1
|
Sólis‐Suarez DL, Cifuentes‐Mendiola SE, González‐Alva P, Rodríguez‐Hernández AP, Martínez‐Dávalos A, Llamosas‐Hernandez FE, Godínez‐Victoria M, García‐Hernández AL. Lipocalin-2 as a fundamental protein in type 2 diabetes and periodontitis in mice. J Periodontol 2025; 96:369-382. [PMID: 39189666 PMCID: PMC12062733 DOI: 10.1002/jper.24-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Lipocalin-2 (LCN-2) is an osteokine that suppresses appetite, stimulates insulin secretion, regulates bone remodeling, and is induced by proinflammatory cytokines. The aim of this work was to investigate the participation of LCN-2 in periodontitis associated with type 2 diabetes (T2D) by evaluating alveolar bone loss, glycemic control, inflammation, and femur fragility. METHODS A murine model of periodontitis with T2D and elevated LCN-2 concentration was used. Functional LCN-2 inhibition was achieved using an anti-LCN-2 polyclonal antibody, and isotype immunoglobulin G was used as a control. The alveolar bone and femur were evaluated by micro-CT. Glucose metabolism was determined. Tumor necrosis factor (TNF-α) and receptor activator of nuclear factor kappa-B ligand (RANKL) levels in alveolar bone lysates were quantified using ELISA, and serum cytokines were quantified using flow cytometry. A three-point bending test was performed in the femur, and RANKL levels were measured in femur lysates using ELISA. RESULTS Functional inhibition of LCN-2 in T2D-periodontitis mice decreased alveolar bone loss in buccal and palatal surfaces and preserved the microarchitecture of the remaining bone, decreased TNF-α and RANKL in alveolar bone, reduced hyperglycemia, glucose intolerance, and insulin resistance, and increased insulin production through improving the functionality of pancreatic β cells. Furthermore, this inhibition increased serum free-glycerol levels, decreased serum interleukin (IL)-6, increased serum IL-4, and reduced femur fragility and RANKL expression in the femur. CONCLUSIONS LCN-2 participates in periodontitis associated with T2D. Inhibiting its function in mice with T2D and periodontitis improves pancreatic β-cell function, and glucose metabolism and decreases inflammatory cytokines and bone-RANKL levels, which results in the preservation of femoral and alveolar bone microarchitecture. PLAIN LANGUAGE SUMMARY In this study, we explored the role of a bone protein known as lipocalin-2 (LCN-2) in the connection between periodontitis and type 2 diabetes (T2D). Periodontitis is a destructive gum and alveolar bone disease. LCN-2 levels are increased in both T2D and periodontitis. Using a mouse model of T2D with periodontitis, we examined how blocking LCN-2 function affected various aspects of these two diseases. We found that this inhibition led to significant improvements. First, it reduced alveolar bone loss and preserved bone structure by decreasing local inflammation and bone resorption. Second, it improved glucose and lipid metabolism, leading to better blood-sugar control and decreased insulin resistance. Blocking the functions of LCN-2 also decreased systemic inflammation throughout the body and strengthened bone integrity. Overall, our results suggest that LCN-2 plays a crucial role in the periodontitis associated with T2D. By inhibiting LCN-2 function, we were able to improve pancreatic function, improve glucose metabolism, reduce inflammation, and enhance bone health. Targeting LCN-2 could be a promising strategy for the harmful effects of T2D and periodontitis.
Collapse
Affiliation(s)
- Diana Laura Sólis‐Suarez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES IztacalaNational Autonomous University of Mexico (UNAM)State of MexicoMexicoMexico
- Postgraduate Course in Dental SciencesNational Autonomous University of MexicoMexico CityMexico
| | - Saúl Ernesto Cifuentes‐Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES IztacalaNational Autonomous University of Mexico (UNAM)State of MexicoMexicoMexico
| | - Patricia González‐Alva
- Laboratory of Tissue Bioengineering, Faculty of DentistryNational Autonomous University of Mexico (UNAM)Mexico CityMexico
| | | | - Arnulfo Martínez‐Dávalos
- Endo‐periodontology DepartmentPhysics InstituteNational Autonomous University of Mexico (UNAM)Mexico CityMexico
| | | | - Marycarmen Godínez‐Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de MedicinaInstituto Politécnico NacionalMexico CityMexico
| | - Ana Lilia García‐Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES IztacalaNational Autonomous University of Mexico (UNAM)State of MexicoMexicoMexico
| |
Collapse
|
2
|
Lin YH, Wang YH, Peng YJ, Liu FC, Sytwu HK, Cheng CP. Interleukin 26 attenuates osteoblast differentiation in osteoarthritis patients by activating COX2 and NF-κB pathways. Int J Med Sci 2025; 22:1504-1515. [PMID: 40093804 PMCID: PMC11905269 DOI: 10.7150/ijms.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Aims: Osteoarthritis (OA) represents the prevailing form of degenerative joint pathology. Recent investigations have revealed a heightened expression of interleukin 26 (IL-26) in various inflammatory arthritic conditions, including OA. However, the specific impacts and functions of IL-26 on osteoblasts (OBs) within the context of OA remain inadequately elucidated. This study aims to clarify the effects and underlying mechanisms of IL-26 by examining its influence on osteoblasts isolated from OA patients and a murine osteoblast cell line. Methods: Human primary osteoblasts and mouse pre-osteoblast cells were subjected to treatment with β-glycerophosphate or concurrent treatment with IL-26 to observe the effects on osteoblast differentiation. The differentiation of osteoblasts was assessed through the expression of relevant genes using reverse transcription-polymerase chain reaction (RT-PCR). Key molecular mechanisms of downstream signaling pathways were examined through immunoblotting assays. Results: Our results reveal that IL-26 mitigates osteoblast differentiation and reduces the expression of the marker alkaline phosphatase. Furthermore, the NF-κB downstream OB proliferated marker iNOS and inhibition OB differentiated marker LCN2 messenger RNA are up-regulated in IL-26 treated group. Also, phosphorylation and nuclear translocation of NF-κB p65 occur following IL-26 stimulation. Additionally, IL-26 enhances the downstream transcription factor cyclooxygenase-2 (COX2), a major player associated with iNOS. STAT1, the canonical receptor signaling pathway of IL-26 is activated. Conclusion: In summary, our findings substantiate the role of IL-26 in osteoarthritis and identify it as a potential therapeutic target for intervention in osteoarthritic pathology.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department and Graduate institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hsun Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Pi Cheng
- Department and Graduate institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Perepletchikova D, Kuchur P, Basovich L, Khvorova I, Lobov A, Azarkina K, Aksenov N, Bozhkova S, Karelkin V, Malashicheva A. Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling. Cell Commun Signal 2025; 23:100. [PMID: 39972367 PMCID: PMC11841332 DOI: 10.1186/s12964-025-02096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Angiogenesis and osteogenesis are closely interrelated. The interaction between endothelial and bone-forming cells, such as osteoblasts, is crucial for normal bone development and repair. Juxtacrine and paracrine mechanisms play key roles in cell differentiation towards the osteogenic direction, assuming the direct effect of endothelium on osteogenic differentiation. However, the mechanisms of this interplay have yet to be thoroughly studied. METHODS Isolated endothelial cells (EC) from human umbilical vein and human osteoblasts (OB) from the epiphysis of the femur or tibia were cultured in direct and indirect (separated by membrane) contact in vitro under the osteogenic differentiation conditions. Osteogenic differentiation was verified by RT-PCR, and alizarin red staining. Shotgun proteomics and RNA-sequencing were used to compare both EC and OB under different co-culture conditions to assess the mechanisms of EC-OB interplay. To verify the role of Notch signaling, experiments with Notch modulation in EC were performed by EC lentiviral transduction with further co-cultivation with OB. Additionally, the effect of Notch modulation in EC was assessed by RNA-sequencing. RESULTS EC have opposite effects on osteogenic differentiation depending on the co-culture conditions with OB. In direct contact, EC enhance osteogenic differentiation, but in indirect cultures, EC suppress it. Our proteotranscriptomic analysis revealed that the osteosuppressive effect is related to the action of paracrine factors secreted by EC, while the osteoinductive properties of EC are mediated by the Notch signaling pathway, which can be activated only upon a physical contact of EC with OB. Indeed, in the direct co-culture, the knockdown of Notch1 and Notch3 receptors in EC has an inhibitory effect on the OB osteogenic differentiation, whereas activation of Notch by intracellular domain of either Notch1 or Notch3 in EC has an inductive effect on the OB osteogenic differentiation. CONCLUSION The data indicate the dual role of the endothelium in regulating osteogenic differentiation and highlight the unique role of the Notch signaling pathway in inducing osteogenic differentiation during cell-to-cell interactions. The findings of the study emphasize the importance of intercellular communication in the regulation of osteoblast differentiation during bone development and maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Svetlana Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint- Petersburg, Russia
| | - Vitaliy Karelkin
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint- Petersburg, Russia
| | | |
Collapse
|
4
|
Yang Y, Liu J, Kousteni S. Lipocalin 2-A bone-derived anorexigenic and β-cell promoting signal: From mice to humans. J Diabetes 2024; 16:e13504. [PMID: 38035773 PMCID: PMC10940901 DOI: 10.1111/1753-0407.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The skeleton is traditionally known for its structural support, organ protection, movement, and maintenance of mineral homeostasis. Over the last 10 years, bone has emerged as an endocrine organ with diverse physiological functions. The two key molecules in this context are fibroblast growth factor 23 (FGF23), secreted by osteocytes, and osteocalcin, a hormone produced by osteoblasts. FGF23 affects mineral homeostasis through its actions on the kidneys, and osteocalcin has beneficial effects in improving glucose homeostasis, muscle function, brain development, cognition, and male fertility. In addition, another osteoblast-derived hormone, lipocalin 2 (LCN2) has emerged into the researchers' field of vision. In this review, we mainly focus on LCN2's role in appetite regulation and glucose metabolism and also briefly introduce its effects in other pathophysiological conditions, such as nonalcoholic fatty liver disease, sarcopenic obesity, and cancer-induced cachexia.
Collapse
Affiliation(s)
- Yuying Yang
- Department of Endocrine and Metabolic Diseases, Rui‐jin Hospital, Shanghai Jiao Tong University School of MedicineShanghai Institute of Endocrine and Metabolic Diseases, and Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Rui‐jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Rui‐jin Hospital, Shanghai Jiao Tong University School of MedicineShanghai Institute of Endocrine and Metabolic Diseases, and Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Rui‐jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Stavroula Kousteni
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
5
|
Huang B, Liu H, Chan S, Liu J, Gu J, Chen M, Kuang L, Li X, Zhang X, Li J. RUNX2 promotes the suppression of osteoblast function and enhancement of osteoclast activity by multiple myeloma cells. Med Oncol 2023; 40:115. [PMID: 36897488 PMCID: PMC10006269 DOI: 10.1007/s12032-023-01960-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/27/2023] [Indexed: 03/11/2023]
Abstract
RUNX2 is a transcription factor that participates in osteoblast differentiation and chondrocyte maturation and plays an important role in the invasion and metastasis of cancers. With the deepening of research, evidence has indicated the correlation between RUNX2 and bone destruction in cancers. However, the mechanisms underlying its role in multiple myeloma remain unclear. By observing the induction effects of conditioned medium from myeloma cells on preosteoblasts (MC3T3-E1) and preosteoclasts (RAW264.7) and constructing myeloma-bearing mice, we found that RUNX2 promotes bone destruction in multiple myeloma. In vitro, conditioned medium from RUNX2-overexpressing myeloma cells reduced osteoblast activity and increased osteoclast activity. In vivo, RUNX2 expression was positively correlated with bone loss in myeloma-bearing mice. These results suggest that therapeutic inhibition of RUNX2 may protect against bone destruction by maintaining the balance between osteoblast and osteoclast activity in multiple myeloma.
Collapse
Affiliation(s)
- Beihui Huang
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Huixin Liu
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Szehoi Chan
- Department of Pharmacology, School of Medicine, Molecular Cancer Research Center, Sun Yat-Sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Junru Liu
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Jingli Gu
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Meilan Chen
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Lifen Kuang
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Xiaozhe Li
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China
| | - Xingding Zhang
- Department of Pharmacology, School of Medicine, Molecular Cancer Research Center, Sun Yat-Sen University, No.66, Gongchang Road, Shenzhen, 518107, China.
| | - Juan Li
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Zhang X, Xue T, Hu Z, Guo X, Li G, Wang Y, Zhang L, Xu L, Cao X, Zhang S, Shi F, Wang K. Bioinformatic analysis of the RNA expression patterns in microgravity-induced bone loss. Front Genet 2022; 13:985025. [PMID: 36425065 PMCID: PMC9681495 DOI: 10.3389/fgene.2022.985025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Researchers have linked microgravity in space to the significant imbalance between bone formation and bone resorption that induces persistent bone loss in load-bearing bones. However, the underlying molecular mechanisms are still unclear, which hinders the development of therapeutic measures. The aim of this study was to identify hub genes and explore novel molecular mechanisms underlying microgravity-induced bone loss using transcriptome datasets obtained from the GEO and SRA databases. In summary, comparative RNA expression pattern studies that differ in species (Homo or Mus), models (in vitro or in vivo), microgravity conditions (real microgravity or ground-based simulators) and microgravity duration showed that it is difficult to reach a consistent conclusion about the pathogenesis of microgravity-induced bone loss across these studies. Even so, we identified 11 hub genes and some miRNA-mRNA interactions mainly based on the GSE100930 dataset. Also, the expression of CCL2, ICAM1, IGF1, miR-101-3p and miR-451a markedly changed under clinorotation-microgravity condition. Remarkedly, ICAM1 and miR-451a were key mediators of the osteogenesis of hMSCs under clinorotation-microgravity condition. These findings provide novel insights into the molecular mechanisms of bone loss during microgravity and could indicate potential targets for further countermeasures against this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| |
Collapse
|
7
|
Zhou Y, Zhang C, Zhou Z, Zhang C, Wang J. Identification of Key Genes and Pathways Associated with PIEZO1 in Bone-Related Disease Based on Bioinformatics. Int J Mol Sci 2022; 23:5250. [PMID: 35563641 PMCID: PMC9104149 DOI: 10.3390/ijms23095250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
PIEZO1 is a mechano-sensitive ion channel that can sense various forms of mechanical stimuli and convert them into biological signals, affecting bone-related diseases. The present study aimed to identify key genes and signaling pathways in Piezo1-regulated bone-related diseases and to explain the potential mechanisms using bioinformatic analysis. The differentially expressed genes (DEGs) in tendon, femur, and humerus bone tissue; cortical bone; and bone-marrow-derived macrophages were identified with the criteria of |log2FC| > 1 and adjusted p-value < 0.05 analysis based on a dataset from GSE169261, GSE139121, GSE135282, and GSE133069, respectively, and visualized in a volcano plot. Venn diagram analyses were performed to identify the overlapping DEGs expressed in the above-mentioned tissues. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein−protein interaction (PPI) analysis, and module analysis were also conducted. Furthermore, qRT-PCR was performed to validate the above results using primary chondrocytes. As a result, a total of 222 overlapping DEGs and 12 mostly overlapping DEGs were identified. Key Piezo1-related genes, such as Lcn2, Dkk3, Obscn, and Tnnt1, were identified, and pathways, such as Wnt/β-catenin and PI3k-Akt, were also identified. The present informatic study provides insight, for the first time, into the potential therapeutic targets of Piezo1-regulated bone-related diseases
Collapse
Affiliation(s)
- Yuanyuan Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Chen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Zhongguo Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane City 4072, Australia;
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| |
Collapse
|
8
|
New Insights to the Crosstalk between Vascular and Bone Tissue in Chronic Kidney Disease-Mineral and Bone Disorder. Metabolites 2021; 11:metabo11120849. [PMID: 34940607 PMCID: PMC8708186 DOI: 10.3390/metabo11120849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Vasculature plays a key role in bone development and the maintenance of bone tissue throughout life. The two organ systems are not only linked in normal physiology, but also in pathophysiological conditions. The chronic kidney disease–mineral and bone disorder (CKD-MBD) is still the most serious complication to CKD, resulting in increased morbidity and mortality. Current treatment therapies aimed at the phosphate retention and parathyroid hormone disturbances fail to reduce the high cardiovascular mortality in CKD patients, underlining the importance of other factors in the complex syndrome. This review will focus on vascular disease and its interplay with bone disorders in CKD. It will present the very late data showing a direct effect of vascular calcification on bone metabolism, indicating a vascular-bone tissue crosstalk in CKD. The calcified vasculature not only suffers from the systemic effects of CKD but seems to be an active player in the CKD-MBD syndrome impairing bone metabolism and might be a novel target for treatment and prevention.
Collapse
|
9
|
Jia XY, Wei K, Chen J, Xi LH, Kong XL, Wei Y, Wang L, Wang ZS, Liu YP, Liang LM, Xu DM. Association of plasma neutrophil gelatinase-associated lipocalin with parameters of CKD-MBD in maintenance hemodialysis patients. J Bone Miner Metab 2021; 39:1058-1065. [PMID: 34392464 DOI: 10.1007/s00774-021-01248-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Neutrophil gelatinase-associated lipocalin (NGAL) is not only a biomarker of kidney injury but also a bone-derived factor involved in metabolism. We aimed to explore relationships between plasma NGAL and chronic kidney disease-mineral bone disorder (CKD-MBD) parameters in maintenance hemodialysis (MHD) patients. MATERIALS AND METHODS First, a cross sectional observational study, including 105 MHD patients, was conducted to explore relationships between plasma NGAL levels and CKD-MBD parameters. Second, impact of parathyroidectomy and auto-transplantation (PTX + AT) on plasma NGAL was investigated in 12 MHD patients with severe secondary hyperparathyroidism (SHPT). RESULTS According to Spearman correlation analysis, plasma NGAL levels were positively correlated with female (r = 0.243, P = 0.012), vintage (r = 0.290, P = 0.003), Klotho (r = 0.234, P = 0.016), calcium(Ca) (r = 0.332, P = 0.001), alkaline phosphatase (ALP) (r = 0.401, P < 0.001) and intact parathyroid hormone (iPTH) (r = 0.256, P = 0.008); while inversely correlated with albumin(Alb) (r = - 0.201, P = 0.039). After adjusting for age, sex, vintage, Alb and all parameters of CKD-MBD(Ca, P, lg(ALP), lg(iPTH), Klotho and fibroblast growth factor 23(FGF23)), lg(NGAL) were positively correlated with Ca (r = 0.481, P < 0.001), P (r = 0.336, P = 0.037), lg(ALP) (r = 0.646, P < 0.001) in Partial correlation analysis; further multiple linear regression analysis showed same positive associations between lg(NGAL) and Ca (β = 0.330, P = 0.002), P (β = 0.218, P = 0.037), lg(ALP) (β = 0.671, P < 0.001). During the 4-7 days after PTX + AT, plasma NGAL decreased from 715.84 (578.73, 988.14) to 688.42 (660.00, 760.26) ng/mL (P = 0.071), Klotho increased from 496.45 (341.73, 848.30) to 1138.25 (593.87, 2009.27) pg/mL (P = 0.099). CONCLUSION Plasma NGAL levels were positively associated with ALP in MHD patients; and downtrends were shown after PTX + AT in patients with severe SHPT. These findings suggest that NGAL is a participant in CKD-MBD under MHD condition.
Collapse
Affiliation(s)
- Xiao-Yan Jia
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Kai Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Juan Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Lin-He Xi
- Department of Plastic and Reconstructive Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiang-Lei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Yong Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Li Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Zun-Song Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Yi-Peng Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Li-Ming Liang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Insititute of Nephrology, Jinan, China
| | - Dong-Mei Xu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, China.
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, China.
- Shandong Provincial Insititute of Nephrology, Jinan, China.
| |
Collapse
|
10
|
Lai W, Mo Y, Wang D, Zhong Y, Lu L, Wang J, Cui L, Liu Y, Yang Y. Tanshinol Alleviates Microcirculation Disturbance and Impaired Bone Formation by Attenuating TXNIP Signaling in GIO Rats. Front Pharmacol 2021; 12:722175. [PMID: 34335280 PMCID: PMC8316650 DOI: 10.3389/fphar.2021.722175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022] Open
Abstract
Impaired bone formation is the main characteristics of glucocorticoid (GC)-induced osteoporosis (GIO), which can be ameliorated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. However, the underlying mechanism is still not entirely clear. In the present study, we determined the parameters related to microstructure and function of bone tissue, bone microcirculation, and TXNIP signaling to investigate the beneficial effects of tanshinol on skeleton and its molecular mechanism in GIO rats. Male Sprague-Dawley rats aged 4 months were administrated orally with distilled water (Con), tanshinol (Tan, 25 mg kg-1 d-1), prednisone (GC, 5 mg kg-1 d-1) and GC plus tanshinol (GC + Tan) for 14 weeks. The results demonstrated that tanshinol played a significant preventive role in bone loss, impaired microstructure, dysfunction of bone metabolism and poor bone quality, based on analysis of correlative parameters acquired from the measurement by using Micro-CT, histomorphometry, ELISA and biomechanical assay. Tanshinol also showed a significant protective effect in bone microcirculation according to the evidence of microvascular perfusion imaging of cancellous bone in GIO rats, as well as the migration ability of human endothelial cells (EA.hy926, EA cells). Moreover, tanshinol also attenuated GC-elicited the activation of TXNIP signaling pathway, and simultaneously reversed the down-regulation of Wnt and VEGF pathway as manifested by using Western-blot method in GIO rats, EA cells, and human osteoblast-like MG63 cells (MG cells). Collectively, our data highlighted that tanshinol ameliorated poor bone health mediated by activation of TXNIP signaling via inhibiting microcirculation disturbance and the following impaired bone formation in GIO rats.
Collapse
Affiliation(s)
- Wenxiu Lai
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Department of Phamacy, Yuebei People’s Hospital, Shaoguan, China
| | - Yulin Mo
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Ying Zhong
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Lujiao Lu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Jiajia Wang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Ponzetti M, Aielli F, Ucci A, Cappariello A, Lombardi G, Teti A, Rucci N. Lipocalin 2 increases after high-intensity exercise in humans and influences muscle gene expression and differentiation in mice. J Cell Physiol 2021; 237:551-565. [PMID: 34224151 PMCID: PMC9291458 DOI: 10.1002/jcp.30501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/04/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022]
Abstract
Lipocalin 2 (LCN2) is an adipokine that accomplishes several functions in diverse organs. However, its importance in muscle and physical exercise is currently unknown. We observed that following acute high‐intensity exercise (“Gran Sasso d'Italia” vertical run), LCN2 serum levels were increased. The Wnt pathway antagonist, DKK1, was also increased after the run, positively correlating with LCN2, and the same was found for the cytokine Interleukin 6. We, therefore, investigated the involvement of LCN2 in muscle physiology employing an Lcn2 global knockout (Lcn2−/−) mouse model. Lcn2−/− mice presented with smaller muscle fibres but normal muscle performance (grip strength metre) and muscle weight. At variance with wild type (WT) mice, the inflammatory cytokine Interleukin 6 was undetectable in Lcn2−/− mice at all ages. Intriguingly, Lcn2−/− mice did not lose gastrocnemius and quadriceps muscle mass and muscle performance following hindlimb suspension, while at variance with WT, they lose soleus muscle mass. In vitro, LCN2 treatment reduced the myogenic differentiation of C2C12 and primary mouse myoblasts and influenced their gene expression. Treating myoblasts with LCN2 reduced myogenesis, suggesting that LCN2 may negatively affect muscle physiology when upregulated following high‐intensity exercise.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federica Aielli
- Medical Oncology Department, Giuseppe Mazzini Hospital, Teramo, Italy
| | - Argia Ucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alfredo Cappariello
- Research Laboratories, Department of Onco-haematology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
12
|
Tsui FWL, Lin A, Sari I, Zhang Z, Tsui HW, Inman RD. Serial Lipocalin 2 and Oncostatin M levels reflect inflammation status and treatment response in axial spondyloarthritis. Arthritis Res Ther 2021; 23:141. [PMID: 33990221 PMCID: PMC8120829 DOI: 10.1186/s13075-021-02521-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background Informative serum biomarkers for monitoring inflammatory activity and treatment responses in axial spondyloarthritis (axSpA) are lacking. We assessed whether Lipocalin 2 (LCN2) and Oncostatin M (OSM), both having roles in inflammation and bone remodeling, may accurately reflect chronic joint inflammation and treatment response in axSpA. Previous reports in animal models showed involvement of LCN2 and OSM in joint/gut inflammation. We asked whether they also play a role in human axSpA. Methods We analyzed a longitudinal observational axSpA cohort (286 patients) with yearly clinical assessments and concurrent measurements of serum LCN2 and OSM (1204 serum samples) for a mean of 4 years. Biomarker levels were correlated with MRI scoring and treatment response. Results Persistent and transient elevation of LCN2 and OSM were observed in axSpA patients. Persistent elevation of LCN2 or OSM, but not CRP, correlated with sacroiliac joint (SIJ) MRI SPARCC scores (Pearson’s correlation p = 0.0005 and 0.005 for LCN2 and OSM respectively), suggesting that LCN2/OSM outperforms CRP as reflective of SIJ inflammation. We observed both concordant and discordant patterns of LCN2 and OSM in relationship to back pain, the cardinal clinical symptom in axSpA. Twenty-six percent (73/286) of the patients remained both clinically and serologically active (CASA). Sixty percent (173/286) of the patients became clinically quiescent, with back pain resolved, but 53% (92/173) of them were serologically active (CQSA), indicating that pain control may not indicate control of joint inflammation, as reflected by positive MRI imaging of SIJ. With respect to treatment responses, transient elevation of LCN2 or OSM over time was predictive of better response to all treatments. Conclusion In axSpA, persistent LCN2 and/or OSM elevation reflects chronic SIJ inflammation and suboptimal treatment response. In our cohort, half of the currently deemed clinically quiescent patients with back pain resolved continued to demonstrate chronic joint inflammation. LCN2 and OSM profiling outperforms CRP as a predictive measure and provides an objective assessment of chronic local inflammation in axSpA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02521-y.
Collapse
Affiliation(s)
- Florence W L Tsui
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,KeyIntel Medical Inc, Toronto, Ontario, Canada
| | - Aifeng Lin
- KeyIntel Medical Inc, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ismail Sari
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Department of Internal Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Zhenbo Zhang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada
| | - Hing Wo Tsui
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Medicine and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Lipocalin 2 serum levels correlate with age and bone turnover biomarkers in healthy subjects but not in postmenopausal osteoporotic women. Bone Rep 2021; 14:101059. [PMID: 34026950 PMCID: PMC8121999 DOI: 10.1016/j.bonr.2021.101059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Lipocalin 2 (LCN2) is an adipokine involved in many physiological functions, including bone metabolism. We previously demonstrated its implication in mouse models of mechanical unloading-induced osteoporosis and in a cohort of bed rest volunteers. We therefore aimed at studying its involvement in postmenopausal osteoporosis. Methods We measured serum LCN2 and correlated its levels to Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1), Tartrate Resistant Acid Phosphatase 5B (TRAcP5B), sclerostin, urinary N-terminal telopeptide of type I collagen (NTX), serum C-terminal telopeptide of type I collagen (CTX), parathyroid hormone and vitamin K by ELISA performed in a cohort of younger (50–65 years) and older (66–90 years) osteoporotic women in comparison to healthy subjects. A cohort of male healthy and osteoarthritic patients was also included. Sobel mediation analysis was used to test indirect associations among age, LCN2 and DKK1 or NTX. Results LCN2 levels were unchanged in osteoporotic and in osteoarthritis patients when compared to healthy subjects and did not correlate with BMD. However, serum LCN2 correlated with age in healthy women (R = 0.44; P = 0.003) and men (R = 0.5; P = 0.001) and serum concentrations of DKK1 (R = 0.47; P = 0.003) and urinary NTX (R = 0.34; P = 0.04). Sobel mediation analysis showed that LCN2 mediates an indirect relationship between age and DKK1 (P = 0.02), but not with NTX, in healthy subjects. Conclusions Taken together, the results suggest a hitherto unknown association between LCN2, DKK1 and age in healthy individuals, but not in postmenopausal osteoporotic women.
Collapse
Key Words
- BALP, bone-specific alkaline phosphatase
- BMD, bone mineral density
- BMI, body mass index
- CTX, C-terminal telopeptide of type I collagen
- DKK1
- DKK1, Dickkopf WNT Signaling Pathway Inhibitor 1
- IL, interleukin
- LCN2, lipocalin 2
- Lipocalin-2
- NGAL
- NTX, N-terminal telopeptide of type I collagen
- NfκB, nuclear factor kappa-B
- Osteoarthritis
- Osteoporosis
- PTH, parathyroid hormone
- RANKL, receptor activator of nuclear factor kappa-B
- TNF, tumor necrosis factor
- TRAcP5B, tartrate-resistant acid phosphatase 5B
- Wnt
Collapse
|
14
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
15
|
Bajpai A, Li R, Chen W. The cellular mechanobiology of aging: from biology to mechanics. Ann N Y Acad Sci 2020; 1491:3-24. [PMID: 33231326 DOI: 10.1111/nyas.14529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Aging is a chronic, complicated process that leads to degenerative physical and biological changes in living organisms. Aging is associated with permanent, gradual physiological cellular decay that affects all aspects of cellular mechanobiological features, including cellular cytoskeleton structures, mechanosensitive signaling pathways, and forces in the cell, as well as the cell's ability to sense and adapt to extracellular biomechanical signals in the tissue environment through mechanotransduction. These mechanobiological changes in cells are directly or indirectly responsible for dysfunctions and diseases in various organ systems, including the cardiovascular, musculoskeletal, skin, and immune systems. This review critically examines the role of aging in the progressive decline of the mechanobiology occurring in cells, and establishes mechanistic frameworks to understand the mechanobiological effects of aging on disease progression and to develop new strategies for halting and reversing the aging process. Our review also highlights the recent development of novel bioengineering approaches for studying the key mechanobiological mechanisms in aging.
Collapse
Affiliation(s)
- Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
16
|
Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020; 35:2103-2120. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Liu C, Zhao Q, Yu X. Bone Marrow Adipocytes, Adipocytokines, and Breast Cancer Cells: Novel Implications in Bone Metastasis of Breast Cancer. Front Oncol 2020; 10:561595. [PMID: 33123472 PMCID: PMC7566900 DOI: 10.3389/fonc.2020.561595] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating discoveries highlight the importance of interaction between marrow stromal cells and cancer cells for bone metastasis. Bone is the most common metastatic site of breast cancer and bone marrow adipocytes (BMAs) are the most abundant component of the bone marrow microenvironment. BMAs are unique in their origin and location, and recently they are found to serve as an endocrine organ that secretes adipokines, cytokines, chemokines, and growth factors. It is reasonable to speculate that BMAs contribute to the modification of bone metastatic microenvironment and affecting metastatic breast cancer cells in the bone marrow. Indeed, BMAs may participate in bone metastasis of breast cancer through regulation of recruitment, invasion, survival, colonization, proliferation, angiogenesis, and immune modulation by their production of various adipocytokines. In this review, we provide an overview of research progress, focusing on adipocytokines secreted by BMAs and their potential roles for bone metastasis of breast cancer, and investigating the mechanisms mediating the interaction between BMAs and metastatic breast cancer cells. Based on current findings, BMAs may function as a pivotal modulator of bone metastasis of breast cancer, therefore targeting BMAs combined with conventional treatment programs might present a promising therapeutic option.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Kasiviswanathan D, Chinnasamy Perumal R, Bhuvaneswari S, Kumar P, Sundaresan L, Philip M, Puthenpurackal Krishnankutty S, Chatterjee S. Interactome of miRNAs and transcriptome of human umbilical cord endothelial cells exposed to short-term simulated microgravity. NPJ Microgravity 2020; 6:18. [PMID: 32821776 PMCID: PMC7393356 DOI: 10.1038/s41526-020-00108-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Adaptation of humans in low gravity conditions is a matter of utmost importance when efforts are on to a gigantic leap in human space expeditions for tourism and formation of space colonies. In this connection, cardiovascular adaptation in low gravity is a critical component of human space exploration. Deep high-throughput sequencing approach allowed us to analyze the miRNA and mRNA expression profiles in human umbilical cord vein endothelial cells (HUVEC), cultured under gravity (G), and stimulated microgravity (MG) achieved with a clinostat. The present study identified totally 1870 miRNAs differentially expressed in HUVEC under MG condition when compared to the cells subjected to unitary G conditions. The functional association of identified miRNAs targeting specific mRNAs revealed that miRNAs, hsa-mir-496, hsa-mir-151a, hsa-miR-296-3p, hsa-mir-148a, hsa-miR-365b-5p, hsa-miR-3687, hsa-mir-454, hsa-miR-155-5p, and hsa-miR-145-5p differentially regulated the genes involved in cell adhesion, angiogenesis, cell cycle, JAK-STAT signaling, MAPK signaling, nitric oxide signaling, VEGF signaling, and wound healing pathways. Further, the q-PCR based experimental studies of upregulated and downregulated miRNA and mRNAs demonstrate that the above reported miRNAs influence the cell proliferation and vascular functions of the HUVEC in MG conditions effectively. Consensus on the interactome results indicates restricted fluctuations in the transcriptome of the HUVEC exposed to short-term MG that could lead to higher levels of endothelial functions like angiogenesis and vascular patterning.
Collapse
Affiliation(s)
- Dharanibalan Kasiviswanathan
- Vascular Biology Lab, AU-KBC Research Centre, Chrompet, Chennai, Tamil Nadu India
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu India
| | | | - Srinivasan Bhuvaneswari
- Vascular Biology Lab, AU-KBC Research Centre, Chrompet, Chennai, Tamil Nadu India
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu India
| | - Pavitra Kumar
- Vascular Biology Lab, AU-KBC Research Centre, Chrompet, Chennai, Tamil Nadu India
| | - Lakshmikirupa Sundaresan
- Vascular Biology Lab, AU-KBC Research Centre, Chrompet, Chennai, Tamil Nadu India
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu India
| | - Manuel Philip
- AgriGenome Labs, Infopark—Smart City Short Rd, Kochi, Kerala 682030 India
| | | | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Chrompet, Chennai, Tamil Nadu India
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu India
| |
Collapse
|
19
|
Ma Q, Liang M, Limjunyawong N, Dan Y, Xing J, Li J, Xu J, Dou C. Osteoclast-derived apoptotic bodies show extended biological effects of parental cell in promoting bone defect healing. Theranostics 2020; 10:6825-6838. [PMID: 32550906 PMCID: PMC7295057 DOI: 10.7150/thno.45170] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/03/2020] [Indexed: 01/08/2023] Open
Abstract
Apoptotic bodies (ABs) traditionally considered as garbage bags that enclose residual components of dead cells are gaining increasing attentions due to their potential roles in intercellular communications. In bone turn over, at the end of bone resorption phase, most osteoclasts undergo apoptosis, generating large amounts of ABs. However, it remains unclear of the role of osteoclast-derived ABs in bone remodeling. Methods: Staurosporine (STS) was used to apoptotic induction and differential centrifugation was used to isolate ABs. Western blotting, flowcytometry and Transmission electron microscopy (TEM) were performed for ABs identification, while whole transcriptome of ABs from osteoclasts at different stages was detected by RNA-seq. VENN analysis and gene set enrichment analysis (GSEA) were performed to compare the profile similarities between ABs and parental cells. In vitro efficacy of ABs on angiogenesis and osteogenesis were evaluated by tube formation assay and ALP staining. In vivo, calvarial defect mice model was used to assess the effects of ABs-modified decalcified bone matrix (DBM) scaffolds on angiogenesis and osteogenesis. Results: Here we mapped the whole transcriptome paralleled with small RNA profiling of osteoclast derived ABs at distinct differentiation stages. Whole transcriptome analysis revealed significant differences in RNA signatures among the ABs generated from osteoclasts at different stages. By comparing with parental osteoclast RNA profiles, we found that the transcriptome of ABs exhibited high similarities with the corresponding parental cells. Functionally, in vitro and in vivo studies showed that similar with the parental cells, pOC-ABs potentiated endothelial progenitor cell proliferation and differentiation, whereas mOC-ABs promoted osteogenic differentiation. The inherited biological effects of ABs were shown mediated by several enriched lncRNAs of which the interference abolished AB functions. Conclusions: Our study revealed the total RNA profiles of osteoclast derived ABs and demonstrated their biological functions. Both gene set and functional analysis indicated that osteoclast derived ABs are biologically similar with the parental cells suggesting their bridging role in osteoclast-osteoblast coupling in bone remodeling.
Collapse
|
20
|
Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int J Mol Sci 2020; 21:E912. [PMID: 32019244 PMCID: PMC7037207 DOI: 10.3390/ijms21030912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
As the population of western societies on average ages, the number of people affected by bone remodeling-associated diseases such as osteoporosis continues to increase. The development of new therapeutics is hampered by the high failure rates of drug candidates during clinical testing, which is in part due to the poor predictive character of animal models during preclinical drug testing. Co-culture models of osteoblasts and osteoclasts offer an alternative to animal testing and are considered to have the potential to improve drug development processes in the future. However, a robust, scalable, and reproducible 3D model combining osteoblasts and osteoclasts for preclinical drug testing purposes has not been developed to date. Here we review various types of osteoblast-osteoclast co-culture models and outline the remaining obstacles that must be overcome for their successful translation.
Collapse
Affiliation(s)
- Alexander Sieberath
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| |
Collapse
|
21
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
22
|
Costa Fernandes CJD, Zambuzzi WF. Fibroblast-secreted trophic factors contribute with ECM remodeling stimulus and upmodulate osteocyte gene markers in osteoblasts. Biochimie 2019; 168:92-99. [PMID: 31676316 DOI: 10.1016/j.biochi.2019.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
As osteogenesis is a multifactorial mechanism, we wonder whether osteoblast-induced extracellular matrix (ECM) remodeling might be modulated by trophic factors released by fibroblasts in a paracrine signaling manner. To address this issue, fibroblasts were cultured for 72 h under conventional conditions when their conditioned medium was harvested and used to challenge pre-osteoblasts (MC3T3-E1 cells) for 14 days. Preliminarily, we validated the potential effect of fibroblasts in contributing to osteocyte phenotype, which specifically requires significant expression of Dentin Matrix Protein 1 (DMP1; about 10-fold changes) and Sclerostin (SOST; about 7-fold changes), both biomarkers of osteocyte. Fibroblasts also seem contributing to ECM remodeling in osteoblasts, because we detected a high level of both mRNA and enzyme activities of matrix metalloproteinase -9 (MMP-9) as well as a high level of reversion inducing cysteine rich protein with kazal motifs (RECK) transcripts (about 13-fold changes), a membrane-anchored MMP inhibitor, which seems to be a constitutive pathway in osteoblasts. Considering inflammatory panorama and using RTqPCR technology, both IL-13 (about 13-fold changes) and IL-33 (about 5-fold changes) genes were up-expressed in response to the fibroblast-secreted trophic factors, as were the receptor activator of NF-κB ligand (RANKL; about 8-fold changes) and osteoprotegerin (OPG; about 3-fold changes). Although preliminary, these data suggest a stimulus to finely control osteoclastogenesis, and this mechanism reinforces the role of fibroblasts in bone remodeling and homeostasis. Moreover, these results suggest an important crosstalk between fibroblast and osteoblast, when fibroblast-secreted trophic factors upmodulate osteocyte gene markers and contribute to ECM remodeling stimulus in osteoblast.
Collapse
Affiliation(s)
- Célio Jr da Costa Fernandes
- Lab. of Bioassays and Cell Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, Universidade Estadual Paulista, UNESP, CEP 18618-970, Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Lab. of Bioassays and Cell Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, Universidade Estadual Paulista, UNESP, CEP 18618-970, Botucatu, São Paulo, Brazil.
| |
Collapse
|
23
|
Sivan U, De Angelis J, Kusumbe AP. Role of angiocrine signals in bone development, homeostasis and disease. Open Biol 2019; 9:190144. [PMID: 31575330 PMCID: PMC6833221 DOI: 10.1098/rsob.190144] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal vasculature plays a central role in the maintenance of microenvironments for osteogenesis and haematopoiesis. In addition to supplying oxygen and nutrients, vasculature provides a number of inductive factors termed as angiocrine signals. Blood vessels drive recruitment of osteoblast precursors and bone formation during development. Angiogenesis is indispensable for bone repair and regeneration. Dysregulation of the angiocrine crosstalk is a hallmark of ageing and pathobiological conditions in the skeletal system. The skeletal vascular bed is complex, heterogeneous and characterized by distinct capillary subtypes (type H and type L), which exhibit differential expression of angiocrine factors. Furthermore, distinct blood vessel subtypes with differential angiocrine profiles differentially regulate osteogenesis and haematopoiesis, and drive disease states in the skeletal system. This review provides an overview of the role of angiocrine signals in bone during homeostasis and disease.
Collapse
Affiliation(s)
- Unnikrishnan Sivan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jessica De Angelis
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali P Kusumbe
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
24
|
Pezzotti G, Adachi T, Boschetto F, Zhu W, Zanocco M, Marin E, Bal BS, McEntire BJ. Off-Stoichiometric Reactions at the Cell-Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation. Int J Mol Sci 2019; 20:E4080. [PMID: 31438530 PMCID: PMC6751500 DOI: 10.3390/ijms20174080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/18/2022] Open
Abstract
The availability of osteoinductive biomaterials has encouraged new therapies in bone regeneration and has potentially triggered paradigmatic shifts in the development of new implants in orthopedics and dentistry. Among several available synthetic biomaterials, bioceramics have gained attention for their ability to induce mesenchymal cell differentiation and successive bone formation when implanted in the human body. However, there is currently a lack of understanding regarding the fundamental biochemical mechanisms by which these materials can induce bone formation. Phenomenological studies of retrievals have clarified the final effect of bone formation, but have left the chemical interactions at the cell-material interface uncharted. Accordingly, the knowledge of the intrinsic material properties relevant for osteoblastogenesis and osteoinduction remains incomplete. Here, we systematically monitored in vitro the chemistry of mesenchymal cell metabolism and the ionic exchanges during osteoblastogenesis on selected substrates through conventional biological assays as well as via in situ and ex situ spectroscopic techniques. Accordingly, the chemical behavior of different bioceramic substrates during their interactions with mesenchymal cells could be unfolded and compared with that of biomedical titanium alloy. Our goal was to clarify the cascade of chemical equations behind the biological processes that govern osteoblastogenic effects on different biomaterial substrates.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan.
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan.
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan.
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Matteo Zanocco
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - B Sonny Bal
- SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT 84119, USA
| | - Bryan J McEntire
- SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT 84119, USA
| |
Collapse
|
25
|
Mann V, Grimm D, Corydon TJ, Krüger M, Wehland M, Riwaldt S, Sahana J, Kopp S, Bauer J, Reseland JE, Infanger M, Mari Lian A, Okoro E, Sundaresan A. Changes in Human Foetal Osteoblasts Exposed to the Random Positioning Machine and Bone Construct Tissue Engineering. Int J Mol Sci 2019; 20:ijms20061357. [PMID: 30889841 PMCID: PMC6471706 DOI: 10.3390/ijms20061357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Human cells, when exposed to both real and simulated microgravity (s-µg), form 3D tissue constructs mirroring in vivo architectures (e.g., cartilage, intima constructs, cancer spheroids and others). In this study, we exposed human foetal osteoblast (hFOB 1.19) cells to a Random Positioning Machine (RPM) for 7 days and 14 days, with the purpose of investigating the effects of s-µg on biological processes and to engineer 3D bone constructs. RPM exposure of the hFOB 1.19 cells induces alterations in the cytoskeleton, cell adhesion, extra cellular matrix (ECM) and the 3D multicellular spheroid (MCS) formation. In addition, after 7 days, it influences the morphological appearance of these cells, as it forces adherent cells to detach from the surface and assemble into 3D structures. The RPM-exposed hFOB 1.19 cells exhibited a differential gene expression of the following genes: transforming growth factor beta 1 (TGFB1, bone morphogenic protein 2 (BMP2), SRY-Box 9 (SOX9), actin beta (ACTB), beta tubulin (TUBB), vimentin (VIM), laminin subunit alpha 1 (LAMA1), collagen type 1 alpha 1 (COL1A1), phosphoprotein 1 (SPP1) and fibronectin 1 (FN1). RPM exposure also induced a significantly altered release of the cytokines and bone biomarkers sclerostin (SOST), osteocalcin (OC), osteoprotegerin (OPG), osteopontin (OPN), interleukin 1 beta (IL-1β) and tumour necrosis factor 1 alpha (TNF-1α). After the two-week RPM exposure, the spheroids presented a bone-specific morphology. In conclusion, culturing cells in s-µg under gravitational unloading represents a novel technology for tissue-engineering of bone constructs and it can be used for investigating the mechanisms behind spaceflight-related bone loss as well as bone diseases such as osteonecrosis or bone injuries.
Collapse
Affiliation(s)
- Vivek Mann
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| | - Daniela Grimm
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Thomas J Corydon
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Stefan Riwaldt
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Jayashree Sahana
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, Martinsried, Am Klopferspitz 18, 82152 Planegg, Germany.
| | - Janne E Reseland
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, UiO, University of Oslo, Geitmyrsveien 71 0455 Oslo, Norway.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Aina Mari Lian
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, UiO, University of Oslo, Geitmyrsveien 71 0455 Oslo, Norway.
| | - Elvis Okoro
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| | - Alamelu Sundaresan
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| |
Collapse
|
26
|
Veeriah V, Paone R, Chatterjee S, Teti A, Capulli M. Osteoblasts Regulate Angiogenesis in Response to Mechanical Unloading. Calcif Tissue Int 2019; 104:344-354. [PMID: 30465120 DOI: 10.1007/s00223-018-0496-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022]
Abstract
During mechanical unloading, endothelial cells reduce osteogenesis and increase bone resorption. Here we describe the feedback response of endothelial cells to unloaded osteoblasts. Primary endothelial cells, ex vivo mouse aortic rings and chicken egg yolk membranes were incubated with conditioned medium from mouse primary osteoblasts (OB-CM) subjected to unit gravity or simulated microgravity, to assess its effect on angiogenesis. In vivo injection of botulin toxin A (Botox) in the quadriceps and calf muscles of C57BL/6J mice was performed to mimic disuse osteoporosis. Unloaded osteoblasts showed strong upregulation of the pro-angiogenic factor, VEGF, and their conditioned medium increased in vitro endothelial cell viability, Cyclin D1 expression, migration and tube formation, ex vivo endothelial cell sprouting from aortic rings, and in ovo angiogenesis. Treatment with the VEGF blocker, avastin, prevented unloaded OB-CM-mediated in vitro and ex vivo enhancement of angiogenesis. Bone mechanical unloading by Botox treatment, known to reduce bone mass, prompted the overexpression of VEGF in osteoblasts. The cross talk between osteoblasts and endothelial cells plays a pathophysiologic role in the response of the endothelium to unloading during disuse osteoporosis. In this context, VEGF represents a prominent osteoblast factor stimulating angiogenesis.
Collapse
Affiliation(s)
- Vimal Veeriah
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| | - Riccardo Paone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| | - Suvro Chatterjee
- Anna University K.B.Chandrashekar Research Centre, Chennai, India
- Department of Biotechnology, Anna University, Chennai, India
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy.
| | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| |
Collapse
|
27
|
Cheng Q, Lin S, Bi B, Jiang X, Shi H, Fan Y, Lin W, Zhu Y, Yang F. Bone Marrow-derived Endothelial Progenitor Cells Are Associated with Bone Mass and Strength. J Rheumatol 2018; 45:1696-1704. [PMID: 30173148 DOI: 10.3899/jrheum.171226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood vessels of bone are thought to influence osteogenesis of bone. No clinical studies have determined whether angiogenesis is related to bone mass and gene expression of growth factors. We compared bone marrow endothelial progenitor cells (EPC), which control angiogenesis of bone in postmenopausal women incurring fragility fracture, with osteoporosis or traumatic fracture with normal bone mass (COM). METHODS Bone specimens were obtained from age-matched women with osteoporosis or COM. Mononuclear cells were isolated and EPC were detected by flow cytometry. The expression levels of specific genes were measured. Bone mineral density (BMD) was determined, and serum markers of bone turnover also were measured. Differences between OP and COM were assessed with Student t test or Mann-Whitney U test, and correlations were determined using Spearman's correlation. RESULTS Compared with COM, patients with OP had significantly lower levels of serum osteocalcin, procollagen type-1 N-terminal propeptide, and 25-hydroxy vitamin D, as well as decreased BMD of total hip and femoral neck and fewer bone marrow EPC. Expression levels of vascular endothelial growth factor, angiopoietin-1 (Ang-1), angiopoietin 2 (Ang-2), and the osteoblast-specific genes runt-related transcription factor 2 (RUNX2) and osterix in bone were significantly lower in OP than in COM. We determined that mature EPC were correlated positively with BMD of the femoral neck and total hip, gene expression of Ang-1, RUNX2, and CD31, and negatively with gene expression of receptor activator of nuclear factor-κB ligand and Ang-2. CONCLUSION Our results demonstrate correlations of bone marrow EPC with bone mass and gene expression of growth factors, which support a hypothesis of crosstalk between angiogenesis and osteogenesis in bone health.
Collapse
Affiliation(s)
- Qun Cheng
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China. .,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article.
| | - Shangjin Lin
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Bo Bi
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Xin Jiang
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Hongli Shi
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Yongqian Fan
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Weilong Lin
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Yuefeng Zhu
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Fengjian Yang
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| |
Collapse
|
28
|
Liu DM, Mosialou I, Liu JM. Bone: Another potential target to treat, prevent and predict diabetes. Diabetes Obes Metab 2018; 20:1817-1828. [PMID: 29687585 DOI: 10.1111/dom.13330] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus is now a worldwide health problem with increasing prevalence. Mounting efforts have been made to treat, prevent and predict this chronic disease. In recent years, increasing evidence from mice and clinical studies suggests that bone-derived molecules modulate glucose metabolism. This review aims to summarize our current understanding of the interplay between bone and glucose metabolism and to highlight potential new means of therapeutic intervention. The first molecule recognized as a link between bone and glucose metabolism is osteocalcin (OCN), which functions in its active form, that is, undercarboxylated OCN (ucOC). ucOC acts in promoting insulin expression and secretion, facilitating insulin sensitivity, and favouring glucose and fatty acid uptake and utilization. A second bone-derived molecule, lipocalin2, functions in suppressing appetite in mice through its action on the hypothalamus. Osteocytes, the most abundant cells in bone matrix, are suggested to act on the browning of white adipose tissue and energy expenditure through secretion of bone morphogenetic protein 7 and sclerostin. The involvement of bone resorption in glucose homeostasis has also been examined. However, there is evidence indicating the implication of the receptor activator of nuclear factor κ-B ligand, neuropeptide Y, and other known and unidentified bone-derived factors that function in glucose homeostasis. We summarize recent advances and the rationale for treating, preventing and predicting diabetes by skeleton intervention.
Collapse
Affiliation(s)
- Dong-Mei Liu
- Department of Rheumatology, ZhongShan Hospital, FuDan University, Shanghai, China
| | - Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
29
|
Song J, Ye B, Liu H, Bi R, Zhang N, Hu J, Luo E. Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif 2018; 51:e12453. [PMID: 29504176 PMCID: PMC6528869 DOI: 10.1111/cpr.12453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/27/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To investigate the mechanism of mechanical stimulation in bone formation and regeneration during distraction osteogenesis. MATERIALS AND METHODS In this study, microarray technology was used to investigate the time course of bone-related molecular changes in distraction osteogenesis in rats. Real-time PCR and Western-blot analyses were used to confirm the expression of genes identified in microarrays. Meanwhile, we used a lentivirus vector to inhibit Fak expression, in order to identify the osteogenic effect of Fak and Fak-Mapk pathway during distraction osteogenesis. RESULTS Several components of the Wnt and Hippo pathways were found to be up- or down-regulated during distraction osteogenesis by microarray. Meanwhile, it was found that Fak, Src, Raf-1, Erk1, Jnk and p38-Mapk were up-regulated during gradual distraction, compared with consolidation. To further determine whether Fak-Mapk pathway played an important role in distraction osteogenesis, Fak was disrupted with a lentivirus vector. The expressions levels of p-Fak, p-Erk1/2, p-JNK and p-p38Mapk were decreased. Meanwhile, a poor early and late osteogenesis effect was found in the shRNA-Fak group. CONCLUSION It was inferred that the mechanical stimulus induces increased expression of Fak and activates Fak-Mapk pathway, by activation of Erk, Jnk and p38-Mapk pathway, and that Fak at least, in part, plays an important role in maintaining osteogenic effect by activating Fak-Mapk pathway during distraction osteogenesis.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Bin Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Nian Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jing Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
30
|
Capulli M, Ponzetti M, Maurizi A, Gemini-Piperni S, Berger T, Mak TW, Teti A, Rucci N. A Complex Role for Lipocalin 2 in Bone Metabolism: Global Ablation in Mice Induces Osteopenia Caused by an Altered Energy Metabolism. J Bone Miner Res 2018; 33:1141-1153. [PMID: 29444358 DOI: 10.1002/jbmr.3406] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022]
Abstract
Lipocalin 2 (Lcn2) is an adipokine that carries out a variety of functions in diverse organs. We investigated the bone phenotype and the energy metabolism of Lcn2 globally deleted mice (Lcn2-/- ) at different ages. Lcn2-/- mice were largely osteopenic, exhibiting lower trabecular bone volume, lesser trabecular number, and higher trabecular separation when compared to wild-type (WT) mice. Lcn2-/- mice showed a lower osteoblast number and surface over bone surface, and subsequently a significantly lower bone formation rate, while osteoclast variables were unremarkable. Surprisingly, we found no difference in alkaline phosphatase (ALP) activity or in nodule mineralization in Lcn2-/- calvaria osteoblast cultures, while less ALP-positive colonies were obtained from freshly isolated Lcn2-/- bone marrow stromal cells, suggesting a nonautonomous osteoblast response to Lcn2 ablation. Given that Lcn2-/- mice showed higher body weight and hyperphagia, we investigated whether their osteoblast impairment could be due to altered energy metabolism. Lcn2-/- mice showed lower fasted glycemia and hyperinsulinemia. Consistently, glucose tolerance was significantly higher in Lcn2-/- compared to WT mice, while insulin tolerance was similar. Lcn2-/- mice also exhibited polyuria, glycosuria, proteinuria, and renal cortex vacuolization, suggesting a kidney contribution to their phenotype. Interestingly, the expression of the glucose transporter protein type 1, that conveys glucose into the osteoblasts and is essential for osteogenesis, was significantly lower in the Lcn2-/- bone, possibly explaining the in vivo osteoblast impairment induced by the global Lcn2 ablation. Taken together, these results unveil an important role of Lcn2 in bone metabolism, highlighting a link with glucose metabolism that is more complex than expected from the current knowledge. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sara Gemini-Piperni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
31
|
Koban Y, Sahin S, Boy F, Kara F. Elevated lipocalin-2 level in aqueous humor of patients with central retinal vein occlusion. Int Ophthalmol 2018; 39:981-986. [PMID: 29572586 DOI: 10.1007/s10792-018-0894-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/16/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE To assess the concentrations of lipocalin-2 (LCN2) in the serum and the aqueous humor of patients with central retinal vein occlusion (CRVO). METHODS The concentrations of LCN2 in the serum and aqueous humor of 16 cataract patients and 16 patients with CRVO with macular edema were compared. Collection of aqueous samples was conducted in the operating theater under sterile conditions and just prior to intravitreal ranibizumab injection or cataract surgery. LCN2 levels in serum and aqueous humor samples were measured using a commercial kit (human lipocalin-2/NGAL PicoKine ELISA Kit, MyBioSource Inc., USA; Catalog No: MBS175829) based on standard sandwich enzyme-linked immunosorbent assay technology. RESULTS The concentrations of LCN2 in the aqueous humors of the CRVO group were higher than those of the control group (p = 0.021). There was no significant difference in serum LCN2 level between the two groups (p = 0.463). CONCLUSIONS Concentrations of LCN2 in aqueous humor are increased in CRVO. LCN2 may be part of a pro-catabolic phenotype, and it may play an important role in the dreaded complications of CRVO, such as macular edema, macular ischemia, and neovascularization, which lead to blindness.
Collapse
Affiliation(s)
- Yaran Koban
- Department of Ophthalmology, Faculty of Medicine, Kafkas University, Kars, Turkey.
| | - Seda Sahin
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Fatih Boy
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Fatih Kara
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
32
|
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 2018; 182:115-132. [DOI: 10.1016/j.pharmthera.2017.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Liu DM, Zhao HY, Zhao L, Zhang MJ, Liu TT, Tao B, Sun LH, Liu JM. The relationship among serum lipocalin 2, bone turnover markers, and bone mineral density in outpatient women. Endocrine 2018; 59:304-310. [PMID: 29294226 DOI: 10.1007/s12020-017-1504-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE We aimed to investigate associations among serum levels of LCN2, bone resorption marker carboxy-terminal cross-linking telopeptide of type-1 collagen (CTx), bone formation marker osteocalcin (OCN), and bone mineral densities (BMDs) in ambulatory healthy women. METHODS This cross-sectional study analyzed 1012 previously enrolled outpatient Han Chinese women. BMDs of the lumbar spine and femoral neck were measured using dual energy X-ray absorptiometry. Serum levels of LCN2, CTx, OCN, and creatinine (Scr) were measured. RESULTS Circulating LCN2 was inversely correlated with BMDs at the lumbar spine and femoral neck (Spearman's r = -0.08, P = 0.010 and r = -0.14, P < 0.001; respectively). A significant positive correlation between LCN2 and CTx (r = 0.11, P < 0.001), OCN (r = 0.06, P = 0.047), age (r = 0.21, P < 0.001), and Scr (r = 0.24, P < 0.001) was also observed. After adjusting for age and Scr, the correlation among LCN2, BMDs and OCN disappeared, but LCN2 was still positively associated with CTx (r = 0.08, P = 0.010). The circulating concentration of LCN2 showed no significant difference between subjects with and without osteoporotic fractures (43.63 (35.29, 53.66) vs. 42.25 (34.43, 51.46) ng/ml, respectively, P = 0.111). Serum CTx concentrations rose with serum LCN2 increasing from the lowest to the highest quartile (P for trend = 0.005), even after adjusting for age and Scr (P for trend = 0.040). In multivariate regression analysis, LCN2 was one of the main determinants for changes in serum CTx (standard β = 0.061, P = 0.005). CONCLUSIONS In ambulatory healthy women, the relationships among serum LCN2 level, BMDs, and OCN were confounded by age and Scr. Although LCN2 was positively related with CTx, the correlation was very weak and may not be physiologically relevant.
Collapse
Affiliation(s)
- Dong-Mei Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, 200025, China
- Department of Rheumatology, ZhongShan Hospital, FuDan University, Shanghai, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Lin Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Min-Jia Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Ting-Ting Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, 200025, China.
| |
Collapse
|
34
|
Lombardi G, Barbaro M, Locatelli M, Banfi G. Novel bone metabolism-associated hormones: the importance of the pre-analytical phase for understanding their physiological roles. Endocrine 2017; 56:460-484. [PMID: 28181144 DOI: 10.1007/s12020-017-1239-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
Abstract
The endocrine function of bone is now a recognized feature of this tissue. Bone-derived hormones that modulate whole-body homeostasis, are being discovered as for the effects on bone of novel and classic hormones produced by other tissues become known. Often, however, the data regarding these last generation bone-derived or bone-targeting hormones do not give about a clear picture of their physiological roles or concentration ranges. A certain degree of uncertainty could stem from differences in the pre-analytical management of biological samples. The pre-analytical phase comprises a series of decisions and actions (i.e., choice of sample matrix, methods of collection, transportation, treatment and storage) preceding analysis. Errors arising in this phase will inevitably be carried over to the analytical phase where they can reduce the measurement accuracy, ultimately, leading discrepant results. While the pre-analytical phase is all important, in routine laboratory medicine, it is often not given due consideration in research and clinical trials. This is particularly true for novel molecules, such as the hormones regulating the endocrine function of bone. In this review we discuss the importance of the pre-analytical variables affecting the measurement of last generation bone-associated hormones and describe their, often debated and rarely clear physiological roles.
Collapse
Affiliation(s)
| | - Mosè Barbaro
- Laboratory Medicine Service, San Raffaele Hospital, Milano, Italy
| | | | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
35
|
Alves SA, Ribeiro AR, Gemini-Piperni S, Silva RC, Saraiva AM, Leite PE, Perez G, Oliveira SM, Araujo JR, Archanjo BS, Rodrigues ME, Henriques M, Celis JP, Shokuhfar T, Borojevic R, Granjeiro JM, Rocha LA. TiO2nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Adv 2017. [DOI: 10.1039/c7ra08263k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TiO2nanotubes enriched with Ca, P, and Zn by reverse polarization anodization, are promising bio-selective functional structures for osseointegrated titanium implants.
Collapse
|