1
|
Bo R, Wu J, Tao Y, Hong H, Peng W, Wang W, Wu W, Wang X, Liu M, Li J. Characterization of chitosan-coated PLGA nanoemulsion loaded with cepharanthine and inhibitory effect on Staphylococcus aureus pneumonia of mice. Int J Pharm 2025; 673:125396. [PMID: 40010528 DOI: 10.1016/j.ijpharm.2025.125396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Staphylococcus aureus (S. aureus), particularly methicillin-resistant strains (MRSA), poses a significant threat to global public health due to its resistance to conventional antibiotics. The urgent need for alternative treatments has highlighted cepharanthine (CEP), a bisbenzylisoquinoline alkaloid, known for its antiviral, antibacterial, and anti-inflammatory properties. However, the clinical application of CEP is constrained by several factors. These include the requirement for a high therapeutic dosage, low aqueous solubility, restricted oral absorption, and a short half - life. In this study, we developed a chitosan-coated Poly Lactic-co-Glycolic Acid (PLGA) nanoemulsion encapsulating CEP (CCPN) using the double-emulsion solvent evaporation method. The formulation was optimized to achieve ideal physicochemical properties, including a particle size of 588.13 ± 31.87 nm and a zeta potential of 48.60 ± 1.00 mV, ensuring stability and uniformity. Biological evaluations demonstrated that CCPN effectively inhibited hemolysis, suppressed biofilm formation, disrupted mature biofilms, and displayed potent antibacterial activity against S. aureus. In vivo studies using a murine pneumonia model revealed that CCPN significantly alleviated lung damage, reduced bacterial load, mitigated inflammatory responses, and improved survival rates of mice infected with S. aureus or MRSA. These findings highlight CCPN as a promising therapeutic strategy for treating bacterial pneumonia. This novel nanoemulsion effectively tackles the key limitations in antimicrobial therapy by boosting the solubility, stability, and antibacterial efficacy of CEP. It holds great promise in the fight against antibiotic - resistant infections and shows substantial potential for promoting the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Ruonan Bo
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiahao Wu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ya Tao
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hailong Hong
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weilong Peng
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weimei Wang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weihua Wu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoguang Wang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jingui Li
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
El Oirdi M, Farhan M. Clinical Trial Findings and Drug Development Challenges for Curcumin in Infectious Disease Prevention and Treatment. Life (Basel) 2024; 14:1138. [PMID: 39337921 PMCID: PMC11432846 DOI: 10.3390/life14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Since ancient times, turmeric, scientifically known as Curcuma longa, has been renowned for its therapeutic properties. Recently, extensive documentation has highlighted the prevalence of microbial diseases without effective treatments, the increased expense of certain antimicrobial medications, and the growing occurrence of antimicrobial drug resistance. Experts predict that drug resistance will emerge as a significant global cause of death by the middle of this century, thereby necessitating intervention. Curcumin, a major curcuminoid molecule, has shown extensive antimicrobial action. Improving and altering the use of natural antimicrobial agents is the most effective approach to addressing issues of targeted specificity and drug resistance in chemically synthesized medicines. Further research is required to explore the efficacy of curcumin and other natural antimicrobial substances in combating microbial infections. The solubility and bioavailability of curcumin impede its antimicrobial capability. To enhance curcumin's antimicrobial effectiveness, researchers have recently employed several methods, including the development of curcumin-based nanoformulations. This review seeks to compile the latest available literature to assess the advantages of curcumin as a natural antimicrobial agent (particularly antiviral and antibacterial) and strategies to enhance its medical efficacy. The future application of curcumin will help to alleviate microbial infections, thereby promoting the sustainability of the world's population.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Chemistry, College of Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Kaur B, Chaudhary GR, Kaur G. Cholesterol vs Ergosterol: Influence on the Dynamic and Structural Properties of the Cobalt-Based Metallosomal Bilayer Membrane. Mol Pharm 2024; 21:3643-3660. [PMID: 38885973 DOI: 10.1021/acs.molpharmaceut.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Sterol derivatives are a crucial part of liposomes, as their concentration and nature can induce significant alternations in their characteristic features. For natural liposomal-based (phospholipid-based) studies, the bulk literature is already present depicting the role of the concentration or nature of different sterol derivatives in modulation of membrane properties. However, the studies aiming at evaluating the effect of sterol derivatives on synthetic liposomal assemblies are limited to cholesterol (Chl), and a comparative effect with other sterol derivatives, such as ergosterol (Erg), has never been studied. To fill this research gap, through this work, we intend to provide insights into the concentration-dependent effect of two sterol derivatives (Chl and Erg) on a synthetic liposomal assembly (i.e., metallosomes) prepared via thin film hydration route using a double-tailed metallosurfactant fabricated by modifying cetylpyridinium chloride with cobalt (Co) (i.e., Co:CPC II). The morphological evaluations with cryogenic-transmission electron microscopy (cryo-TEM), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) indicated that metallosomes retained their spherical morphology irrespective of the nature and concentration of sterol derivatives. However, the size, ζ-potential, and lamellar width values were significantly modified with the incorporation of sterol derivatives in a concentration-dependent manner. In-depth studies affirmed that the extent of modulation of the bilayer in terms of hydrophobicity, fluidity, and rigidity was more severe with Chl than Erg. Such differences in the membrane properties lead to their contrasting behavior in the delivery of the broad-spectrum active compound "curcumin". From entrapment to in vitro behavior, the metallosomes demonstrated dissimilar behavior as even though Erg-modified metallosomes (at higher concentrations of Erg) exhibited low entrapment efficiency, they still could easily release >80% of the entrapped drug. In vitro studies conducted with Staphylococcus aureus bacterial cultures further revealed an interesting pattern of activity as the incorporation of Chl reduced the toxicity of the self-assembly, whereas their Erg-modified counterparts yielded slightly augmented toxicity toward these bacterial cells. Furthermore, Chl- and Erg-modified assemblies also exhibited contrasting behavior in their interaction studies with bacterial DNA.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
4
|
Alqahtani M, Almukainzi M, Alghoribi MF, El-Mahdy AM. Antivirulence Effects of Trans-Resveratrol and Curcumin on Methicillin-Resistant Staphylococcus aureus (MRSA) from Saudi Arabia. Life (Basel) 2024; 14:491. [PMID: 38672761 PMCID: PMC11051421 DOI: 10.3390/life14040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common resistant bacterium, whose resistance has expanded to commonly used antibiotics. It is crucial to create novel treatments to tackle bacterial resistance. Trans-resveratrol and curcumin are naturally occurring phenolic compounds, whose effects on MRSA virulence are the subject of this investigation. Sub-MICs of trans-resveratrol and curcumin were tested on the virulence factors of 50 MRSA clinical isolates (CIs), including biofilm, hemolysin, hemagglutination, protease, and lecithinase. The distribution of the virulence factors of the CIs was as follows: hemolysin: 98%, hemagglutination: 70%, protease: 62%, biofilm: 56%, and lecithinase: 52%. The sub-MIC that could reduce the effect of the tested virulence factors by 50% or more (IC50) was observed in the strains that showed susceptibility to the individual administration of trans-resveratrol at 50 µg/mL and curcumin at 20 µg/mL. Hemagglutination and hemolysin activity were inhibited by at least 50% in the majority of CIs (57-94%). Meanwhile, the IC50 for protease and biofilm was observed in 6.5-17.8% of the CIs. A few of the CIs were susceptible to lecithinase inhibition, but all showed a full inhibition. This research supports the possibility of the use of these compounds to reduce the bacterial virulence that can reduce antibiotic utilization, and eventually, they can become a potential alternative treatment in combating bacterial resistance.
Collapse
Affiliation(s)
- Maisa Alqahtani
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Areej M. El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
5
|
El-Mahdy AM, Alqahtani M, Almukainzi M, Alghoribi MF, Abdel-Rhman SH. Effect of Resveratrol and Curcumin on Gene Expression of Methicillin-Resistant Staphylococcus aureus (MRSA) Toxins. J Microbiol Biotechnol 2024; 34:141-148. [PMID: 37986579 PMCID: PMC10840468 DOI: 10.4014/jmb.2309.09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen that can lead to a number of potentially terrible community- and hospital-acquired illnesses. Among the diverse set of virulence factors that S. aureus possesses, secreted toxins play a particularly preeminent role in defining its virulence. In this work, we aimed to facilitate the development of novel strategies utilizing natural compounds to lower S. aureus's toxin production and consequently enhance therapeutic approaches. Two natural polyphenols, resveratrol (RSV) and curcumin (CUR), were tested for their effect on reducing toxin gene production of MRSA isolates. Fifty clinical MRSA isolates were gathered from Riyadh and Jeddah. Molecular screening of toxin genes (sea, seb, sec, sed, seh, lukF, and lukS) harbored by MRSA was performed. Sub-inhibitory concentrations of RSV (50 μg/ml) and CUR (20 μg/ml) were determined to study their effect on the gene expression MRSA's toxin genes. Our findings revealed the presence of the tested genes in MRSA isolates, with lukF being the most prevalent gene and seh the least detected gene. We found that RSV reduced the relative expression of toxin genes, sea, seb, lukF, and lukS, respectively, while CUR decreased the relative expression of sea and seb genes in the examined isolates. Regarding lukF and lukS, CUR downregulated the expression of both genes in some isolates and upregulated the expression in other isolates. From these results, we concluded that RSV and CUR could be used as alternative therapeutic approaches to treat MRSA infections through reducing toxin production.
Collapse
Affiliation(s)
- Areej M. El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Maisa Alqahtani
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Shaymaa H Abdel-Rhman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Taibah University, AlMadinah Al Munawwarah, Saudi Arabia
| |
Collapse
|
6
|
Goc A, Sumera W, Rath M, Niedzwiecki A. Inhibitory effect of theaflavin-3,3'-digallate can involve its binding to the "stem" domain of α-hemolysin of Staphylococcus aureus. Eur J Microbiol Immunol (Bp) 2023; 13:83-87. [PMID: 37856196 PMCID: PMC10668921 DOI: 10.1556/1886.2023.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Infections caused by Staphylococcus aureus are currently a worldwide threat affecting millions of individuals. The pathogenicity of S. aureus is associated with numerous virulence factors, including cell surface proteins, polysaccharides, and secreted toxins. The pore-forming α-hemolysin, known as α-toxin, is produced by nearly all virulent strains of S. aureus and is implicated in several diseases including skin and soft tissue infections, atopic dermatitis, and pneumonia. There are currently no vaccines available for the prevention of S. aureus infections and the efficacy of available antibiotics has been fading. In this study we examined the mode of antihemolytic activity of theaflavin-3,3'-digallate against α-hemolysin of methicillin-resistant S. aureus by molecular docking using AutoDock Vina as the molecular docking tool. The theaflavin-3,3'-digallate docked the molecular sequence of the Hla (PDB ID:7ahl). The scores of the top 10 binding modes obtained were between -9.0 and -8.5 kcal mol-1, and the best binding mode was -9.0 kcal mol-1. Direct binding sites of theaflavin-3,3'-digallate to the "stem" domain of Hla were revealed which primarily targeted of the residues Met113, Thr117, Asn139. The disclosure of this potential binding mode warrants further clinical evaluation of theaflavin-3,3'-digallate as an anti-hemolytic compound in order to practically validate our results.
Collapse
Affiliation(s)
- Anna Goc
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, CA, United States of America
| | - Waldemar Sumera
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, CA, United States of America
| | - Matthias Rath
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, CA, United States of America
| | - Aleksandra Niedzwiecki
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, CA, United States of America
| |
Collapse
|
7
|
Goc A, Sumera W, Rath M, Niedzwiecki A. Inhibition of α-hemolysin activity of Staphylococcus aureus by theaflavin 3,3'-digallate. PLoS One 2023; 18:e0290904. [PMID: 37651426 PMCID: PMC10470925 DOI: 10.1371/journal.pone.0290904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
The ongoing rise in antibiotic resistance, and a waning of the introduction of new antibiotics, has resulted in limited treatment options for bacterial infections, including these caused by methicillin-resistant Staphylococcus aureus, leaving the world in a post-antibiotic era. Here, we set out to examine mechanisms by which theaflavin 3,3'-digallate (TF3) might act as an anti-hemolytic compound. In the presented study, we found that TF3 has weak bacteriostatic and bactericidal effects on Staphylococcus aureus, and strong inhibitory effect towards the hemolytic activity of its α-hemolysin (Hla) including its production and secretion. A supportive SPR assay reinforced these results and further revealed binding of TF3 to Hla with KD = 4.57×10-5 M. Interestingly, TF3 was also able to protect human primary keratinocytes from Hla-induced cell death, being at the same time non-toxic for them. Further analysis of TF3 properties revealed that TF3 blocked Hla-prompting immune reaction by inhibiting production and secretion of IL1β, IL6, and TNFα in vitro and in vivo, through affecting NFκB activity. Additionally, we observed that TF3 also markedly attenuated S. aureus-induced barrier disruption, by inhibiting Hla-triggered E-cadherin and ZO-1 impairment. Overall, by blocking activity of Hla, TF3 subsequently subdued the inflammation and protected the epithelial barrier, which is considered as beneficial to relieving skin injury.
Collapse
Affiliation(s)
- Anna Goc
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Waldemar Sumera
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Matthias Rath
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Aleksandra Niedzwiecki
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| |
Collapse
|
8
|
Jiang JY, Wen H, Jiang M, Tian J, Dong LX, Shi ZC, Zhou T, Lu X, Liang HW. Dietary Curcumin Supplementation Could Improve Muscle Quality, Antioxidant Enzyme Activities and the Gut Microbiota Structure of Pelodiscus sinensis. Animals (Basel) 2023; 13:2626. [PMID: 37627417 PMCID: PMC10451759 DOI: 10.3390/ani13162626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This experiment aimed to assess the impact of different dietary curcumin (CM) levels on growth, muscle quality, serum-biochemical parameters, antioxidant-enzyme activities, gut microbiome, and liver transcriptome in Chinese soft-shelled turtles (Pelodiscus sinensis). Five experimental diets were formulated to include graded levels of curcumin at 0 (control, CM0), 0.5 (CM0.5), 1 (CM1), 2 (CM2) and 4 g/kg (CM4). Each diet was randomly distributed to quadruplicate groups of turtles (164.33 ± 5.5 g) for 6 weeks. Our findings indicated that dietary curcumin supplementation did not have a significant influence on growth performance (p > 0.05); however, it significantly improved the muscular texture profiles (p < 0.05). Serum total superoxide dismutase (SOD), liver catalase (CAT), and total antioxidant capacity (T-AOC) activities increased significantly as dietary curcumin levels rose from 0.5 to 4 g/kg (p < 0.05). Dietary curcumin supplementation improved gut microbiota composition, as evidenced by an increase in the proportion of dominant bacteria such as Lactobacillus and Flavobacterium. Liver transcriptome analysis revealed that curcumin altered metabolic pathways in the liver. In conclusion, based on the evaluation of the activities of SOD in serum and CAT in liver under current experimental design, it was determined that the appropriate dietary curcumin supplementation for Chinese soft-shelled turtles is approximately 3.9 g/kg.
Collapse
Affiliation(s)
- Jia-Yuan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Li-Xue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Ze-Chao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Xing Lu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Hong-Wei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| |
Collapse
|
9
|
Electrophysiological and spectroscopic investigation of hydrolysable tannins interaction with α-hemolysin of S. aureus. Bioelectrochemistry 2023; 150:108318. [PMID: 36470005 DOI: 10.1016/j.bioelechem.2022.108318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
In this study, using bilayer lipid membrane technique, we report a novel facet of antihemolytic activity of two tannins (1,2,3,4,5-penta-O-galloyl-β-D-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-β-D-glucose (dGVG)), which consists in inhibiting the formation of α-hemolysin channels and blocking the conductivity of already formed channels. These effects were observed at tannin concentrations well below minimal inhibitory concentration values for S. aureus growth. Using spectroscopic methods, we show that these two tannins differing in molecular structure but having the same number of -OH groups and aromatic rings form firm complexes with hemolysin in aqueous solutions, which may underlie the disruption of its subsequent interaction with the membrane, thus preventing hemolysis of erythrocytes. In all experimental settings, PGG was the more active compound compared to dGVG, that indicates the important role of the flexibility of the tannin molecule in interaction with the toxin. In addition, we found that PGG, but not dGVG, was able to block the release of the toxin by bacterial cells. This toxin is a strong pathogenic factor causing a number of diseases and therefore is considered as a virulence target for treatment of S. aureus infection, so the data obtained suggest that PGG and possibly other tannins of similar structure have therapeutic potential in fighting the virulence of S. aureus.
Collapse
|
10
|
Zhang W, Gong Q, Tang Z, Ma X, Wang Z, Guan J, Wang L, Zhao Y, Yan M. The natural product, echinatin, protects mice from methicillin-resistant Staphylococcus aureus pneumonia by inhibition of alpha-hemolysin expression. Front Microbiol 2023; 14:1128144. [PMID: 37125192 PMCID: PMC10140358 DOI: 10.3389/fmicb.2023.1128144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 05/02/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global, multifaceted crisis that poses significant challenges to the successful eradication of devastating pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA), a persistent superbug that causes devastating infections. The scarcity of new antibacterial drugs is obvious, and antivirulence strategies that reduce the pathogenicity of bacteria by weakening their virulence have become the subject of intense investigation. Alpha-hemolysin (Hla), a cytolytic pore-forming toxin, has a pivotal role in S. aureus pathogenesis. Here, we demonstrated that echinatin, a natural compound isolated from licorice, effectively inhibited the hemolytic activity of MRSA at 32 μg/mL. In addition, echinatin did not interfere with bacterial growth and had no significant cytotoxicity at the inhibitory concentration of S. aureus hemolysis. Heptamer formation tightly correlated with Hla-mediated cell invasion, whereas echinatin did not affect deoxycholic acid-induced oligomerization of Hla. Echinatin affected hemolytic activity through indirect binding to Hla as confirmed by the neutralization assay and cellular thermal shift assay (CETSA). Furthermore, qRT-PCR and western blot analyses revealed that echinatin suppressed Hla expression at both the mRNA and protein levels as well as the transcript levels of Agr quorum-sensing system-related genes. Additionally, when echinatin was added to a coculture system of A549 cells and S. aureus, it significantly reduced cell damage. Importantly, echinatin exhibited a significant therapeutic effect in an MRSA-induced mouse pneumonia model. In conclusion, the present findings demonstrated that echinatin significantly inhibits the hemolysin effect and may be a potential candidate compound for combating drug-resistant MRSA infections.
Collapse
Affiliation(s)
- Wei Zhang
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qing Gong
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhitong Tang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xin Ma
- Jilin Provincial Cancer Hospital, Changchun, China
| | - Zhuoer Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yan
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ming Yan,
| |
Collapse
|
11
|
Chen Y, Hu H, Huang F, Ling Z, Chen B, Tan B, Wang T, Liu X, Liu C, Zou X. Cocktail of isobavachalcone and curcumin enhance eradication of Staphylococcus aureus biofilm from orthopedic implants by gentamicin and alleviate inflammatory osteolysis. Front Microbiol 2022; 13:958132. [PMID: 36212814 PMCID: PMC9537636 DOI: 10.3389/fmicb.2022.958132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic device-related infection (ODRI) caused by Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) biofilm may lead to persist infection and severe inflammatory osteolysis. Previous studies have demonstrated that both isobavachalcone and curcumin possess antimicrobial activity, recent studies also reveal their antiosteoporosis, anti-inflammation, and immunoregulatory effect. Thus, this study aims to investigate whether the combination of isobavachalcone and curcumin can enhance the anti-S. aureus biofilm activity of gentamicin and alleviate inflammatory osteolysis in vivo. EUCAST and a standardized MBEC assay were used to verify the synergy between isobavachalcone and curcumin with gentamicin against planktonic S. aureus and its biofilm in vitro, then the antimicrobial and immunoregulatory effect of cocktail therapy was demonstrated in a femoral ODRI mouse model in vivo by μCT analysis, histopathology, quantification of bacteria in bone and myeloid-derived suppressor cell (MDSC) in bone marrow. We tested on standard MSSA ATCC25923 and MRSA USA300, 5 clinical isolated MSSA, and 2 clinical isolated MRSA strains and found that gentamicin with curcumin (62.5–250 μg/ml) and gentamicin with isobavachalcone (1.56 μg/ml) are synergistic against planktonic MSSA, while gentamicin (128 μg/ml) with curcumin (31.25–62.5, 250–500 μg/ml) and gentamicin (64–128 μg/ml) with isobavachalcone (1.56–12.5 μg/ml) exhibit synergistic effect against MSSA biofilm. Results of further study revealed that cocktail of 128 μg/ml gentamicin together with 125 μg/ml curcumin +6.25 μg/ml isobavachalcone showed promising biofilm eradication effect with synergy against USA300 biofilm in vitro. Daily intraperitoneal administration of 20 mg/kg/day isobavachalcone, 20 mg/kg/day curcumin, and 20 mg/kg/day gentamicin, can reduce inflammatory osteolysis and maintain microarchitecture of trabecular bone during orthopedic device-related MRSA infection in mice. Cocktail therapy also enhanced reduction of MDSC M1 polarization in peri-implant tissue, suppression of MDSC amplification in bone marrow, and Eradication of USA300 biofilm in vivo. Together, these results suggest that the combination of isobavachalcone and curcumin as adjuvants administrated together with gentamicin significantly enhances its antimicrobial effect against S. aureus biofilm, and can also modify topical inflammation in ODRI and protect bone microstructure in vivo, which may serve as a potential treatment strategy, especially for S. aureus induced ODRI.
Collapse
Affiliation(s)
- Yan Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Hu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fangli Huang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bolin Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bizhi Tan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingxuan Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chun Liu,
| | - Xuenong Zou
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xuenong Zou,
| |
Collapse
|
12
|
Sharaf M, Sewid AH, Hamouda HI, Elharrif MG, El-Demerdash AS, Alharthi A, Hashim N, Hamad AA, Selim S, Alkhalifah DHM, Hozzein WN, Abdalla M, Saber T. Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus. Microbiol Spectr 2022; 10:e0025022. [PMID: 35852338 PMCID: PMC9430161 DOI: 10.1128/spectrum.00250-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023] Open
Abstract
Surface-growing antibiotic-resistant pathogenic bacteria such as Escherichia coli and Staphylococcus aureus are emerging as a global health challenge due to dilemmas in clinical treatment. Furthermore, their pathogenesis, including increasingly serious antimicrobial resistance and biofilm formation, makes them challenging to treat by conventional therapy. Therefore, the development of novel antivirulence strategies will undoubtedly provide a path forward in combatting these resistant bacterial infections. In this regard, we developed novel biosurfactant-coated nanoparticles to combine the antiadhesive/antibiofilm properties of rhamnolipid (RHL)-coated Fe3O4 nanoparticles (NPs) with each of the p-coumaric acid (p-CoA) and gallic acid (GA) antimicrobial drugs by using the most available polymer common coatings (PVA) to expand the range of effective antibacterial drugs, as well as a mechanism for their synergistic effect via a simple method of preparation. Mechanistically, the average size of bare Fe3O4 NPs was ~15 nm, while RHL-coated Fe3O4@PVA@p-CoA/GA was about ~254 nm, with a drop in zeta potential from -18.7 mV to -34.3 mV, which helped increase stability. Our data show that RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs can remarkably interfere with bacterial growth and significantly inhibited biofilm formation to more than 50% via downregulating IcaABCD and CsgBAC operons, which are responsible for slime layer formation and curli fimbriae production in S. aureus and E. coli, respectively. The novelty regarding the activity of RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs reveals their potential effect as an alternative multitarget antivirulence candidate to minimize infection severity by inhibiting biofilm development. Therefore, they could be used in antibacterial coatings and wound dressings in the future. IMPORTANCE Antimicrobial resistance poses a great threat and challenge to humanity. Therefore, the search for alternative ways to target and eliminate microbes from plant, animal, and marine microorganisms is one of the world's concerns today. Furthermore, the extraordinary capacity of S. aureus and E. coli to resist standard antibacterial drugs is the dilemma of all currently used remedies. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have become widespread, leading to no remedies being able to treat these threatening pathogens. The most widely recognized serotypes that cause severe foodborne illness are E. coli O157:H7, O26:H11, and O78:H10, and they display increasing antimicrobial resistance rates. Therefore, there is an urgent need for an effective therapy that has dual action to inhibit biofilm formation and decrease bacterial growth. In this study, the synthesized RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs have interesting properties, making them excellent candidates for targeted drug delivery by inhibiting bacterial growth and downregulating biofilm-associated IcaABCD and CsgBAC gene loci.
Collapse
Affiliation(s)
- Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Alaa H. Sewid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - H. I. Hamouda
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Mohamed G. Elharrif
- Department of Basic Medical Sciences, Shaqra University, Shaqraa, Kingdom of Saudi Arabia
| | | | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Nada Hashim
- General Practitioner, Faculty of Medicine, University of Gezira, Wad Medani, Sudan
| | - Anas Abdullah Hamad
- Department of Medical Laboratory Techniques, Al Maarif University College, Al Anbar, Ramadi, Iraq
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohnad Abdalla
- Department of Biotechnology, Faculty of Science and Technology, Shendi University, Shendi, Nher Anile, Sudan
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Yu H, Liu J, Wang L, Guan S, Jin Y, Zheng J, Xiang H, Wang D, Liu D. 2,3-Dehydrokievitone combats methicillin-resistant Staphylococcus aureus infection by reducing alpha-hemolysin expression. Front Microbiol 2022; 13:969215. [PMID: 36090058 PMCID: PMC9454091 DOI: 10.3389/fmicb.2022.969215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Due to powerful drug resistance and fatal toxicity of methicillin-resistant Staphylococcus aureus (MRSA), therapeutic strategies against virulence factors present obvious advantages since no evolutionary pressure will induce bacterial resistance. Alpha-hemolysin (Hla) is an extracellular toxin secreted by Staphylococcus aureus and contributes to bacterial pathogenicity. Herein, we identified a natural product 2,3-dehydrokievitone (2,3-DHKV) for inhibiting Hla activity of MRSA strain USA300 but not affecting bacteria growth. 2,3-DHKV significantly decreased hemolysin expression in a dose-dependent manner, but it did not potently neutralize hemolysin activity. Subsequently, cellular thermal shift and heptamer formation assays confirmed that 2,3-DHK affects hemolytic activity through indirect binding to Hla. RT-qPCR and western blot revealed that 2,3-DHKV suppressed Hla expression at the mRNA and protein levels, and further decreased accessory gene regulator A (agrA) transcription levels. We also observed that 2,3-DHK significantly attenuated the damage of A549 cells by S. aureus and reduced the release of lactate dehydrogenase (LDH). Moreover, in the MRSA-induced pneumonia mouse model, 2,3-DHK treatment prolonged the life span of mice and reduced the bacterial load in the lungs, which significantly alleviated the damage to the lungs. In summary, this study proved that 2,3-DHK as a Hla inhibitor is a potential antivirulence agent against MRSA infection.
Collapse
Affiliation(s)
- Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Jingyu Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Li Wang
- College of Animal Science, Jilin University, Changchun, China
- Changchun University of Chinese Medicine, Changchun, China
| | - Shuhan Guan
- College of Animal Science, Jilin University, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Jianze Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Hua Xiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
14
|
Bian N, Chen X, Ren X, Yu Z, Jin M, Chen X, Liu C, Luan Y, Wei L, Chen Y, Song W, Zhao Y, Wang B, Jiang T, Zhang C, Shu Z, Su X, Wang L. 7,8-Dihydroxyflavone attenuates the virulence of Staphylococcus aureus by inhibiting alpha-hemolysin. World J Microbiol Biotechnol 2022; 38:200. [PMID: 35995893 DOI: 10.1007/s11274-022-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus (S. aureus), a Gram-positive bacteria, is an incurable cause of hospital and community-acquired infections. Inhibition bacterial virulence is a viable strategy against S. aureus infections based on the multiple virulence factors secreted by S. aureus. Alpha-hemolysin (Hla) plays a crucial role in bacteria virulence without affecting bacterial viability. Here, we identified that 7,8-Dihydroxyflavone (7,8-DHF), a natural compound, was able to decrease the expression of and did not affect the in vitro growth of S. aureus USA300 at a concentration of 32 μg/mL. It was verified by western blot and RT-qPCR that the natural compound could inhibit the transcription and translation of Hla. Further mechanism studies revealed that 7,8-DHF has a negative effect on transcriptional regulator agrA and RNAIII, preventing the upregulation of virulence gene. Cytotoxicity assays showed that 7,8-DHF did not produce significant cytotoxicity to A549 cells. Animal experiments showed that the combination of 7,8-DHF and vancomycin had a more significant therapeutic effect on S. aureus infection, reflecting the synergistic effect of 7,8-DHF with antibiotics. In conclusion, 7,8-DHF was able to target Hla to protect host cells from hemolysis while limiting the development of bacterial resistance.
Collapse
Affiliation(s)
- Nan Bian
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangqian Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinran Ren
- School of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Zishu Yu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoyu Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chang Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yanhe Luan
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Chen
- The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chi Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zunhua Shu
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130118, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
15
|
Ren X, Guo X, Liu C, Jing S, Wang T, Wang L, Guan J, Song W, Zhao Y, Shi Y. Natural Flavone Hispidulin Protects Mice from Staphylococcus aureus Pneumonia by Inhibition of α-Hemolysin Production via Targeting AgrAC. Microbiol Res 2022; 261:127071. [DOI: 10.1016/j.micres.2022.127071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
16
|
Wang X, Ma Q, Niu X, Liu Z, Kang X, Mao Y, Li N, Wang G. Inhibitory Effect of Andrographis paniculata Lactone on Staphylococcus aureus α-Hemolysin. Front Pharmacol 2022; 13:891943. [PMID: 35571108 PMCID: PMC9091351 DOI: 10.3389/fphar.2022.891943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of andrographolide (AP) on the hemolytic capacity of Staphylococcus aureus (S. aureus) isolated from our region. AP is a labdane diterpenoid isolated from the stem and leaves of Andrographis paniculata. The hla gene from 234 S. aureus strains and the quality control standard strain ATCC29213 in dairy cows in some areas of Ningxia was analyzed. Evolutionary analysis, homology modeling, and functional enrichment annotation of α-hemolysin Hla detected from our region were performed through bioinformatics. The hemolytic ability of S. aureus isolates from the region was examined using the hemolysis test, and the effect of AP on S. aureus was quantified. Moreover, the effect of AP on the transcript levels of hla and genes highly related to hla (i.e., clfA and fnbA) was examined through fluorescence quantitative PCR. The mode of action of AP on the detected Hla was analyzed through molecular docking and dynamic simulation. The results showed that S. aureus in our region has a high rate of hla carriage. The hemolytic activity of strains NM98 and XF10 was significant, and ATCC29213 also exhibited some hemolytic activity. AP could inhibit the expression of Hla and its related proteins by downregulating hla, clfA, and fnbA transcript levels, which in turn attenuated the S. aureus hemolytic activity. Meanwhile, the AP molecule can form three hydrogen bonds with residues ASN105, SER106, and THR155 of Hla protein; bind with PRO103 through alkyl intermolecular forces; and form carbon hydrogen bonds with LYS154, reflecting that the AP molecule has a comparatively ideal theoretical binding activity with Hla protein. Among them, PRO103 and LYS154 are highly conserved in Hla protein molecules and play pivotal roles in the biological functions of Hla, and their binding may affect these functions. Their binding may also prevent the conformational transition of Hla from a monomer to an oligomer, thus inhibiting Hla hemolytic activity. This study offers a molecular basis for use of AP as an antivirulence drug and new ideas for developing novel drugs against S. aureus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guiqin Wang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
17
|
Luteolin attenuates the pathogenesis of Staphylococcus aureus by interfering with the agr system. Microb Pathog 2022; 165:105496. [DOI: 10.1016/j.micpath.2022.105496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
|
18
|
Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, Arciola CR. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics (Basel) 2022; 11:322. [PMID: 35326785 PMCID: PMC8944843 DOI: 10.3390/antibiotics11030322] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Curcumin is a bioactive compound that is extracted from Curcuma longa and that is known for its antimicrobial properties. Curcuminoids are the main constituents of curcumin that exhibit antioxidant properties. It has a broad spectrum of antibacterial actions against a wide range of bacteria, even those resistant to antibiotics. Curcumin has been shown to be effective against the microorganisms that are responsible for surgical infections and implant-related bone infections, primarily Staphylococcus aureus and Escherichia coli. The efficacy of curcumin against Helicobacter pylori and Mycobacterium tuberculosis, alone or in combination with other classic antibiotics, is one of its most promising antibacterial effects. Curcumin is known to have antifungal action against numerous fungi that are responsible for a variety of infections, including dermatophytosis. Candidemia and candidiasis caused by Candida species have also been reported to be treated using curcumin. Life-threatening diseases and infections caused by viruses can be counteracted by curcumin, recognizing its antiviral potential. In combination therapy with other phytochemicals, curcumin shows synergistic effects, and this approach appears to be suitable for the eradication of antibiotic-resistant microbes and promising for achieving co-loaded antimicrobial pro-regenerative coatings for orthopedic implant biomaterials. Poor water solubility, low bioavailability, and rapid degradation are the main disadvantages of curcumin. The use of nanotechnologies for the delivery of curcumin could increase the prospects for its clinical application, mainly in orthopedics and other surgical scenarios. Curcumin-loaded nanoparticles revealed antimicrobial properties against S. aureus in periprosthetic joint infections.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40136 Bologna, Italy
| |
Collapse
|
19
|
Proof-of-Concept Preclinical Use of Drosophila melanogaster in the Initial Screening of Immunomodulators. Sci Pharm 2022. [DOI: 10.3390/scipharm90010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Drug discovery is a complex process, and the use of a comprehensive approach is deemed necessary to discover new chemical entities with novel mechanisms of action. This research was carried out to determine whether Drosophila melanogaster can serve as an appropriate model organism in the initial screening of drug candidates with immunomodulatory activities. To test this, we performed phenotypic assay and molecular analysis to investigate the immunomodulatory activities of aspirin, dexamethasone, curcumin, and epigallocatechin gallate (EGCG), that have been reported to yield such effects in the mammalian model system. In vivo survival analysis demonstrated that all drugs/compounds were relatively safe at the tested concentrations. In the infection assay, curcumin and EGCG showed a protective signature to bacterial infection in flies lacking Toll-mediated immune responses. Furthermore, dexamethasone and aspirin, drugs with immunosuppressive activity, could improve the survival of PGRP-LBΔ mutant flies with hyperactivated immune system. These phenotypes were supported by RT-qPCR-based molecular analysis, revealing that drugs/compounds used in this study could modulate the expression level of genes related to the immune system. In conclusion, while curcumin and EGCG could promote the improvement of fly survival against infection, aspirin and dexamethasone were able to suppress overactivation of immune responses in D. melanogaster. These results are in line with the ones observed in the mammalian model system, further emphasizing the notion that flies would serve as a prospective model organism in the initial screening of drug candidates for their immunomodulatory activities prior to further checking in the mammalian animal models. In the end, this will reduce the use of mammalian animal models for preliminary experiments in an effort to discover/repurpose drugs with immunomodulatory activity.
Collapse
|
20
|
Singh M, Rupesh N, Pandit SB, Chattopadhyay K. Curcumin Inhibits Membrane-Damaging Pore-Forming Function of the β-Barrel Pore-Forming Toxin Vibrio cholerae Cytolysin. Front Microbiol 2022; 12:809782. [PMID: 35140698 PMCID: PMC8818996 DOI: 10.3389/fmicb.2021.809782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a β-barrel pore-forming toxin (β-PFT). Upon encountering the target cells, VCC forms heptameric β-barrel pores and permeabilizes the cell membranes. Structure-function mechanisms of VCC have been extensively studied in the past. However, the existence of any natural inhibitor for VCC has not been reported yet. In the present study, we show that curcumin can compromise the membrane-damaging activity of VCC. Curcumin is known to modulate a wide variety of biological processes and functions. However, the application of curcumin in the physiological scenario often gets limited due to its extremely poor solubility in the aqueous environment. Interestingly, we find that VCC can associate with the insoluble fraction of curcumin in the aqueous medium and thus gets separated from the solution phase. This, in turn, reduces the availability of VCC to attack the target membranes and thus blocks the membrane-damaging action of the toxin. We also observe that the soluble aqueous extract of curcumin, generated by the heat treatment, compromises the pore-forming activity of VCC. Interestingly, in the presence of such soluble extract of curcumin, VCC binds to the target membranes and forms the oligomeric assembly. However, such oligomers appear to be non-functional, devoid of the pore-forming activity. The ability of curcumin to bind to VCC and neutralize its membrane-damaging activity suggests that curcumin has the potential to act as an inhibitor of this potent bacterial β-PFT.
Collapse
|
21
|
Yin H, Zhou M, Chen X, Wan TF, Jin L, Rao SS, Tan YJ, Duan R, Zhang Y, Wang ZX, Wang YY, He ZH, Luo MJ, Hu XK, Wang Y, Situ WY, Tang SY, Liu WE, Chen CY, Xie H. Fructose-coated Ångstrom silver prevents sepsis by killing bacteria and attenuating bacterial toxin-induced injuries. Am J Cancer Res 2021; 11:8152-8171. [PMID: 34373734 PMCID: PMC8344005 DOI: 10.7150/thno.55334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/28/2021] [Indexed: 11/29/2022] Open
Abstract
Serious infection caused by multi-drug-resistant bacteria is a major threat to human health. Bacteria can invade the host tissue and produce various toxins to damage or kill host cells, which may induce life-threatening sepsis. Here, we aimed to explore whether fructose-coated Ångstrom-scale silver particles (F-AgÅPs), which were prepared by our self-developed evaporation-condensation system and optimized coating approach, could kill bacteria and sequester bacterial toxins to attenuate fatal bacterial infections. Methods: A series of in vitro assays were conducted to test the anti-bacterial efficacy of F-AgÅPs, and to investigate whether F-AgÅPs could protect against multi-drug resistant Staphylococcus aureus (S. aureus)- and Escherichia coli (E. coli)-induced cell death, and suppress their toxins (S. aureus hemolysin and E. coli lipopolysaccharide)-induced cell injury or inflammation. The mouse models of cecal ligation and puncture (CLP)- or E. coli bloodstream infection-induced lethal sepsis were established to assess whether the intravenous administration of F-AgÅPs could decrease bacterial burden, inhibit inflammation, and improve the survival rates of mice. The levels of silver in urine and feces of mice were examined to evaluate the excretion of F-AgÅPs. Results: F-AgÅPs efficiently killed various bacteria that can cause lethal infections and also competed with host cells to bind with S. aureus α-hemolysin, thus blocking its cytotoxic activity. F-AgÅPs inhibited E. coli lipopolysaccharide-induced endothelial injury and macrophage inflammation, but not by directly binding to lipopolysaccharide. F-AgÅPs potently reduced bacterial burden, reversed dysregulated inflammation, and enhanced survival in mice with CLP- or E. coli bloodstream infection-induced sepsis, either alone or combined with antibiotic therapy. After three times injections within 48 h, 79.18% of F-AgÅPs were excreted via feces at the end of the 14-day observation period. Conclusion: This study suggests the prospect of F-AgÅPs as a promising intravenous agent for treating severe bacterial infections.
Collapse
|
22
|
Mohapatra DD, Pattnaik S, Panda S. In Vitro Detected hly II Cytotoxin in a Strain of Staphylococcus aureus (BM S-2) and Plant-Derived Aromatic Components: a Molecular Docking Study. Appl Biochem Biotechnol 2021; 193:1639-1653. [PMID: 33559758 DOI: 10.1007/s12010-021-03510-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
In time, diagnosis and detection of virulence factor and its pathogenomics study continues to grow and this leads to novel treatments for infectious diseases. The objective of this study was to detect and characterise virulence genes in a haemolytic strain of Staphylococcus aureus in vitro and molecular interaction studies with herbal essential oil components in silico. A hospital biosample-isolated strain of Staphylococcus aureus (BMS-2) was resistant towards Cephalosporin. The PCR-amplified FASTA nucleotide sequence was identical with S. aureus strains absolutely. The calculated GC value was 34.05%. The translated protein sequence was identified with a conserved domain of hlyII β-channel forming cytolysin belonging to leukocidin superfamily and was predicted as a stable, non-transmembrane protein comprising B cell epitopes. Structurally, the protein was found to be composed of α helix, π-helix, extended strands, β-sheet, turn and bends with atomic composition as C658H1026N174O200S2. The molecular docking studies made between the HlyII cytolysin (receptor) and wet lab studied essential oil components (citral a, citronellol, eucalyptol, eugenol, geraniol, linalool, menthol, piperine and thymol) as ligands using Autodock 1.5.6 tool had inferred about prevalence of hydrogen bonds as well as covalent bonds in the intermolecular interactions. Amino acids like Tyr68, Tyr 69, Asn106, Asp67 and Asn106 were observed to be the most active residues for H-bond and hydrophobic bonds respectively. Only geraniol had interaction with glycine residue of the toxin molecule. In conclusion, geraniol with the highest ligand efficiency was observed to be the most potent phyto-constituent interacting with the in vitro detected hlyII cytotoxin.
Collapse
Affiliation(s)
| | - Smaranika Pattnaik
- Laboratory of Medical Microbiology, School of Life Sciences, Sambalpur University, Sambalpur, India.
| | - Sruti Panda
- MITS School of Biotechnology, Bhubaneswar, India
| |
Collapse
|
23
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
24
|
Wei L, Zhong W, Sun T, Li H, Sun T, Han Y, Sun D, Li X. Proteomic and mechanistic study of Qingxuan Tongluo formula and curcumin in the treatment of Mycoplasma pneumoniae pneumonia. Biomed Pharmacother 2021; 133:110998. [PMID: 33378995 DOI: 10.1016/j.biopha.2020.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Mycoplasma pneumoniae (MP) is the only pathogen in the Mycoplasma family that can cause respiratory symptoms, including acute upper respiratory tract infection and bronchitis, which are often attributed to Mycoplasma pneumoniae pneumonia (MPP). MPP is one of the diseases that commonly affects the pediatric respiratory system, but its pathogenesis is unclear. This study investigated the therapeutic effects and mechanisms of Qingxuan Tongluo formula and its main component, curcumin, on MPP. METHODS A mouse model of MPP was obtained by nasal drip of the MP strain. The effects of Qingxuan Tongluo formula and curcumin on the treatment of MPP were studied. The proteomic profiles of the alveolar lavage fluid of mice in the model group, Qingxuan Tongluo formula group and curcumin group were evaluated by LC-MS/MS. ELISA and immunohistochemistry were used to verify the possible presence of MP infection biomarkers and drug target proteins. RESULTS Compared with the mice in the model group, the MPP mice in the Qingxuan Tongluo formula group had significantly reduced fever and cough and prolonged the cough incubation period. Moreover, the pulmonary pathology of the MPP mice was significantly improved, and the lung histopathological score was decreased. After treatment with Qingxuan Tongluo formula and curcumin, the functional and pathway abnormalities caused by MP were mainly inhibited. Levels of HSP90AA1, GRP94, ENO1 and PLG expression were verified by ELISA and immunohistochemistry. CONCLUSION Qingxuan Tongluo formula significantly reduced fevers and cough and prolonged the cough incubation period of MPP mice. Qingxuan Tongluo formula and curcumin significantly improved the pathological changes in lung tissue caused by MP infection. Proteomics analyses indicated that Qingxuan Tongluo formula and curcumin may have therapeutic effects on MPP by regulating energy metabolism, relieving oxidative stress and activating the fibrinolytic system. ENO1 and PLG were found to be potential drug targets.
Collapse
Affiliation(s)
- Lina Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun Jilin 130021, China
| | - Weilong Zhong
- Nankai University, Tianjin 300071, China; Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tao Sun
- First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun Jilin 130021, China
| | - Huanmin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Ting Sun
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing 100007, China
| | - Yaowei Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Dan Sun
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Xinmin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| |
Collapse
|
25
|
Acetylharpagide Protects Mice from Staphylococcus Aureus-Induced Acute Lung Injury by Inhibiting NF-κB Signaling Pathway. Molecules 2020; 25:molecules25235523. [PMID: 33255656 PMCID: PMC7728067 DOI: 10.3390/molecules25235523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus)-induced acute lung injury (ALI) is a serious disease that has a high risk of death among infants and teenagers. Acetylharpagide, a natural compound of Ajuga decumbens Thunb. (family Labiatae), has been found to have anti-tumor, anti-inflammatory and anti-viral effects. This study investigates the therapeutic effects of acetylharpagide on S. aureus-induced ALI in mice. Here, we found that acetylharpagide alleviated S. aureus-induced lung pathological morphology damage, protected the pulmonary blood-gas barrier and improved the survival of S. aureus-infected mice. Furthermore, S. aureus-induced myeloperoxidase (MPO) activity of lung homogenate and pro-inflammatory factors in bronchoalveolar lavage (BAL) fluid were suppressed by acetylharpagide. Mechanically, acetylharpagide inhibited the interaction between polyubiquitinated receptor interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO), thereby suppressing NF-κB activity. In summary, these results show that acetylharpagide protects mice from S. aureus-induced ALI by suppressing the NF-κB signaling pathway. Acetylharpagide is expected to become a potential treatment for S. aureus-induced ALI.
Collapse
|
26
|
Alikiaii B, Bagherniya M, Askari G, Sathyapalan T, Sahebkar A. Evaluation of the effect of curcumin on pneumonia: A systematic review of preclinical studies. Phytother Res 2020; 35:1939-1952. [PMID: 33155336 DOI: 10.1002/ptr.6939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/28/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Pneumonia is a major cause of morbidity and mortality worldwide and causes a significant burden on the healthcare systems. Curcumin is a natural phytochemical with anti-inflammatory and anti-neoplastic characteristics. The aim of this study was to conduct a systematic review of published studies on the effect of curcumin on preclinical models of pneumonia. A comprehensive search was conducted in PubMed/Medline, Scopus, Web of Science and Google Scholar from inception up to March 1, 2020 to recognize experimental or clinical trials assessing the effects of curcumin on pneumonia. We identified 17 primary citations that evaluated the effects of curcumin on pneumonia. Ten (58.8%) studies evaluated the effect of curcumin on mouse models of pneumonia, generated by intranasal inoculation of viruses or bacteria. Seven (41.2%) studies evaluated the inhibitory effects of curcumin on the pneumonia-inducing bacteria. Our results demonstrated that curcumin ameliorated the pneumonia-induced lung injury, mainly through a reduction of the activity and infiltration of neutrophils and the inhibition of inflammatory response in mouse models. Curcumin ameliorates the severity of pneumonia through a reduction in neutrophil infiltration and by amelioration of the exaggerated immune response in preclinical pneumonia models.
Collapse
Affiliation(s)
- Babak Alikiaii
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
27
|
Guzzo F, Scognamiglio M, Fiorentino A, Buommino E, D’Abrosca B. Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules 2020; 25:E5024. [PMID: 33138250 PMCID: PMC7663672 DOI: 10.3390/molecules25215024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria are social organisms able to build complex structures, such as biofilms, that are highly organized surface-associated communities of microorganisms, encased within a self- produced extracellular matrix. Biofilm is commonly associated with many health problems since its formation increases resistance to antibiotics and antimicrobial agents, as in the case of Pseudomonas aeruginosa and Staphylococcus aureus, two human pathogens causing major concern. P. aeruginosa is responsible for severe nosocomial infections, the most frequent of which is ventilator-associated pneumonia, while S. aureus causes several problems, like skin infections, septic arthritis, and endocarditis, to name just a few. Literature data suggest that natural products from plants, bacteria, fungi, and marine organisms have proven to be effective as anti-biofilm agents, inhibiting the formation of the polymer matrix, suppressing cell adhesion and attachment, and decreasing the virulence factors' production, thereby blocking the quorum sensing network. Here, we focus on plant derived chemicals, and provide an updated literature review on the anti-biofilm properties of terpenes, flavonoids, alkaloids, and phenolic compounds. Moreover, whenever information is available, we also report the mechanisms of action.
Collapse
Affiliation(s)
- Francesca Guzzo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
| | - Monica Scognamiglio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Elisabetta Buommino
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Brigida D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
28
|
Qian Y, Xia L, Wei L, Li D, Jiang W. Artesunate inhibits Staphylococcus aureus biofilm formation by reducing alpha-toxin synthesis. Arch Microbiol 2020; 203:707-717. [PMID: 33040179 DOI: 10.1007/s00203-020-02077-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is one of the most common pathogens in bacterial biofilm infections. Antibiotic treatment for infection caused by S. aureus biofilms is challenging, and few effective strategies have been developed to combat these infections. The aim of this study was to investigate the effect and possible mechanisms of artesunate on the biofilm formation of S. aureus. Bacterial growth curves were determined by a microtiter plate. Biofilm formation was determined by the crystal violet staining method and confocal laser scanning microscopy. Bacterial adhesion was assayed by the colony-counting method. The expression of virulence and adhesion genes was determined by real-time PCR. The hemolytic activity and expression of ɑ-hemolysin were analyzed using rabbit erythrocytes and Western blotting. The results showed that artesunate could significantly inhibit the biofilm formation of S. aureus in a dose-dependent manner. Artesunate could also inhibit bacterial adhesion and the expression of hla, RNAIII and agrA as well as ɑ-hemolysin production. The effect of artesunate on adhesion genes (clfA, clfB, fnbA, fnbB) had strain specificity, but it did not affect the expression of ica genes. The results indicated that artesunate might inhibit ɑ-hemolysin synthesis by the agr system, which inhibits biofilm formation.
Collapse
Affiliation(s)
- Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Li Xia
- Department of Liver Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Lai Wei
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Di Li
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Weiwei Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
29
|
Qi Z, Guo Y, Zhang H, Yu Q, Zhang P. Betulin attenuates pneumolysin-induced cell injury and DNA damage. J Appl Microbiol 2020; 130:843-851. [PMID: 32621771 DOI: 10.1111/jam.14769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
AIMS Pneumolysin, a pore-forming toxin, is an important virulence factor of Streptococcus pneumoniae with multiple biological activity, such as cell lysis and DNA damage. Thus, targeting this toxin is alternative strategy for the treatment of S. pneumoniae infection. METHODS AND RESULTS Haemolysin assay was performed to identify the potential PLY inhibitor. The mechanism by which betulin, a natural compound from birch bark, against PLY was determined via MICs determination, western blot analysis and oligomerization analysis. Cytotoxicity and Immunofluorescence assays were further used to evaluate the protection of betulin against PLY-induced cell injury and DNA damage. Here, betulin, a natural compound from birch bark, was indentified as an effective inhibitor of PLY. Importantly, at the concentrations required for such inhibition, betulin has no influence on S. pneumoniae viability or PLY production. The interaction of betulin with PLY restrict the olgomerizaiton of this toxin and, thus, directly neutralizing the activity of PLY. Additionally, betulin treatment alleviate PLY induced cells injury and DNA damage in the co-culture system of PLY and A549 cells. CONCLUSIONS Betulin could be used as a promising leading compound against S. pneumoniae virulence by directly targeting PLY without antibacterial activity. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented in this work provided a novel strategy and candidate for S. pneumoniae infection.
Collapse
Affiliation(s)
- Z Qi
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Y Guo
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - H Zhang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Q Yu
- Jilin Provincial Animal Disease Control Center, Changchun, China
| | - P Zhang
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
30
|
Kong R, Lee YS, Kang DH, Wang S, Li Q, Kwon DY, Kang OH. The antibacterial activity and toxin production control of bee venom in mouse MRSA pneumonia model. BMC Complement Med Ther 2020; 20:238. [PMID: 32718325 PMCID: PMC7385961 DOI: 10.1186/s12906-020-02991-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/16/2020] [Indexed: 01/02/2023] Open
Abstract
Background The current antimicrobial therapy is still important for the treatment of pneumonia due to MRSA infection, but there are some limitations, including the route of administration, side effect profile, and increased microbial resistance patterns. Therefore, we investigated whether BV, which shows a strong antimicrobial effect against MRSA, would be effective in a pneumonia model. Methods In vitro, we checked MIC, qRT-PCR, western blot, ELISA, LDH-assay. In vivo, we checked survival rate, gross pathological change, histopathology, lung bacterial clearance assay, and the expression of inflammatory related gene. Results The minimum inhibitory concentration of BV against MRSA is 15.6 μg/ml by broth dilution method. The production of toxins and related gene were reduced by BV in MRSA. The secretion of cytokines were decreased by treatment with BV in 264.7 RAW macrophages stimulated by MRSA Also, BV protected A549 from pathogenicity of MRSA. Bee venom reduced the number of bacteria in the lungs and alleviated the symptoms of MRSA-induced pneumonia in mouse. Conclusion BV inhibited the virulence of the bacterium and the number of bacterial cells present in lung tissue, thereby alleviating the symptoms of pneumonia in mice. This study suggested that BV may be a candidate substance for the treatment of pneumonia caused by MRSA infection.
Collapse
Affiliation(s)
- Ryong Kong
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, 92 Bisanro, Eumsung, Chungbuk, 27709, Republic of Korea
| | - Dam-Hee Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Shu Wang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Qianqian Li
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
31
|
Wang T, Zhang P, Lv H, Deng X, Wang J. A Natural Dietary Flavone Myricetin as an α-Hemolysin Inhibitor for Controlling Staphylococcus aureus Infection. Front Cell Infect Microbiol 2020; 10:330. [PMID: 32793508 PMCID: PMC7390952 DOI: 10.3389/fcimb.2020.00330] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus, an important agent for lethal bacterial infections, can cause a broad spectrum of diseases in various host species. The emergence of multidrug-resistant and highly virulent strains has raised increasing concerns about the novel therapeutic strategies or agents available for treating S. aureus infection. The critical role of Hla, an essential virulence determinant, in the pathogenicity of S. aureus renders this toxin an attractive target for effective therapeutic applications. Here, we have identified myricetin as an effective inhibitor of Hla that simultaneously inhibits Hla production and neutralizes Hla activity without affecting bacterial growth. Myricetin treatment reduced the oligomerization of Hla and Hla-mediated biofilm formation. The addition of myricetin to the coinfection system of host cells and S. aureus significantly decreased cell injury and downregulated the inflammatory response in cells. Furthermore, S. aureus-infected mice that received myricetin showed alleviated tissue damage in the lung. Our results indicated that myricetin inhibits S. aureus virulence by targeting Hla and downregulates the inflammatory response in host cells. Overall, in addition to traditional antibiotics with antibacterial activity, myricetin may represent a potential candidate, and strategy for S. aureus infection.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hongfa Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
32
|
Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci Rep 2020; 10:11168. [PMID: 32636484 PMCID: PMC7341856 DOI: 10.1038/s41598-020-68030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
The objective of the study was a comparative analysis of the antihemolytic activity against two Staphylococcus aureus strains (8325-4 and NCTC 5655) as well as α-hemolysin and of the membrane modifying action of four hydrolysable tannins with different molecular mass and flexibility: 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-d-glucose (T1), 1,2,3,4,5-penta-O-galloyl-β-d-glucose (T2), 3-O-galloyl-1,2-valoneoyl-β-d-glucose (T3) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T4). We showed that all the compounds studied manifested antihemolytic effects in the range of 5–50 µM concentrations. However, the degree of the reduction of hemolysis by the investigated tannins was not uniform. A valoneoyl group—containing compounds (T3 and T4) were less active. Inhibition of the hemolysis induced by α-hemolysin was also noticed on preincubated with the tannins and subsequently washed erythrocytes. In this case the efficiency again depended on the tannin structure and could be represented by the following order: T1 > T2 > T4 > T3. We also found a relationship between the degree of antihemolytic activity of the tannins studied and their capacity to increase the ordering parameter of the erythrocyte membrane outer layer and to change zeta potential. Overall, our study showed a potential of the T1 and T2 tannins as anti-virulence agents. The results of this study using tannins with different combinations of molecular mass and flexibility shed additional light on the role of tannin structure in activity manifestation.
Collapse
|
33
|
Reddy DNK, Kumar R, Wang SP, Huang FY. Curcumin-C3 Complexed with α-, β-cyclodextrin Exhibits Antibacterial and Antioxidant Properties Suitable for Cancer Treatments. Curr Drug Metab 2020; 20:988-1001. [PMID: 31573881 DOI: 10.2174/1389200220666191001104834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The curcumin-C3 (cur-C3) complex obtained from Curcuma longa rhizome is a combination of three curcuminoids, namely, curcumin, dimethoxycurcumin, and bisdemethoxycurcumin. Cur and curcuminoids have been extensively researched for their wide range of therapeutic properties against inflammatory diseases, diabetes, and cancer. OBJECTIVE In spite of their extensive medicinal properties, cur and curcuminoids have poor solubility and bioavailability due to their hydrophobicity. This limitation can be overcome by complexing cur-C3 with natural cyclic oligosaccharides, such as Cyclodextrin (CD). METHODS In this study, cur-C3 and CD (α, β) inclusion complexes (ICs) were prepared with different molar ratios and characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. RESULTS The cur-C3 cyclodextrin ICs showed an increased entrapment efficiency of 97.8% and improved antioxidant activity compared to cur and can be used as an antioxidant to reduce cancer-related oxidative stress. Additionally, α- CD ICs of curcumin-C3 caused an increase in growth inhibition of Staphylococcus aureus. CONCLUSION Our findings suggest that both α- and β-CDs are suitable carriers for cur-C3 and can be used as an effective treatment for cancer-associated oxidative stress and as a preventive treatment for nosocomial infections and pneumonia.
Collapse
Affiliation(s)
- Desu N K Reddy
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Pin Wang
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Fu-Yung Huang
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
FitzGerald ES, Luz NF, Jamieson AM. Competitive Cell Death Interactions in Pulmonary Infection: Host Modulation Versus Pathogen Manipulation. Front Immunol 2020; 11:814. [PMID: 32508813 PMCID: PMC7248393 DOI: 10.3389/fimmu.2020.00814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
In the context of pulmonary infection, both hosts and pathogens have evolved a multitude of mechanisms to regulate the process of host cell death. The host aims to rapidly induce an inflammatory response at the site of infection, promote pathogen clearance, quickly resolve inflammation, and return to tissue homeostasis. The appropriate modulation of cell death in respiratory epithelial cells and pulmonary immune cells is central in the execution of all these processes. Cell death can be either inflammatory or anti-inflammatory depending on regulated cell death (RCD) modality triggered and the infection context. In addition, diverse bacterial pathogens have evolved many means to manipulate host cell death to increase bacterial survival and spread. The multitude of ways that hosts and bacteria engage in a molecular tug of war to modulate cell death dynamics during infection emphasizes its relevance in host responses and pathogen virulence at the host pathogen interface. This narrative review outlines several current lines of research characterizing bacterial pathogen manipulation of host cell death pathways in the lung. We postulate that understanding these interactions and the dynamics of intracellular and extracellular bacteria RCD manipulation, may lead to novel therapeutic approaches for the treatment of intractable respiratory infections.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
35
|
Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, Zununi Vahed S, Maleki Dizaj S. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother Res 2020; 34:1926-1946. [PMID: 32166813 DOI: 10.1002/ptr.6658] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/26/2020] [Accepted: 02/16/2020] [Indexed: 01/03/2023]
Abstract
Curcumin has been used in numerous anti-microbial research because of its low side effects and extensive traditional applications. Despite having a wide range of effects, the intrinsic physicochemical characteristics such as low bioavailability, poor water solubility, photodegradation, chemical instability, short half-life and fast metabolism of curcumin derivatives limit their pharmaceutical importance. To overcome these drawbacks and improve the therapeutic ability of curcuminoids, novel approaches have been attempted recently. Nanoparticulate drug delivery systems can increase the efficiency of curcumin in several diseases, especially infectious diseases. These innovative strategies include polymeric nanoparticles, hydrogels, nanoemulsion, nanocomposite, nanofibers, liposome, nanostructured lipid carriers (NLCs), polymeric micelles, quantum dots, polymeric blend films and nanomaterial-based combination of curcumin with other anti-bacterial agents. Integration of curcumin in these delivery systems has displayed to improve their solubility, bioavailability, transmembrane permeability, prolong plasma half-life, long-term stability, target-specific delivery and upgraded the therapeutic effects. In this review paper, a range of in vitro and in vivo studies have been critically discussed to explore the therapeutic viability and pharmaceutical significance of the nano-formulated delivery systems to elevate the anti-bacterial activities of curcumin and its derivatives.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rovshan Khalilov
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan.,Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Baku, Azerbaijan
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Khan F, Lee JW, Pham DTN, Kim YM. Chitooligosaccharides as Antibacterial, Antibiofilm, Antihemolytic and Anti-Virulence Agent against Staphylococcus aureus. Curr Pharm Biotechnol 2020; 20:1223-1233. [PMID: 31475895 DOI: 10.2174/1389201020666190902130722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Staphylococcus aureus nosocomial infections with a high mortality rate in human and animals have been reported to associate with bacterial biofilm formation, along with the secretion of numerous virulence factors. Therefore, the inhibition of biofilm formation and attenuation of virulence determinants are considered as a promising solution to combat the spread of S. aureus infections. Modern trends in antibiofilm therapies have opted for the active agents that are biocompatible, biodegradable, non-toxic and cost-effective. Owning the aforementioned properties, chitosan, a natural N-acetylated carbohydrate biopolymer derived from chitin, has been favorably employed. Recently, the chitosan structure has been chemically modified into Chitooligosaccharides (COS) to overcome its limited solubility in water, thus widening chitosan applications in modern antibiofilm research. In the present study, we have investigated the antibacterial, antibiofilm and anti-virulence activities against S. aureus of COS of different molecular weights dissolved in neutral water. METHODS The study of bactericidal activity was performed using the micro-dilution method while the biofilm inhibition assay was performed using crystal-violet staining method and confirmed by scanning electron microscopic analysis. The inhibition of amyloid protein production was confirmed by Congo Red staining. RESULTS Results showed that low molecular weight COS exhibited bactericidal activity and reduced the bacterial amylogenesis, hemolytic activity as well as H2O2 resistance properties, while slightly inhibiting biofilm formation. The present study provides a new insight for further applications of the water-soluble COS as a safe and cost-effective drug for the treatment of S. aureus biofilm-associated infections. CONCLUSION Reducing the molecular weight of chitosan in the form of COS has become an effective strategy to maintain chitosan biological activity while improving its water solubility. The low molecular weight COS investigated in this study have effectively performed antibacterial, antibiofilm and antivirulence properties against S. aureus.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea
| | - Jang-Won Lee
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Dung T N Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
37
|
Wu SC, Liu F, Zhu K, Shen JZ. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13195-13211. [PMID: 31702908 DOI: 10.1021/acs.jafc.9b05595] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the incidence of antibiotic-resistant Staphylococcus aureus (S. aureus) associated infections necessitates the urgent development of novel therapeutic strategies and antibacterial drugs. Antivirulence strategy is an especially compelling alternative strategy due to its low selective pressure for the development of drug resistance in bacteria. Plants and microorganisms are not only important food and medicinal resources but also serve as sources for the discovery of natural products that target bacterial virulence factors. This review discusses the mechanisms of the major virulence factors of S. aureus, including the accessory gene regulator quorum-sensing system, bacterial biofilm formation, α-hemolysin, sortase A, and staphyloxanthin. We also provide an overview of natural products isolated from plants and microorganisms with activity against the major virulence factors of S. aureus and their adjuvant effects on existing antibiotics to overcome antibiotic-resistant S. aureus. Finally, the limitations and solutions of these antivirulence compounds are discussed, which will help in the development of novel antibacterial drugs against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
- College of Veterinary Medicine , Qingdao Agricultural University , No. 700 Changcheng Road , Qingdao , Shandong 266109 , People's Republic of China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
38
|
Khan AM, Abid OUR, Mir S. Assessment of biological activities of chitosan Schiff base tagged with medicinal plants. Biopolymers 2019; 111:e23338. [PMID: 31696516 DOI: 10.1002/bip.23338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/05/2022]
Abstract
A chitosan Schiff base with an aromatic aldehyde was synthesized and characterized by FTIR and NMR spectroscopies. Furthermore, the degree of substitution was calculated based on the ratios of the area of the proton of the imine (Aimine ) and the area of the peak of the proton of the pyranose ring (AH-2 ). The antimicrobial activities were determined against bacterial and fungal strains, as well as multiple drug-resistant (MDR) bacteria. The chitosan Schiff base was also tagged with medicinal plants, for example, Curcuma longa, Peganum harmala, Lepidium sativam, and cruciferous vegetables, and the biological activities determined against pathogenic bacterial and fungal strains. The chitosan Schiff base showed maximum zone of inhibition of 22 mm against Staphylococcus aureus with a minimum zone of inhibition of 15 mm against Bacillus cereus. The chitosan Schiff base was fused with C longa, isothiocyanates and a combined mixture of P harmala and L sativam that has shown activities against Escherichia coli with a zone of inhibition of 28, 24, and 30 mm, respectively. The Schiff base of chitosan fused with medicinal plants also showed significant inhibitory activities against MDR bacteria.
Collapse
Affiliation(s)
- Arshad Mehmood Khan
- Department of Chemistry, Hazara University, Mansehra, Pakistan.,Department of Chemistry, Government Postgraduate College Mandian, Abbottabad, Pakistan
| | | | - Sadullah Mir
- Department of Chemistry, COMSAT University, Islamabad, Abbottabad Campus-22060, KPK, Pakistan
| |
Collapse
|
39
|
Jiang L, Yi T, Shen Z, Teng Z, Wang J. Aloe-emodin Attenuates Staphylococcus aureus Pathogenicity by Interfering With the Oligomerization of α-Toxin. Front Cell Infect Microbiol 2019; 9:157. [PMID: 31157174 PMCID: PMC6530610 DOI: 10.3389/fcimb.2019.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/26/2019] [Indexed: 01/30/2023] Open
Abstract
α-toxin, an essential virulence factor secreted by Staphylococcus aureus (S. aureus), is a critical exotoxin in multiple infections. In this study, we found that aloe-emodin (AE), a natural compound lacking anti-S. aureus activity, could inhibit the hemolytic activity of α-toxin. Oligomerization assays, molecular dynamics simulations, and fluorescence-quenching analyses were used to determine the mechanism of this inhibition. The oligomerization of α-toxin was restricted by the engagement of AE with K110, T112, and M113 of the toxin, which eventually resulted in inhibition of the hemolytic activity. Lactate dehydrogenase and live/dead assays demonstrated that AE decreased the injury of human lung epithelial cells (A549) and mouse lung macrophages (MH-S) mediated by S. aureus. Furthermore, treatment with AE showed robust protective effects in mice infected by S. aureus. These findings suggest that AE effectively inhibited the pore-forming activity of α-toxin and showed a protective effect against S. aureus virulence in vitro and in vivo, which may provide a new strategy and new antibacterial agent for clinical treatment of S. aureus infections.
Collapse
Affiliation(s)
- Lanxiang Jiang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Tian Yi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science, Jilin University, Changchun, China
| | - Ziying Shen
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, China
| | - Zihao Teng
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
40
|
Tang F, Li L, Meng XM, Li B, Wang CQ, Wang SQ, Wang TL, Tian YM. Inhibition of alpha-hemolysin expression by resveratrol attenuates Staphylococcus aureus virulence. Microb Pathog 2019; 127:85-90. [DOI: 10.1016/j.micpath.2018.11.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
|
41
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
42
|
Divyakolu S, Chikkala R, Ratnakar KS, Sritharan V. Hemolysins of <i>Staphylococcus aureus</i>—An Update on Their Biology, Role in Pathogenesis and as Targets for Anti-Virulence Therapy. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aid.2019.92007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Tan Y, Leonhard M, Moser D, Ma S, Schneider-Stickler B. Antibiofilm efficacy of curcumin in combination with 2-aminobenzimidazole against single- and mixed-species biofilms of Candida albicans and Staphylococcus aureus. Colloids Surf B Biointerfaces 2018; 174:28-34. [PMID: 30412864 DOI: 10.1016/j.colsurfb.2018.10.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Mixed fungal and bacterial biofilm associated infections of implants have been a huge challenge in health care because of the increased resistance to antimicrobials and the critical biological differences between fungi and bacteria. In this study, we evaluated the 2-aminobenzimidazole (2ABI) and curcumin (CUR) alone to inhibit planktonic cell growth, adhesion as well as single and mixed species biofilms of Candida albicans and Staphylococcus aureus on silicone. The combined effects between 2ABI and CUR on mixed species biofilm formation and pre-formed biofilm were assessed. Our work showed that 2ABI or CUR alone was effective as a sole agent, inhibiting planktonic growth, adhesion and the biofilm formation of bacteria and fungi on the silicone surface. The combination of 2ABI and CUR exhibited the enhanced effect on mixed biofilm compared to mono-drug therapy. The biofilm architecture was investigated by scanning electron microscopy (SEM) and the distinction of living/dead organisms within biofilm was examined by confocal laser scanning microscopy (CLSM). The combination activity was most potent on mixed biofilm. These results suggest the potential applicability of 2ABI and CUR to treatment of biofilm related device infections.
Collapse
Affiliation(s)
- Yulong Tan
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Matthias Leonhard
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria.
| | - Su Ma
- Biocatalysis and Biosensor Research Group, Division of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Berit Schneider-Stickler
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
44
|
Wang G, Gao Y, Wang H, Wang J, Niu X. Phloretin reduces cell injury and inflammation mediated by Staphylococcus aureus via targeting sortase B and the molecular mechanism. Appl Microbiol Biotechnol 2018; 102:10665-10674. [DOI: 10.1007/s00253-018-9376-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/29/2023]
|
45
|
|
46
|
Stathopoulou MEK, Banti CN, Kourkoumelis N, Hatzidimitriou AG, Kalampounias AG, Hadjikakou SK. Silver complex of salicylic acid and its hydrogel-cream in wound healing chemotherapy. J Inorg Biochem 2018; 181:41-55. [PMID: 29407907 DOI: 10.1016/j.jinorgbio.2018.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 01/07/2018] [Indexed: 01/06/2023]
Abstract
The known metallotherapeutic [Ag(salH)]2 (AGSAL-1) of salicylic acid (salH2), was used for the development of new efficient silver based material for wounds healing. AGSAL-1 was characterized by spectroscopic techniques and X-ray crystallography. The wound healing epithelialization of AGSAL-1 was investigated by the means of scratch assay against immortalized human keratinocytes (HaCaT) cells. The anti-inflammatory activity of AGSAL-1 was evaluated by monitoring the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX). The antibacterial activity of AGSAL-1 was evaluated against bacterial species which colonize wounds, such as: Pseudomonas aeruginosa (PAO1), Staphylococcus epidermidis and Staphylococcus aureus, by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and their Inhibition Zone (IZ). Moreover, the influence of AGSAL-1 against the formation of biofilm of PAO1 and St. aureus was also evaluated by the mean of Biofilm Elimination Concentration (ΒΕC). A hydrogel material CMC@AGSAL-1, based on the dispersion of AGSAL-1 in to carboxymethyl cellulose (CMC) was tested for its antimicrobial activity. Molecular Docking was performed, to explore the molecular interaction of AGSAL-1 with (i) the transcriptional regulator of PAO1, LasR. (ii) the mevalonate pathway for the biosynthesis of isoprenoids which is essential for gram-positive bacteria St. epidermidis and St. aureus. The toxicity of AGSAL-1 was examined against the HaCaT cells. Its genotoxicity was evaluated using Allium cepa model, in vivo. No genotoxicity was detected, indicating that AGSAL-1 is a candidate towards the development on a new efficient medication of the silver based metallodrugs.
Collapse
Affiliation(s)
| | - Christina N Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | - Sotiris K Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
47
|
He T, Misuraca JC, Musah RA. "Carboranyl-cysteine"-Synthesis, Structure and Self-Assembly Behavior of a Novel α-Amino Acid. Sci Rep 2017; 7:16995. [PMID: 29209068 PMCID: PMC5717241 DOI: 10.1038/s41598-017-16926-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/20/2017] [Indexed: 11/09/2022] Open
Abstract
Substitution of the thiol proton in cysteine with m-carborane furnished 2-amino-3-(1,7-dicarba-closo-dodecacarboranyl-1-thio)propanoic acid (3), a boron cluster amino acid that exhibits self-assembly to form micron-sized constructs. Field emission scanning electron microscopy revealed that ethanol solutions of 3 form floret-shaped constructs, while fibrillar architectures are formed in water. Furthermore, slow evaporation of methanol solutions of 3 produced crystals whose structure was revealed by X-ray crystallography. The crystal structure shows that the hydrogen bonding interactions between pairs of 3 result in the formation of bilayers of 174 Å in length. The orientation of the clusters is not random in the crystal structure, such that the side-by-side aligned polyhedra are offset by 158 degrees. The material was characterized by FT-IR, NMR, high resolution mass spectrometry and dynamic light scattering. Circular dichroism studies indicated that self-assembly occurs at concentrations as low as 0.01 μM. This represents the first demonstration of self-assembly of a carborane-based molecule in the absence of metals. The amino acid motif provides opportunities for the controlled synthesis of extended multimeric units with tunable properties and the potential for applications in biology, medicine and materials chemistry.
Collapse
Affiliation(s)
- Tianyu He
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | | | - Rabi A Musah
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
48
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemical and Biological Aspects of Nutritional Immunity-Perspectives for New Anti-Infectives that Target Iron Uptake Systems. Angew Chem Int Ed Engl 2017; 56:14360-14382. [PMID: 28439959 DOI: 10.1002/anie.201701586] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Upon bacterial infection, one of the defense mechanisms of the host is the withdrawal of essential metal ions, in particular iron, which leads to "nutritional immunity". However, bacteria have evolved strategies to overcome iron starvation, for example, by stealing iron from the host or other bacteria through specific iron chelators with high binding affinity. Fortunately, these complex interactions between the host and pathogen that lead to metal homeostasis provide several opportunities for interception and, thus, allow the development of novel antibacterial compounds. This Review focuses on iron, discusses recent highlights, and gives some future perspectives which are relevant in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Joshua A V Blodgett
- Department of Biology, Washington University, St. Louis, MO, 63130-4899, USA
| | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 7, 0569, Stuttgart, Germany
| | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Rainer Schobert
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
49
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemische und biologische Aspekte von “Nutritional Immunity” - Perspektiven für neue Antiinfektiva mit Fokus auf bakterielle Eisenaufnahmesysteme. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening; Helmholtz-Zentrum für Infektionsforschung; Inhoffenstraße 7 38124 Braunschweig Deutschland
| | | | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; I-20133 Milano Italien
| | - Sabine Laschat
- Institut für Organische Chemie; Universität Stuttgart; Pfaffenwaldring 55, 7 0569 Stuttgart Deutschland
| | - Anne Routledge
- Department of Chemistry; University of York, Heslington; York YO10 5DD Großbritannien
| | - Rainer Schobert
- Organische Chemie I; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| |
Collapse
|
50
|
Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression. Appl Microbiol Biotechnol 2017; 101:6697-6703. [DOI: 10.1007/s00253-017-8417-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/30/2022]
|