. [DOI: 10.1007/s12275-022-2363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
22
|
Dubey A, Malla MA, Kumar A. Taxonomical and functional bacterial community profiling in disease-resistant and disease-susceptible soybean cultivars. Braz J Microbiol 2022; 53:1355-1370. [PMID: 35415800 PMCID: PMC9433584 DOI: 10.1007/s42770-022-00746-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Highly varied bacterial communities inhabiting the soybean rhizosphere perform important roles in its growth and production; nevertheless, little is known about the changes that occur in these communities under disease-stress conditions. The present study investigated the bacterial diversity and their metabolic profile in the rhizosphere of disease-resistant (JS-20-34) and disease-susceptible (JS-335) soybean (Glycine max (L.) Merr.) cultivars using 16S rRNA amplicon sequencing and community-level physiological profiling (CLPP). In disease-resistant soybean (AKADR) samples, the most dominating phyla were Actinobacteria (40%) followed by Chloroflexi (24%), Proteobacteria (20%), and Firmicutes (12%), while in the disease-susceptible (AKADS) sample, the most dominating phyla were Proteobacteria (35%) followed by Actinobacteria (27%) and Bacteroidetes (17%). Functional profiling of bacterial communities was done using the METAGENassist, and PICRUSt2 software, which shows that AKADR samples have more ammonifying, chitin degrading, nitrogen-fixing, and nitrite reducing bacteria compared to AKADS rhizosphere samples. The bacterial communities present in disease-resistant samples were significantly enriched with genes involved in nitrogen fixation, carbon fixation, ammonification, denitrification, and antibiotic production. Furthermore, the CLPP results show that carbohydrates and carboxylic acids were the most frequently utilized nutrients by the microbes. The principal component analysis (PCA) revealed that the AKADR soils had higher functional activity (strong association with the Shannon-Wiener index, richness index, and hydrocarbon consumption) than AKADS rhizospheric soils. Overall, our findings suggested that the rhizosphere of resistant varieties of soybean comprises of beneficial bacterial population over susceptible varieties.
Collapse
Affiliation(s)
- Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Muneer Ahmad Malla
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
23
|
Ali S, Tyagi A, Mushtaq M, Al-Mahmoudi H, Bae H. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118940. [PMID: 35122918 DOI: 10.1016/j.envpol.2022.118940] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/08/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal toxicity has become an impediment to agricultural productivity, which presents major human health concerns in terms of food safety. Among them, arsenic (As) a non-essential heavy metal has gained worldwide attention because of its noxious effects on agriculture and public health. The increasing rate of global warming and anthropogenic activities have promptly exacerbated As levels in the agricultural soil, thereby causing adverse effects to crop genetic and phenotypic traits and rendering them vulnerable to other stresses. Conventional breeding and transgenic approaches have been widely adapted for producing heavy metal resilient crops; however, they are time-consuming and labor-intensive. Hence, finding new mitigation strategies for As toxicity would be a game-changer for sustainable agriculture. One such promising approach is harnessing plant microbiome in the era of 'omics' which is gaining prominence in recent years. The use of plant microbiome and their cocktails to combat As metal toxicity has gained widespread attention, because of their ability to metabolize toxic elements and offer an array of perquisites to host plants such as increased nutrient availability, stress resilience, soil fertility, and yield. A comprehensive understanding of below-ground plant-microbiome interactions and their underlying molecular mechanisms in exhibiting resilience towards As toxicity will help in identifying elite microbial communities for As mitigation. In this review, we have discussed the effect of As, their accumulation, transportation, signaling, and detoxification in plants. We have also discussed the role of the plant microbiome in mitigating As toxicity which has become an intriguing research frontier in phytoremediation. This review also provides insights on the advancements in constructing the beneficial synthetic microbial communities (SynComs) using microbiome engineering that will facilitate the development of the most advanced As remedial tool kit in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Henda Al-Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
24
|
Xu T, Wang Y, Aytac Z, Zuverza-Mena N, Zhao Z, Hu X, Ng KW, White JC, Demokritou P. Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core-Shell Nanostructures. ACS NANO 2022; 16:6034-6048. [PMID: 35404588 DOI: 10.1021/acsnano.1c11490] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inefficient delivery of agrichemicals in agrifood systems is among the leading cause of serious negative planetary and public health impacts. Such inefficiency is mainly attributed to the inability to deliver the agrichemicals at the right place (target), right time, and right dose. In this study, scalable, biodegradable, sustainable, biopolymer-based multistimuli responsive core-shell nanostructures were developed for smart agrichemical delivery. Three types of responsive core/shell nanostructures incorporated with model agrichemicals (i.e., CuSO4 and NPK fertilizer) were synthesized by coaxial electrospray, and the resulting nanostructures showed spherical morphology with an average diameter about 160 nm. Tunable agrichemical release kinetics were achieved by controlling the surface hydrophobicity of nanostructures. The pH and enzyme responsiveness was also demonstrated by the model analyte release kinetics (up to 7 days) in aqueous solution. Finally, the efficacy of the stimuli responsive nanostructures was evaluated in soil-based greenhouse studies using soybean and wheat in terms of photosynthesis efficacy and linear electron flow (LEF), two important metrics for seedling development and health. Findings confirmed plant specificity; for soybean, the nanostructures resulted in 34.3% higher value of relative chlorophyll content and 41.2% higher value of PS1 centers in photosystem I than the ionic control with equivalent agrichemical concentration. For wheat, the nanostructures resulted in 37.6% higher value of LEF than the ionic agrichemicals applied at 4 times higher concentration, indicating that the responsive core-shell nanostructure is an effective platform to achieve precision agrichemical delivery while minimizing inputs. Moreover, the Zn and Na content in the leaves of 4-week-old soybean seedlings were significantly increased with nanostructure amendment, indicating that the developed nanostructures can potentially be used to modulate the accumulation of other important micronutrients through a potential biofortification strategy.
Collapse
Affiliation(s)
- Tao Xu
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zeynep Aytac
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 637141, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 637141, Singapore
| | - Jason C White
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, New Jersey 08854, United States
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
25
|
The Role of Soil Microbial Diversity in the Conservation of Native Seed Bacterial Microbiomes. Microorganisms 2022; 10:microorganisms10040750. [PMID: 35456799 PMCID: PMC9028870 DOI: 10.3390/microorganisms10040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Research into understanding the structure, composition and vertical transmission of crop seed microbiomes has intensified, although there is much less research into the seed microbiomes of crop wild relatives. Our previous study showed that the standard seed storage procedures (e.g., seed drying and storage temperature) can influence the seed microbiome of domesticated Glycine max. In this study, we characterized the seed microbiota of Glycine clandestina, a perennial wild relative of soybean (G. max (L.) Merr.) to expand our understanding about the effect of other storage procedures such as the periodic regeneration of seed stocks to bulk up seed numbers and secure viability on the seed microbiome of said seed. The G. clandestina microbiota was analysed from Generation 1 (G1) and Generation 2 (G2) seed and from mature plant organs grown in two different soil treatments T (treatment [native soil + potting mix]) and C (control [potting mix only]). Our dataset showed that soil microbiota had a strong influence on next generation seed microbiota, with an increased contribution of root microbiota by 90% and seed transmissibility by 36.3% in G2 (T) seed. Interestingly, the G2 seed microbiota primarily consisted of an initially low abundance of taxa present in G1 seed. Overall, our results indicate that seed regeneration can affect the seed microbiome composition and using native soil from the location of the source plant can enhance the conservation of the native seed microbiota.
Collapse
|
26
|
Rawat VS, Kaur J, Bhagwat S, Pandit MA, Rawat CD. Deploying Microbes as Drivers and Indicators in Ecological Restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jasleen Kaur
- Department of Botany, Dyal Singh College University of Delhi New Delhi 110003 India
| | - Sakshi Bhagwat
- Department of Biosciences Faculty of Natural Sciences, Jamia Millia Islamia New Delhi 110025 India
| | - Manisha Arora Pandit
- Department of Zoology, Kalindi College University of Delhi New Delhi 110008 India
| | - Charu Dogra Rawat
- Molecular Biology and Genomics Research Laboratory, Ramjas College University of Delhi Delhi 110007 India
- Department of Zoology, Ramjas College University of Delhi Delhi 110007 India
| |
Collapse
|
27
|
Yang H, Zhao Y, Ma J, Rong Z, Chen J, Wang Y, Zheng X, Ye W. Wheat Straw Return Influences Soybean Root-Associated Bacterial and Fungal Microbiota in a Wheat-Soybean Rotation System. Microorganisms 2022; 10:microorganisms10030667. [PMID: 35336243 PMCID: PMC8951542 DOI: 10.3390/microorganisms10030667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/16/2023] Open
Abstract
Roots hold complex microbial communities at the soil–root interface, which can affect plant nutrition, growth, and health. Although the composition of plant microbiomes has been extensively described for various plant species and environments, little is known about the effect of wheat straw return (WSR) on the soybean root microbiota. We used Illumina-based 16S rRNA and ITS amplicon sequencing to track changes in bacterial and fungal microbiota in bulk soil and soybean rhizosphere, rhizoplane, s1and endosphere during the third and fourth years after implementing WSR in a wheat–soybean rotation system. The results revealed that WSR had a greater impact on fungal communities than bacterial communities, particularly in bulk soil, rhizosphere, and rhizoplane. WSR enriched the relative abundance of cellulose-degrading fungi (e.g., Acremonium, Trichoderma, and Myrmecridium, among which Trichoderma also had antimicrobial activity), saprotroph (e.g., Exophiala), and nitrogen cycling bacteria (e.g., Chryseolinea). Furthermore, WSR depleted the relative abundance of pathogenic fungi (e.g., Fusarium and Alternaria). These data revealed for the first time that WSR had diverse effects on soybean root-associated microbial community composition, not only in soil but also in the rhizosphere, rhizoplane, and endosphere.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| | - Yao Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Ma
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenyang Rong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| | - Yuanchao Wang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
28
|
Gholizadeh S, Mohammadi SA, Salekdeh GH. Changes in root microbiome during wheat evolution. BMC Microbiol 2022; 22:64. [PMID: 35219318 PMCID: PMC8881823 DOI: 10.1186/s12866-022-02467-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Although coevolutionary signatures of host-microbe interactions are considered to engineer the healthy microbiome of humans, little is known about the changes in root-microbiome during plant evolution. To understand how the composition of the wheat and its ancestral species microbiome have changed over the evolutionary processes, we performed a 16S rRNA metagenomic analysis on rhizobacterial communities associated with a phylogenetic framework of four Triticum species T. urartu, T. turgidum, T. durum, and T. aestivum along with their ancestral species Aegilops speltoides, and Ae. tauschii during vegetative and reproductive stages.
Results
In this study, we illustrated that the genome contents of wild species Aegilops speltoides and Ae. tauschii can be significant factors determining the composition of root-associated bacterial communities in domesticated bread wheat. Although it was found that domestication and modern breeding practices might have had a significant impact on microbiome-plant interactions especially at the reproductive stage, we observed an extensive and selective control by wheat genotypes on associated rhizobacterial communities at the same time. Our data also showed a strong genotypic variation within species of T. aestivum and Ae. tauschii, suggesting potential breeding targets for plants surveyed.
Conclusions
This study performed with different genotypes of Triticum and Aegilops species is the first study showing that the genome contents of Ae. speltoides and Ae. tauschii along with domestication-related changes can be significant factors determining the composition of root-associated bacterial communities in bread wheat. It is also indirect evidence that shows a very extensive range of host traits and genes are probably involved in host-microbe interactions. Therefore, understanding the wheat root-associated microbiome needs to take into consideration of its polygenetic mosaic nature.
Collapse
|
29
|
Gruet C, Muller D, Moënne-Loccoz Y. Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Front Microbiol 2022; 12:782135. [PMID: 35058901 PMCID: PMC8764353 DOI: 10.3389/fmicb.2021.782135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between Triticum and Aegilops species and several domestication events, which resulted in various wild and domesticated species (especially Triticum aestivum and Triticum durum), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species. This analysis highlighted two major trends. First, most data deal with the taxonomic diversity rather than the microbial functioning of root-associated wheat microbiota, with so far a bias toward bacteria and mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes with little consideration for their particular genetic and physiological traits. It is expected that the development of current sequencing technologies will enable to revisit the diversity of the wheat microbiome. This will provide a renewed opportunity to better understand the significance of wheat evolutionary history, and also to obtain the baseline information needed to develop microbiome-based breeding strategies for sustainable wheat farming.
Collapse
Affiliation(s)
| | | | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
30
|
Raut JK, Baral K, Adhikari MK, Jha PK. Interaction of Mycorrhizal Fungi with Rhizospheric Microbes and Their Mode of Action. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Sahu KP, Patel A, Kumar M, Sheoran N, Mehta S, Reddy B, Eke P, Prabhakaran N, Kumar A. Integrated Metabarcoding and Culturomic-Based Microbiome Profiling of Rice Phyllosphere Reveal Diverse and Functional Bacterial Communities for Blast Disease Suppression. Front Microbiol 2021; 12:780458. [PMID: 34917058 PMCID: PMC8669949 DOI: 10.3389/fmicb.2021.780458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Phyllosphere-the harsh foliar plant part exposed to vagaries of environmental and climatic variables is a unique habitat for microbial communities. In the present work, we profiled the phyllosphere microbiome of the rice plants using 16S rRNA gene amplicon sequencing (hereafter termed metabarcoding) and the conventional microbiological methods (culturomics) to decipher the microbiome assemblage, composition, and their functions such as antibiosis and defense induction against rice blast disease. The blast susceptible rice genotype (PRR78) harbored far more diverse bacterial species (294 species) than the resistant genotype (Pusa1602) that showed 193 species. Our metabarcoding of bacterial communities in phyllomicrobiome revealed the predominance of the phylum, Proteobacteria, and its members Pantoea, Enterobacter, Pseudomonas, and Erwinia on the phyllosphere of both rice genotypes. The microbiological culturomic validation of metabarcoding-taxonomic annotation further confirmed the prevalence of 31 bacterial isolates representing 11 genera and 16 species with the maximum abundance of Pantoea. The phyllomicrobiome-associated bacterial members displayed antifungal activity on rice blast fungus, Magnaporthe oryzae, by volatile and non-volatile metabolites. Upon phyllobacterization of rice cultivar PB1, the bacterial species such as Enterobacter sacchari, Microbacterium testaceum, Pantoea ananatis, Pantoea dispersa, Pantoea vagans, Pseudomonas oryzihabitans, Rhizobium sp., and Sphingomonas sp. elicited a defense response and contributed to the suppression of blast disease. qRT-PCR-based gene expression analysis indicated over expression of defense-associated genes such as OsCEBiP, OsCERK1, and phytohormone-associated genes such as OsPAD4, OsEDS1, OsPR1.1, OsNPR1, OsPDF2.2, and OsFMO in phyllobacterized rice seedlings. The phyllosphere bacterial species showing blast suppressive activity on rice were found non-plant pathogenic in tobacco infiltration assay. Our comparative microbiome interrogation of the rice phyllosphere culminated in the isolation and identification of agriculturally significant bacterial communities for blast disease management in rice farming through phyllomicrobiome engineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pierre Eke
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
32
|
Chandel A, Mann R, Kaur J, Norton S, Edwards J, Spangenberg G, Sawbridge T. Implications of Seed Vault Storage Strategies for Conservation of Seed Bacterial Microbiomes. Front Microbiol 2021; 12:784796. [PMID: 34925291 PMCID: PMC8678515 DOI: 10.3389/fmicb.2021.784796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Global seed vaults are important, as they conserve plant genetic resources for future breeding to improve crop yield and quality and to overcome biotic and abiotic stresses. However, little is known about the impact of standard storage procedures, such as seed drying and cold storage on the seed bacterial community, and the ability to recover seed-associated bacteria after storage. In this study, soybean [Glycine max (L.) Merr.] seeds were analyzed to characterize changes in the bacterial community composition and culturability under varying storage conditions. The G. max bacterial microbiome was analyzed from undried seed, dried seed, and seed stored for 0, 3, 6, and 14months. Storage temperatures consisted of -20°C, 4°C, and room temperature (RT), with -20°C being commonly used in seed storage vaults globally. The seed microbiome of G. max was dominated by Gammaproteobacteria under all conditions. Undried seed was dominated by Pantoea (33.9%) and Pseudomonas (51.1%); however, following drying, the abundance of Pseudomonas declined significantly (0.9%), Pantoea increased significantly (73.6%), and four genera previously identified including Pajaroellobacter, Nesterenkonia, env.OPS_17, and Acidibacter were undetectable. Subsequent storage at RT, 4, or -20°C maintained high-abundance Genera at the majority of time points, although RT caused greater fluctuations in abundances. For many of the low-abundance Genera, storage at -20°C resulted in their gradual disappearance, whereas storage at 4°C or RT resulted in their more rapid disappearance. The changes in seed bacterial composition were reflected by cultured bacterial taxa obtained from the stored G. max seed. The main taxa were largely culturable and had similar relative abundance, while many, but not all, of the low-abundance taxa were also culturable. Overall, these results indicate that the initial seed drying affects the seed bacterial composition, suggesting that microbial isolation prior to seed drying is recommended to conserve these microbes. The standard seed storage condition of -20°C is most suitable for conservation of the bacterial seed microbiome, as this storage temperature slows down the loss of seed bacterial diversity over longer time periods, particularly low-abundance taxa.
Collapse
Affiliation(s)
- Ankush Chandel
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Ross Mann
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Jatinder Kaur
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Sally Norton
- Agriculture Victoria Research, Australian Grains Genebank, Horsham, VIC, Australia
| | - Jacqueline Edwards
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - German Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Timothy Sawbridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
33
|
Comparative Analysis of the Cultured and Total Bacterial Community in the Wheat Rhizosphere Microbiome Using Culture-Dependent and Culture-Independent Approaches. Microbiol Spectr 2021; 9:e0067821. [PMID: 34668733 PMCID: PMC8528112 DOI: 10.1128/spectrum.00678-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rhizosphere and root-associated bacteria are key components of crop production and sustainable agriculture. However, utilization of these beneficial bacteria is often limited by conventional culture techniques because a majority of soil microorganisms cannot be cultured using standard laboratory media. Therefore, the purpose of this study was to improve culturability and investigate the diversity of the bacterial communities from the wheat rhizosphere microbiome collected from three locations in Egypt with contrasting soil characteristics by using metagenomic analysis and improved culture-based methods. The improved strategies of the culture-dependent approach included replacing the agar in the medium with gellan gums and modifying its preparation by autoclaving the phosphate and gelling agents separately. Compared to the total operational taxonomic units (OTUs) observed from the metagenomic data sets derived from the three analyzed soils, 1.86 to 2.52% of the bacteria were recovered using the modified cultivation strategies, whereas less than 1% were obtained employing the standard cultivation protocols. Twenty-one percent of the cultivable isolates exhibited multiple plant growth-promoting (PGP) properties, including P solubilization activity and siderophore production. From the metagenomic analysis, the most abundant phyla were Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, and Firmicutes. Moreover, the relative abundance of the specific bacterial taxa was correlated with the soil characteristics, demonstrating the effect of the soil in modulating the plant rhizosphere microbiome. IMPORTANCE Bacteria colonizing the rhizosphere, a narrow zone of soil surrounding the root system, are known to have beneficial effects in improving the growth and stress tolerance of plants. However, most bacteria in natural environments, especially those in rhizosphere soils, are recalcitrant to cultivation using traditional techniques, and thus their roles in soil health and plant growth remain unexplored. Hence, investigating new culture media and culture conditions to bring “not-yet-cultured” species into cultivation and to identify new functions is still an important task for all microbiologists. To this end, we describe improved cultivation protocols that increase the number and diversity of cultured bacteria from the rhizosphere of wheat plants. Using such approaches will lead to new insights into culturing more beneficial bacteria that live in the plant rhizosphere, in so doing creating greater opportunities not only for field application but also for promoting sustainability.
Collapse
|
34
|
de Medeiros Azevedo T, Aburjaile FF, Ferreira-Neto JRC, Pandolfi V, Benko-Iseppon AM. The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World J Microbiol Biotechnol 2021; 37:206. [PMID: 34708327 DOI: 10.1007/s11274-021-03168-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Similar to other organisms, plants establish interactions with a variety of microorganisms in their natural environment. The plant microbiome occupies the host plant's tissues, either internally or on its surfaces, showing interactions that can assist in its growth, development, and adaptation to face environmental stresses. The advance of metagenomics and metatranscriptomics approaches has strongly driven the study and recognition of plant microbiome impacts. Research in this regard provides comprehensive information about the taxonomic and functional aspects of microbial plant communities, contributing to a better understanding of their dynamics. Evidence of the plant microbiome's functional potential has boosted its exploitation to develop more ecological and sustainable agricultural practices that impact human health. Although microbial inoculants' development and use are promising to revolutionize crop production, interdisciplinary studies are needed to identify new candidates and promote effective practical applications. On the other hand, there are challenges in understanding and analyzing complex data generated within a plant microbiome project's scope. This review presents aspects about the complex structuring and assembly of the microbiome in the host plant's tissues, metagenomics, and metatranscriptomics approaches for its understanding, covering descriptions of recent studies concerning metagenomics to characterize the microbiome of non-model plants under different aspects. Studies involving bio-inoculants, isolated from plant microbial communities, capable of assisting in crops' productivity, are also reviewed.
Collapse
Affiliation(s)
- Thamara de Medeiros Azevedo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Flávia Figueira Aburjaile
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Valesca Pandolfi
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| |
Collapse
|
35
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
36
|
Omomowo OI, Babalola OO. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability. FRONTIERS IN PLANT SCIENCE 2021; 12:751731. [PMID: 34745184 PMCID: PMC8570086 DOI: 10.3389/fpls.2021.751731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/30/2021] [Indexed: 05/23/2023]
Abstract
Providing safe and secure food for an increasing number of people globally is challenging. Coping with such a human population by merely applying the conventional agricultural production system has not proved to be agro-ecologically friendly; nor is it sustainable. Cowpea (Vigna unguiculata (L) Walp) is a multi-purpose legume. It consists of high-quality protein for human consumption, and it is rich in protein for livestock fodder. It enriches the soil in that it recycles nutrients through the fixation of nitrogen in association with nodulating bacteria. However, the productivity of this multi-functional, indigenous legume that is of great value to African smallholder farmers and the rural populace, and also to urban consumers and entrepreneurs, is limited. Because cowpea is of strategic importance in Africa, there is a need to improve on its productivity. Such endeavors in Africa are wrought with challenges that include drought, salinity, the excessive demand among farmers for synthetic chemicals, the repercussions of climate change, declining soil nutrients, microbial infestations, pest issues, and so forth. Nevertheless, giant strides have already been made and there have already been improvements in adopting sustainable and smart biotechnological approaches that are favorably influencing the production costs of cowpea and its availability. As such, the prospects for a leap in cowpea productivity in Africa and in the enhancement of its genetic gain are good. Potential and viable means for overcoming some of the above-mentioned production constraints would be to focus on the key cowpea producer nations in Africa and to encourage them to embrace biotechnological techniques in an integrated approach to enhance for sustainable productivity. This review highlights the spectrum of constraints that limit the cowpea yield, but looks ahead of the constraints and seeks a way forward to improve cowpea productivity in Africa. More importantly, this review investigates applications and insights concerning mechanisms of action for implementing eco-friendly biotechnological techniques, such as the deployment of bio inoculants, applying climate-smart agricultural (CSA) practices, agricultural conservation techniques, and multi-omics smart technology in the spheres of genomics, transcriptomics, proteomics, and metabolomics, for improving cowpea yields and productivity to achieve sustainable agro-ecosystems, and ensuring their stability.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
37
|
Lewin S, Francioli D, Ulrich A, Kolb S. Crop host signatures reflected by co-association patterns of keystone Bacteria in the rhizosphere microbiota. ENVIRONMENTAL MICROBIOME 2021; 16:18. [PMID: 34641981 PMCID: PMC8513244 DOI: 10.1186/s40793-021-00387-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The native crop bacterial microbiota of the rhizosphere is envisioned to be engineered for sustainable agriculture. This requires the identification of keystone rhizosphere Bacteria and an understanding on how these govern crop-specific microbiome assembly from soils. We identified the metabolically active bacterial microbiota (SSU RNA) inhabiting two compartments of the rhizosphere of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale), and oilseed rape (Brassica napus L.) at different growth stages. RESULTS Based on metabarcoding analysis the bacterial microbiota was shaped by the two rhizosphere compartments, i.e. close and distant. Thereby implying a different spatial extent of bacterial microbiota acquirement by the cereals species versus oilseed rape. We derived core microbiota of each crop species. Massilia (barley and wheat) and unclassified Chloroflexi of group 'KD4-96' (oilseed rape) were identified as keystone Bacteria by combining LEfSe biomarker and network analyses. Subsequently, differential associations between networks of each crop species' core microbiota revealed host plant-specific interconnections for specific genera, such as the unclassified Tepidisphaeraceae 'WD2101 soil group'. CONCLUSIONS Our results provide keystone rhizosphere Bacteria derived from for crop hosts and revealed that cohort subnetworks and differential associations elucidated host species effect that was not evident from differential abundance of single bacterial genera enriched or unique to a specific plant host. Thus, we underline the importance of co-occurrence patterns within the rhizosphere microbiota that emerge in crop-specific microbiomes, which will be essential to modify native crop microbiomes for future agriculture and to develop effective bio-fertilizers.
Collapse
Affiliation(s)
- Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany.
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
38
|
Błaszczyk L, Salamon S, Mikołajczak K. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021; 10:1288. [PMID: 34684238 PMCID: PMC8539314 DOI: 10.3390/pathogens10101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat-fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Street, 60-479 Poznań, Poland; (S.S.); (K.M.)
| | | | | |
Collapse
|
39
|
Liu TY, Ye N, Wang X, Das D, Tan Y, You X, Long M, Hu T, Dai L, Zhang J, Chen MX. Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1753-1774. [PMID: 34288433 DOI: 10.1111/jipb.13154] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/18/2021] [Indexed: 05/27/2023]
Abstract
The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well-watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low-complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype-specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.
Collapse
Affiliation(s)
- Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Xinyu Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Debatosh Das
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China
| | - Yuxiang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiangkai You
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Mingxiu Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
40
|
The Diversity of Culture-Dependent Gram-Negative Rhizobacteria Associated with Manihot esculenta Crantz Plants Subjected to Water-Deficit Stress. DIVERSITY 2021. [DOI: 10.3390/d13080366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a lack of studies on the root-associated bacterial microbiome of cassava plants. The identification and characterization of rhizobacteria can contribute to understanding the adaptation of the agriculturally important crop plants to abiotic stress. Rhizobacteria play a significant role in plants, as they can alleviate the drought stress by various mechanisms that enhance the plant growth under these stressor conditions. In this study, Gram-negative bacterial strains from the plant rhizosphere of cassava Manihot esculenta Crantz CIAT MCOL1734 variety subjected to water deprivation were isolated, characterized according to their morphological properties, and then identified by VITEK® 2. An increase in the diversity, abundance, and species richness of Gram-negative rhizobacterial community was found in cassava plants subjected to water-deficit stress. In total, 58 rhizobacterial strains were isolated from cassava plants. The identification process found that the bacteria belonged to 12 genera: Achromobacter, Acinetobacter, Aeromonas, Buttiauxella, Cronobacter, Klebsiella, Ochrobactrum, Pluralibacter, Pseudomonas, Rhizobium, Serratia, and Sphingomonas. Interestingly, Pseudomonas luteola and Ocrhobactrum anthropi were rhizobacteria isolated exclusively from plants submitted to drought conditions. The cassava roots constitute a great reservoir of Gram-negative bacteria with a remarkable potential for biotechnological application to improve the drought tolerance of plant crops under water-deficit conditions.
Collapse
|
41
|
Kawasaki A, Dennis PG, Forstner C, Raghavendra AKH, Richardson AE, Watt M, Mathesius U, Gilliham M, Ryan PR. The microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) exhibit significant differences in structure between root types and along root axes. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:871-888. [PMID: 33934748 DOI: 10.1071/fp20351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
There is increasing interest in understanding how the microbial communities on roots can be manipulated to improve plant productivity. Root systems are not homogeneous organs but are comprised of different root types of various ages and anatomies that perform different functions. Relatively little is known about how this variation influences the distribution and abundance of microorganisms on roots and in the rhizosphere. Such information is important for understanding how root-microbe interactions might affect root function and prevent diseases. This study tested specific hypotheses related to the spatial variation of bacterial and fungal communities on wheat (Triticum aestivum L.) and rice (Oryza sativa L.) roots grown in contrasting soils. We demonstrate that microbial communities differed significantly between soil type, between host species, between root types, and with position along the root axes. The magnitude of variation between different root types and along individual roots was comparable with the variation detected between different plant species. We discuss the general patterns that emerged in this variation and identify bacterial and fungal taxa that were consistently more abundant on specific regions of the root system. We argue that these patterns should be measured more routinely so that localised root-microbe interactions can be better linked with root system design, plant health and performance.
Collapse
Affiliation(s)
- Akitomo Kawasaki
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT 2601, Australia; and Present address: NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, Faculty of Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Christian Forstner
- School of Earth and Environmental Sciences, Faculty of Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Anil K H Raghavendra
- School of Earth and Environmental Sciences, Faculty of Sciences, The University of Queensland, St Lucia, Qld 4072, Australia; and Present address: NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Alan E Richardson
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT 2601, Australia
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT 2601, Australia; and Corresponding author.
| |
Collapse
|
42
|
Abstract
Pigeon pea, a legume crop native to India, is the primary source of protein for more than a billion people in developing countries. The plant can form symbioses with N2-fixing bacteria; however, reports of poor crop nodulation in agricultural soils abound. We report here a study of the bacterial community associated with pigeon pea, with a special focus on the symbiont population in different soils and vegetative and non-vegetative plant growth. Location with respect to the plant roots was determined to be the main factor controlling the bacterial community, followed by developmental stage and soil type. Plant genotype plays only a minor role. Pigeon pea roots have a reduced microbial diversity compared to the surrounding soil and select for Proteobacteria, especially for Rhizobium spp., during vegetative growth. While Bradyrhizobium, a native symbiont of pigeon pea, can be found associating with roots, its presence is dependent on plant variety and soil conditions. A combination of 16S rRNA gene amplicon survey, strain isolation, and co-inoculation with nodule-forming Bradyrhizobium spp. and non-N2-fixing Rhizobium spp. demonstrated that the latter is a much more successful colonizer of pigeon pea roots. Poor nodulation of pigeon pea in Indian soils may be caused by a poor Bradyrhizobium competitiveness against non-nodulating root colonizers such as Rhizobium. Hence, inoculant strain selection of symbionts for pigeon pea should be based not only on their nitrogen fixation potential but, more importantly, on their competitiveness in agricultural soils.
Collapse
|
43
|
Prudence SMM, Newitt† JT, Worsley SF, Macey MC, Murrell JC, Lehtovirta-Morley LE, Hutchings MI. Soil, senescence and exudate utilisation: characterisation of the Paragon var. spring bread wheat root microbiome. ENVIRONMENTAL MICROBIOME 2021; 16:12. [PMID: 34154664 PMCID: PMC8215762 DOI: 10.1186/s40793-021-00381-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Conventional methods of agricultural pest control and crop fertilisation are unsustainable. To meet growing demand, we must find ecologically responsible means to control disease and promote crop yields. The root-associated microbiome can aid plants with disease suppression, abiotic stress relief, and nutrient bioavailability. The aim of the present work was to profile the community of bacteria, fungi, and archaea associated with the wheat rhizosphere and root endosphere in different conditions. We also aimed to use 13CO2 stable isotope probing (SIP) to identify microbes within the root compartments that were capable of utilising host-derived carbon. RESULTS Metabarcoding revealed that community composition shifted significantly for bacteria, fungi, and archaea across compartments. This shift was most pronounced for bacteria and fungi, while we observed weaker selection on the ammonia oxidising archaea-dominated archaeal community. Across multiple soil types we found that soil inoculum was a significant driver of endosphere community composition, however, several bacterial families were identified as core enriched taxa in all soil conditions. The most abundant of these were Streptomycetaceae and Burkholderiaceae. Moreover, as the plants senesce, both families were reduced in abundance, indicating that input from the living plant was required to maintain their abundance in the endosphere. Stable isotope probing showed that bacterial taxa within the Burkholderiaceae family, among other core enriched taxa such as Pseudomonadaceae, were able to use root exudates, but Streptomycetaceae were not. CONCLUSIONS The consistent enrichment of Streptomycetaceae and Burkholderiaceae within the endosphere, and their reduced abundance after developmental senescence, indicated a significant role for these families within the wheat root microbiome. While Streptomycetaceae did not utilise root exudates in the rhizosphere, we provide evidence that Pseudomonadaceae and Burkholderiaceae family taxa are recruited to the wheat root community via root exudates. This deeper understanding crop microbiome formation will enable researchers to characterise these interactions further, and possibly contribute to ecologically responsible methods for yield improvement and biocontrol in the future.
Collapse
Affiliation(s)
- Samuel MM. Prudence
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jake T. Newitt†
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Sarah F. Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Michael C. Macey
- School of Environment, Earth & Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | | | - Matthew I. Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
44
|
Chang HX, Noel ZA, Chilvers MI. A β-lactamase gene of Fusarium oxysporum alters the rhizosphere microbiota of soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1588-1604. [PMID: 33788336 DOI: 10.1111/tpj.15257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The rhizosphere is a multitrophic environment, and for soilborne pathogens such as Fusarium oxysporum, microbial competition in the rhizosphere is inevitable before reaching and infecting roots. This study established a tritrophic interaction among the plant growth-promoting rhizobacterium Burkholderia ambifaria, F. oxysporum and Glycine max (soybean) to study the effects of F. oxysporum genes on shaping the soybean microbiota. Although B. ambifaria inhibited mycelial growth and increased bacterial propagation in the presence of F. oxysporum, F. oxysporum still managed to infect soybean in the presence of B. ambifaria. RNA-Seq identified a putative F. oxysporum secretory β-lactamase-coding gene, FOXG_18438 (abbreviated as Fo18438), that is upregulated during soybean infection in the presence of B. ambifaria. The ∆Fo18438 mutants displayed reduced mycelial growth towards B. ambifaria, and the complementation of full Fo18438 and the Fo18438 β-lactamase domain restored mycelial growth. Using the F. oxysporum wild type, ∆Fo18438 mutants and complemented strains with full Fo18438, Fo18438 β-lactamase domain or Fo18438 RTA1-like domain for soil inoculation, 16S rRNA amplicon sequencing revealed that the abundance of a Burkholderia operational taxonomic unit (OTU) was increased in the rhizosphere microbiota infested by the strains with Fo18438 β-lactamase domain. Non-metric multidimensional scaling and PICRUSt2 functional analysis revealed differential abundance for the bacterial β-lactam-related functions when contrasting the genotypes of F. oxysporum. These results indicated that the Fo18438 β-lactamase domain provides F. oxysporum with the advantage of growing into the soybean rhizosphere, where β-lactam antibiosis is involved in microbial competition. Accordingly, this study highlights the capability of an F. oxysporum gene for altering the soybean rhizosphere and taproot microbiota.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Zachary A Noel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
45
|
Meier MA, Lopez-Guerrero MG, Guo M, Schmer MR, Herr JR, Schnable JC, Alfano JR, Yang J. Rhizosphere Microbiomes in a Historical Maize-Soybean Rotation System Respond to Host Species and Nitrogen Fertilization at the Genus and Subgenus Levels. Appl Environ Microbiol 2021; 87:e0313220. [PMID: 33811028 PMCID: PMC8174755 DOI: 10.1128/aem.03132-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Root-associated microbes are key players in plant health, disease resistance, and nitrogen (N) use efficiency. It remains largely unclear how the interplay of biological and environmental factors affects rhizobiome dynamics in agricultural systems. In this study, we quantified the composition of rhizosphere and bulk soil microbial communities associated with maize (Zea mays L.) and soybean (Glycine max L.) in a long-term crop rotation study under conventional fertilization and low-N regimes. Over two growing seasons, we evaluated the effects of environmental conditions and several treatment factors on the abundance of rhizosphere- and soil-colonizing microbial taxa. Time of sampling, host plant species, and N fertilization had major effects on microbiomes, while no effect of crop rotation was observed. Using variance partitioning as well as 16S sequence information, we further defined a set of 82 microbial genera and functional taxonomic groups at the subgenus level that show distinct responses to treatment factors. We identified taxa that are highly specific to either maize or soybean rhizospheres, as well as taxa that are sensitive to N fertilization in plant rhizospheres and bulk soil. This study provides insights to harness the full potential of soil microbes in maize and soybean agricultural systems through plant breeding and field management. IMPORTANCE Plant roots are colonized by large numbers of microbes, some of which may help the plant acquire nutrients and fight diseases. Our study contributes to a better understanding of root-colonizing microbes in the widespread and economically important maize-soybean crop rotation system. The long-term goal of this research is to optimize crop plant varieties and field management to create the best possible conditions for beneficial plant-microbe interactions to occur. These beneficial microbes may be harnessed to sustainably reduce dependency on pesticides and industrial fertilizer. We identify groups of microbes specific to the maize or to the soybean host and microbes that are sensitive to nitrogen fertilization. These microbes represent candidates that may be influenced through plant breeding or field management, and future research will be directed toward elucidating their roles in plant health and nitrogen usage.
Collapse
Affiliation(s)
- Michael A. Meier
- Department of Agronomy and Horticulture, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | | | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Marty R. Schmer
- USDA-ARS Agroecosystem Management Research Unit, Lincoln, Nebraska, USA
| | - Joshua R. Herr
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - James C. Schnable
- Department of Agronomy and Horticulture, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - James R. Alfano
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
46
|
Morales ME, Iocoli GA, Villamil MB, Zabaloy MC. [Effect of winter cover crops on the soil microbiome: a systematic literature review]. Rev Argent Microbiol 2021; 54:57-70. [PMID: 33941408 DOI: 10.1016/j.ram.2021.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/20/2020] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
The inclusion of winter cover crops (WCC) in no-till (NT) systems in replacement of bare fallow is a promising alternative to improve soil health and consequently, contribute to environmental sustainability of agricultural systems. This review provides a comprehensive evaluation of the effects of the use of WCC in rotation with summer cash crops under NT systems on the soil microbiome versus bare fallows. A systematic literature search was conducted to evaluate the impact of WCC on microbial parameters indicative of abundance, activity and diversity. Twenty-two papers were selected based on seven combined criteria. The results of this review show that enzyme activities in soil are enhanced with the inclusion of WCC in the rotation, particularly those that include legumes and mix of species. In general, more than half of the analyzed papers report higher microbial biomass in soils with WCC than in bare fallow. Interestingly, the effects of WCC on microbial parameters are independent of the duration of the experiments. However, more basic research is necessary to reduce the heterogeneity of the studies and to better understand the complexity of the interactions between WCC and the soil microbiome.
Collapse
Affiliation(s)
- Marianela Estefanía Morales
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Gastón Alejandro Iocoli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina; Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | - María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina; Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
47
|
Stefan L, Hartmann M, Engbersen N, Six J, Schöb C. Positive Effects of Crop Diversity on Productivity Driven by Changes in Soil Microbial Composition. Front Microbiol 2021; 12:660749. [PMID: 33936016 PMCID: PMC8081861 DOI: 10.3389/fmicb.2021.660749] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Intensive agriculture has major negative impacts on ecosystem diversity and functioning, including that of soils. The associated reduction of soil biodiversity and essential soil functions, such as nutrient cycling, can restrict plant growth and crop yield. By increasing plant diversity in agricultural systems, intercropping could be a promising way to foster soil microbial diversity and functioning. However, plant-microbe interactions and the extent to which they influence crop yield under field conditions are still poorly understood. In this study, we performed an extensive intercropping experiment using eight crop species and 40 different crop mixtures to investigate how crop diversity affects soil microbial diversity and activity, and whether these changes subsequently affect crop yield. Experiments were carried out in mesocosms under natural conditions in Switzerland and in Spain, two countries with drastically different soils and climate, and our crop communities included either one, two or four species. We sampled and sequenced soil microbial DNA to assess soil microbial diversity, and measured soil basal respiration as a proxy for soil activity. Results indicate that in Switzerland, increasing crop diversity led to shifts in soil microbial community composition, and in particular to an increase of several plant-growth promoting microbes, such as members of the bacterial phylum Actinobacteria. These shifts in community composition subsequently led to a 15 and 35% increase in crop yield in 2 and 4-species mixtures, respectively. This suggests that the positive effects of crop diversity on crop productivity can partially be explained by changes in soil microbial composition. However, the effects of crop diversity on soil microbes were relatively small compared to the effects of abiotic factors such as fertilization (three times larger) or soil moisture (three times larger). Furthermore, these processes were context-dependent: in Spain, where resources were limited, soil microbial communities did not respond to crop diversity, and their effect on crop yield was less strong. This research highlights the potential beneficial role of soil microbial communities in intercropping systems, while also reflecting on the relative importance of crop diversity compared to abiotic drivers of microbiomes and emphasizing the context-dependence of crop-microbe relationships.
Collapse
Affiliation(s)
- Laura Stefan
- Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Xu T, Jiang W, Qin D, Liu T, Zhang J, Chen W, Gao L. Characterization of the microbial communities in wheat tissues and rhizosphere soil caused by dwarf bunt of wheat. Sci Rep 2021; 11:5773. [PMID: 33707584 PMCID: PMC7952392 DOI: 10.1038/s41598-021-85281-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/26/2021] [Indexed: 11/11/2022] Open
Abstract
Dwarf bunt of wheat, which is caused by Tilletia controversa J.G. Kühn, is a soil-borne disease which may lead up to an 80% loss of yield together with degradation of the quality of the wheat flour by production of a fishy smell. In this study, high-throughput sequencing technology was employed to characterize the microbial composition of wheat tissues (roots, spikes, first stem under the ear, and stem base) and rhizosphere soil of wheat varieties that are resistant and susceptible to T. controversa. We observed that the soil fungal community abundance and diversity were higher in resistant varieties than in susceptible varieties in both inoculated and uninoculated wheat, and the abundances of Sordariomycetes and Mortierellomycetes increased in the resistant varieties infected with T. controversa, while the abundances of Dothideomycetes and Bacteroidia increased in the susceptible varieties. Regarding the bacteria present in wheat tissues, the abundances of Chloroflexi, Bacteroidetes, Gemmatimonadetes, Verrucomicrobia and Acidobacteria in the ear and the first stem under the ear were higher than those in other tissues. Our results indicated that the abundances of Sordariomycetes, Mortierellomycetes, Leotiomycetes, Chryseobacterium and Massilia were higher in T. controversa-infected resistant varieties than in their controls, that Dothideomycetes, Bacteroidia, Nocardioides and Pseudomonas showed higher abundances in T. controversa-infected susceptible varieties, and that Curtobacterium, Exiguobacterium, Planococcus, and Pantoea may have higher abundances in both T. controversa-infected susceptible and resistant varieties than in their own controls.
Collapse
Affiliation(s)
- Tongshuo Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenli Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Agriculture, Yangtze University, Jingzhou, China
| | - Dandan Qin
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianmin Zhang
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
49
|
Ahmad MZ, Zhang Y, Zeng X, Li P, Wang X, Benedito VA, Zhao J. Isoflavone malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by modifying synthesis and secretion of isoflavones. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1349-1369. [PMID: 33130852 DOI: 10.1093/jxb/eraa511] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 05/20/2023]
Abstract
Malonyl-CoA:flavonoid acyltransferases (MaTs) modify isoflavones, but only a few have been characterized for activity and assigned to specific physiological processes. Legume roots exude isoflavone malonates into the rhizosphere, where they are hydrolyzed into isoflavone aglycones. Soybean GmMaT2 was highly expressed in seeds, root hairs, and nodules. GmMaT2 and GmMaT4 recombinant enzymes used isoflavone 7-O-glucosides as acceptors and malonyl-CoA as an acyl donor to generate isoflavone glucoside malonates. GmMaT2 had higher activity towards isoflavone glucosides than GmMaT4. Overexpression in hairy roots of GmMaT2 and GmMaT4 produced more malonyldaidzin, malonylgenistin, and malonylglycitin, and resulted in more nodules than control. However, only GmMaT2 knockdown (KD) hairy roots showed reduced levels of malonyldaidzin, malonylgenistin, and malonylglycitin, and, likewise, reduced nodule numbers. These were consistent with the up-regulation of only GmMaT2 by rhizobial infection, and higher expression levels of early nodulation genes in GmMaT2- and GmMaT4-overexpressing roots, but lower only in GmMaT2-KD roots compared with control roots. Higher malonyl isoflavonoid levels in transgenic hairy roots were associated with higher levels of isoflavones in root exudates and more nodules, and vice versa. We suggest that GmMaT2 participates in soybean nodulation by catalyzing isoflavone malonylation and affecting malonyl isoflavone secretion for activation of Nod factor and nodulation.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangsheng Zeng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Vagner A Benedito
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
50
|
Igiehon NO, Babalola OO, Cheseto X, Torto B. Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiol Res 2021; 242:126640. [PMID: 33223380 DOI: 10.1016/j.micres.2020.126640] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Soybean (Glycine max L.) is among the most economically important legumes that provide more than 1/4 of food (for man) and animal feed. However, its yield is comparatively low, most especially under drought stress. The aim of this study therefore was to assess the ability of Rhizobium spp. and mycorrhizal fungi to enhance the yield, seed size and fatty acid content of soybean grown under semi-arid environment. Rhizobium sp. strain R1 was found to possess nitrogen-fixing gene coniferyl aldehyde dehydrogenase function while Rhizobium cellulosilyticum strain R3 was found to have nitrogen-fixing genes cysteine desulfurase SufS and cysteine desulfurase IscS activity. Soybean (Glycine max L) seeds inoculated with Rhizobium spp. and mycorrhizal fungi were cultivated in soil exposed to drought stress. Rhizobium spp. inoculation and mycorrhization alleviate drought stress and increase yield, size and fat content of soybean seeds. This increase in the aboveground parameters was accompanied with an increase in belowground mycorrhizal spore number, percentage root mycorrhization and aboveground shoot relative water content (RWC) in the dually inoculated (R1 + R3MY) soybean plants. In particular, the dually inoculated (R1 + R3MY) soybean plants revealed 34.3 g fresh weight, 15.1 g dry weight and soybean plants singly inoculated with Rhizobium sp. strain R1 (R1) produced more large seeds with 12.03 g dry weight. The non-inoculated (control) seeds contained a higher percentage of moisture content compared to the microbially amended seeds while seeds co-inoculated with Rhizobium cellulosilyticum strain R3 and mycorrhizal consortium revealed the highest percent (8.4 %) of fat. Several fatty acids that are of significant health benefits to humans were observed in the soybean seeds. In order to gain insights into the bacterial communities of rhizospheric soil collected at different stages of soybean growth, class-based Heat-map analysis was performed on the Miseq sequenced data. The core bacteria that were found in the rhizospheric soil were Verrumicrobia, Proteobacteria, Gemmatimonadetes, Firmicutes, Cyanobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Acidobacteria, Planctomycetes, Deinococcus thermus and Nitrospira suggesting that the rhizobia and fungi used in this study can also improve soil microbial diversity.
Collapse
Affiliation(s)
- Nicholas O Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa
| | - Olubukola O Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa.
| | - Xavier Cheseto
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|