1
|
Wu W, Mi Y, Meng Q, Li N, Li W, Wang P, Hou Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. CHINESE HERBAL MEDICINES 2025; 17:279-291. [PMID: 40256718 PMCID: PMC12009074 DOI: 10.1016/j.chmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
Natural polyphenols are a group of components widely found in traditional Chinese medicines and have been demonstrated to delay or prevent the development of aging and age-related diseases in recent years. As far as we know, the studies of natural polyphenols in aging and aging-related diseases have never been extensively reviewed. In the present paper, we reviewed recent advances of natural polyphenols in aging and common age-related diseases and the current technological methods to improve the bioavailability of natural polyphenols. The results showed that natural polyphenols have the potential to prevent or treat aging and common age-related diseases through multiple mechanisms. Nanotechnology, structural modifications, and matrix processing could provide strong technical support for the development of natural polyphenols to prevent or treat aging and age-related diseases. In conclusion, natural polyphenols have important potential in the prevention and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Wenze Wu
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yan Mi
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Qingqi Meng
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Ning Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yue Hou
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
2
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
3
|
Gurgul AA, Najjar Y, Chee A, An H, Che CT, Park TJ, Warpeha KM. Phenylpropanoid-enriched broccoli seedling extract can reduce inflammatory markers and pain behavior. J Transl Med 2023; 21:922. [PMID: 38115032 PMCID: PMC10731810 DOI: 10.1186/s12967-023-04777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pain is a worldwide problem requiring an effective, affordable, non-addictive therapy. Using the edible plant broccoli, a growth protocol was developed to induce a concentrated combinatorial of potential anti-inflammatories in seedlings. METHODS A growth method was utilized to produce a phenylpropanoid-rich broccoli sprout extract, referred to as Original Extract (OE). OE was concentrated and then resuspended for study of the effects on inflammation events. A rabbit disc model of inflammation and degeneration, and, a mouse model of pain behavior were used for in vivo and in vitro tests. To address aspects of mammalian metabolic processing, the OE was treated with the S9 liver microsome fraction derived from mouse, for use in a mouse in vivo study. Analytical chemistry was performed to identify major chemical species. Continuous variables were analyzed with a number of methods including ANOVA, and two-tailed t tests, as appropriate. RESULTS In a rabbit spine (disc) injury model, inflammatory markers were reduced, and levels of regenerative markers were increased as a result of OE treatment, both in vivo and in vitro. In a mouse pain behavioral model, after treatment with S9 liver microsome fraction, the resultant extract significantly reduced early and late pain behavior in response to a pain stimulus. The OE itself reduced pain behavior in the mouse pain model, but did not achieve the level of significance observed for S9-treated extract. Analytical chemistry undertaken on the extract constituents revealed identities of the chemical species in OE, and how S9 liver microsome fraction treatment altered species identities and proportions. CONCLUSIONS In vitro and in vivo results indicate that the OE, and S9-treated OE broccoli extracts are worthwhile materials to develop a non-opiate inflammation and pain-reducing treatment.
Collapse
Affiliation(s)
- Aleksandra A Gurgul
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Yahya Najjar
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Howard An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA
| | - Katherine M Warpeha
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA.
| |
Collapse
|
4
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Lou Y, Lv Y, Li Z, Kang Y, Hou M, Fu Z, Lu L, Liu L, Cai Z, Qi Z, Jian H, Shen W, Li X, Zhou H, Feng S. Identification of Differentially Expressed Proteins in Rats with Early Subacute Spinal Cord Injury using an iTRAQ-based Quantitative Analysis. Comb Chem High Throughput Screen 2023; 26:1960-1973. [PMID: 36642874 DOI: 10.2174/1386207326666230113152622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Injuries to the central nervous system (CNS), such as spinal cord injury (SCI), may devastate families and society. Subacute SCI may majorly impact secondary damage during the transitional period between the acute and subacute phases. A range of CNS illnesses has been linked to changes in the level of protein expression. However, the importance of proteins during the early subacute stage of SCI remains unknown. The role of proteins in the early subacute phase of SCI has not been established yet. METHODS SCI-induced damage in rats was studied using isobaric tagging for relative and absolute protein quantification (iTRAQ) to identify proteins that differed in expression 3 days after the injury, as well as proteins that did not alter in expression. Differentially expressed proteins (DEPs) were analyzed employing Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to discover the biological processes, cell components, and molecular functions of the proteins. We also performed Gene Set Enrichment Analysis (GSEA) software BP pathway and KEGG analysis on all proteins to further identify their functions. In addition, the first 15 key nodes of a protein-protein interaction (PPI) system were found. RESULTS During the early subacute stage of SCI, we identified 176 DEPs in total between the control and damage groups, with 114 (64.77%) being up-regulated and 62 (35.23%) being downregulated. As a result of this study, we discovered the most important cellular components and molecular activities, as well as biological processes and pathways, in the early subacute phase of SCI. The top 15 high-degree core nodes were Alb, Plg, F2, Serpina1, Fgg, Apoa1, Vim, Hpx, Apoe, Agt, Ambp, Pcna, Gc, F12, and Gfap. CONCLUSION Our study could provide new views on regulating the pathogenesis of proteins in the early subacute phase after SCI, which provides a theoretical basis for exploring more effective therapeutic targets for SCI in the future.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Fu
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu Liu
- Department of Traumatic Orthopedics, Honghui Hospital, Xi'an Jiaotong University, 555 West Youyi Road, Xi'an, 710061, Shaanxi, China
| | - Zhiwei Cai
- Department of Burn and Plastic Surgery, Burns Institute, Burn & Plastic Hospital of PLA General Hospital, Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhangyang Qi
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xueying Li
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
7
|
Chen JM, Li QW, Jiang GX, Liu JS, Cheng Q. IL-18 induced IL-23/IL-17 expression impairs Aβ clearance in cultured THP-1 and BV2 cells. Cytokine 2019; 119:113-118. [PMID: 30903865 DOI: 10.1016/j.cyto.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Recent studies have provided overwhelming evidence of the involvement of microglia-related molecular networks in the pathogenesis of Alzheimer's diseases (AD). The potential involvement of pro-inflammatory cytokines interleukin (IL)-18, IL-23 and IL-17 on amyloid (Aβ) clearance is still unclear. In this study, we addressed that there might be a net relationship among IL-18, IL-23, and IL-17 and they can affect Aβ clearance in cultured macrophage/microglia cells. In human macrophage cell line THP-1, Aβ42 incubation could increase the expression of IL-18, IL-23 and IL-17 in a concentration dependent manner. THP-1 cell could clear Aβ42 in the culture medium time-dependently, but its capacity of Aβ clearance was impaired by IL-18, IL-23 or IL-17 treatment. Similarly, the capacity of the microglia cell line BV2 to clear Aβ42 was impaired by IL-18, IL-23 or IL-17 treatment. In co-cultures of BV2 with APP/PS1 neuron, Aβ was efficiently cleared by BV2 cell, but Aβ clearance was impaired by IL-18, IL-23 or IL-17 treatment. The effects of IL-18, IL-23 and IL-17 could be blocked by their corresponding neutralizing antibodies. In addition, the inhibitory effects of IL-18 were blocked by IL-23 or IL-17 neutralizing antibodies while the inhibitory effects of IL-23 were blocked by IL-17 neutralizing antibodies. Our study provides evidences showing that amyloid induced IL-18/IL-23/IL-17 axis could impair macrophage and microglia-mediated Aβ clearance. Thus, IL-18/IL-23/IL-17 axis might be a therapeutic target in AD.
Collapse
Affiliation(s)
- Jin-Mei Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin No. 2 Road, Shanghai 200025, China; Department of Neurology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Discipline Construction Research Center of China Hospital Development Institute, Shanghai Jiao Tong University, 280 Mohe Road, Shanghai 201999, China
| | - Qing-Wei Li
- Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai 200065, China; Shanghai Mental Health Central, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai 200013, China
| | - Guo-Xin Jiang
- Department of Learning, Informatics, Management and Ethics, Karolinska Institute, Stockholm 17177, Sweden
| | - Jian-Sheng Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Discipline Construction Research Center of China Hospital Development Institute, Shanghai Jiao Tong University, 280 Mohe Road, Shanghai 201999, China
| | - Qi Cheng
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin No. 2 Road, Shanghai 200025, China.
| |
Collapse
|
8
|
Mattioli R, Francioso A, d'Erme M, Trovato M, Mancini P, Piacentini L, Casale AM, Wessjohann L, Gazzino R, Costantino P, Mosca L. Anti-Inflammatory Activity of A Polyphenolic Extract from Arabidopsis thaliana in In Vitro and In Vivo Models of Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20030708. [PMID: 30736391 PMCID: PMC6387160 DOI: 10.3390/ijms20030708] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aβ) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD. Here, we investigated the effects of a polyphenolic extract of Arabidopsis thaliana (a plant belonging to the Brassicaceae family) on inflammatory response induced by Aβ. BV2 murine microglia cells treated with both Aβ25–35 peptide and extract showed a lower pro-inflammatory (IL-6, IL-1β, TNF-α) and a higher anti-inflammatory (IL-4, IL-10, IL-13) cytokine production compared to cells treated with Aβ only. The activation of the Nrf2-antioxidant response element signaling pathway in treated cells resulted in the upregulation of heme oxygenase-1 mRNA and in an increase of NAD(P)H:quinone oxidoreductase 1 activity. To establish whether the extract is also effective against Aβ-induced neurotoxicity in vivo, we evaluated its effect on the impaired climbing ability of AD Drosophila flies expressing human Aβ1–42. Arabidopsis extract significantly restored the locomotor activity of these flies, thus confirming its neuroprotective effects also in vivo. These results point to a protective effect of the Arabidopsis extract in AD, and prompt its use as a model in studying the impact of complex mixtures derived from plant-based food on neurodegenerative diseases.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Roma, Italy.
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Roma, Italy.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Roma, Italy.
| | - Maurizio Trovato
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Roma, Italy.
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy.
| | - Lucia Piacentini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Roma, Italy.
| | - Assunta Maria Casale
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Roma, Italy.
| | - Ludger Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Roberta Gazzino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Roma, Italy.
| | - Paolo Costantino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Roma, Italy.
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Roma, Italy.
| |
Collapse
|
9
|
Meta-Analysis of the Relationship between the APOE Gene and the Onset of Parkinson's Disease Dementia. PARKINSONS DISEASE 2018; 2018:9497147. [PMID: 30405900 PMCID: PMC6204165 DOI: 10.1155/2018/9497147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Purpose To clarify the relationship between certain genotypes or alleles of the APOE gene and the onset risk of Parkinson's disease dementia (PDD). Methods The PubMed, Cochrane, Embase, CBM, CNKI, and Wanfang databases were searched to identify all case-control studies and cohort studies published before October 30, 2017, that investigated the association between the APOE gene and the onset of PDD. Manual information retrieval was also performed. All studies that met the quality requirements were included in a meta-analysis performed using RevMan 5.3 software. Results The meta-analysis included 17 studies, with a total of 820 patients in the PDD group and 1,922 in the non-PDD group. The influence of the APOE gene on PDD onset was analyzed from three aspects: five genotypes vs. ε3/3, ε2+/ε4+ vs. ε3/3, and ε4+ vs. ε4-. The risk factors for PDD may include the genotypes ε3/4 (OR 1.47, 95% CI 1.14-1.89) and ε4/4 (OR 2.93, 95% CI 1.20-7.14). In patients with PDD, there was no significant difference in the distribution of ε2+ vs. ε3/3 (OR 1.35, 95% CI 0.97-1.87, P=0.07). The risk of PDD was 1.61 times greater in ε4+ compared with ε3/3 (OR 1.61, 95% CI 1.24-2.08, P=0.0003). As the results indicated that ε2+ did not play a role as a risk factor or a protective factor, we divided the population into ε4+ and ε4- for the meta-analysis and found that, among patients with Parkinson's disease, the dementia risk of those with ε4+ was 1.72 times greater than that of those with ε4- (OR 1.72, 95% CI 1.41-2.10, P < 0.00001). Subgroup analysis in accordance with different geographical regions revealed that ε4+ was a risk factor for PDD in people from all regions. Conclusions Among the APOE genotypes, ε2+ is neither a risk factor nor a protective factor for PDD, while ε4+ is a risk factor for PDD. The present results are applicable to Asian, European, and American patients with Parkinson's disease. Regarding the single APOE genotypes, ε3/4 and ε4/4 may be risk factors for PDD; however, further studies with large sample sizes are needed to verify this.
Collapse
|
10
|
Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ. EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 2017; 58:1733-1755. [PMID: 28389477 PMCID: PMC5580905 DOI: 10.1194/jlr.r076315] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/06/2017] [Indexed: 01/12/2023] Open
Abstract
Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer's disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the human (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Evangelina Avila-Munoz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Nicole Collins
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612.
| |
Collapse
|
11
|
Shamim D, Laskowski M. Inhibition of Inflammation Mediated Through the Tumor Necrosis Factor α Biochemical Pathway Can Lead to Favorable Outcomes in Alzheimer Disease. J Cent Nerv Syst Dis 2017; 9:1179573517722512. [PMID: 28811745 PMCID: PMC5536370 DOI: 10.1177/1179573517722512] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/25/2017] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents.
Collapse
Affiliation(s)
- Daniah Shamim
- Saba University School of Medicine, The Bottom, Dutch Caribbean
| | | |
Collapse
|
12
|
Para A, Muhammad D, Orozco-Nunnelly DA, Memishi R, Alvarez S, Naldrett MJ, Warpeha KM. The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development. PLANT PHYSIOLOGY 2016; 172:1045-1060. [PMID: 27540109 PMCID: PMC5047074 DOI: 10.1104/pp.16.00464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/15/2016] [Indexed: 05/25/2023]
Abstract
During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling.
Collapse
Affiliation(s)
- Alessia Para
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - DurreShahwar Muhammad
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Danielle A Orozco-Nunnelly
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Ramis Memishi
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Sophie Alvarez
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Michael J Naldrett
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| | - Katherine M Warpeha
- Weinberg College of Art and Science, Northwestern University, Evanston, Illinois 60208 (A.P.);Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607 (D.M., D.A.O.-N., R.M., K.M.W.); andProteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.A., M.J.N.)
| |
Collapse
|