1
|
Zhang X, Zheng P, Wen X, Bei Z. Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development. PLANTS (BASEL, SWITZERLAND) 2024; 14:52. [PMID: 39795312 PMCID: PMC11722940 DOI: 10.3390/plants14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (Lycium barbarum), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 Glu genes were identified, distributed across all 12 chromosomes. Evolutionary analysis revealed six distinct branches within wolfberry and nine distinct branches when compared with Arabidopsis thaliana. Expression analysis showed that 45 Glu genes were expressed in berries, with specific genes also being expressed in flowers and leaves. Notably, LbaGlu28 exhibited significant expression during the tetrad stage of pollen development and was localized in the cell wall. These findings provide valuable insights into the functional significance of Glu genes in wolfberry, highlighting their roles in development and their potential involvement in reproductive processes, particularly in pollen development.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Z.); (P.Z.); (X.W.)
- Key Laboratory of Biodiversity and Ecological Engineering, Ministry of Education, Fudan University, Shanghai 200437, China
| | - Pinjie Zheng
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Z.); (P.Z.); (X.W.)
| | - Xurui Wen
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Z.); (P.Z.); (X.W.)
| | - Zhanlin Bei
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Z.); (P.Z.); (X.W.)
| |
Collapse
|
2
|
Wang L, Li R, Li K, Qu Z, Zhou R, Lu G, Li P, Li G. Genome-wide identification of the grapevine β-1,3-glucanase gene (VviBG) family and expression analysis under different stresses. BMC PLANT BIOLOGY 2024; 24:911. [PMID: 39350008 PMCID: PMC11443686 DOI: 10.1186/s12870-024-05597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The β-1,3-glucanase gene is widely involved in plant development and stress defense. However, an identification and expression analysis of the grape β-1,3-glucanase gene (VviBG) family had not been conducted prior to this study. RESULTS Here, 42 VviBGs were identified in grapevine, all of which contain a GH-17 domain and a variable C-terminal domain. VviBGs were divided into three clades α, β and γ, and six subgroups A-F, with relatively conserved motifs/domains and intron/exon structures within each subgroup. The VviBG gene family contained four tandem repeat gene clusters. There were intra-species synteny relationships between two pairs of VviBGs and inter-species synteny relationships between 20 pairs of VviBGs and AtBGs. The VviBG promoter contained many cis-acting elements related to stress and hormone responses. Tissue-specific analysis showed that VviBGs exhibited distinct spatial and temporal expression patterns. Transcriptome analysis indicated that many VviBGs were induced by wounds, UV, downy mildew, cold, salt and drought, especially eight VviBGs in subgroup A of the γ clade. RT-qPCR analysis showed that these eight VviBGs were induced under abiotic stress (except for VviBG41 under cold stress), and most of them were induced at higher expression levels by PEG6000 and NaCl than under cold treatment. CONCLUSIONS The chromosome localization, synteny and phylogenetic analysis of the VviBG members were first conducted. The cis-acting elements, transcriptome data and RT-qPCR analysis showed that VviBG genes play a crucial role in grape growth and stress (hormone, biotic and abiotic) responses. Our study laid a foundation for understanding their functions in grape resistance to different stresses.
Collapse
Affiliation(s)
- Ling Wang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| | - Ruilong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Kaiwei Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Ziyang Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruijin Zhou
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Guilong Lu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Peng Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Guirong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Yi F, Li Y, Song A, Shi X, Hu S, Wu S, Shao L, Chu Z, Xu K, Li L, Tran LP, Li W, Cai Y. Positive roles of the Ca 2+ sensors GbCML45 and GbCML50 in improving cotton Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13483. [PMID: 38829344 PMCID: PMC11146148 DOI: 10.1111/mpp.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Feifei Yi
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Yuzhe Li
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Aosong Song
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Xinying Shi
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Shanci Hu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Shuang Wu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Lili Shao
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Zongyan Chu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Kun Xu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Liangliang Li
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Lam‐Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ResistanceTexas Tech UniversityLubbockTexasUSA
| | - Weiqiang Li
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yingfan Cai
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| |
Collapse
|
4
|
Fang S, Shang X, He Q, Li W, Song X, Zhang B, Guo W. A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition. PLANT PHYSIOLOGY 2023; 194:106-123. [PMID: 37427813 DOI: 10.1093/plphys/kiad407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
β-1,3-glucanase functions in plant physiological and developmental processes. However, how β-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a β-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of β-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze β-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.
Collapse
Affiliation(s)
- Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Ušák D, Haluška S, Pleskot R. Callose synthesis at the center point of plant development-An evolutionary insight. PLANT PHYSIOLOGY 2023; 193:54-69. [PMID: 37165709 DOI: 10.1093/plphys/kiad274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Polar callose deposition into the extracellular matrix is tightly controlled in time and space. Its presence in the cell wall modifies the properties of the surrounding area, which is fundamental for the correct execution of numerous processes such as cell division, male gametophyte development, intercellular transport, or responses to biotic and abiotic stresses. Previous studies have been invaluable in characterizing specific callose synthases (CalSs) during individual cellular processes. However, the complex view of the relationships between a particular CalS and a specific process is still lacking. Here we review the recent proceedings on the role of callose and individual CalSs in cell wall remodelling from an evolutionary perspective and with a particular focus on cytokinesis. We provide a robust phylogenetic analysis of CalS across the plant kingdom, which implies a 3-subfamily distribution of CalS. We also discuss the possible linkage between the evolution of CalSs and their function in specific cell types and processes.
Collapse
Affiliation(s)
- David Ušák
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Samuel Haluška
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Roman Pleskot
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
| |
Collapse
|
6
|
Bueno TV, Fontes PP, Abe VY, Utiyama AS, Senra RL, Oliveira LS, Brombini Dos Santos A, Ferreira EGC, Darben LM, de Oliveira AB, Abdelnoor RV, Whitham SA, Fietto LG, Marcelino-Guimarães FC. A Phakopsora pachyrhizi Effector Suppresses PAMP-Triggered Immunity and Interacts with a Soybean Glucan Endo-1,3-β-Glucosidase to Promote Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:779-790. [PMID: 35617509 DOI: 10.1094/mpmi-12-21-0301-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most important diseases affecting soybean production in tropical areas. During infection, P. pachyrhizi secretes proteins from haustoria that are transferred into plant cells to promote virulence. To date, only one candidate P. pachyrhizi effector protein has been characterized in detail to understand the mechanism by which it suppresses plant defenses to enhance infection. Here, we aimed to extend understanding of the pathogenic mechanisms of P. pachyrhizi based on the discovery of host proteins that interact with the effector candidate Phapa-7431740. We demonstrated that Phapa-7431740 suppresses pathogen-associated molecular pattern-triggered immunity (PTI) and that it interacts with a soybean glucan endo-1,3-β-glucosidase (GmβGLU), a pathogenesis-related (PR) protein belonging to the PR-2 family. Structural and phylogenetic characterization of the PR-2 protein family predicted in the soybean genome and comparison to PR-2 family members in Arabidopsis thaliana and cotton, demonstrated that GmβGLU is a type IV β-1,3-glucanase. Transcriptional profiling during an infection time course showed that the GmβGLU mRNA is highly induced during the initial hours after infection, coinciding with peak of expression of Phapa-7431740. The effector was able to interfere with the activity of GmβGLU in vitro, with a dose-dependent inhibition. Our results suggest that Phapa-7431740 may suppress PTI by interfering with glucan endo-1,3-β-glucosidase activity. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Thays V Bueno
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Patrícia P Fontes
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Valeria Y Abe
- Embrapa soja, Plant Biotechnology, Londrina, Paraná, CEP 70770-901, Brazil
| | - Alice Satiko Utiyama
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Renato L Senra
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Liliane S Oliveira
- Embrapa soja, Plant Biotechnology, Londrina, Paraná, CEP 70770-901, Brazil
- Department of Computer Science, Federal University of Technology - Paraná (UTFPR), Cornélio Procópio, Paraná 86300-000, Brazil
| | | | | | | | | | | | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Luciano G Fietto
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | | |
Collapse
|
7
|
Wang H, Zhou X, Liu C, Li W, Guo W. Suppression of GhGLU19 encoding β-1,3-glucanase promotes seed germination in cotton. BMC PLANT BIOLOGY 2022; 22:357. [PMID: 35869418 PMCID: PMC9308338 DOI: 10.1186/s12870-022-03748-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In eudicots, germination begins with water uptake by the quiescent dry seed and is greatly related to the permeability of micropyle enriched callose layers. Once imbibition starts, seeds undergo a cascade of physiological, biochemical, and molecular events to initiate cellular activities. However, the effects of callose on water uptake and following seed metabolic events during germination are largely unknown. Cotton (Gossypium hirsutum) is a eudicot plant with natural fiber and edible oil production for humans. Here, we addressed this question by examining the role of GhGLU19, a gene encoding β-1,3-glucanase, in cotton seed germination. RESULTS GhGLU19 belongs to subfamily B and was expressed predominately in imbibed seeds and early seedlings. Compared to wild type, GhGLU19-suppressing and GhGLU19-overexpressing transgenic cotton lines showed the higher and lower seed germination percentage, respectively. Callose was enriched more at inner integument (ii) than that in embryo and seed coat in cotton seeds. In GhGLU19-suppressing lines, callose at ii of cotton seeds was greatly increased and brought about a prolonged water uptake process during imbibition. Both proteomic and transcriptomic analysis revealed that contrary to GhGLU19-overexpressing lines, the glycolysis and pyruvate metabolism was decreased, and abscisic acid (ABA) biosynthesis related genes were downregulated in imbibed seeds of GhGLU19-suppressing lines. Also, endogenous ABA was significantly decreased in GhGLU19-suppressing line while increased in GhGLU19-overexpressing line. CONCLUSIONS Our results demonstrate that suppression of GhGLU19 improves cotton seed germination via accumulating callose of inner integument, modulating glycolysis and pyruvate metabolism, and decreasing ABA biosynthesis. This study provides a potential way for improving germination percentage in cotton seed production, and other eudicot crops.
Collapse
Affiliation(s)
- Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuesong Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
8
|
Panigrahy M, Panigrahi KCS, Poli Y, Ranga A, Majeed N. Integrated Expression Analysis of Small RNA, Degradome and Microarray Reveals Complex Regulatory Action of miRNA during Prolonged Shade in Swarnaprabha Rice. BIOLOGY 2022; 11:biology11050798. [PMID: 35625525 PMCID: PMC9138629 DOI: 10.3390/biology11050798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
Abstract
Prolonged shade during the reproductive stage can result in significant yield losses in rice. For this study, we elucidated the role of microRNAs in prolonged-shade tolerance (~20 days of shade) in a shade-tolerant rice variety, Swarnaprabha (SP), in its reproductive stage using small RNA and degradome sequencing with expression analysis using microarray and qRT-PCR. This study demonstrates that miRNA (miR) regulation for shade-tolerance predominately comprises the deactivation of the miR itself, leading to the upregulation of their targets. Up- and downregulated differentially expressed miRs (DEms) presented drastic differences in the category of targets based on the function and pathway in which they are involved. Moreover, neutrally regulated and uniquely expressed miRs also contributed to the shade-tolerance response by altering the differential expression of their targets, probably due to their differential binding affinities. The upregulated DEms mostly targeted the cell wall, membrane, cytoskeleton, and cellulose synthesis-related transcripts, and the downregulated DEms targeted the transcripts of photosynthesis, carbon and sugar metabolism, energy metabolism, and amino acid and protein metabolism. We identified 16 miRNAs with 21 target pairs, whose actions may significantly contribute to the shade-tolerance phenotype and sustainable yield of SP. The most notable among these were found to be miR5493-OsSLAC and miR5144-OsLOG1 for enhanced panicle size, miR5493-OsBRITTLE1-1 for grain formation, miR6245-OsCsIF9 for decreased stem mechanical strength, miR5487-OsGns9 and miR168b-OsCP1 for better pollen development, and miR172b-OsbHLH153 for hyponasty under shade.
Collapse
Affiliation(s)
- Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Centre, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan University, Bhubaneswar 751002, India
- National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, India; (A.R.); (N.M.)
- Correspondence: (M.P.); (K.C.S.P.); Tel.: +91-8762086581 (M.P.); +91-6742494139 (K.C.S.P.)
| | - Kishore Chandra Sekhar Panigrahi
- National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, India; (A.R.); (N.M.)
- Correspondence: (M.P.); (K.C.S.P.); Tel.: +91-8762086581 (M.P.); +91-6742494139 (K.C.S.P.)
| | - Yugandhar Poli
- ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India;
| | - Aman Ranga
- National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, India; (A.R.); (N.M.)
| | - Neelofar Majeed
- National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, India; (A.R.); (N.M.)
| |
Collapse
|
9
|
Xiong Q, Wan ATY, Liu X, Fung CSH, Xiao X, Malainual N, Hou J, Wang L, Wang M, Yang KY, Cui Y, Leung ELH, Nong W, Shin SK, Au SWN, Jeong KY, Chew FT, Hui JHL, Leung TF, Tungtrongchitr A, Zhong N, Liu Z, Tsui SKW. Comparative Genomics Reveals Insights into the Divergent Evolution of Astigmatic Mites and Household Pest Adaptations. Mol Biol Evol 2022; 39:6582989. [PMID: 35535514 PMCID: PMC9113151 DOI: 10.1093/molbev/msac097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing ∼1–2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases. Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UDP glucuronosyltransferases and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.
Collapse
Affiliation(s)
- Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Angel Tsz-Yau Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoyu Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Cathy Sin-Hang Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiaojun Xiao
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Nat Malainual
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jinpao Hou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mingqiang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Elaine Lai-Han Leung
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Soo-Kyung Shin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | - Kyoung Yong Jeong
- Institute of Allergy, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Korea
| | - Fook-Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jerome Ho-Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhigang Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Perrot T, Pauly M, Ramírez V. Emerging Roles of β-Glucanases in Plant Development and Adaptative Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091119. [PMID: 35567119 PMCID: PMC9099982 DOI: 10.3390/plants11091119] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 05/04/2023]
Abstract
Plant β-glucanases are enzymes involved in the synthesis, remodelling and turnover of cell wall components during multiple physiological processes. Based on the type of the glycoside bond they cleave, plant β-glucanases have been grouped into three categories: (i) β-1,4-glucanases degrade cellulose and other polysaccharides containing 1,4-glycosidic bonds to remodel and disassemble the wall during cell growth. (ii) β-1,3-glucanases are responsible for the mobilization of callose, governing the symplastic trafficking through plasmodesmata. (iii) β-1,3-1,4-glucanases degrade mixed linkage glucan, a transient wall polysaccharide found in cereals, which is broken down to obtain energy during rapid seedling growth. In addition to their roles in the turnover of self-glucan structures, plant β-glucanases are crucial in regulating the outcome in symbiotic and hostile plant-microbe interactions by degrading non-self glucan structures. Plants use these enzymes to hydrolyse β-glucans found in the walls of microbes, not only by contributing to a local antimicrobial defence barrier, but also by generating signalling glucans triggering the activation of global responses. As a counterpart, microbes developed strategies to hijack plant β-glucanases to their advantage to successfully colonize plant tissues. This review outlines our current understanding on plant β-glucanases, with a particular focus on the latest advances on their roles in adaptative responses.
Collapse
|
11
|
Portieles R, Xu H, Yue Q, Zhao L, Zhang D, Du L, Gao X, Gao J, Portal Gonzalez N, Santos Bermudez R, Borrás-Hidalgo O. Heat-killed endophytic bacterium induces robust plant defense responses against important pathogens. Sci Rep 2021; 11:12182. [PMID: 34108579 PMCID: PMC8190079 DOI: 10.1038/s41598-021-91837-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Stress caused by pathogens strongly damages plants. Developing products to control plant disease is an important challenge in sustainable agriculture. In this study, a heat-killed endophytic bacterium (HKEB), Bacillus aryabhattai, is used to induce plant defense against fungal and bacterial pathogens, and the main defense pathways used by the HKEB to activate plant defense are revealed. The HKEB induced high protection against different pathogens through the salicylic and jasmonic acid pathways. We report the presence of gentisic acid in the HKEB for the first time. These results show that HKEBs may be a useful tool for the management of plant diseases.
Collapse
Affiliation(s)
- Roxana Portieles
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Hongli Xu
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China
| | - Dening Zhang
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Lihua Du
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Xiangyou Gao
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Jingyao Gao
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Nayanci Portal Gonzalez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong, People's Republic of China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong, People's Republic of China.
| | - Orlando Borrás-Hidalgo
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China.
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China.
| |
Collapse
|
12
|
Xu X, Yang Y, Liu C, Sun Y, Zhang T, Hou M, Huang S, Yuan H. The evolutionary history of the sucrose synthase gene family in higher plants. BMC PLANT BIOLOGY 2019; 19:566. [PMID: 31852440 PMCID: PMC6921546 DOI: 10.1186/s12870-019-2181-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/02/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sucrose synthase (SUS) is widely considered a key enzyme participating in sucrose metabolism in higher plants and regarded as a biochemical marker for sink strength in crops. However, despite significant progress in characterizing the physiological functions of the SUS gene family, knowledge of the trajectory of evolutionary processes and significance of the family in higher plants remains incomplete. RESULTS In this study, we identified over 100 SUS genes in 19 plant species and reconstructed their phylogenies, presenting a potential framework of SUS gene family evolution in higher plants. Three anciently diverged SUS gene subfamilies (SUS I, II and III) were distinguished based on their phylogenetic relationships and unique intron/exon structures in angiosperms, and they were found to have evolved independently in monocots and dicots. Each subfamily of SUS genes exhibited distinct expression patterns in a wide range of plants, implying that their functional differentiation occurred before the divergence of monocots and dicots. Furthermore, SUS III genes evolved under relaxed purifying selection in dicots and displayed narrowed expression profiles. In addition, for all three subfamilies of SUS genes, the GT-B domain was more conserved than the "regulatory" domain. CONCLUSIONS The present study reveals the evolution of the SUS gene family in higher plants and provides new insights into the evolutionary conservation and functional divergence of angiosperm SUS genes.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yongheng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chunxiao Liu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ting Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Menglan Hou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Suzhen Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Haiyan Yuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
13
|
In silico Analysis of qBFR4 and qLBL5 in Conferring Quantitative Resistance Against Rice Blast. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
14
|
Chen W, Si GY, Zhao G, Abdullah M, Guo N, Li DH, Sun X, Cai YP, Lin Y, Gao JS. Genomic Comparison of the P-ATPase Gene Family in Four Cotton Species and Their Expression Patterns in Gossypium hirsutum. Molecules 2018; 23:molecules23051092. [PMID: 29734726 PMCID: PMC6102550 DOI: 10.3390/molecules23051092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
Plant P-type H+-ATPase (P-ATPase) is a membrane protein existing in the plasma membrane that plays an important role in the transmembrane transport of plant cells. To understand the variety and quantity of P-ATPase proteins in different cotton species, we combined four databases from two diploid cotton species (Gossypium raimondii and G. arboreum) and two tetraploid cotton species (G. hirsutum and G. barbadense) to screen the P-ATPase gene family and resolved the evolutionary relationships between the former cotton species. We identified 53, 51, 99 and 98 P-ATPase genes from G. arboretum, G. raimondii, G. barbadense and G. hirsutum, respectively. The structural and phylogenetic analyses revealed that the gene structure was consistent between P-ATPase genes, with a close evolutionary relationship. The expression analysis of P-ATPase genes showed that many P-ATPase genes were highly expressed in various tissues and at different fiber developmental stages in G. hirsutum, suggesting that they have potential functions during growth and fiber development in cotton.
Collapse
Affiliation(s)
- Wen Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Guo-Yang Si
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Gang Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Ning Guo
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Hui Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Xu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yong-Ping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jun-Shan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Li P, Guo W. Genome-wide characterization of the Rab gene family in Gossypium by comparative analysis. BOTANICAL STUDIES 2017; 58:26. [PMID: 28577194 PMCID: PMC5457372 DOI: 10.1186/s40529-017-0181-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/24/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rab protein family is the largest subfamily of small G protein family. As one of the most important families in plant, Rab family plays an important role in the process of plant growth and development. So far, the identification of 57 members of the Rab family in Arabidopsis has been completed. In cotton, the relevant family has not been reported. RESULTS Here, we identified 87, 169, 136, 80 Rabs in the four sequenced cotton species, G. raimondii (D5), G. hirsutum acc. TM-1 (AD1), G. barbadense acc. 3-79 (AD2) and G. arboreum (A2), respectively. Biological information analysis showed that the number of amino acid is 200-300 aa among Rab family members in G. raimondii and the protein molecular weight is between 20 and 30 kDa, which is consistent with the characterization of the Rab protein itself. 87 GrRabs in G. raimondii are divided into eight groups. In each group, intron numbers and subcellular localization of Rab protein are basically the same. We mapped the distribution of GrRab genes on 13 chromosomes of G. raimondii except two genes. Among the 87 GrRabs in G. raimondii, we identified 60 pairs of GrRabs formed in whole genome duplication. Among all the gene pairs, the Ka/Ks values were less than 1. This indicates that it is the results of the purification selection and will help maintain the conservation of gene in structure and function. Further, 4 of the 87 GrRabs showed tandem duplication. They were GrRabA2a vs GrRabD1a and GrRabA2h vs GrRabD1b respectively. Expression patterns analysis of 169 GhRabs in G. hirsutum acc. TM-1 indicates that most Rab family members play a certain role in different tissues/organs and different growth stages of cotton, implying their potential function in the polar growth of pollen tube, root hair and fiber cell, as well as improving stress and disease tolerance. CONCLUSION The systematic investigation of Rab genes in cotton will lay a foundation for understanding the functional roles of different Rab members in the polar growth and stress tolerance.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| |
Collapse
|
16
|
Zhang B, Wang Y, Liu JY. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). SCIENCE CHINA-LIFE SCIENCES 2017; 61:88-99. [PMID: 28547583 DOI: 10.1007/s11427-017-9053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/01/2017] [Indexed: 01/05/2023]
Abstract
Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanmei Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|