1
|
Acin S, Mejia-Garcia A, Fernandez GJ, Balcazar N. A triterpene-enriched natural extract from Eucalyptus tereticornis modulates the expression of genes involved in adipogenesis, lipolysis, and extracellular matrix remodeling in a primary human and mouse cell line adipocyte. PHARMACEUTICAL BIOLOGY 2025; 63:374-386. [PMID: 40382687 PMCID: PMC12086905 DOI: 10.1080/13880209.2025.2505443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/21/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
CONTEXT Obesity induces alterations in adipocyte size, tissue inflammation, vascularization, and extracellular matrix composition. Previous studies have shown that a leaf extract of Eucalyptus tereticornis Sm. (Myrtaceae), with ursolic acid, oleanolic acid, and ursolic acid lactone mixed with minor metabolites, provided a superior antiobesity effect than reconstituted triterpenoid mixtures in adipocyte cell lines and a pre-diabetic mouse model. Further identification of the molecular mechanisms of action of this mixture of triterpenes is required. OBJECTIVE This study analyzes the effect of the natural extract and its components on early RNA expression profiles in human primary cultured adipocytes and a mouse cell line. MATERIALS AND METHODS RNA was sequenced using the DNBseq platform and the EnrichR software to perform gene enrichment analysis using the Gene Ontology database, Kyoto Encyclopedia of Genes and Genomes, and Reactome. To conduct clustering analysis, the normalized counts of each gene and applied k-means clustering were standardized. RESULTS The combination of molecules in the natural extract has an additive or synergic effect that increases the number of genes regulated associated with the biological functionality of differentiating adipocytes, with UAL playing a central role. The natural extract modulates PPAR, Wnt, and Extracellular Matrix organization pathways significantly in both cellular models. Remarkably, the extract downregulates the expression of genes involved in lipid metabolism, adipogenesis, and adipocyte fat load, such as PRKAR2B, LPIN1, FABP4, Scd1, MC5R, CD36, PEG10, and HMGCS1. DISCUSSION AND CONCLUSIONS Our study shows that Eucalyptus tereticornis extract is a promising option for treating adipocyte tissue dysfunction derived from obesity.
Collapse
Affiliation(s)
- Sergio Acin
- Grupo Genmol. Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
- Facultad de Medicina, Departamento de fisiología y Bioquímica, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Alejandro Mejia-Garcia
- Grupo Genmol. Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Geysson Javier Fernandez
- Grupo Genmol. Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Norman Balcazar
- Grupo Genmol. Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia
- Facultad de Medicina, Departamento de fisiología y Bioquímica, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
2
|
Contreras GA, Rendon CJ, Shadowens A, Chirivi M, Salcedo-Tacuma D, Lauver DA, Watts SW. Perivascular Adipocytes' Adipogenesis Is Defined by Their Anatomical Location in the Descending Thoracic Aorta. Cells 2025; 14:579. [PMID: 40277904 PMCID: PMC12026431 DOI: 10.3390/cells14080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiovascular diseases such as hypertension alter thoracic aorta structure. The role that the outer layer of the aorta, its perivascular adipose tissue (PVAT), plays in the pathogenesis of these alterations is poorly understood. In the descending thoracic aorta, PVAT is organized into three distinct strips: one located anterior to the aorta (AP) and two positioned laterally (LP). Genetic tracing indicates differences in the ontogeny of LP and AP, but the implications of these developmental differences and PVAT distribution on adipocyte development remain unknown. We hypothesize that the anatomical location of adipocyte progenitors influences their adipogenic potential and vasoactive functions. PVAT from LP and AP was collected from male SD rats at 10 wks of age (n = 7) to harvest adipocyte progenitors that were differentiated to adipocytes in adipogenic media. Adipogenesis was evaluated after induction and we performed next-generation RNA-seq on progenitors and adipocytes. We then employed Gene Set Enrichment Analysis for enrichment and network analyses. LP progenitors exhibited a 1.13-fold higher adipogenesis rate compared to those from AP. DEG analysis revealed LP had higher expression of adipogenic regulators and basal collagens Col4a2 and Col4a4. When challenged with angiotensin-II, adipocyte progenitors from LP maintained their adipogenic capacity and adipocytes from the same site maintained their secretion of adiponectin at higher rates than AP cells. However, treatment with a Piezo1 mechanoreceptor agonist reduced LP's adipogenic capacity and diminished their adiponectin secretion. These findings highlight site-specific differences in adipogenic activity, extracellular matrix composition, and the secretion of the vasoactive adipokine adiponectin between the LP and AP PVAT strips of the thoracic aorta, suggesting potential functional distinctions in vascular health and disease.
Collapse
Affiliation(s)
- G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (C.J.R.); (A.S.); (M.C.)
| | - C. Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (C.J.R.); (A.S.); (M.C.)
| | - Alyssa Shadowens
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (C.J.R.); (A.S.); (M.C.)
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (C.J.R.); (A.S.); (M.C.)
| | - David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV 26506, USA;
| | - D. Adam Lauver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (D.A.L.); (S.W.W.)
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (D.A.L.); (S.W.W.)
| |
Collapse
|
3
|
Wang W, Chen J, Wang S, Sun X, Yang J, Yu P, Hu G, Wang J, Zhang J, Qiao S, Wang J, Zhang G, He Y, Feng H, Cai Z. MFGE8 induces anti-PD-1 therapy resistance by promoting extracellular vesicle sorting of PD-L1. Cell Rep Med 2025; 6:101922. [PMID: 39842432 PMCID: PMC11866489 DOI: 10.1016/j.xcrm.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/15/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Anti-PD-1 therapy, effective in patients with various advanced tumors, still encounters the challenge of insensitivity in most patients. Here, we demonstrate that PD-L1 on tumor cell-derived extracellular vesicles (TEVs) is critical for anti-PD-1 therapy resistance. Reducing endogenous and transferring exogenous TEVs abrogates and induces anti-PD-1 therapy resistance, respectively. Notably, PD-L1 is sorted onto TEVs via the endosomal sorting complex required for transport after ubiquitination by UBE4A and gradually upregulated on TEVs with tumor progression. During progression, increased MFGE8 from tumor cells promotes self αv integrin signaling activation, enabling themselves to upregulate UBE4A, thereby increasing PD-L1 on TEVs and enhancing their immunosuppressive abilities. Translationally, anti-MFGE8-neutralizing antibodies effectively downregulate UBE4A and TEV PD-L1, thereby negating anti-PD-1 therapy resistance. Furthermore, serum MFGE8 and PD-L1+ EV levels of tumor patients correlate positively, and high levels of both indicate poor prognosis after anti-PD-1 therapy. Thus, MFGE8 is a promising target for overcoming resistance and predicting responsiveness to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiming Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China; Institute of Respiratory Diseases Xiamen Medical College, Xiamen 361023, China; Organiod Platform of Medical Laboratory Science, Xiamen Medical College, Xiamen 361023, China
| | - Shibo Wang
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jie Yang
- Department of Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pengfei Yu
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Guinv Hu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, China
| | - Jiang Wang
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, China
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou 310002, China
| | - Shuya Qiao
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianli Wang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310006, China
| | - Gensheng Zhang
- Department of Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuzhou He
- Ecological-Environment & Health College, Zhejiang A & F University, Hangzhou 311300, China; Department of Emergency, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huajun Feng
- Ecological-Environment & Health College, Zhejiang A & F University, Hangzhou 311300, China.
| | - Zhijian Cai
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
4
|
Guo H, Zhang Z, Yang J, Liu J, Lin H, Yin N. Depot-specific acetylation profiles of adipose tissues-therapeutic targets for metabolically unhealthy obesity. Diabetol Metab Syndr 2025; 17:36. [PMID: 39881347 PMCID: PMC11776295 DOI: 10.1186/s13098-025-01599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Adipose tissue plays a critical role in the development of metabolically unhealthy obesity (MUO), with distinct adipose depots demonstrating functional differences. This study aimed to investigate the unique characteristics of subcutaneous (SA) and visceral adipose tissue (VA) in MUO. METHODS Paired omental VA and abdominal SA samples were obtained from four male patients with MUO and subjected to Four-Dimensional Data Independent Acquisition (4D-DIA) proteomic and lysine acetylation (Kac) analyses. Differentially expressed proteins and differentially modified Kac sites were identified, quantified, integrated, and subjected to functional analyses. Overlap analysis was performed between our datasets and previously published proteomic datasets in obesity populations. Additionally, differentially modified Kac sites on histones and their related enzymes were identified. RESULTS A total of 281 differentially expressed proteins and 147 differentially modified Kac sites were identified among 6,201 quantifiable proteins and 1,826 quantifiable Kac sites. Upregulated proteins and acetylated proteins in SA were predominantly enriched in extracellular matrix (ECM) remodeling pathways, while those in VA were enriched in energy metabolism and disease-related pathways. Differential ECM remodeling adaptability between SA and VA was primarily mediated by fibranexin and integrin, with COL6A1, COL6A3, and ITGA5 identified as differentially acetylated proteins overlapping between our dataset and previous studies. Potential unique proteins in MUO were enriched in inflammatory processes and closely associated with acetylated modifications. Specific differentially acetylated sites on histones, including H1.2K63, H1XK90, and H3.7K80, showed increased acetylation in VA, with N-deacetylase/N-sulfotransferase 1 (NDST1) identified as the associated enzyme. CONCLUSIONS This study provided a comprehensive dataset on the proteomic and acetylomic profiles of SA and VA, laying a foundation for investigating the pathogenesis and potential therapeutic approaches for MUO. SA was characterized by pronounced ECM remodeling regulation, while VA exhibited poorer adaptability and more prominent metabolic functional changes. These differential processes were influenced not only by protein expression levels but, more importantly, by acetylated modifications. The regulation of acetylated modifications in white adipose tissue (WAT), particularly for the differential Kac sites enriched in ECM remodeling and inflammation-related pathways, may serve as an effective intervention strategy for MUO, with NDST1 emerging as a promising therapeutic target. TRIAL REGISTRATION Not applicable since this study did not involve clinical intervention.
Collapse
Affiliation(s)
- Haoyue Guo
- The Centre for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Zhiyi Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hongwei Lin
- The Center for Obesity and Metabolic Disease, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| | - Ningbei Yin
- The Centre for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
5
|
Shen C, Zhu X, Chang H, Li C, Hou M, Chen L, Lu Chen, Zhou Z, Ji M, Xu Z. The rebalancing of the immune system at the maternal-fetal interface ameliorates autism-like behavior in adult offspring. Cell Rep 2024; 43:114787. [PMID: 39321022 DOI: 10.1016/j.celrep.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.
Collapse
Affiliation(s)
- Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lu Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P.R. China.
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| |
Collapse
|
6
|
Zhang Z, Zhao W, Wang Z, Pan Y, Wang Q, Zhang Z. Integration of ssGWAS and ROH analyses for uncovering genetic variants associated with reproduction traits in Large White pigs. Anim Genet 2024; 55:714-724. [PMID: 39129705 DOI: 10.1111/age.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/26/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
The low heritability of reproduction traits such as total number born (TNB), number born alive (NBA) and adjusted litter weight until 21 days at weaning (ALW) poses a challenge for genetic improvement. In this study, we aimed to identify genetic variants that influence these traits and evaluate the accuracy of genomic selection (GS) using these variants as genomic features. We performed single-step genome-wide association studies (ssGWAS) on 17 823 Large White (LW) pigs, of which 2770 were genotyped by 50K single nucleotide polymorphism (SNP) chips. Additionally, we analyzed runs of homozygosity (ROH) in the population and tested their effects on the traits. The genomic feature best linear unbiased prediction (GFBLUP) was then carried out in an independent population of 350 LW pigs using identified trait-related SNP subsets as genomic features. As a result, our findings identified five, one and four SNP windows that explaining more than 1% of genetic variance for ALW, TNB, and NBA, respectively and discovered 358 hotspots and nine ROH islands. The ROH SSC1:21814570-27186456 and SSC11:7220366-14276394 were found to be significantly associated with ALW and NBA, respectively. We assessed the genomic estimated breeding value accuracy through 20 replicates of five-fold cross-validation. Our findings demonstrate that GFBLUP, incorporating SNPs located in effective ROH (p-value < 0.05) as genomic features, might enhance GS accuracy for ALW compared with GBLUP. Additionally, using SNPs explaining more than 0.1% of the genetic variance in ssGWAS for NBA as genomic features might improve the GS accuracy, too. However, it is important to note that the incorporation of inappropriate genomic features can significantly reduce GS accuracy. In conclusion, our findings provide valuable insights into the genetic mechanisms of reproductive traits in pigs and suggest that the ssGWAS and ROH have the potential to enhance the accuracy of GS for reproductive traits in LW pigs.
Collapse
Affiliation(s)
- Zhenyang Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co. Ltd, Hefei, China
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Lukomska A, Rheaume BA, Frost MP, Theune WC, Xing J, Damania A, Trakhtenberg EF. Augmenting fibronectin levels in injured adult CNS promotes axon regeneration in vivo. Exp Neurol 2024; 379:114877. [PMID: 38944331 PMCID: PMC11283980 DOI: 10.1016/j.expneurol.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA..
| |
Collapse
|
8
|
Zhao L, Liu S, Peng Y, Zhang J. Lamc1 promotes osteogenic differentiation and inhibits adipogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep 2024; 14:19592. [PMID: 39179716 PMCID: PMC11344058 DOI: 10.1038/s41598-024-69629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) exhibit multi-lineage differentiation potential and robust proliferative capacity. The late stage of differentiation signifies the functional maturation and characterization of specific cell lineages, which is crucial for studying lineage-specific differentiation mechanisms. However, the molecular processes governing late-stage BMSC differentiation remain poorly understood. This study aimed to elucidate the key biological processes involved in late-stage BMSC differentiation. Publicly available transcriptomic data from human BMSCs were analyzed after approximately 14 days of osteogenic, adipogenic, and chondrogenic differentiation. Thirty-one differentially expressed genes (DEGs) associated with differentiation were identified. Pathway enrichment analysis indicated that the DEGs were involved in extracellular matrix (ECM)-receptor interactions, focal adhesion, and glycolipid biosynthesis, a ganglion series process. Subsequently, the target genes were validated using publicly available single-cell RNA-seq data from mouse BMSCs. Lamc1 exhibited predominant distribution in adipocytes and osteoblasts, primarily during the G2/M phase. Tln2 and Hexb were expressed in chondroblasts, osteoblasts, and adipocytes, while St3gal5 was abundantly distributed in stem cells. Cell communication analysis identified two receptors that interact with LAMCI. q-PCR results confirmed the upregulation of Lamc1, Tln2, Hexb, and St3gal5 during osteogenic differentiation and their downregulation during adipogenic differentiation. Knockdown of Lamc1 inhibited adipogenic and osteogenic differentiation. In conclusion, this study identified four genes, Lamc1, Tln2, Hexb, and St3gal5, that may play important roles in the late-stage differentiation of BMSCs. It elucidated their interactions and the pathways they influence, providing a foundation for further research on BMSC differentiation.
Collapse
Affiliation(s)
- Lixia Zhao
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Shuai Liu
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Yanqiu Peng
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China
| | - Jian Zhang
- Bioengineering College, Zunyi Medical University, 368 Jinwan Road, Zhuhai, 519090, Guangdong, China.
| |
Collapse
|
9
|
Bonet F, Campuzano O, Córdoba-Caballero J, Alcalde M, Sarquella-Brugada G, Braza-Boïls A, Brugada R, Hernández-Torres F, Quezada-Feijoo M, Ramos M, Mangas A, Ranea JAG, Toro R. Role of miRNA-mRNA Interactome in Pathophysiology of Arrhythmogenic Cardiomyopathy. Biomedicines 2024; 12:1807. [PMID: 39200271 PMCID: PMC11351583 DOI: 10.3390/biomedicines12081807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Arrhythmogenic cardiomyopathy is an inherited entity characterized by irregular cell-cell adhesion, cardiomyocyte death and fibro-fatty replacement of ventricular myocytes, leading to malignant ventricular arrythmias, contractile dysfunction and sudden cardiac death. Pathogenic variants in genes that encode desmosome are the predominant cause of arrhythmogenic cardiomyopathy. Moreover, signalling pathways such as Wnt/ß-catenin and transforming growth factor-β have been involved in the disease progression. However, still little is known about the molecular pathophysiological mechanisms that underlie arrhythmogenic cardiomyopathy pathogenesis. We used mRNA and small RNA sequencing to analyse the transcriptome of health and arrhythmogenic cardiomyopathy of autopsied human hearts. Our results showed 697 differentially expressed genes and eight differentially expressed miRNAs. Functional enrichment revealed mitochondrial respiratory-related pathways, impaired response to oxidative stress, apoptotic signalling pathways and inflammatory response-related and extracellular matrix response pathways. Furthermore, analysis of the miRNA-mRNA interactome identified eleven negatively correlated miRNA-target pairs for arrhythmogenic cardiomyopathy. Our finding revealed novel arrhythmogenic cardiomyopathy-related miRNAs with important regulatory function in disease pathogenesis, highlighting their value as potential key targets for therapeutic approaches.
Collapse
Affiliation(s)
- Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - José Córdoba-Caballero
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain;
| | - Mireia Alcalde
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Aitana Braza-Boïls
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CAFAMUSME) Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ramon Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiology Service, Hospital Josep Trueta de Girona, 17007 Girona, Spain
| | - Francisco Hernández-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Monica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Medicine Department, School of Medicine, University of Cadiz, 11003 Cádiz, Spain
- Lipid and Atherosclerotic Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain;
- Institute of Biomedical Research in Málaga and platform of nanomedicine (IBIMA Plataforma BIONAND), 29071 Málaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Medicine Department, School of Medicine, University of Cadiz, 11003 Cádiz, Spain
| |
Collapse
|
10
|
Boeno FP, Roesch LFW, Efron PA, Laitano O. Proteomic Profiling of Hindlimb Skeletal Muscle Disuse in a Murine Model of Sepsis. Crit Care Explor 2024; 6:e1144. [PMID: 39162648 PMCID: PMC11338252 DOI: 10.1097/cce.0000000000001144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
CONTEXT Sepsis leads to multiple organ dysfunction and negatively impacts patient outcomes. Skeletal muscle disuse is a significant comorbidity in septic patients during their ICU stay due to prolonged immobilization. HYPOTHESIS Combination of sepsis and muscle disuse will promote a unique proteomic signature in skeletal muscle in comparison to disuse and sepsis separately. METHODS AND MODELS Following cecal ligation and puncture (CLP) or Sham surgeries, mice were subjected to hindlimb suspension (HLS) or maintained normal ambulation (NA). Tibialis anterior muscles from 24 C57BL6/J male mice were harvested for proteomic analysis. Proteomic profiles were assessed using nano-liquid chromatography with tandem mass spectrometry, followed by data analysis including Partial Least Squares Discriminant Analysis (PLS-DA), to compare the differential protein expression across groups. RESULTS A total of 2876 differentially expressed proteins were identified, with marked differences between groups. In mice subjected to CLP and HLS combined, there was a distinctive proteomic signature characterized by a significant decrease in the expression of proteins involved in mitochondrial function and muscle metabolism, alongside a marked increase in proteins related to muscle degradation pathways. The PLS-DA demonstrated a clear separation among experimental groups, highlighting the unique profile of the CLP/HLS group. This suggests an important interaction between sepsis-induced inflammation and disuse atrophy mechanisms in sepsis-induced myopathy. INTERPRETATIONS AND CONCLUSIONS Our findings reveal a complex proteomic landscape in skeletal muscle exposed to sepsis and disuse, consistent with an exacerbation of muscle protein degradation under these combined stressors. The identified proteins and their roles in cellular stress responses and muscle pathology provide potential targets for intervention to mitigate muscle dysfunction in septic conditions, highlighting the importance of addressing both sepsis and disuse concurrently in clinical and experimental settings.
Collapse
Affiliation(s)
- Franccesco P. Boeno
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL
| | - Luiz Fernando W. Roesch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Philip A. Efron
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL
| |
Collapse
|
11
|
Van Damme L, Blondeel P, Van Vlierberghe S. Reconstructing Curves: A Bottom-Up Approach toward Adipose Tissue Regeneration with Recombinant Biomaterials. Macromol Biosci 2024; 24:e2300466. [PMID: 38704814 DOI: 10.1002/mabi.202300466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/06/2024] [Indexed: 05/07/2024]
Abstract
The potential of recombinant materials in the field of adipose tissue engineering (ATE) is investigated using a bottom-up tissue engineering (TE) approach. This study explores the synthesis of different photo-crosslinkable gelatin derivatives, including both natural and recombinant materials, with a particular emphasis on chain growth and step growth polymerization. Gelatin type B (Gel-B) and a recombinant collagen peptide (RCPhC1) are used as starting materials. The gel fraction and mass swelling properties of 2D hydrogel films are evaluated, revealing high gel fractions exceeding 94% and high mass swelling ratios >15. In vitro experiments with encapsulated adipose-derived stem cells (ASCs) indicate viable cells (>85%) throughout the experiment with the RCPhC1-based hydrogels showing a higher number of stretched ASCs. Triglyceride assays show the enhanced differentiation potential of RCPhC1 materials. Moreover, the secretome analysis reveal the production of adipose tissue-specific proteins including adiponectin, adipsin, lipocalin-2/NGAL, and PAL-1. RCPhC1-based materials exhibit higher levels of adiponectin and adipsin production, indicating successful differentiation into the adipogenic lineage. Overall, this study highlights the potential of recombinant materials for ATE applications, providing insights into their physico-chemical properties, mechanical strength, and cellular interactions.
Collapse
Affiliation(s)
- Lana Van Damme
- Ghent University, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4-Bis, Ghent, 9000, Belgium
- Ghent University, Department of Plastic & Reconstructive Surgery, Corneel Heymanslaan 10 2K12, Ghent, 9000, Belgium
- 4Tissue BV, Technologiepark-Zwijnaarde 48, Ghent, 9052, Belgium
| | - Phillip Blondeel
- Ghent University, Department of Plastic & Reconstructive Surgery, Corneel Heymanslaan 10 2K12, Ghent, 9000, Belgium
- 4Tissue BV, Technologiepark-Zwijnaarde 48, Ghent, 9052, Belgium
| | - Sandra Van Vlierberghe
- Ghent University, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4-Bis, Ghent, 9000, Belgium
- 4Tissue BV, Technologiepark-Zwijnaarde 48, Ghent, 9052, Belgium
| |
Collapse
|
12
|
Dror S, Lucotti S, Asao T, Li J, Wortzel I, Berger LS, Matei I, Boudreau N, Zhang H, Jones D, Bromberg J, Lyden D. Tumour-derived Extracellular Vesicle and Particle Reprogramming of Interstitial Macrophages in the Lung Pre-Metastatic Niche Enhances Vascular Permeability and Metastatic Potential. RESEARCH SQUARE 2024:rs.3.rs-4462139. [PMID: 38853850 PMCID: PMC11160910 DOI: 10.21203/rs.3.rs-4462139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles and particles (EVPs) are pivotal mediators of pre-metastatic niche formation and cancer progression, including induction of vascular permeability, which facilitates tumor cell extravasation and metastasis. However, the mechanisms through which EVPs exert this effect remain poorly understood. Here, we elucidate a novel mechanism by which tumor EVPs enhance endothelial cell permeability, tumor extravasation, and lung metastasis to different degrees, depending on tumor type. Strikingly, vascular leakiness is observed within 48h following tumor implantation and as early as one hour following intravenous injection of tumour-derived EVPs in naïve mice. Surprisingly, rather than acting directly on endothelial cells, EVPs first activate interstitial macrophages (IMs) leading to activation of JAK/STAT signaling and IL-6 secretion in IMs which subsequently promote endothelial permeability. Depletion of IMs significantly reduces tumour-derived EVP-dependent vascular leakiness and metastatic potential. Tumour EVPs that strongly induce vascular leakiness express high levels of ITGα5, and ITGα5 ablation impairs IM activation, cytokine secretion, and subsequently vascular permeability and metastasis. Importantly, IL-6 expression is elevated in IMs from non-involved tumor-adjacent lung tissue compared to distal lung tissue in lung cancer patients, highlight the clinical relevance of our discovery. Our findings identify a key role for IM activation as an initiating step in tumor type-specific EVP-driven vascular permeability and metastasis, offering promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shani Dror
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tetsuhiko Asao
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jianlong Li
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Inbal Wortzel
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Lee Shaashua Berger
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Jones
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Logan NJ, Broda KL, Pantelireis N, Williams G, Higgins CA. Chromatin accessibility profiling reveals that human fibroblasts respond to mechanical stimulation in a cell-specific manner. JBMR Plus 2024; 8:ziae025. [PMID: 38682000 PMCID: PMC11055960 DOI: 10.1093/jbmrpl/ziae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts in the skin are highly heterogeneous, both in vivo and in vitro. One difference between follicular (dermal papilla fibroblasts [DP]) and interfollicular fibroblasts (papillary fibroblasts [PFi]) in vitro is their ability to differentiate in response to osteogenic media (OM), or mechanical stimulation. Here, we asked whether differences in the ability of DP and PFi to respond to differentiation stimuli are due to differences in chromatin accessibility. We performed chromatin accessibility and transcriptional profiling of DP and PFi in human skin, which arise from a common progenitor during development, yet display distinct characteristics in adult tissue and in vitro. We found that cells cultured in growth media had unique chromatin accessibility profiles; however, these profiles control similar functional networks. Upon introduction of a chemical perturbation (OM) to promote differentiation, we observed a divergence not only in the accessible chromatin signatures but also in the functional networks controlled by these signatures. The biggest divergence between DP and PFi was observed when we applied 2 perturbations to cells: growth in OM and mechanical stimulation (a shock wave [OMSW]). DP readily differentiate into bone in OMSW conditions, while PFi lack differentiation capability in vitro. In the DP we found a number of uniquely accessible promoters that controlled osteogenic interaction networks associated with bone and differentiation functions. Using ATAC-seq and RNA-seq we found that the combination of 2 stimuli (OMSW) could result in significant changes in chromatin accessibility associated with osteogenic differentiation, but only within the DP (capable of osteogenic differentiation). De novo motif analysis identified enrichment of motifs bound by the TEA domain (TEAD) family of transcription factors, and inter-cell comparisons (UpSet analysis) displayed large groups of genes to be unique to single cell types and conditions. Our results suggest that these 2 stimuli (OMSW) elicit cell-specific responses by modifying chromatin accessibility of osteogenic-related gene promoters.
Collapse
Affiliation(s)
- Niall J Logan
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Krystyna L Broda
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nikolaos Pantelireis
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Greg Williams
- Farjo Hair Institute, Manchester, M3 3EJ, United Kingdom
| | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Castillo C, Grieco M, D'Amone S, Lolli MG, Ursini O, Cortese B. Hypoxia effects on glioblastoma progression through YAP/TAZ pathway regulation. Cancer Lett 2024; 588:216792. [PMID: 38453044 DOI: 10.1016/j.canlet.2024.216792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The resistance of glioblastomas (GBM) to standard therapies poses a clinical challenge with limited survival despite interventions. The tumor microenvironment (TME) orchestrates GBM progression, comprising stromal and immune cells and is characterized by extensive hypoxic regions. Hypoxia activates the hypoxia-inducible factor 1 alpha (HIF-1α) pathway, interacting with the Hippo pathway (YAP/TAZ) in crucial cellular processes. We discuss here the related signaling crosstalk between YAP/TAZ and regions of hypoxia in the TME with particular attention on the MST1/2 and LATS1/2-regulated YAP/TAZ activation, impacting cell proliferation, invasion, and stemness. Moreover, the hypoxia-YAP/TAZ axis influence on angiogenesis, stem cells, and metabolic regulators is defined. By reviewing extracellular matrix alterations activation of YAP/TAZ, modulation of signaling pathways we also discuss the significance of spatial constraints and epigenetic modifications contribution to GBM progression, with potential therapeutic targets in YAP/TAZ-mediated gene regulation. Comprehensive understanding of the hypoxia-Hippo pathway-TME interplay offers insights for novel therapeutic strategies, aiming to provide new directions for treatment.
Collapse
Affiliation(s)
- Carolina Castillo
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Maddalena Grieco
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Stefania D'Amone
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Maria Grazia Lolli
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Ornella Ursini
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Barbara Cortese
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
15
|
Fukui M, Lai F, Hihara M, Mitsui T, Matsuoka Y, Sun Z, Kunieda S, Taketani S, Odaka T, Okuma K, Kakudo N. Activation of cell adhesion and migration is an early event of platelet-rich plasma (PRP)-dependent stimulation of human adipose-derived stem/stromal cells. Hum Cell 2024; 37:181-192. [PMID: 37787969 DOI: 10.1007/s13577-023-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Stem cell therapy is a promising treatment in regenerative medicine. Human adipose-derived stem/stromal cells (hASCs), a type of mesenchymal stem cell, are easy to harvest. In plastic and aesthetic surgery, hASC may be applied in the treatment of fat grafting, wound healing, and scar remodeling. Platelet-rich plasma (PRP) contains various growth factors, including platelet-derived growth factor (PDGF), which accelerates wound healing. We previously reported that PRP promotes the proliferation of hASC via multiple signaling pathways, and we evaluated the effect of PRP on the stimulation of hASC adhesion and migration, leading to the proliferation of these cells. When hASCs were treated with PRP, AKT, ERK1/2, paxillin and RhoA were rapidly activated. PRP treatment led to the formation of F-actin stress fibers. Strong signals for integrin β1, paxillin and RhoA at the cell periphery of RPR-treated cells indicated focal adhesion. PRP promoted cell adhesion and movement of hASC, compared with the control group. Imatinib, an inhibitor of the PDGF receptor tyrosine kinase, inhibited the promotion of PRP-dependent cell migration. PDGF treatment of hASCs also stimulated cell adhesion and migration but to a lesser extent than PRP treatment. PRP promoted the adhesion and the migration of hASC, mediated by the activation of AKT in the integrin signaling pathway. PRP treatment was more effective than PDGF treatment in enhancing cell migration. Thus, the ability of PRPs to promote migration of hASC to enhance cell growth is evident.
Collapse
Affiliation(s)
- Michika Fukui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan.
| | - Fangyuan Lai
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Masakatsu Hihara
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Toshihito Mitsui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Yuki Matsuoka
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Zhongxin Sun
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Sakurako Kunieda
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Shigeru Taketani
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Tokifumi Odaka
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
16
|
Larsen JK, Kruse R, Sahebekhtiari N, Moreno-Justicia R, Gomez Jorba G, Petersen MH, de Almeida ME, Ørtenblad N, Deshmukh AS, Højlund K. High-throughput proteomics uncovers exercise training and type 2 diabetes-induced changes in human white adipose tissue. SCIENCE ADVANCES 2023; 9:eadi7548. [PMID: 38019916 PMCID: PMC10686561 DOI: 10.1126/sciadv.adi7548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
White adipose tissue (WAT) is important for metabolic homeostasis. We established the differential proteomic signatures of WAT in glucose-tolerant lean and obese individuals and patients with type 2 diabetes (T2D) and the response to 8 weeks of high-intensity interval training (HIIT). Using a high-throughput and reproducible mass spectrometry-based proteomics pipeline, we identified 3773 proteins and found that most regulated proteins displayed progression in markers of dysfunctional WAT from lean to obese to T2D individuals and were highly associated with clinical measures such as insulin sensitivity and HbA1c. We propose that these distinct markers could serve as potential clinical biomarkers. HIIT induced only minor changes in the WAT proteome. This included an increase in WAT ferritin levels independent of obesity and T2D, and WAT ferritin levels were strongly correlated with individual insulin sensitivity. Together, we report a proteomic signature of WAT related to obesity and T2D and highlight an unrecognized role of human WAT iron metabolism in exercise training adaptations.
Collapse
Affiliation(s)
- Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gerard Gomez Jorba
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maria H. Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
| | - Martin E. de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
17
|
Rauchenwald T, Handle F, Connolly CE, Degen A, Seifarth C, Hermann M, Tripp CH, Wilflingseder D, Lobenwein S, Savic D, Pölzl L, Morandi EM, Wolfram D, Skvortsova II, Stoitzner P, Haybaeck J, Konschake M, Pierer G, Ploner C. Preadipocytes in human granulation tissue: role in wound healing and response to macrophage polarization. Inflamm Regen 2023; 43:53. [PMID: 37904253 PMCID: PMC10617061 DOI: 10.1186/s41232-023-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment. METHODS We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR. RESULTS CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs. CONCLUSION Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.
Collapse
Affiliation(s)
- Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Catherine E Connolly
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia Degen
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Lobenwein
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Marko Konschake
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
18
|
Dai J, Ouyang H, Wei S, Chen B, Dong X, Hu JJ, Wu M, Wang S, Xia F, Lou X. Cancer-Associated Fibroblast Mimetic AIE Probe for Precision Imaging-Guided Full-Cycle Management of Ovarian Cancer Surgery. Anal Chem 2023; 95:15068-15077. [PMID: 37767787 DOI: 10.1021/acs.analchem.3c03164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Fluorescence imaging can improve surgical accuracy in ovarian cancer, but a high signal-to-noise ratio is crucial for tiny metastatic cancers. Meanwhile, intraoperative fluorescent surgical navigation modalities alone are still insufficient to completely remove ovarian cancer lesions, and the recurrence rate remains high. Here, we constructed a cancer-associated fibroblasts (CAFs)-mimetic aggregation-induced emission (AIE) probe to enable full-cycle management of surgery that eliminates recurrence. AIE molecules (P3-PPh3) were packed in hollow mesoporous silica nanoparticles (HMSNs) to form HMSN-probe and then coated with a CAFs membrane to prepare CAF-probe. First, due to the negative potential of the CAF-probe, the circulation time in vivo is elevated, which facilitates passive tumor targeting. Second, the CAF-probe avoids its clearance by the immune system and improves the bioavailability. Finally, the fibronectin on the CAF-probe specifically binds to integrin α-5 (ITGA5), which is highly expressed in ovarian cancer cells, enabling fluorescence imaging with a contrast of up to 8.6. CAF-probe-based fluorescence imaging is used to evaluate the size and location of ovarian cancer before surgery (preoperative evaluation), to guide tumor removal during surgery (intraoperative navigation), and to monitor tumor recurrence after surgery (postoperative monitoring), ultimately significantly improving the efficiency of surgery and completely eliminating tumor recurrence. In conclusion, we constructed a CAFs mimetic AIE probe and established a full-cycle surgical management model based on its precise imaging properties, which significantly reduced the recurrence of ovarian cancer.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Hanzhi Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
19
|
Gupta A, Efthymiou V, Kodani SD, Shamsi F, Patti ME, Tseng YH, Streets A. Mapping the transcriptional landscape of human white and brown adipogenesis using single-nuclei RNA-seq. Mol Metab 2023; 74:101746. [PMID: 37286033 PMCID: PMC10338377 DOI: 10.1016/j.molmet.2023.101746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Adipogenesis is key to maintaining organism-wide energy balance and healthy metabolic phenotype, making it critical to thoroughly comprehend its molecular regulation in humans. By single-nuclei RNA-sequencing (snRNA-seq) of over 20,000 differentiating white and brown preadipocytes, we constructed a high-resolution temporal transcriptional landscape of human white and brown adipogenesis. White and brown preadipocytes were isolated from a single individual's neck region, thereby eliminating inter-subject variability across two distinct lineages. These preadipocytes were also immortalized to allow for controlled, in vitro differentiation, allowing sampling of distinct cellular states across the spectrum of adipogenic progression. Pseudotemporal cellular ordering revealed the dynamics of ECM remodeling during early adipogenesis, and lipogenic/thermogenic response during late white/brown adipogenesis. Comparison with adipogenic regulation in murine models Identified several novel transcription factors as potential targets for adipogenic/thermogenic drivers in humans. Among these novel candidates, we explored the role of TRPS1 in adipocyte differentiation and showed that its knockdown impairs white adipogenesis in vitro. Key adipogenic and lipogenic markers revealed in our analysis were applied to analyze publicly available scRNA-seq datasets; these confirmed unique cell maturation features in recently discovered murine preadipocytes, and revealed inhibition of adipogenic expansion in humans with obesity. Overall, our study presents a comprehensive molecular description of both white and brown adipogenesis in humans and provides an important resource for future studies of adipose tissue development and function in both health and metabolic disease state.
Collapse
Affiliation(s)
- Anushka Gupta
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - Vissarion Efthymiou
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sean D Kodani
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Mary Elizabeth Patti
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Hua Tseng
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aaron Streets
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Glunk V, Laber S, Sinnott-Armstrong N, Sobreira DR, Strobel SM, Batista TM, Kubitz P, Moud BN, Ebert H, Huang Y, Brandl B, Garbo G, Honecker J, Stirling DR, Abdennur N, Calabuig-Navarro V, Skurk T, Ocvirk S, Stemmer K, Cimini BA, Carpenter AE, Dankel SN, Lindgren CM, Hauner H, Nobrega MA, Claussnitzer M. A non-coding variant linked to metabolic obesity with normal weight affects actin remodelling in subcutaneous adipocytes. Nat Metab 2023; 5:861-879. [PMID: 37253881 PMCID: PMC11533588 DOI: 10.1038/s42255-023-00807-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.
Collapse
Affiliation(s)
- Viktoria Glunk
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Samantha Laber
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Nasa Sinnott-Armstrong
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Herbold Computational Biology Program, Publich Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Debora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Sophie M Strobel
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Thiago M Batista
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Phil Kubitz
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bahareh Nemati Moud
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hannah Ebert
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Yi Huang
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beate Brandl
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Garrett Garbo
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
| | - Julius Honecker
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - David R Stirling
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nezar Abdennur
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Virtu Calabuig-Navarro
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Thomas Skurk
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Intestinal Microbiology Research Group, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Kerstin Stemmer
- Molecular Cell Biology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simon N Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Cecilia M Lindgren
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Hans Hauner
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- ZIEL Institute for Food & Health, Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Medical and Population Genetics Program & Type 2 Diabetes Systems Genomics Initiative, Cambridge, MA, USA.
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Gečys D, Skredėnienė R, Gečytė E, Kazlauskas A, Balnytė I, Jekabsone A. Adipose Tissue-Derived Stem Cell Extracellular Vesicles Suppress Glioblastoma Proliferation, Invasiveness and Angiogenesis. Cells 2023; 12:cells12091247. [PMID: 37174646 PMCID: PMC10177295 DOI: 10.3390/cells12091247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Extracellular vesicles (EVs) are attractive anticancer drug delivery candidates as they confer several fundamental properties, such as low immunogenicity and the ability to cross biological barriers. Mesenchymal stem cells (MSCs) are convenient producers for high EV yields, and patient-derived adipose tissue MSC-EVs could serve as personalised carriers. However, MSC-EV applications raise critical concerns as their natural cargo can affect tumour progression in both inducing and suppressing ways. In this study, we investigated the effect of adipose tissue-derived mesenchymal stem cell EVs (ASC-EVs) on several glioblastoma (GBM) cell lines to define their applicability for anticancer therapies. ASC-EVs were isolated from a cell-conditioned medium and characterised by size and specific markers. The internalisation of fluorescently labelled ASC-EVs by human GBM cells HROG36, U87 MG, and T98G was evaluated by fluorescent microscopy. Changes in GBM cell proliferation after ASC-EV application were determined by the metabolic PrestoBlue assay. Expression alterations in genes responsible for cell adhesion, proliferation, migration, and angiogenesis were evaluated by quantitative real-time PCR. ASC-EV effects on tumour invasiveness and neoangiogenesis in ovo were analysed on the chicken embryo chorioallantoic membrane model (CAM). ASC-EV treatment reduced GBM proliferation in vitro and significantly downregulated invasiveness-related genes ITGα5 (in T98G and HROG63) and ITGβ3 (in HROG36) and the vascularisation-inducing gene KDR (in all GBM lines). Additionally, an approximate 65% reduction in the GBM invasion rate was observed in CAM after ASC-EV treatment. Our study indicates that ASC-EVs possess antitumour properties, reducing GBM cell proliferation and invasiveness, and can be applied as anticancer therapeutics and medicine carriers.
Collapse
Affiliation(s)
- Dovydas Gečys
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Rūta Skredėnienė
- Department of Histology and Embryology, Faculty of Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Emilija Gečytė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Arūnas Kazlauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Faculty of Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Aistė Jekabsone
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| |
Collapse
|
22
|
Kornmuller A, Cooper TT, Jani A, Lajoie GA, Flynn LE. Probing the effects of matrix-derived microcarrier composition on human adipose-derived stromal cells cultured dynamically within spinner flask bioreactors. J Biomed Mater Res A 2023; 111:415-434. [PMID: 36210786 DOI: 10.1002/jbm.a.37459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023]
Abstract
Recognizing the cell-instructive capacity of the extracellular matrix (ECM), this study investigated the effects of expanding human adipose-derived stromal cells (hASCs) on ECM-derived microcarriers fabricated from decellularized adipose tissue (DAT) or decellularized cartilage tissue (DCT) within spinner flask bioreactors. Protocols were established for decellularizing porcine auricular cartilage and electrospraying methods were used to generate microcarriers comprised exclusively of DAT or DCT, which were compositionally distinct, but had matching Young's moduli. Both microcarrier types supported hASC attachment and growth over 14 days within a low-shear spinner culture system, with a significantly higher cell density observed on the DCT microcarriers at 7 and 14 days. Irrespective of the ECM source, dynamic culture on the microcarriers altered the expression of genes and proteins associated with cell adhesion and ECM remodeling. Label-free mass spectrometry analysis showed upregulation of proteins associated with cartilage development and ECM in the hASCs expanded on the DCT microcarriers. Based on Luminex analysis, the hASCs expanded on the DCT microcarriers secreted significantly higher levels of IL-8 and PDGFAA, supporting that the ECM source can modulate hASC paracrine factor secretion. Finally, the hASCs expanded on the microcarriers were extracted for analysis of adipogenic and chondrogenic differentiation relative to baseline controls. The microcarrier-cultured hASCs showed enhanced intracellular lipid accumulation at 7 days post-induction of adipogenic differentiation. In the chondrogenic studies, a low level of differentiation was observed in all groups. Future studies are warranted using alternative cell sources with greater chondrogenic potential to further assess the chondro-inductive properties of the DCT microcarriers.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Tyler T Cooper
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Ammi Jani
- Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
23
|
Van Nynatten LR, Slessarev M, Martin CM, Leligdowicz A, Miller MR, Patel MA, Daley M, Patterson EK, Cepinskas G, Fraser DD. Novel plasma protein biomarkers from critically ill sepsis patients. Clin Proteomics 2022; 19:50. [PMID: 36572854 PMCID: PMC9792322 DOI: 10.1186/s12014-022-09389-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.
Collapse
Affiliation(s)
| | - Marat Slessarev
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Claudio M Martin
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Aleks Leligdowicz
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Michael R Miller
- Lawson Health Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Maitray A Patel
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Lawson Health Research Institute, London, ON, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
| | | | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, Canada.
- Pediatrics, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology and Pharmacology, Western University, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
24
|
Entz L, Falgayrac G, Chauveau C, Pasquier G, Lucas S. The extracellular matrix of human bone marrow adipocytes and glucose concentration differentially alter mineralization quality without impairing osteoblastogenesis. Bone Rep 2022; 17:101622. [PMID: 36187598 PMCID: PMC9519944 DOI: 10.1016/j.bonr.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Bone marrow adipocytes (BMAds) accrue in various states of osteoporosis and interfere with bone remodeling through the secretion of various factors. However, involvement of the extracellular matrix (ECM) produced by BMAds in the impairment of bone marrow mesenchymal stromal cell (BM-MSC) osteoblastogenesis has received little attention. In type 2 diabetes (T2D), skeletal fragility is associated with several changes in bone quality that are incompletely understood, and BMAd quantity increases in relationship to poor glycemic control. Considering their altered phenotype in this pathophysiological context, we aimed to determine the contribution of the ECM of mature BMAds to osteoblastogenesis and mineralization quality in the context of chronic hyperglycemia. Human BM-MSCs were differentiated for 21 days in adipogenic medium containing either a normoglycemic (LG, 5.5 mM) or a high glucose concentration (HG, 25 mM). The ECM laid down by BMAds were devitalized through cell removal to examine their impact on the proliferation and differentiation of BM-MSCs toward osteoblastogenesis in LG and HG conditions. Compared to control plates, both adipocyte ECMs promoted cell adhesion and proliferation. As shown by the unmodified RUNX2 and osteocalcin mRNA levels, BM-MSC commitment in osteoblastogenesis was hampered by neither the hyperglycemic condition nor the adipocyte matrices. However, adipocyte ECMs or HG condition altered the mineralization phase with perturbed expression levels of type 1 collagen, MGP and osteopontin. Despite higher ALP activity, mineralization levels per cell were decreased for osteoblasts grown on adipocyte ECMs compared to controls. Raman spectrometry revealed that culturing on adipocyte matrices specifically prevents type-B carbonate substitution and favors collagen crosslinking, in contrast to exposure to HG concentration alone. Moreover, the mineral to organic ratio was disrupted according to the presence of adipocyte ECM and the glucose concentration used for adipocyte or osteoblast culture. HG concentration and adipocyte ECM lead to different defects in mineralization quality, recapitulating contradictory changes reported in T2D osteoporosis. Our study shows that ECMs from BMAds do not impair osteoblastogenesis but alter both the quantity and quality of mineralization partly in a glucose concentration-dependent manner. This finding sheds light on the involvement of BMAds, which should be considered in the compromised bone quality of T2D and osteoporosis patients more generally. Glucose level alters the Extracellular Matrix composition of Bone Marrow adipocytes. Osteoblastogenesis on adipocyte ECMs is unaltered but produced less mineral amount. The quality of the mineral is altered differently by adipocyte ECMs or glucose levels. The presence of BM adipocytes should be valued in damaged osteoporosis bone quality.
Collapse
Key Words
- AGEs, Advanced glycation end-products
- BM-MSC, Bone marrow mesenchymal stromal cell
- BMAd, Bone marrow adipocyte
- ECM, Extracellular matrix
- ECMBMAd HG, Extracellular matrix obtained from BMAds cultured in HG concentration
- ECMBMAd LG, Extracellular matrix obtained from BMAds cultured in LG concentration
- ECMBMAd, Extracellular matrix obtained from BMAds
- Extracellular matrix
- GAG, glycosaminoglycan
- HA, hydroxyapatite
- HG, High glucose
- Hyperglycemia
- LG, Low glucose
- LGM, Low glucose and mannitol
- Marrow adipocytes
- Osteoblast
- Osteoporosis
- Skeletal mesenchymal stromal cells
- T2D, Type 2 diabetes
Collapse
|
25
|
Hur WS, King KC, Patel YN, Nguyen YV, Wei Z, Yang Y, Juang LJ, Leung J, Kastrup CJ, Wolberg AS, Luyendyk JP, Flick MJ. Elimination of fibrin polymer formation or crosslinking, but not fibrinogen deficiency, is protective against diet-induced obesity and associated pathologies. J Thromb Haemost 2022; 20:2873-2886. [PMID: 36111375 PMCID: PMC9669152 DOI: 10.1111/jth.15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Obesity predisposes individuals to metabolic syndrome, which increases the risk of cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes. A pathological manifestation of obesity is the activation of the coagulation system. In turn, extravascular fibrin(ogen) deposits accumulate in adipose tissues and liver. These deposits promote adiposity and downstream sequelae by driving pro-inflammatory macrophage function through binding the leukocyte integrin receptor αM β2 . OBJECTIVES An unresolved question is whether conversion of soluble fibrinogen to a crosslinked fibrin matrix is required to exacerbate obesity-driven diseases. METHODS Here, fibrinogen-deficient/depleted mice (Fib- or treated with siRNA against fibrinogen [siFga]), mice expressing fibrinogen that cannot polymerize to fibrin (FibAEK ), and mice deficient in the fibrin crosslinking transglutaminase factor XIII (FXIII-) were challenged with a high-fat diet (HFD) and compared to mice expressing a mutant form of fibrinogen lacking the αM β2 -binding domain (Fib𝛾390-396A ). RESULTS AND CONCLUSIONS Consistent with prior studies, Fib𝛾390-396A mice were significantly protected from increased adiposity, NAFLD, hypercholesterolemia, and diabetes while Fib- and siFga-treated mice gained as much weight and developed obesity-associated pathologies identical to wildtype mice. FibAEK and FXIII- mice displayed an intermediate phenotype with partial protection from some obesity-associated pathologies. Results here indicate that fibrin(ogen) lacking αM β2 binding function offers substantial protection from obesity and associated disease that is partially recapitulated by preventing fibrin polymer formation or crosslinking of the wildtype molecule, but not by reduction or complete elimination of fibrinogen. Finally, these findings support the concept that fibrin polymerization and crosslinking are required for the full implementation of fibrin-driven inflammation in obesity.
Collapse
Affiliation(s)
- Woosuk S. Hur
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katharine C. King
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yesha N. Patel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Y-Van Nguyen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lih Jiin Juang
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Jerry Leung
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Christian J. Kastrup
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Blood Research institute, Versiti, Milwaukee, WI, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Park S, Hong T, Song G, Lim W. Aclonifen could induce implantation failure during early embryonic development through apoptosis of porcine trophectoderm and uterine luminal epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105288. [PMID: 36464341 DOI: 10.1016/j.pestbp.2022.105288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Aclonifen is a diphenyl-ether herbicide that is used to control the growth of weeds while growing crops such as corn and wheat. Although the biochemical effects of aclonifen are well characterized, including its ability to inhibit protoporphyrinogen oxidase and carotenoid synthesis, the toxicity of aclonifen in embryonic implantation and development during early pregnancy, has not been reported. Thus, in this study, we investigated the potential interference of aclonifen in embryonic implantation using porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells isolated during implantation period of early pregnancy. Cell viability in both pTr and pLE cells significantly decreased in a dose-dependent manner following aclonifen treatment. Moreover, the proportion of cells in the sub-G1 phase of the cell cycle gradually increased upon treatment with increasing concentrations of aclonifen, which in turn led to an increase in the number of apoptotic cells, as determined by annexin V and propidium iodide staining. Aclonifen treatment caused mitochondrial dysfunction by increasing the depolarization of the mitochondrial membrane potential and the mitochondrial calcium concentration. Aclonifen inhibited cell mobility by suppressing the expression of implantation-related genes in pTr and pLE cells. To explore the underlying mechanism, we evaluated the phosphorylation of PI3K and MAPK signaling molecules. The phosphorylation of AKT, S6, JNK, and ERK1/2 were significantly increased by aclonifen. Collectively, our results suggest that aclonifen may interrupt implantation during early pregnancy by disrupting maternal-fetal interaction.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea; Department of GreenBio Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
27
|
Hu B, Shen X, Qin W, Zhang L, Zou T, Dong Q, Qin LX. A Prognostic Nomogram for Hepatocellular Carcinoma Based on Wound Healing and Immune Checkpoint Genes. J Clin Transl Hepatol 2022; 10:891-900. [PMID: 36304515 PMCID: PMC9547254 DOI: 10.14218/jcth.2021.00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Wound healing and tumor progression share some common biological features; however, how variations in wound healing patterns affect hepatocellular carcinoma (HCC) prognosis remains unclear. METHODS We analyzed the wound healing patterns of 594 HCC samples from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) and correlated them with immune infiltration and the expression levels of immune checkpoint genes. A risk score, which we named the "heal.immune" score, was established via stepwise Cox estimation. We constructed a nomogram based on age, sex, TNM stage, and heal.immune score and explored its predictive value for HCC prognosis. Seventy-four clinical patients were enrolled in this study, and all were from Huashan Hospital of Fudan University between 2015 and 2017 to serve as an independent validation group. RESULTS We identified two distinct wound healing patterns in HCC. The biological processes of healing cluster 1 (C1) are related to metabolism, while those of healing cluster 2 (C2) are related to the inflammatory response and immune cell accumulation. A total of 565 wound healing-related genes (based on Gene Ontology) and 25 immune checkpoint genes were considered. By analyzing differentially expressed genes and implementing a stepwise Cox estimation analysis, six genes with p values less than 0.02 in a multivariate Cox estimation were chosen as the "heal.immune" gene set (FCER1G, PLAT, ITGA5, CCNB1, CD86 and CD40). The "heal.immune" gene set, as an OS risk factor, was further validated in Fudan cohort. We constructed a nomogram to predict the 1-, 3- and 5-year overall survival (OS) in the TCGA cohort. The area under curve vales of the receiver characteristic operator curves were 0.82, 0.76 and 0.73 in the training group and 0.84, 0.76 and 0.72 in the test group. CONCLUSIONS We established a prognostic nomogram based on the heal.immune gene signature, which includes six wound healing- and immunity-related genes. This nomogram accurately predicts the OS of HCC patients.
Collapse
Affiliation(s)
| | | | | | - Lan Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Yehuda GA, Somekh J. A methodology for classifying tissue-specific metabolic and inflammatory receptor functions applied to subcutaneous and visceral adipose. PLoS One 2022; 17:e0276699. [PMID: 36282842 PMCID: PMC9595531 DOI: 10.1371/journal.pone.0276699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
To achieve homeostasis, the human biological system relies on the interaction between organs through the binding of ligands secreted from source organs to receptors located on destination organs. Currently, the changing roles that receptors perform in tissues are only partially understood. Recently, a methodology based on receptor co-expression patterns to classify their tissue-specific metabolic functions was suggested. Here we present an advanced framework to predict an additional class of inflammatory receptors that use a feature space of biological pathway enrichment analysis scores of co-expression networks and their eigengene correlations. These are fed into three machine learning classifiers-eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and K-Nearest Neighbors (k-NN). We applied our methodology to subcutaneous and visceral adipose gene expression datasets derived from the GTEx (Genotype-Tissue Expression) project and compared the predictions. The XGBoost model demonstrated the best performance in predicting the pre-labeled receptors, with an accuracy of 0.89/0.8 in subcutaneous/visceral adipose. We analyzed ~700 receptors to predict eight new metabolic and 15 new inflammatory functions of receptors and four new metabolic functions for known inflammatory receptors in both adipose tissues. We cross-referenced multiple predictions using the published literature. Our results establish a picture of the changing functions of receptors for two adipose tissues that can be beneficial for drug development.
Collapse
Affiliation(s)
| | - Judith Somekh
- Information Systems, University of Haifa, Haifa, Israel
| |
Collapse
|
29
|
Hong S, Yoon J, Cha J, Ahn J, Mandakhbayar N, Park JH, Im J, Jin G, Kim M, Knowles JC, Lee H, Lee J, Kim H. Hyperelastic, shape-memorable, and ultra-cell-adhesive degradable polycaprolactone-polyurethane copolymer for tissue regeneration. Bioeng Transl Med 2022; 7:e10332. [PMID: 36176615 PMCID: PMC9472029 DOI: 10.1002/btm2.10332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Novel polycaprolactone-based polyurethane (PCL-PU) copolymers with hyperelasticity, shape-memory, and ultra-cell-adhesion properties are reported as clinically applicable tissue-regenerative biomaterials. New isosorbide derivatives (propoxylated or ethoxylated ones) were developed to improve mechanical properties by enhanced reactivity in copolymer synthesis compared to the original isosorbide. Optimized PCL-PU with propoxylated isosorbide exhibited notable mechanical performance (50 MPa tensile strength and 1150% elongation with hyperelasticity under cyclic load). The shape-memory effect was also revealed in different forms (film, thread, and 3D scaffold) with 40%-80% recovery in tension or compression mode after plastic deformation. The ultra-cell-adhesive property was proven in various cell types which were reasoned to involve the heat shock protein-mediated integrin (α5 and αV) activation, as analyzed by RNA sequencing and inhibition tests. After the tissue regenerative potential (muscle and bone) was confirmed by the myogenic and osteogenic responses in vitro, biodegradability, compatible in vivo tissue response, and healing capacity were investigated with in vivo shape-memorable behavior. The currently exploited PCL-PU, with its multifunctional (hyperelastic, shape-memorable, ultra-cell-adhesive, and degradable) nature and biocompatibility, is considered a potential tissue-regenerative biomaterial, especially for minimally invasive surgery that requires small incisions to approach large defects with excellent regeneration capacity.
Collapse
|
30
|
Uetaki M, Onishi N, Oki Y, Shimizu T, Sugihara E, Sampetrean O, Watanabe T, Yanagi H, Suda K, Fujii H, Kano K, Saya H, Nobusue H. Regulatory roles of fibronectin and integrin α5 in reorganization of the actin cytoskeleton and completion of adipogenesis. Mol Biol Cell 2022; 33:ar78. [PMID: 35704469 PMCID: PMC9582638 DOI: 10.1091/mbc.e21-12-0609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular differentiation is characterized by changes in cell morphology that are largely determined by actin dynamics. We previously showed that depolymerization of the actin cytoskeleton triggers the differentiation of preadipocytes into mature adipocytes as a result of inhibition of the transcriptional coactivator activity of megakaryoblastic leukemia 1 (MKL1). The extracellular matrix (ECM) influences cell morphology via interaction with integrins, and reorganization of the ECM is associated with cell differentiation. Here we show that interaction between actin dynamics and ECM rearrangement plays a key role in adipocyte differentiation. We found that depolymerization of the actin cytoskeleton precedes disruption and degradation of fibrillar fibronectin (FN) structures at the cell surface after the induction of adipogenesis in cultured preadipocytes. A FN matrix suppressed both reorganization of the actin cytoskeleton into the pattern characteristic of adipocytes and terminal adipocyte differentiation, and these inhibitory effects were overcome by knockdown of integrin α5 (ITGα5). Peroxisome proliferator–activated receptor γ was required for down-regulation of FN during adipocyte differentiation, and MKL1 was necessary for the expression of ITGα5. Our findings suggest that cell-autonomous down-regulation of FN-ITGα5 interaction contributes to reorganization of the actin cytoskeleton and completion of adipocyte differentiation.
Collapse
Affiliation(s)
- Megumi Uetaki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Eiji Sugihara
- Open Facility Center, Fujita Health University, Toyoake, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Hisano Yanagi
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kiyoshi Suda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Hiroya Fujii
- Medical & Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| |
Collapse
|
31
|
Yao J, Ma F, Zhang L, Zhu C, Jumabay M, Yao Z, Wang L, Cai X, Zhang D, Qiao X, Shivkumar K, Pellegrini M, Yao Y, Wu X, Boström KI. Single-Cell RNA-Seq Identifies Dynamic Cardiac Transition Program from Adipose Derived Cells Induced by Leukemia Inhibitory Factor. Stem Cells 2022; 40:932-948. [PMID: 35896368 PMCID: PMC9585902 DOI: 10.1093/stmcls/sxac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022]
Abstract
Adipose-derived cells (ADCs) from white adipose tissue (WAT) are promising stem cell candidates because of their large regenerative reserves and the potential for cardiac regeneration. However, given the heterogeneity of ADC and its unsolved mechanisms of cardiac acquisition, ADC-cardiac transition efficiency remains low. In this study, we explored the heterogeneity of ADCs and the cellular kinetics of 39,432 single-cell transcriptomes along the leukemia inhibitory factor (LIF) induced ADC-cardiac transition. We identified distinct ADC subpopulations that reacted differentially to LIF when entering the cardiomyogenic program, further demonstrating that ADC-myogenesis is time-dependent and initiates from transient changes in nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. At later stages, pseudotime analysis of ADCs navigated a trajectory with two branches corresponding to activated myofibroblast or cardiomyocyte-like cells. Our findings offer a high-resolution dissection of ADC heterogeneity and cell fate during ADC-cardiac transition, thus providing new insights into potential cardiac stem cells.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.,Chongqing International Institute for Immunology, Chongqing 401338, China
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Ching Zhu
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Medet Jumabay
- Division of Allergy, Immunology Center for Immunity, Infection, and Inflammation Pediatrics, Dept of Medicine, University of California, San Diego, San Diego, CA
| | - Zehao Yao
- Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Lumin Wang
- Institute of Precision Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | | | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.,Dept of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
32
|
Sheng H, Pan C, Wang S, Yang C, Zhang J, Hu C, Hu H, Feng X, Yang M, Lei Z, Gao Y, Wang Z, Ma Y. Weighted Gene Co-Expression Network Analysis Identifies Key Modules and Central Genes Associated With Bovine Subcutaneous Adipose Tissue. Front Vet Sci 2022; 9:914848. [PMID: 35812879 PMCID: PMC9257221 DOI: 10.3389/fvets.2022.914848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fat deposition is an important economic trait in livestock and poultry production. However, the relationship between various genes and signal pathways of fat deposition is still unclear to a large extent. The purpose of this study is to analyze the potential molecular targets and related molecular pathways in bovine subcutaneous adipose tissue. Results We downloaded the GSE116775 microarray dataset from Gene Expression Omnibus (GEO). The weighted gene co-expression network (WGCNA) was used to analyze the gene expression profile, and the key gene modules with the highest correlation with subcutaneous adipose tissue were identified, and the functional enrichment of the key modules was analyzed. Then, the “real” Hub gene was screened by in-module analysis and protein–protein interaction network (PPI), and its expression level in tissue samples and adipocytes was verified. The study showed that a total of nine co-expression modules were identified, and the number of genes in these modules ranged from 101 to 1,509. Among them, the blue module is most closely related to subcutaneous adipose tissue, containing 1,387 genes. These genes were significantly enriched in 10 gene ontologies including extracellular matrix organization, biological adhesion, and collagen metabolic process, and were mainly involved in pathways including ECM-receptor interaction, focal adhesion, cAMP signaling pathway, PI3K-AKT signaling pathway, and regulation of lipolysis in adipocytes. In the PPI network and coexpression network, five genes (CAV1, ITGA5, COL5A1, ABL1, and HSPG2) were identified as “real” Hub genes. Analysis of Hub gene expression by dataset revealed that the expression of these Hub genes was significantly higher in subcutaneous adipose tissue than in other tissues. In addition, real-time fluorescence quantitative PCR (qRT-PCR) analysis based on tissue samples and adipocytes also confirmed the above results. Conclusion In this study, five key genes related to subcutaneous adipose tissue were discovered, which laid a foundation for further study of the molecular regulation mechanism of subcutaneous adipose tissue development and adipose deposition.
Collapse
Affiliation(s)
- Hui Sheng
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Cuili Pan
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Chaoyun Yang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Junxing Zhang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Chunli Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Honghong Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Mengli Yang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhaoxiong Lei
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yuhong Gao
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhong Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- *Correspondence: Yun Ma
| |
Collapse
|
33
|
Proteomic analysis of adipose tissue revealing differentially abundant proteins in highly efficient mid-lactating dairy cows. Sci Rep 2022; 12:9721. [PMID: 35697844 PMCID: PMC9192684 DOI: 10.1038/s41598-022-13964-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
The improvement of nutrient utilization efficiency in dairy cows represents an important task in view of the current rising demand for animal products and sustainable resource usage. In this perspective, the identification of appropriate markers to identify the most efficient animals for dairy production becomes a crucial factor. Residual feed intake (RFI), which represents the difference between predicted and actual intake, is used to define the efficiency of cows. In this study, subcutaneous adipose tissue (AT) was collected from five high efficient (HEF) and five low efficient (LEF) mid-lactation Holstein dairy cows, that represented subgroups of the 20% lowest RFI values (HEF) and highest 20% RFI values (LEF), out of a cohort of 155 cows that were examined for feed efficiency at the individual dairy barn at Volcani Institute, Israel. Adipose samples were examined for proteomic analysis by nano-LC/MS–MS and gene expression by RT-PCR. A total of 101 differential proteins (P ≤ 0.05 and fold change ± 1.5) and two protein networks related to feed efficiency were found between HEF and LEF cows. Among the enriched top canonical pathways, FAT10 signaling, EIF2 signaling, Sirtuin signaling, Acute phase response signaling, Protein ubiquitination and mTOR signaling pathways were related to feed efficiency in AT. Furthermore, abundance of transferrin (TF; FC = 78.35, P = 0.02) enriched pathways, including mTOR signaling, LXR/RXR and FXR/RXR activation was found in AT of HEF cows. Relative mRNA expression of RBM39, which is involved in energy metabolism, was decreased in AT of HEF versus LEF. The relationship found between the AT proteins and/or metabolic pathways and the feed efficiency demonstrates that AT may reflect metabolic adaptations to high efficiency, and suggests that these proteins together with their metabolic mechanisms are suitable candidates as biomarkers to identify efficient cows for dairy production.
Collapse
|
34
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
35
|
Novel brown adipose tissue candidate genes predicted by the human gene connectome. Sci Rep 2022; 12:7614. [PMID: 35534514 PMCID: PMC9085833 DOI: 10.1038/s41598-022-11317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Brown adipose tissue (BAT) is a promising therapeutic target against obesity. Therefore, research on the genetic architecture of BAT could be key for the development of successful therapies against this complex phenotype. Hypothesis-driven candidate gene association studies are useful for studying genetic determinants of complex traits, but they are dependent upon the previous knowledge to select candidate genes. Here, we predicted 107 novel-BAT candidate genes in silico using the uncoupling protein one (UCP1) as the hallmark of BAT activity. We first identified the top 1% of human genes predicted by the human gene connectome to be biologically closest to the UCP1, estimating 167 additional pathway genes (BAT connectome). We validated this prediction by showing that 60 genes already associated with BAT were included in the connectome and they were biologically closer to each other than expected by chance (p < 2.2 × 10-16). The rest of genes (107) are potential candidates for BAT, being also closer to known BAT genes and more expressed in BAT biopsies than expected by chance (p < 2.2 × 10-16; p = 4.39 × 10-02). The resulting new list of predicted human BAT genes should be useful for the discovery of novel BAT genes and metabolic pathways.
Collapse
|
36
|
Muthu ML, Tiedemann K, Fradette J, Komarova S, Reinhardt DP. Fibrillin-1 regulates white adipose tissue development, homeostasis, and function. Matrix Biol 2022; 110:106-128. [DOI: 10.1016/j.matbio.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 12/28/2022]
|
37
|
Pun FW, Leung GHD, Leung HW, Liu BHM, Long X, Ozerov IV, Wang J, Ren F, Aliper A, Izumchenko E, Moskalev A, de Magalhães JP, Zhavoronkov A. Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine. Aging (Albany NY) 2022; 14:2475-2506. [PMID: 35347083 PMCID: PMC9004567 DOI: 10.18632/aging.203960] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.
Collapse
Affiliation(s)
- Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Xi Long
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ju Wang
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Feng Ren
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alexander Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Alexey Moskalev
- School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
38
|
Hypoxia induces stress fiber formation in adipocytes in the early stage of obesity. Sci Rep 2021; 11:21473. [PMID: 34728615 PMCID: PMC8563745 DOI: 10.1038/s41598-021-00335-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
In obese adipose tissue (AT), hypertrophic expansion of adipocytes is not matched by new vessel formation, leading to AT hypoxia. As a result, hypoxia inducible factor-1⍺ (HIF-1⍺) accumulates in adipocytes inducing a transcriptional program that upregulates profibrotic genes and biosynthetic enzymes such as lysyl oxidase (LOX) synthesis. This excess synthesis and crosslinking of extracellular matrix (ECM) components cause AT fibrosis. Although fibrosis is a hallmark of obese AT, the role of fibroblasts, cells known to regulate fibrosis in other fibrosis-prone tissues, is not well studied. Here we have developed an in vitro model of AT to study adipocyte-fibroblast crosstalk in a hypoxic environment. Further, this in vitro model was used to investigate the effect of hypoxia on adipocyte mechanical properties via ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinases (ROCK) signaling pathways. We confirmed that hypoxia creates a diseased phenotype by inhibiting adipocyte maturation and inducing actin stress fiber formation facilitated by myocardin-related transcription factor A (MRTF-A/MKL1) nuclear translocation. This work presents new potential therapeutic targets for obesity by improving adipocyte maturation and limiting mechanical stress in obese AT.
Collapse
|
39
|
Ionkina AA, Balderrama-Gutierrez G, Ibanez KJ, Phan SHD, Cortez AN, Mortazavi A, Prescher JA. Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer. Breast Cancer Res 2021; 23:93. [PMID: 34579762 PMCID: PMC8477508 DOI: 10.1186/s13058-021-01468-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer metastasis is a complex process involving the spread of malignant cells from a primary tumor to distal organs. Understanding this cascade at a mechanistic level could provide critical new insights into the disease and potentially reveal new avenues for treatment. Transcriptome profiling of spontaneous cancer models is an attractive method to examine the dynamic changes accompanying tumor cell spread. However, such studies are complicated by the underlying heterogeneity of the cell types involved. The purpose of this study was to examine the transcriptomes of metastatic breast cancer cells using the well-established MMTV-PyMT mouse model. METHODS Organ-derived metastatic cell lines were harvested from 10 female MMTV-PyMT mice. Cancer cells were isolated and sorted based on the expression of CD44low/EpCAMhigh or CD44high/EpCAMhigh surface markers. RNA from each cell line was extracted and sequenced using the NextSeq 500 Illumina platform. Tissue-specific genes were compared across the different metastatic and primary tumor samples. Reads were mapped to the mouse genome using STAR, and gene expression was quantified using RSEM. Single-cell RNA-seq (scRNA-seq) was performed on select samples using the ddSeq platform by BioRad and analyzed using Seurat v3.2.3. Monocle2 was used to infer pseudo-time progression. RESULTS Comparison of RNA sequencing data across all cell populations produced distinct gene clusters. Differential gene expression patterns related to CD44 expression, organ tropism, and immunomodulatory signatures were observed. scRNA-seq identified expression profiles based on tissue-dependent niches and clonal heterogeneity. These cohorts of data were narrowed down to identify subsets of genes with high expression and known metastatic propensity. Dot plot analyses further revealed clusters expressing cancer stem cell and cancer dormancy markers. Changes in relevant genes were investigated across pseudo-time and tissue origin using Monocle2. These data revealed transcriptomes that may contribute to sub-clonal evolution and treatment evasion during cancer progression. CONCLUSIONS We performed a comprehensive transcriptome analysis of tumor heterogeneity and organ tropism during breast cancer metastasis. These data add to our understanding of metastatic progression and highlight targets for breast cancer treatment. These markers could also be used to image the impact of tumor heterogeneity on metastases.
Collapse
Affiliation(s)
- Anastasia A Ionkina
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Krystian J Ibanez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Steve Huy D Phan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Angelique N Cortez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, 92697, USA.
| | - Jennifer A Prescher
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
40
|
Upadhyay M, Kunz E, Sandoval-Castellanos E, Hauser A, Krebs S, Graf A, Blum H, Dotsev A, Okhlopkov I, Shakhin A, Bagirov V, Brem G, Fries R, Zinovieva N, Medugorac I. Whole genome sequencing reveals a complex introgression history and the basis of adaptation to subarctic climate in wild sheep. Mol Ecol 2021; 30:6701-6717. [PMID: 34534381 DOI: 10.1111/mec.16184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
To predict species responses to anthropogenic disturbances and climate change, it is reasonable to use species with high sensitivity to such factors. Snow sheep (Ovis nivicola) could represent a good candidate for this; as the only large herbivore species adapted to the cold and alpine habitats of northeastern Siberia, it plays a crucial role in its ecosystem. Despite having an extensive geographical distribution among all ovine species, it is one of the least studied. In this study, we sequenced and analysed six genomes of snow sheep in combination with all other wild sheep species to infer key aspects of their evolutionary history and unveil the genetic basis of their adaptation to subarctic environments. Despite their large census population size, snow sheep genomes showed remarkably low heterozygosity, which could reflect the effect of isolation and historical bottlenecks that we inferred using the pairwise sequential Markovian coalescent and runs of homozygosity. F4 -statistics indicated instances of introgression involving snow sheep with argali (Ovis ammon) and Dall (Ovis dalli) sheep, suggesting that these species might have been more widespread during the Pleistocene. Furthermore, the introgressed segments, which were identified using mainly minimum relative node depth, covered genes associated with immunity, adipogenesis and morphology-related traits, representing potential targets of adaptive introgression. Genes related to mitochondrial functions and thermogenesis associated with adipose tissue were identified to be under selection. Overall, our data suggest introgression as a mechanism facilitating adaptation in wild sheep species and provide insights into the genetic mechanisms underlying cold adaptation in snow sheep.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Andreas Hauser
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Arsen Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | | | - Alexey Shakhin
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Vugar Bagirov
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, VMU, Vienna, Austria
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany
| | - Natalia Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
41
|
Mezera MA, Li W, Liu L, Meidan R, Peñagaricano F, Wiltbank MC. Effect of natural pre-luteolytic prostaglandin F2α pulses on the bovine luteal transcriptome during spontaneous luteal regression. Biol Reprod 2021; 105:1016-1029. [PMID: 34170313 DOI: 10.1093/biolre/ioab123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 01/14/2023] Open
Abstract
The pulsatile pattern of prostaglandin F2alpha (PGF) secretion during spontaneous luteolysis is well-documented, with multiple pulses of exogenous PGF necessary to induce regression using physiologic concentrations of PGF. However, during spontaneous regression, the earliest pulses of PGF are small and not associated with detectable changes in circulating progesterone (P4), bringing into question what, if any, role these early, subluteolytic PGF pulses have during physiologic regression. To investigate the effect of small PGF pulses, luteal biopsies were collected throughout natural luteolysis in conjunction with bihourly blood samples to determine circulating P4 and PGF metabolite to retrospectively assign biopsies to early and later regression. Whole transcriptome analysis was conducted on CL biopsies. Early PGF pulses altered the luteal transcriptome, inducing differential expression of 210 genes (Q < 0.05) during early regression, compared to 4615 differentially expressed genes during later regression. In early regression, few of these differentially expressed genes were directly associated with luteolysis, rather there were changes in local steroid and glutathione metabolism. Most (94%) differentially expressed genes from early regression were also differentially expressed during later regression, with 98% of these continuing to be altered in the same direction compared to CL at a similar stage of the cycle that had not yet been exposed to PGF. Thus, early, subluteolytic PGF pulses impact the luteal transcriptome, though not by altering steroidogenesis or causing direct inhibition of cellular function. Rather, small pulses alter pathways resulting in removal of cellular support systems, which may sensitize the CL to later pulses of PGF.
Collapse
Affiliation(s)
- Megan A Mezera
- Department of Animal & Dairy Sciences and 2Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,USDA Dairy Forage Research Center, Madison, WI 53706, USA
| | - Wenli Li
- USDA Dairy Forage Research Center, Madison, WI 53706, USA
| | - Lihe Liu
- Department of Animal & Dairy Sciences and 2Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rina Meidan
- Department of Animal Sciences, The Hebrew University of Jerusalem
| | - Francisco Peñagaricano
- Department of Animal & Dairy Sciences and 2Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Milo C Wiltbank
- Department of Animal & Dairy Sciences and 2Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
42
|
Sedlář A, Trávníčková M, Bojarová P, Vlachová M, Slámová K, Křen V, Bačáková L. Interaction between Galectin-3 and Integrins Mediates Cell-Matrix Adhesion in Endothelial Cells and Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22105144. [PMID: 34067978 PMCID: PMC8152275 DOI: 10.3390/ijms22105144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 128 44 Prague 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná, CZ 272 01 Kladno, Czech Republic
- Correspondence: (P.B.); (L.B.); Tel.: +420-296442360 (P.B.); +420-296443743 (L.B.)
| | - Miluše Vlachová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (M.V.); (K.S.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague 4, Czech Republic; (A.S.); (M.T.)
- Correspondence: (P.B.); (L.B.); Tel.: +420-296442360 (P.B.); +420-296443743 (L.B.)
| |
Collapse
|
43
|
Ploner C, Rauchenwald T, Connolly CE, Joehrer K, Rainer J, Seifarth C, Hermann M, Nagl M, Lobenwein S, Wilflingseder D, Cappellano G, Morandi EM, Pierer G. Oxidant therapy improves adipogenic differentiation of adipose-derived stem cells in human wound healing. Stem Cell Res Ther 2021; 12:280. [PMID: 33971957 PMCID: PMC8111898 DOI: 10.1186/s13287-021-02336-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Adipose-derived stem cells (ASC) and adipocytes are involved in numerous physiological and pathophysiological conditions, which have been extensively described in subcutaneous and visceral fat depots over the past two decades. However, much less is known about ASC and adipocytes outside classical fat tissue depots and their necessity in tissue remodeling after injury. Therefore, we investigated the etiology of adipocytes in human granulation tissue and define their possible role wound healing. Methods Identification of human wound tissue adipocytes was determined by immunohistochemical staining of granulation tissue sections from patients undergoing surgical debridement. Stromal cell fractions from granulation tissue and subcutaneous fat tissue were generated by collagenase type II-based protocols. Pro- and anti-inflammatory wound bed conditions were mimicked by THP1- and CD14+ monocyte-derived macrophage models in vitro. Effects of macrophage secretome on ASC differentiation and metabolism were determined by immunoblotting, flow cytometry, and microscopy assessing early and late adipocyte differentiation states. Functional rescuing experiments were conducted by lentiviral transduction of wildtype PPARG, IL1RA, and N-chlorotaurine (NCT) treatment. Results Single and clustered adipocyte populations were detected in 11 out of 13 granulation tissue specimens and single-cell suspensions from granulation tissue showed adipogenic differentiation potential. Pro-inflammatory signaling by IFNG/LPS-stimulated macrophages (M (IFNG/LPS)) inhibited the maturation of lipid droplets in differentiated ASC. In contrast, anti-inflammatory IL4/IL13-activated macrophages (M (IL4/IL13)) revealed minor effects on adipocyte development. The M (IFNG/LPS)-induced phenotype was associated with a switch from endogenous fatty acid synthesis to glycolysis-dominated cell metabolism and increased pro-inflammatory cytokine production. Impaired adipogenesis was associated with increased, but seemingly non-functional, CEBPB levels, which failed to induce downstream PPARG and CEBPA. Neither transgenic PPARG overexpression, nor inhibition of IL1B was sufficient to rescue the anti-adipogenic effects induced by IFNG/LPS-activated macrophages. Instead, macrophage co-treatment during stimulation with NCT, a mild oxidant produced by activated granulocytes present in human wounds in vivo, significantly attenuated the anti-adipogenic effects. Conclusions In conclusion, the appearance of adipocytes in wound tissue indicates a prevailing anti-inflammatory environment that could be promoted by NCT treatment and may be associated with improved healing outcomes. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02336-3.
Collapse
Affiliation(s)
- Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Catherine E Connolly
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Karin Joehrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christof Seifarth
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Lobenwein
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
44
|
Gonzalez Porras MA, Stojkova K, Vaicik MK, Pelowe A, Goddi A, Carmona A, Long B, Qutub AA, Gonzalez A, Cohen RN, Brey EM. Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity. Sci Rep 2021; 11:5442. [PMID: 33686208 PMCID: PMC7940610 DOI: 10.1038/s41598-021-84828-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and the metabolic disease epidemic has led to an increase in morbidity and mortality. A rise in adipose thermogenic capacity via activation of brown or beige fat is a potential treatment for metabolic diseases. However, an understanding of how local factors control adipocyte fate is limited. Mice with a null mutation in the laminin α4 (LAMA4) gene (KO) exhibit resistance to obesity and enhanced expression of thermogenic fat markers in white adipose tissue (WAT). In this study, changes in WAT extracellular matrix composition in the absence of LAMA4 were evaluated using liquid chromatography/tandem mass spectrometry. KO-mice showed lower levels of collagen 1A1 and 3A1, and integrins α7 (ITA7) and β1 (ITB1). ITA7-ITB1 and collagen 1A1-3A1 protein levels were lower in brown adipose tissue compared to WAT in wild-type mice. Immunohistochemical staining confirmed lower levels and different spatial distribution of ITA7 in KO-WAT. In culture studies, ITA7 and LAMA4 levels decreased following a 12-day differentiation of adipose-derived stem cells into beige fat, and knock-down of ITA7 during differentiation increased beiging. These results demonstrate that extracellular matrix interactions regulate adipocyte thermogenic capacity and that ITA7 plays a role in beige adipose formation. A better understanding of the mechanisms underlying these interactions can be used to improve systemic energy metabolism and glucose homeostasis.
Collapse
Affiliation(s)
- Maria A Gonzalez Porras
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Marcella K Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Amanda Pelowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Anna Goddi
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alanis Carmona
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Byron Long
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Amina A Qutub
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
45
|
Khazaei S, Keshavarz G, Bozorgi A, Nazari H, Khazaei M. Adipose tissue-derived stem cells: a comparative review on isolation, culture, and differentiation methods. Cell Tissue Bank 2021; 23:1-16. [PMID: 33616792 DOI: 10.1007/s10561-021-09905-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) are an available source of mesenchymal stem cells with the appropriate capacity to in vitro survive, propagate, and differentiate into cells from three lineages of ectoderm, mesoderm, and endoderm. The biological features of ADSCs depend on the donor physiology and health status, isolation procedure, culture conditions, and differentiation protocols used. Adipose tissue samples are provided by surgery and lipoaspiration-based methods and subjected to various mechanical and chemical digestion techniques to finally generate a heterogeneous mixture named stromal vascular fraction (SVF). ADSCs are purified through varied cell populations that exist within SVF and cultured under standard conditions to give rise to a highly rich resource of stem cells directly applied in the clinic or differentiated into a wide range of cells. The development and optimization of conventional isolation, expansion, and differentiation methods seem noteworthy to preserve the desirable biological functions of ADSCs in pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazal Keshavarz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Nazari
- Department of Orofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
46
|
Boughanem H, Yubero-Serrano EM, López-Miranda J, Tinahones FJ, Macias-Gonzalez M. Potential Role of Insulin Growth-Factor-Binding Protein 2 as Therapeutic Target for Obesity-Related Insulin Resistance. Int J Mol Sci 2021; 22:ijms22031133. [PMID: 33498859 PMCID: PMC7865532 DOI: 10.3390/ijms22031133] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Evidence from observational and in vitro studies suggests that insulin growth-factor-binding protein type 2 (IGFBP2) is a promising protein in non-communicable diseases, such as obesity, insulin resistance, metabolic syndrome, or type 2 diabetes. Accordingly, great efforts have been carried out to explore the role of IGFBP2 in obesity state and insulin-related diseases, which it is typically found decreased. However, the physiological pathways have not been explored yet, and the relevance of IGFBP2 as an important pathway integrator of metabolic disorders is still unknown. Here, we review and discuss the molecular structure of IGFBP2 as the first element of regulating the expression of IGFBP2. We highlight an update of the association between low serum IGFBP2 and an increased risk of obesity, type 2 diabetes, metabolic syndrome, and low insulin sensitivity. We hypothesize mechanisms of IGFBP2 on the development of obesity and insulin resistance in an insulin-independent manner, which meant that could be evaluated as a therapeutic target. Finally, we cover the most interesting lifestyle modifications that regulate IGFBP2, since lifestyle factors (diet and/or physical activity) are associated with important variations in serum IGFBP2.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| |
Collapse
|
47
|
Identification of potential key genes and pathways associated with the Pashmina fiber initiation using RNA-Seq and integrated bioinformatics analysis. Sci Rep 2021; 11:1766. [PMID: 33469142 PMCID: PMC7815713 DOI: 10.1038/s41598-021-81471-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/07/2021] [Indexed: 01/06/2023] Open
Abstract
Pashmina goat (Capra hircus) is an economically important livestock species, which habitats the cold arid desert of the Ladakh region (India), and produces a princely animal fiber called Pashmina. The Pashmina goat has a double coat fleece as an adaptation to the very harsh cold winters the outer long coarse hair (guard hair) produced from primary hair follicles and the inner fine Pashmina fiber produced from secondary hair follicles. Pashmina fiber undergoes a circannual and synchronized growth cycle. In the present study, we analyzed transcriptome profiles from 10 different Pashmina goats during anagen and telogen to delineate genes and signaling pathways regulating active (anagen) and regressive (telogen) phases of the follicle growth. During anagen, 150 genes were expressed at significantly higher levels with log (FC) > 2 and padj < 0.05. The RNA seq results were subjected to qRT-PCR validation. Among the nine genes selected, the expression of HAS1, TRIB2, P2RX1. PRG4, CNR2, and MMP25 were significantly higher (p < 0.05) in the anagen phase, whereas MC4R, GIPC2, and CDO1 were significantly expressed (p < 0.05) in the telogen phase which supports and validates the gene expression pattern from the RNA-sequencing. Differentially expressed genes revealed that Pashmina fiber initiation is largely controlled by signaling pathways like Wnt, NF-Kappa, JAK-STAT, Hippo, MAPK, Calcium, and PI3K-Akt. Expression of genes from the Integrin family, Cell adhesion molecules, and ECM-receptors were observed to be at much higher levels during anagen. We identified key genes (IL36RN, IGF2, ITGAV, ITGA5, ITCCR7, CXCL5, C3, CCL19, and CXCR3) and a collagen cluster which might be tightly correlated with anagen-induction. The regulatory network suggests the potential role of RUNX3, NR2F1/2, and GATA family transcription factors in anagen-initiation and maintaining fiber quality in Pashmina goats.
Collapse
|
48
|
Beheshtizadeh N, Baradaran-Rafii A, Sistani MS, Azami M. An In-Silico Study on the Most Effective Growth Factors in Retinal Regeneration Utilizing Tissue Engineering Concepts. J Ophthalmic Vis Res 2021; 16:56-67. [PMID: 33520128 PMCID: PMC7841276 DOI: 10.18502/jovr.v16i1.8251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/21/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Considering the significance of retinal disorders and the growing need to employ tissue engineering in this field, in-silico studies can be used to establish a cost-effective method. This in-silico study was performed to find the most effective growth factors contributing to retinal tissue engineering. METHODS In this study, a regeneration gene database was used. All 21 protein-coding genes participating in retinal regeneration were considered as a protein-protein interaction (PPI) network via the "STRING App" in "Cytoscape 3.7.2" software. The resultant graph possessed 21 nodes as well as 37 edges. Gene ontology (GO) analysis, as well as the centrality analysis, revealed the most effective proteins in retinal regeneration. RESULTS According to the biological processes and the role of each protein in different pathways, selecting the correct one is possible through the information that the network provides. Eye development, detection of the visible light, visual perception, photoreceptor cell differentiation, camera-type eye development, eye morphogenesis, and angiogenesis are the major biological processes in retinal regeneration. Based on the GO analysis, SHH, STAT3, FGFR1, OPN4, ITGAV, RAX, and RPE65 are effective in retinal regeneration via the biological processes. In addition, based on the centrality analysis, four proteins have the greatest influence on retinal regeneration: SHH, IGF1, STAT3, and ASCL1. CONCLUSION With the intention of applying the most impressive growth factors in retinal engineering, it seems logical to pay attention to SHH, STAT3, and RPE65. Utilizing these proteins can lead to fabricate high efficiency engineered retina via all aforementioned biological processes.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sharifi Sistani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Rico P, Rodrigo-Navarro A, Sánchez Pérez L, Salmeron-Sanchez M. Borax induces osteogenesis by stimulating NaBC1 transporter via activation of BMP pathway. Commun Biol 2020; 3:717. [PMID: 33247189 PMCID: PMC7695834 DOI: 10.1038/s42003-020-01449-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
The intrinsic properties of mesenchymal stem cells (MSCs) make them ideal candidates for tissue engineering applications. Efforts have been made to control MSC behavior by using material systems to engineer synthetic extracellular matrices and/or include soluble factors in the media. This work proposes a simple approach based on ion transporter stimulation to determine stem cell fate that avoids the use of growth factors. Addition of borax alone, transported by the NaBC1-transporter, enhanced MSC adhesion and contractility, promoted osteogenesis and inhibited adipogenesis. Stimulated-NaBC1 promoted osteogenesis via the BMP canonical pathway (comprising Smad1/YAP nucleus translocation and osteopontin expression) through a mechanism that involves simultaneous NaBC1/BMPR1A and NaBC1/α5β1/αvβ3 co-localization. We describe an original function for NaBC1 transporter, besides controlling borate homeostasis, capable of stimulating growth factor receptors and fibronectin-binding integrins. Our results open up new biomaterial engineering approaches for biomedical applications by a cost-effective strategy that avoids the use of soluble growth factors. Rico et al. propose a simple approach based on borax stimulation of NaBC1 transporter, which enhances FN-binding integrin-dependent mesenchymal stem cell adhesion and contractility, promotes osteogenesis and inhibits adipogenesis. Osteogenic differentiation depends on activation of the BMP pathway through a mechanism that involves simultaneous co-localization of NaBC1 with FN-binding integrins and BMPR1A.
Collapse
Affiliation(s)
- Patricia Rico
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain. .,Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | | | - Laura Sánchez Pérez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Manuel Salmeron-Sanchez
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain. .,Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. .,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
50
|
Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2020; 268:120572. [PMID: 33285439 DOI: 10.1016/j.biomaterials.2020.120572] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Mechanobiology, translating mechanical signals into biological ones, greatly affects cellular behavior. Steering cellular behavior for cell-based regenerative medicine approaches requires a thorough understanding of the orchestrating molecular mechanisms, among which mechanotransducive ones are being more and more elucidated. Because of their wide use and highly mechanotransduction dependent differentiation, this review focuses on mesenchymal stromal cells (MSCs), while also briefly relating the discussed results to other cell types. While the mechanotransduction pathways are relatively well-studied in 2D, much remains unknown of the role and regulation of these pathways in 3D. Ultimately, cells need to be cultured in a 3D environment to create functional de novo tissue. In this review, we explore the literature on the roles of different material properties on cellular behavior and mechanobiology in 2D and 3D. For example, while stiffness plays a dominant role in 2D MSCs differentiation, it seems to be of subordinate importance in 3D MSCs differentiation, where matrix remodeling seems to be key. Also, the role and regulation of some of the main mechanotransduction players are discussed, focusing on MSCs. We have only just begun to fundamentally understand MSCs and other stem cells behavior in 3D and more fundamental research is required to advance biomaterials able to replicate the stem cell niche and control cell activity. This better understanding will contribute to smarter tissue engineering scaffold design and the advancement of regenerative medicine.
Collapse
|