1
|
Streckaite S, Ilioaia C, Chaussavoine I, Chmeliov J, Gelzinis A, Frolov D, Valkunas L, Rimsky S, Gall A, Robert B. Functional organization of 3D plant thylakoid membranes as seen by high resolution microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149493. [PMID: 38971351 DOI: 10.1016/j.bbabio.2024.149493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
In the field of photosynthesis, only a limited number of approaches of super-resolution fluorescence microscopy can be used, as the functional architecture of the thylakoid membrane in chloroplasts is probed through the natural fluorescence of chlorophyll molecules. In this work, we have used a custom-built fluorescence microscopy method called Single Pixel Reconstruction Imaging (SPiRI) that yields a 1.4 gain in lateral and axial resolution relative to confocal fluorescence microscopy, to obtain 2D images and 3D-reconstucted volumes of isolated chloroplasts, obtained from pea (Pisum sativum), spinach (Spinacia oleracea) and Arabidopsis thaliana. In agreement with previous studies, SPiRI images exhibit larger thylakoid grana diameters when extracted from plants under low-light regimes. The three-dimensional thylakoid architecture, revealing the complete network of the thylakoid membrane in intact, non-chemically-fixed chloroplasts can be visualized from the volume reconstructions obtained at high resolution. From such reconstructions, the stromal connections between each granum can be determined and the fluorescence intensity in the stromal lamellae compared to those of neighboring grana.
Collapse
Affiliation(s)
- Simona Streckaite
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius 10257, Lithuania
| | - Cristian Ilioaia
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Igor Chaussavoine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jevgenij Chmeliov
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius 10257, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio av. 9, Vilnius 10222, Lithuania
| | - Andrius Gelzinis
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius 10257, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio av. 9, Vilnius 10222, Lithuania
| | - Dmitrij Frolov
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Leonas Valkunas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius 10257, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio av. 9, Vilnius 10222, Lithuania
| | - Sylvie Rimsky
- CIRB - Collège de France, CNRS-UMR724, INSERM U1050, PSL Research University, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Andrew Gall
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Lübben MK, Klingl A, Nickelsen J, Ostermeier M. CLEM, a universal tool for analyzing structural organization in thylakoid membranes. PHYSIOLOGIA PLANTARUM 2024; 176:e14417. [PMID: 38945684 DOI: 10.1111/ppl.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Chlorophyll (Chl) plays a crucial role in photosynthesis, functioning as a photosensitizer. As an integral component of this process, energy absorbed by this pigment is partly emitted as red fluorescence. This signal can be readily imaged by fluorescence microscopy and provides a visualization of photosynthetic activity. However, due to limited resolution, signals cannot be assigned to specific subcellular/organellar membrane structures. By correlating fluorescence micrographs with transmission electron microscopy, researchers can identify sub-cellular compartments and membranes, enabling the monitoring of Chl distribution within thylakoid membrane substructures in cyanobacteria, algae, and higher plant single cells. Here, we describe a simple and effective protocol for correlative light-electron microscopy (CLEM) based on the autofluorescence of Chl and demonstrate its application to selected photosynthetic model organisms. Our findings illustrate the potential of this technique to identify areas of high Chl concentration and photochemical activity, such as grana regions in vascular plants, by mapping stacked thylakoids.
Collapse
Affiliation(s)
- Maximilian K Lübben
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, Germany
| | - Andreas Klingl
- Plant Development, LMU Munich, Planegg-Martinsried, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, Germany
| | - Matthias Ostermeier
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Kaňa R, Šedivá B, Prášil O. Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy. PHOTOSYNTHETICA 2023; 61:483-491. [PMID: 39649485 PMCID: PMC11586846 DOI: 10.32615/ps.2023.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 12/10/2024]
Abstract
The investigation of spatial heterogeneity within the thylakoid membrane (TM) proteins has gained increasing attention in photosynthetic research. The recent advances in live-cell imaging have allowed the identification of heterogeneous organisation of photosystems in small cyanobacterial cells. These sub-micrometre TM regions, termed microdomains in cyanobacteria, exhibit functional similarities with granal (Photosystem II dominant) and stromal (Photosystem I dominant) regions observed in TM of higher plants. This study delves into microdomain heterogeneity using super-resolution Airyscan-based microscopy enhancing resolution to approximately ~125 nm in x-y dimension. The new data reveal membrane areas rich in Photosystem I within the inner TM rings. Moreover, we identified analogous dynamics in the mobility of Photosystem II and phycobilisomes; countering earlier models that postulated differing mobility of these complexes. These novel findings thus hold significance for our understanding of photosynthesis regulation, particularly during state transitions.
Collapse
Affiliation(s)
- R. Kaňa
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - B. Šedivá
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - O. Prášil
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
4
|
Tan S, Sha Y, Sun L, Li Z. Abiotic Stress-Induced Leaf Senescence: Regulatory Mechanisms and Application. Int J Mol Sci 2023; 24:11996. [PMID: 37569371 PMCID: PMC10418887 DOI: 10.3390/ijms241511996] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Leaf senescence is a natural phenomenon that occurs during the aging process of plants and is influenced by various internal and external factors. These factors encompass plant hormones, as well as environmental pressures such as inadequate nutrients, drought, darkness, high salinity, and extreme temperatures. Abiotic stresses accelerate leaf senescence, resulting in reduced photosynthetic efficiency, yield, and quality. Gaining a comprehensive understanding of the molecular mechanisms underlying leaf senescence in response to abiotic stresses is imperative to enhance the resilience and productivity of crops in unfavorable environments. In recent years, substantial advancements have been made in the study of leaf senescence, particularly regarding the identification of pivotal genes and transcription factors involved in this process. Nevertheless, challenges remain, including the necessity for further exploration of the intricate regulatory network governing leaf senescence and the development of effective strategies for manipulating genes in crops. This manuscript provides an overview of the molecular mechanisms that trigger leaf senescence under abiotic stresses, along with strategies to enhance stress tolerance and improve crop yield and quality by delaying leaf senescence. Furthermore, this review also highlighted the challenges associated with leaf senescence research and proposes potential solutions.
Collapse
Affiliation(s)
| | | | - Liwei Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Tojima T, Miyashiro D, Kosugi Y, Nakano A. Super-Resolution Live Imaging of Cargo Traffic Through the Golgi Apparatus in Mammalian Cells. Methods Mol Biol 2022; 2557:127-140. [PMID: 36512214 DOI: 10.1007/978-1-0716-2639-9_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Super-resolution confocal live imaging microscopy (SCLIM) we developed provides high-speed, high-resolution, three- and four-dimensional, and multicolor simultaneous imaging. Using this technology, we are now able to observe the fine details of various dynamic events going on in living cells, such as membrane traffic and organelle dynamics. The retention using selective hooks (RUSH) system is a powerful tool to control synchronous release of natural cargo proteins of interest from the endoplasmic reticulum in mammalian cells. In this chapter, we describe a method for visualizing secretory cargo traffic within and around the Golgi apparatus in HeLa cells using SCLIM in combination with the RUSH assay.
Collapse
Affiliation(s)
- Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| | - Daisuke Miyashiro
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | | | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| |
Collapse
|
6
|
Munné-Bosch S. Spatiotemporal limitations in plant biology research. TRENDS IN PLANT SCIENCE 2022; 27:346-354. [PMID: 34750071 DOI: 10.1016/j.tplants.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 05/12/2023]
Abstract
The way we currently capture biological processes in space and time often limits our understanding of plant development and stress responses, leading to an incomplete picture of plant life. Choosing the correct time frame for the study of every biological process, from seed germination to senescence or in plant stress responses, is essential, despite methodological limitations. A greater effort is needed in current plant biology studies to incorporate spatiotemporal approaches so that scientific knowledge meets the possibilities technological advances currently provide. From molecular, biochemical, and cellular approaches to (eco)physiological and population studies scaled up to the ecosystem level, there is an urgent need to link space and time using integrative and scalable data.
Collapse
Affiliation(s)
- Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), University of Barcelona, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nutrition and Food Safety (INSA), University of Barcelona, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Jakubauskas D, Mortensen K, Jensen PE, Kirkensgaard JJK. Small-Angle X-Ray and Neutron Scattering on Photosynthetic Membranes. Front Chem 2021; 9:631370. [PMID: 33954157 PMCID: PMC8090863 DOI: 10.3389/fchem.2021.631370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/01/2021] [Indexed: 11/26/2022] Open
Abstract
Ultrastructural membrane arrangements in living cells and their dynamic remodeling in response to environmental changes remain an area of active research but are also subject to large uncertainty. The use of noninvasive methods such as X-ray and neutron scattering provides an attractive complimentary source of information to direct imaging because in vivo systems can be probed in near-natural conditions. However, without solid underlying structural modeling to properly interpret the indirect information extracted, scattering provides at best qualitative information and at worst direct misinterpretations. Here we review the current state of small-angle scattering applied to photosynthetic membrane systems with particular focus on data interpretation and modeling.
Collapse
Affiliation(s)
- Dainius Jakubauskas
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kell Mortensen
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacob J. K. Kirkensgaard
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Bykowski M, Mazur R, Wójtowicz J, Suski S, Garstka M, Mostowska A, Kowalewska Ł. Too rigid to fold: Carotenoid-dependent decrease in thylakoid fluidity hampers the formation of chloroplast grana. PLANT PHYSIOLOGY 2021; 185:210-227. [PMID: 33631810 PMCID: PMC8133577 DOI: 10.1093/plphys/kiaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In chloroplasts of land plants, the thylakoid network is organized into appressed regions called grana stacks and loosely arranged parallel stroma thylakoids. Many factors determining such intricate structural arrangements have been identified so far, including various thylakoid-embedded proteins, and polar lipids that build the thylakoid matrix. Although carotenoids are important components of proteins and the lipid phase of chloroplast membranes, their role in determining the thylakoid network structure remains elusive. We studied 2D and 3D thylakoid network organization in carotenoid-deficient mutants (ccr1-1, lut5-1, szl1-1, and szl1-1npq1-2) of Arabidopsis (Arabidopsis thaliana) to reveal the structural role of carotenoids in the formation and dynamics of the internal chloroplast membrane system. The most significant structural aberrations took place in chloroplasts of the szl1-1 and szl1-1npq1-2 plants. Increased lutein/carotene ratio in these mutants impaired the formation of grana, resulting in a significant decrease in the number of thylakoids used to build a particular stack. Further, combined biochemical and biophysical analyses revealed that hampered grana folding was related to decreased thylakoid membrane fluidity and significant changes in the amount, organization, and phosphorylation status of photosystem (PS) II (PSII) supercomplexes in the szl1-1 and szl1-1npq1-2 plants. Such changes resulted from a synergistic effect of lutein overaccumulation in the lipid matrix and a decreased level of carotenes bound with PS core complexes. Moreover, more rigid membrane in the lutein overaccumulating plants led to binding of Rubisco to the thylakoid surface, additionally providing steric hindrance for the dynamic changes in the level of membrane folding.
Collapse
Affiliation(s)
- Michał Bykowski
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | - Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland
| |
Collapse
|
9
|
Kurokawa K, Nakano A. Live-cell Imaging by Super-resolution Confocal Live Imaging Microscopy (SCLIM): Simultaneous Three-color and Four-dimensional Live Cell Imaging with High Space and Time Resolution. Bio Protoc 2020; 10:e3732. [PMID: 33659393 DOI: 10.21769/bioprotoc.3732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/17/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Many questions in cell biology can be solved by state-of-the-art technology of live cell imaging. One good example is the mechanism of membrane traffic, in which small membrane carriers are rapidly moving around in the cytoplasm to deliver cargo proteins between organelles. For directly visualizing the events in membrane trafficking system, researchers have long awaited the technology that enables simultaneous multi-color and four-dimensional observation at high space and time resolution. Super-resolution microscopy methods, for example STED, PALM/STORM, and SIM, provide greater spatial resolution, however, these methods are not enough in temporal resolution. The super-resolution confocal live imaging microscopy (SCLIM) that we developed has now achieved the performance required. By using SCLIM, we have conducted high spatiotemporal visualization of secretory cargo together with early and late Golgi resident proteins tagged with three different fluorescence proteins. We have demonstrated that secretory cargo is indeed delivered within the Golgi by cisternal maturation. In addition, we have visualized details of secretory cargo trafficking in the Golgi, including formation of zones within a maturing cisterna, in which Golgi resident proteins are segregated, and movement of cargo between these zones. This protocol can be used for simultaneous three-color and four-dimensional observation of various phenomena in living cells, from yeast to higher plants and animals, at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Yoneda T, Tanimoto Y, Takagi D, Morigaki K. Photosynthetic Model Membranes of Natural Plant Thylakoid Embedded in a Patterned Polymeric Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5863-5871. [PMID: 32390435 DOI: 10.1021/acs.langmuir.0c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thylakoid membranes in the chloroplast of plants, algae, and cyanobacteria are the powerhouse of photosynthesis, capturing solar energy and converting it into chemical energy. Although their structures and functions have been extensively studied, the intrinsically heterogeneous and dynamic nature of the membrane structures is still not fully understood. Investigating native thylakoid membranes in vivo is difficult due to their small size and limited external access to the chloroplast interior, while the bottom-up approaches based on model systems have been hampered by the sheer complexity of the native membrane. Here, we try to fill the gap by reconstituting the whole thylakoid membrane into a patterned substrate-supported planer bilayer. A mixture of thylakoid membrane purified from spinach leaves and synthetic phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles spontaneously formed a laterally continuous and fluid two-dimensional (2D) membrane in the scaffold of the patterned polymeric bilayer. Chlorophyll fluorescence arising from photosystem II (PSII) recovered after photobleaching, suggesting that the membrane components are laterally mobile. The reversible changes of chlorophyll fluorescence in the presence of the electron acceptors and/or inhibitors indicated that the electron transfer activity of PSII was retained. Furthermore, we confirmed the electron transfer activity of photosystem I (PSI) by observing the generation of nicotinamide adenine dinucleotide phosphate (NADPH) in the presence of water-soluble ferredoxin and ferredoxin-NADP+ reductase. The lateral mobility of membrane-bound molecules and the functional reconstitution of major photosystems provide evidence that our hybrid thylakoid membranes could be an excellent experimental platform to study the 2D molecular organization and machinery of photosynthesis.
Collapse
Affiliation(s)
- Takuro Yoneda
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Yasushi Tanimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Daisuke Takagi
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
- Graduate School of Agricultural Science, Tohoku University, Aoba 468-1, Aranaki, Aoba, Sendai 980-0845, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
11
|
Kowalewska Ł, Bykowski M, Mostowska A. Spatial organization of thylakoid network in higher plants. BOTANY LETTERS 2019. [PMID: 0 DOI: 10.1080/23818107.2019.1619195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Reski R. Quantitative moss cell biology. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:39-47. [PMID: 30036707 DOI: 10.1016/j.pbi.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Research on mosses has provided answers to many fundamental questions in the life sciences, with the model moss Physcomitrella patens spearheading the field. Recent breakthroughs in cell biology were obtained in the quantification of chlorophyll fluorescence, signalling via calcium waves, the creation of designer organelles, gene identification in cellular reprogramming, reproduction via motile sperm and egg cells, asymmetric cell division, visualization of the actin cytoskeleton, identification of genes responsible for the shift from 2D to 3D growth, the structure and importance of the cell wall, and in the live imaging and modelling of protein networks in general. Highly standardized growth conditions, simplicity of most moss tissues, and an outstandingly efficient gene editing facilitate quantitative moss cell biology.
Collapse
Affiliation(s)
- Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany; FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| |
Collapse
|
13
|
Iwai M, Roth MS, Niyogi KK. Subdiffraction-resolution live-cell imaging for visualizing thylakoid membranes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:233-243. [PMID: 29982996 PMCID: PMC6150804 DOI: 10.1111/tpj.14021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 05/19/2023]
Abstract
The chloroplast is the chlorophyll-containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live-cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three-dimensional structured illumination microscopy (3D-SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D-SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild-type and mutant strains. Using 3D-SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D-SIM. This study demonstrates that 3D-SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.
Collapse
Affiliation(s)
- Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3102, USA
- Contact Author: Masakazu Iwai
| | - Melissa S. Roth
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3102, USA
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3102, USA
- For correspondence ( or )
| |
Collapse
|
14
|
Özdemir B, Asgharzadeh P, Birkhold AI, Mueller SJ, Röhrle O, Reski R. Cytological analysis and structural quantification of FtsZ1-2 and FtsZ2-1 network characteristics in Physcomitrella patens. Sci Rep 2018; 8:11165. [PMID: 30042487 PMCID: PMC6057934 DOI: 10.1038/s41598-018-29284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Although the concept of the cytoskeleton as a cell-shape-determining scaffold is well established, it remains enigmatic how eukaryotic organelles adopt and maintain a specific morphology. The Filamentous Temperature Sensitive Z (FtsZ) protein family, an ancient tubulin, generates complex polymer networks, with striking similarity to the cytoskeleton, in the chloroplasts of the moss Physcomitrella patens. Certain members of this protein family are essential for structural integrity and shaping of chloroplasts, while others are not, illustrating the functional diversity within the FtsZ protein family. Here, we apply a combination of confocal laser scanning microscopy and a self-developed semi-automatic computational image analysis method for the quantitative characterisation and comparison of network morphologies and connectivity features for two selected, functionally dissimilar FtsZ isoforms, FtsZ1-2 and FtsZ2-1. We show that FtsZ1-2 and FtsZ2-1 networks are significantly different for 8 out of 25 structural descriptors. Therefore, our results demonstrate that different FtsZ isoforms are capable of generating polymer networks with distinctive morphological and connectivity features which might be linked to the functional differences between the two isoforms. To our knowledge, this is the first study to employ computational algorithms in the quantitative comparison of different classes of protein networks in living cells.
Collapse
Affiliation(s)
- Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Pouyan Asgharzadeh
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SimTech), University of Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Annette I Birkhold
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Stefanie J Mueller
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Oliver Röhrle
- Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany.
- Stuttgart Center for Simulation Science (SimTech), University of Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- BIOSS - Centre for Biological Signalling Research, University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
15
|
Uwada T, Huang LT, Hee PY, Usman A, Masuhara H. Size-Dependent Optical Properties of Grana Inside Chloroplast of Plant Cells. J Phys Chem B 2017; 121:915-922. [PMID: 28084739 DOI: 10.1021/acs.jpcb.6b10204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Well-packed thylakoids known as grana are one of the major functional sites for photosynthesis in algae and plants. Their highly ordered structures can be considered as a few hundred nanometer-sized particles having distinct scattering cross sections from other various macromolecular organizations inside plant cells. With this background we show that elastic light scattering imaging and microspectroscopy is an important tool for investigating structure and organization of grana inside a single chloroplast in plant cells. We have demonstrated this noninvasive method to identify the distribution of grana in intact fresh leaf of robust and rapidly growing Egaria densa, which is also known as Anachris and among the most popular aquarium plants. The scattering efficiency spectra of their individual grana fairly resemble cooperative absorption spectra of porphyrins and carotenoids. We found that the electronic structure of the stacked thylakoids shows granum size-dependence, indicating that size of grana is one of the critical parameters in the regulation of the photochemical functions in the thylakoid.
Collapse
Affiliation(s)
- Takayuki Uwada
- Department of Applied Chemistry, College of Science, National Chiao Tung University , 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan.,Department of Chemistry, Faculty of Science, Josai University , Sakado 350-0295, Japan
| | - Ling-Ting Huang
- Department of Applied Chemistry, College of Science, National Chiao Tung University , 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan
| | - Ping-Yu Hee
- Department of Applied Chemistry, College of Science, National Chiao Tung University , 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam , Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam
| | - Hiroshi Masuhara
- Department of Applied Chemistry, College of Science, National Chiao Tung University , 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan
| |
Collapse
|