1
|
Zhang S, Hong HI, Mak VCY, Zhou Y, Lu Y, Zhuang G, Cheung LWT. Vertical inhibition of p110α/AKT and N-cadherin enhances treatment efficacy in PIK3CA-aberrated ovarian cancer cells. Mol Oncol 2025; 19:1132-1154. [PMID: 39543937 PMCID: PMC11977650 DOI: 10.1002/1878-0261.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha [PIK3CA, encoding PI3Kalpha (also known as p110α)] is one of the most commonly aberrated genes in human cancers. In serous ovarian cancer, PIK3CA amplification is highly frequent but PIK3CA point mutation is rare. However, whether PIK3CA amplification and PIK3CA driver mutations have the same functional impact in the disease is unclear. Here, we report that both PIK3CA amplification and E545K mutation are tumorigenic. While the protein kinase B (AKT) signaling axis was activated in both E545K knock-in cells and PIK3CA-overexpressing cells, the mitogen-activated protein kinase 3/1 (ERK1/2) pathway was induced selectively by E545K mutation but not PIK3CA amplification. Intriguingly, AKT signaling in these PIK3CA-aberrated cells increased transcriptional coactivator YAP1 (YAP) Ser127 phosphorylation and thereby cytoplasmic YAP levels, which in turn increased cell migration through Ras-related C3 botulinum toxin substrate 1 (RAC1) activation. In addition to the altered YAP signaling, AKT upregulated N-cadherin expression, which also contributed to cell migration. Pharmacological inhibition of N-cadherin reduced cell migratory potential. Importantly, co-targeting N-cadherin and p110α/AKT caused additive reduction in cell migration in vitro and metastases formation in vivo. Together, this study reveals the molecular pathways driven by the PIK3CA aberrations and the exploitable vulnerabilities in PIK3CA-aberrated serous ovarian cancer cells.
Collapse
Affiliation(s)
- Shibo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhouChina
| | - Hei Ip Hong
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Victor C. Y. Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Yiling Lu
- Division of Cancer Medicine, Department of Genomic MedicineUT MD Anderson Cancer CentreHoustonTXUSA
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer InstituteShanghai Jiao Tong University School of MedicineChina
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji HospitalShanghai Jiao Tong University School of MedicineChina
| | - Lydia W. T. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| |
Collapse
|
2
|
Li S, Hao L, Li N, Hu X, Yan H, Dai E, Shi X. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65:88. [PMID: 39092548 DOI: 10.3892/ijo.2024.5676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.
Collapse
Affiliation(s)
- Shenghao Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Liyuan Hao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Na Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Erhei Dai
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
3
|
Kum Özşengezer S, Altun ZS, Sanlav G, Baran B, Kızmazoğlu D, Aktaş S, Keskinoğlu P, Olgun N. Investigation of YAP-1, OTX-2, and nestin protein expressions in neuroblastoma: a preliminary study. Ann Clin Transl Neurol 2024; 11:2153-2165. [PMID: 38925618 PMCID: PMC11330229 DOI: 10.1002/acn3.52136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Neuroblastoma is the most common extracranial solid tumor in childhood. YAP (Yes-associated protein) is a highly expressed protein in NB. Nestin is an important marker of neuronal differentiation in NB. Orthodenticle homeobox (OTX) is a transcription factor and is overexpressed in blastoma-derived tumors. The aim of this study was to examine the potential roles of YAP-1, Nestin, and OTX-2 proteins in prognosis and risk stratification in neuroblastoma METHODS: Tumor sections of 56 patients with different NB risk groups were analyzed. YAP-1, Nestin, and OTX-2 protein expression levels were evaluated by immunohistochemical staining in NB patient tissue samples. RESULTS YAP-1, Nestin, and OTX-2 protein expression levels were evaluated together with the clinical findings of NB patients. YAP-1 was expressed in 18% of all tissues, while Nestin was expressed in 20.4%. OTX-2 protein expression was found in 41.1% of the NB patients. YAP-1 was expressed in 26.9% of high-risk and 11.5% of low-risk patients. Nestin was expressed in 24.4% high-risk and 33.3% low-risk patients. OTX-2 was expressed in 68.2% high-risk and 60% low-risk patients.YAP-1 was shown to provide survival advantages among risk groups. INTERPRETATION The findings of this study support that YAP-1 may be a potential prognostic biomarker for staging and risk-group assignment of NB patients. YAP-1 expression in neuroblastoma is associated with significantly poorer survival probabilities and should be considered as a potential therapeutic target. OTX-2 is a promising predictive biomarker candidate, but its mechanisms need further investigation in neuroblastoma, as nestin expression is not significantly linked to patient survival.
Collapse
Affiliation(s)
- Selen Kum Özşengezer
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Zekiye Sultan Altun
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Gamze Sanlav
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Burçin Baran
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Deniz Kızmazoğlu
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| | - Safiye Aktaş
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Pembe Keskinoğlu
- Department of Basic Medical Sciences, Department of Biostatistics and Medical InformaticsFaculty of Medicine, Dokuz Eylül UniversityIzmirTurkey
| | - Nur Olgun
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
4
|
Zhao Y, Chen Y, Guo C, Li P, Cheng Z, Zheng L, Sha B, Xu H, Su X, Wang Y. Chronic stress dysregulates the Hippo/YAP/14-3-3η pathway and induces mitochondrial damage in basolateral amygdala in a mouse model of depression. Theranostics 2024; 14:3653-3673. [PMID: 38948066 PMCID: PMC11209716 DOI: 10.7150/thno.92676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shannxi 710021, China
| | - Chihua Guo
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhao Cheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Lei Zheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Baoyong Sha
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Hao Xu
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Xingli Su
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yunpeng Wang
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Lead contact
| |
Collapse
|
5
|
Zheng Y, Zhou R, Cai J, Yang N, Wen Z, Zhang Z, Sun H, Huang G, Guan Y, Huang N, Shi M, Liao Y, Bin J, Liao W. Matrix Stiffness Triggers Lipid Metabolic Cross-talk between Tumor and Stromal Cells to Mediate Bevacizumab Resistance in Colorectal Cancer Liver Metastases. Cancer Res 2023; 83:3577-3592. [PMID: 37610655 PMCID: PMC10618741 DOI: 10.1158/0008-5472.can-23-0025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Bevacizumab is an anti-VEGF monoclonal antibody that plays an important role in the combination treatment of advanced colorectal cancer. However, resistance remains a major hurdle limiting bevacizumab efficacy, highlighting the importance of identifying a mechanism of antiangiogenic therapy resistance. Here, we investigated biophysical properties of the extracellular matrix (ECM) related to metabolic processes and acquired resistance to bevacizumab. Evaluation of paired pre- and posttreatment samples of liver metastases from 20 colorectal cancer patients treated with combination bevacizumab therapy, including 10 responders and 10 nonresponders, indicated that ECM deposition in liver metastases and a highly activated fatty acid oxidation (FAO) pathway were elevated in nonresponders after antiangiogenic therapy compared with responders. In mouse models of liver metastatic colorectal cancer (mCRC), anti-VEGF increased ECM deposition and FAO in colorectal cancer cells, and treatment with the FAO inhibitor etomoxir enhanced the efficacy of antiangiogenic therapy. Hepatic stellate cells (HSC) were essential for matrix stiffness-mediated FAO in colon cancer cells. Matrix stiffness activated lipolysis in HSCs via the focal adhesion kinase (FAK)/yes-associated protein (YAP) pathway, and free fatty acids secreted by HSCs were absorbed as metabolic substrates and activated FAO in colon cancer cells. Suppressing HSC lipolysis using FAK and YAP inhibition enhanced the efficacy of anti-VEGF therapy. Together, these results indicate that bevacizumab-induced ECM remodeling triggers lipid metabolic cross-talk between colon cancer cells and HSCs. This metabolic mechanism of bevacizumab resistance mediated by the physical tumor microenvironment represents a potential therapeutic target for reversing drug resistance. SIGNIFICANCE Extracellular matrix stiffening drives bevacizumab resistance by stimulating hepatic stellate cells to provide fuel for mCRC cells in the liver, indicating a potential metabolism-based therapeutic strategy for overcoming resistance.
Collapse
Affiliation(s)
- Yannan Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Cai
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaowei Wen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihua Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Genjie Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijin Guan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Long-Term Characteristics of Human-Derived Biliary Organoids under a Single Continuous Culture Condition. Cells 2022; 11:cells11233797. [PMID: 36497057 PMCID: PMC9741396 DOI: 10.3390/cells11233797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Organoids have been used to investigate the three-dimensional (3D) organization and function of their respective organs. These self-organizing 3D structures offer a distinct advantage over traditional two-dimensional (2D) culture techniques by creating a more physiologically relevant milieu to study complex biological systems. The goal of this study was to determine the feasibility of establishing organoids from various pediatric liver diseases and characterize the long-term evolution of cholangiocyte organoids (chol-orgs) under a single continuous culture condition. We established chol-orgs from 10 different liver conditions and characterized their multicellular organization into complex epithelial structures through budding, merging, and lumen formation. Immunofluorescent staining, electron microscopy, and single-nucleus RNA (snRNA-seq) sequencing confirmed the cholangiocytic nature of the chol-orgs. There were significant cell population differences in the transcript profiles of two-dimensional and organoid cultures based on snRNA-seq. Our study provides an approach for the generation and long-term maintenance of chol-orgs from various pediatric liver diseases under a single continuous culture condition.
Collapse
|
7
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
8
|
Target Therapy for Hepatocellular Carcinoma: Beyond Receptor Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. BIOLOGY 2022; 11:biology11040585. [PMID: 35453784 PMCID: PMC9027240 DOI: 10.3390/biology11040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and its incidence is steadily increasing. The development of HCC is a complex, multi-step process that is accompanied by alterations in multiple signaling cascades. Recent years have seen advancement in understanding molecular signaling pathways that play central roles in hepatocarcinogenesis. Aberrant activation of YAP/TAZ, Hedgehog, or Wnt/β-catenin signaling is frequently found in a subset of HCC patients. Targeting the signaling pathway via small molecule inhibitors could be a promising therapeutic option for the subset of patients. In this review, we will introduce the signaling pathways, discuss their roles in the development of HCC, and propose a therapeutic approach targeting the signaling pathways in the context of HCC. Abstract Hepatocellular carcinoma (HCC) is a major health concern worldwide, and its incidence is increasing steadily. To date, receptor tyrosine kinases (RTKs) are the most favored molecular targets for the treatment of HCC, followed by immune checkpoint regulators such as PD-1, PD-L1, and CTLA-4. With less than desirable clinical outcomes from RTK inhibitors as well as immune checkpoint inhibitors (ICI) so far, novel molecular target therapies have been proposed for HCC. In this review, we will introduce diverse molecular signaling pathways that are aberrantly activated in HCC, focusing on YAP/TAZ, Hedgehog, and Wnt/β-catenin signaling pathways, and discuss potential therapeutic strategies targeting the signaling pathways in HCC.
Collapse
|
9
|
Kim SS, Kycia I, Karski M, Ma RK, Bordt EA, Kwan J, Karki A, Winter E, Aktas RG, Wu Y, Emili A, Bauer DE, Sethupathy P, Vakili K. DNAJB1-PRKACA in HEK293T cells induces LINC00473 overexpression that depends on PKA signaling. PLoS One 2022; 17:e0263829. [PMID: 35167623 PMCID: PMC8846505 DOI: 10.1371/journal.pone.0263829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a primary liver cancer that most commonly arises in adolescents and young adults in a background of normal liver tissue and has a poor prognosis due to lack of effective chemotherapeutic agents. The DNAJB1-PRKACA gene fusion (DP) has been reported in the majority of FLC tumors; however, its oncogenic mechanisms remain unclear. Given the paucity of cellular models, in particular FLC tumor cell lines, we hypothesized that engineering the DP fusion gene in HEK293T cells would provide insight into the cellular effects of the fusion gene. We used CRISPR/Cas9 to engineer HEK293T clones expressing DP fusion gene (HEK-DP) and performed transcriptomic, proteomic, and mitochondrial studies to characterize this cellular model. Proteomic analysis of DP interacting partners identified mitochondrial proteins as well as proteins in other subcellular compartments. HEK-DP cells demonstrated significantly elevated mitochondrial fission, which suggests a role for DP in altering mitochondrial dynamics. Transcriptomic analysis of HEK-DP cells revealed a significant increase in LINC00473 expression, similar to what has been observed in primary FLC samples. LINC00473 overexpression was reversible with siRNA targeting of PRKACA as well as pharmacologic targeting of PKA and Hsp40 in HEK-DP cells. Therefore, our model suggests that LINC00473 is a candidate marker for DP activity.
Collapse
Affiliation(s)
- Stephanie S. Kim
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Ina Kycia
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Michael Karski
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Rosanna K. Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Julian Kwan
- Department of Biochemistry, Center for Networks Systems Biology, Boston University School of Medicine, Boston, MA, United States of America
| | - Anju Karki
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Elle Winter
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Ranan G. Aktas
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Yuxuan Wu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
| | - Andrew Emili
- Department of Biochemistry, Center for Networks Systems Biology, Boston University School of Medicine, Boston, MA, United States of America
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Passi M, Zahler S. Mechano-Signaling Aspects of Hepatocellular Carcinoma. J Cancer 2021; 12:6411-6421. [PMID: 34659531 PMCID: PMC8489129 DOI: 10.7150/jca.60102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
HCC is one of the leading causes of cancer related death worldwide and comprises about 90% of the cases of primary liver cancer. It is generally accompanied by chronic liver fibrosis characterised by deposition of collagen fibres, which, in turn, causes enhanced stiffness of the liver tissue. Changes of tissue stiffness give rise to alterations of signalling pathways that are associated to mechanical properties of the cells and the extracellular matrix, and that can be subsumed as "mechano-signaling pathways", like, e.g., the YAP/TAZ pathway, or the SRF pathway. Stiffness of the liver tissue modulates mechanical regulation of many genes involved in HCC progression. However, mechano-signaling is still rather underrepresented in our concepts of cancer in comparison to "classical" biochemical signalling pathways. This review aims to give an overview of various stiffness induced mechano-biological aspects of HCC.
Collapse
Affiliation(s)
- Mehak Passi
- Center for Drug Research, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Stefan Zahler
- Center for Drug Research, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
11
|
Zhou JL, Zhao YZ, Wang SS, Chen MX, Zhou S, Chen C. RNA Splicing: A Versatile Regulatory Mechanism in Pediatric Liver Diseases. Front Mol Biosci 2021; 8:725308. [PMID: 34651015 PMCID: PMC8505697 DOI: 10.3389/fmolb.2021.725308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
With the development of high-throughput sequencing technology, the posttranscriptional mechanism of alternative splicing is becoming better understood. From decades of studies, alternative splicing has been shown to occur in multiple tissues, including the brain, heart, testis, skeletal muscle, and liver. This regulatory mechanism plays an important role in physiological functions in most liver diseases. Currently, due to the absence of symptoms, chronic pediatric liver diseases have a significant impact on public health. Furthermore, the progression of the disease is accelerated in children, leading to severe damage to their liver tissue if no precautions are taken. To this end, this review article summarizes the current knowledge of alternative splicing in pediatric liver diseases, paying special attention to liver damage in the child stage. The discussion of the regulatory role of splicing in liver diseases and its potential as a new therapeutic target is also included.
Collapse
Affiliation(s)
- Jian-Li Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yu-Zhen Zhao
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Shan-Shan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Chen Chen
- Department of Infectious Disease, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Shim J, Goldsmith KC. A New Player in Neuroblastoma: YAP and Its Role in the Neuroblastoma Microenvironment. Cancers (Basel) 2021; 13:cancers13184650. [PMID: 34572875 PMCID: PMC8472533 DOI: 10.3390/cancers13184650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial pediatric solid tumor that accounts for more than 15% of childhood cancer-related deaths. High risk neuroblastomas that recur during or after intense multimodal therapy have a <5% chance at a second sustained remission or cure. The solid tumor microenvironment (TME) has been increasingly recognized to play a critical role in cancer progression and resistance to therapy, including in neuroblastoma. The Yes-Associated Protein (YAP) in the Hippo pathway can regulate cancer proliferation, tumor initiation, and therapy response in many cancer types and as such, its role in the TME has gained interest. In this review, we focus on YAP and its role in neuroblastoma and further describe its demonstrated and potential effects on the neuroblastoma TME. We also discuss the therapeutic strategies for inhibiting YAP in neuroblastoma.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kelly C. Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-2655
| |
Collapse
|
13
|
MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer. Biomedicines 2021; 9:biomedicines9040347. [PMID: 33808155 PMCID: PMC8067275 DOI: 10.3390/biomedicines9040347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Liver cancer is one of the most common cancers worldwide, and its prevalence and mortality rate are increasing due to the lack of biomarkers and effective treatments. The Hippo signaling pathway has long been known to control liver size, and genetic depletion of Hippo kinases leads to liver cancer in mice through activation of the downstream effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Both YAP and TAZ not only reprogram tumor cells but also alter the tumor microenvironment to exert carcinogenic effects. Therefore, understanding the mechanisms of YAP/TAZ-mediated liver tumorigenesis will help overcome liver cancer. For decades, small noncoding RNAs, microRNAs (miRNAs), have been reported to play critical roles in the pathogenesis of many cancers, including liver cancer. However, the interactions between miRNAs and Hippo-YAP/TAZ signaling in the liver are still largely unknown. Here, we review miRNAs that influence the proliferation, migration and apoptosis of tumor cells by modulating Hippo-YAP/TAZ signaling during hepatic tumorigenesis. Previous findings suggest that these miRNAs are potential biomarkers and therapeutic targets for the diagnosis, prognosis, and treatment of liver cancer.
Collapse
|
14
|
Delgado ER, Erickson HL, Tao J, Monga SP, Duncan AW, Anakk S. Scaffolding Protein IQGAP1 Is Dispensable, but Its Overexpression Promotes Hepatocellular Carcinoma via YAP1 Signaling. Mol Cell Biol 2021; 41:e00596-20. [PMID: 33526450 PMCID: PMC8088129 DOI: 10.1128/mcb.00596-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffolding protein that is overexpressed in a number of cancers, including liver cancer, and is associated with protumorigenic processes, such as cell proliferation, motility, and adhesion. IQGAP1 can integrate multiple signaling pathways and could be an effective antitumor target. Therefore, we examined the role of IQGAP1 in tumor initiation and promotion during liver carcinogenesis. We found that ectopic overexpression of IQGAP1 in the liver is not sufficient to initiate tumorigenesis. Moreover, we report that the tumor burden and cell proliferation in the diethylnitrosamine-induced liver carcinogenesis model in Iqgap1-/- mice may be driven by MET signaling. In contrast, IQGAP1 overexpression enhanced YAP activation and subsequent NUAK2 expression to accelerate and promote hepatocellular carcinoma (HCC) in a clinically relevant model expressing activated (S45Y) β-catenin and MET. Here, increasing IQGAP1 expression in vivo does not alter β-catenin or MET activation; instead, it promotes YAP activity. Overall, we demonstrate that although IQGAP1 expression is not required for HCC development, the gain of IQGAP1 function promotes the rapid onset and increased liver carcinogenesis. Our results show that an adequate amount of IQGAP1 scaffold is necessary to maintain the quiescent status of the liver.
Collapse
Affiliation(s)
- Evan R Delgado
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hanna L Erickson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Junyan Tao
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P Monga
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Giovannini C, Fornari F, Piscaglia F, Gramantieri L. Notch Signaling Regulation in HCC: From Hepatitis Virus to Non-Coding RNAs. Cells 2021; 10:cells10030521. [PMID: 33804511 PMCID: PMC8000248 DOI: 10.3390/cells10030521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch family includes evolutionary conserved genes that encode for single-pass transmembrane receptors involved in stem cell maintenance, development and cell fate determination of many cell lineages. Upon activation by different ligands, and depending on the cell type, Notch signaling plays pleomorphic roles in hepatocellular carcinoma (HCC) affecting neoplastic growth, invasion capability and stem like properties. A specific knowledge of the deregulated expression of each Notch receptor and ligand, coupled with resultant phenotypic changes, is still lacking in HCC. Therefore, while interfering with Notch signaling might represent a promising therapeutic approach, the complexity of Notch/ligands interactions and the variable consequences of their modulations raises concerns when performed in undefined molecular background. The gamma-secretase inhibitors (GSIs), representing the most utilized approach for Notch inhibition in clinical trials, are characterized by important adverse effects due to the non-specific nature of GSIs themselves and to the lack of molecular criteria guiding patient selection. In this review, we briefly summarize the mechanisms involved in Notch pathway activation in HCC supporting the development of alternatives to the γ-secretase pan-inhibitor for HCC therapy.
Collapse
Affiliation(s)
- Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2144903; Fax: +39-051-2143902
| | - Francesca Fornari
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
| |
Collapse
|
16
|
Semwal R, Varadwaj PK. HumDLoc: Human Protein Subcellular Localization Prediction Using Deep Neural Network. Curr Genomics 2020; 21:546-557. [PMID: 33214771 PMCID: PMC7604748 DOI: 10.2174/1389202921999200528160534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
Aims To develop a tool that can annotate subcellular localization of human proteins. Background With the progression of high throughput human proteomics projects, an enormous amount of protein sequence data has been discovered in the recent past. All these raw sequence data require precise mapping and annotation for their respective biological role and functional attributes. The functional characteristics of protein molecules are highly dependent on the subcellular localization/compartment. Therefore, a fully automated and reliable protein subcellular localization prediction system would be very useful for current proteomic research. Objective To develop a machine learning-based predictive model that can annotate the subcellular localization of human proteins with high accuracy and precision. Methods In this study, we used the PSI-CD-HIT homology criterion and utilized the sequence-based features of protein sequences to develop a powerful subcellular localization predictive model. The dataset used to train the HumDLoc model was extracted from a reliable data source, Uniprot knowledge base, which helps the model to generalize on the unseen dataset. Results The proposed model, HumDLoc, was compared with two of the most widely used techniques: CELLO and DeepLoc, and other machine learning-based tools. The result demonstrated promising predictive performance of HumDLoc model based on various machine learning parameters such as accuracy (≥97.00%), precision (≥0.86), recall (≥0.89), MCC score (≥0.86), ROC curve (0.98 square unit), and precision-recall curve (0.93 square unit). Conclusion In conclusion, HumDLoc was able to outperform several alternative tools for correctly predicting subcellular localization of human proteins. The HumDLoc has been hosted as a web-based tool at https://bioserver.iiita.ac.in/HumDLoc/.
Collapse
Affiliation(s)
- Rahul Semwal
- 1Department of Information Technology (Bioinformatics), Indian Institute of Information Technology-Allahabad, Jhalwa, Prayagraj, India; 2Department of Bioinformatics and Applied Science, Indian Institute of Information Technology-Allahabad, Jhalwa, Prayagraj, India
| | - Pritish Kumar Varadwaj
- 1Department of Information Technology (Bioinformatics), Indian Institute of Information Technology-Allahabad, Jhalwa, Prayagraj, India; 2Department of Bioinformatics and Applied Science, Indian Institute of Information Technology-Allahabad, Jhalwa, Prayagraj, India
| |
Collapse
|
17
|
Guo L, Zheng J, Luo J, Zhang Z, Shao G. Targeting Yes1 Associated Transcriptional Regulator Inhibits Hepatocellular Carcinoma Progression and Improves Sensitivity to Sorafenib: An in vitro and in vivo Study. Onco Targets Ther 2020; 13:11071-11087. [PMID: 33149619 PMCID: PMC7605682 DOI: 10.2147/ott.s249412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to investigate the role of Yes1 associated transcriptional regulator (YAP1) in the pathology of hepatocellular carcinoma (HCC) and its potential as a therapeutic target. Methods YAP1 expression in HCC and adjacent tissues was determined via immunohistochemistry; in HCC and human normal liver cell lines, expression was examined via Western blotting. The effects of YAP1 knockdown and overexpression were detected following transfection of HCC cells with siRNA-YAP1 recombinants or pcDNA3.1-YAP1 plasmids. A tumor xenograft model was constructed by implanting YAP1-knockdown lentivirus-infected Hep-3B cells into nude mice, and the animals were treated with sorafenib. Results In patients with HCC, YAP1 was upregulated in tumor tissue compared with adjacent tissue, and its high expression in the tumor was associated with increased Edmonson grade. In vitro, YAP1 expression was increased in Hep-3B, SK-HEP-1 and Huh7 cells, while it was similar in SMMC-7721 cells and LO2 cells. Meanwhile, YAP1 increased cell proliferation and invasion, promoted the progression of epithelial-mesenchymal transition, and inhibited cell apoptosis in HCC cells; furthermore, YAP1 knockdown combined with the administration of sorafenib decreased cell viability and increased cell apoptosis compared with YAP1 knockdown or treatment with sorafenib alone. In vivo, YAP1 knockdown inhibited tumor growth and metastasis, whereas it promoted apoptosis; meanwhile, YAP1 knockdown synergized with sorafenib to suppress tumor progression in HCC mice. Conclusion YAP1 is upregulated in both HCC tumor tissues and cell lines. Moreover, it promotes cell proliferation and invasion and promoted the progression of epithelial-mesenchymal transition in vitro. Furthermore, targeting YAP1 inhibits HCC progression and improves sensitivity to sorafenib in vitro and in vivo.
Collapse
Affiliation(s)
- Liwen Guo
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jiaping Zheng
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jun Luo
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Zhewei Zhang
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Guoliang Shao
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| |
Collapse
|
18
|
Haak AJ, Kostallari E, Sicard D, Ligresti G, Choi KM, Caporarello N, Jones DL, Tan Q, Meridew J, Diaz Espinosa AM, Aravamudhan A, Maiers JL, Britt RD, Roden AC, Pabelick CM, Prakash YS, Nouraie SM, Li X, Zhang Y, Kass DJ, Lagares D, Tager AM, Varelas X, Shah VH, Tschumperlin DJ. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci Transl Med 2020; 11:11/516/eaau6296. [PMID: 31666402 DOI: 10.1126/scitranslmed.aau6296] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/01/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
Tissue fibrosis is characterized by uncontrolled deposition and diminished clearance of fibrous connective tissue proteins, ultimately leading to organ scarring. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have recently emerged as pivotal drivers of mesenchymal cell activation in human fibrosis. Therapeutic strategies inhibiting YAP and TAZ have been hindered by the critical role that these proteins play in regeneration and homeostasis in different cell types. Here, we find that the Gαs-coupled dopamine receptor D1 (DRD1) is preferentially expressed in lung and liver mesenchymal cells relative to other resident cells of these organs. Agonism of DRD1 selectively inhibits YAP/TAZ function in mesenchymal cells and shifts their phenotype from profibrotic to fibrosis resolving, reversing in vitro extracellular matrix stiffening and in vivo tissue fibrosis in mouse models. Aromatic l-amino acid decarboxylase [DOPA decarboxylase (DDC)], the enzyme responsible for the final step in biosynthesis of dopamine, is decreased in the lungs of subjects with idiopathic pulmonary fibrosis, and its expression inversely correlates with disease severity, consistent with an endogenous protective role for dopamine signaling that is lost in pulmonary fibrosis. Together, these findings establish a pharmacologically tractable and cell-selective approach to targeting YAP/TAZ via DRD1 that reverses fibrosis in mice.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Dakota L Jones
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aja Aravamudhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica L Maiers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA.,Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, OH 43215, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN 55905, USA
| | - Christina M Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Seyed Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
19
|
Mi L, Kuang H. Melatonin Regulates Cisplatin Resistance and Glucose Metabolism Through Hippo Signaling in Hepatocellular Carcinoma Cells. Cancer Manag Res 2020; 12:1863-1874. [PMID: 32210629 PMCID: PMC7075351 DOI: 10.2147/cmar.s230466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction and Aim Hepatocellular carcinoma (HCC) is a primary malignancy that occurs in the liver. Clinical cases have been recorded worldwide, particularly in the Saharan area and Asia. In the present work, we aimed to probe the characteristics of melatonin involved in human HCC development, especially in cisplatin resistance and glucose metabolism. Methods Two HCC cells, HepG2 and Hep3B cells, were treated with melatonin. Cell cycle test was then used to define the role of melatonin in cell progression while Western blotting and qPCR assay were applied to determine the associated proteins in the treatment. Annexin V/PI staining and MTT assay was used to probe the involvement of melatonin in cisplatin-induced cell apoptosis process. Successively, we assessed glucose consumption in melatonin treated cells along with Western blotting for detection of GLUT-3 expression level. Yes-associated protein (YAP), a key regulator of Hippo signaling pathway, was further examined to characterize the function of melatonin on adjusting GLUT3 and Bcl-2 expression. Results Melatonin enabled inhibition of HepG2 and Hep3B proliferation and cell cycle progression via affecting the cell cycle-associated proteins. Annexin V/PI staining and MTT assay results demonstrated that melatonin assisted cisplatin-induced apoptosis accompanied with upregulated caspase-3 and poly ADP-ribose polymerase (PARP) cleavage, as well as Bcl-2 expression. It revealed that melatonin inhibits glucose uptake and ATP production via downregulation of Glucose transporter 3 (GLUT3). In addition, YAP was downregulated by melatonin treatment. The YAP depletion in HepG2 and Hep3B cells suppressed mRNA and protein expression of Bcl-2 and GLUT3, whereas overexpression of YAP in melatonin treated cells partly reversed the melatonin-induced inhibition on proliferation, cisplatin-induced apoptosis, and GLUT3 and Bcl-2 expression. Conclusion Melatonin hindered HCC proliferation and aided cisplatin resistance via regulating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Lina Mi
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| |
Collapse
|
20
|
Fu H, Archer KJ. High-dimensional variable selection for ordinal outcomes with error control. Brief Bioinform 2020; 22:334-345. [PMID: 32031572 DOI: 10.1093/bib/bbaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
Many high-throughput genomic applications involve a large set of potential covariates and a response which is frequently measured on an ordinal scale, and it is crucial to identify which variables are truly associated with the response. Effectively controlling the false discovery rate (FDR) without sacrificing power has been a major challenge in variable selection research. This study reviews two existing variable selection frameworks, model-X knockoffs and a modified version of reference distribution variable selection (RDVS), both of which utilize artificial variables as benchmarks for decision making. Model-X knockoffs constructs a 'knockoff' variable for each covariate to mimic the covariance structure, while RDVS generates only one null variable and forms a reference distribution by performing multiple runs of model fitting. Herein, we describe how different importance measures for ordinal responses can be constructed that fit into these two selection frameworks, using either penalized regression or machine learning techniques. We compared these measures in terms of the FDR and power using simulated data. Moreover, we applied these two frameworks to high-throughput methylation data for identifying features associated with the progression from normal liver tissue to hepatocellular carcinoma to further compare and contrast their performances.
Collapse
|
21
|
Meyer K, Morales‐Navarrete H, Seifert S, Wilsch‐Braeuninger M, Dahmen U, Tanaka EM, Brusch L, Kalaidzidis Y, Zerial M. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Mol Syst Biol 2020; 16:e8985. [PMID: 32090478 PMCID: PMC7036714 DOI: 10.15252/msb.20198985] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F-actin and phospho-myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to apical F-actin-rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.
Collapse
Affiliation(s)
- Kirstin Meyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Uta Dahmen
- Experimental Transplantation SurgeryDepartment of General, Visceral and Vascular SurgeryJena University HospitalJenaGermany
| | - Elly M Tanaka
- Research Institute of Molecular PathologyVienna BioCenterViennaAustria
| | - Lutz Brusch
- Center for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Faculty of Bioengineering and BioinformaticsMoscow State UniversityMoscowRussia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
22
|
Jewell ML, Gibson JR, Guy CD, Hyun J, Du K, Oh SH, Premont RT, Hsu DS, Ribar T, Gregory SG, Diehl AME. Single-Cell RNA Sequencing Identifies Yes-Associated Protein 1-Dependent Hepatic Mesothelial Progenitors in Fibrolamellar Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:93-107. [PMID: 31669305 PMCID: PMC10069284 DOI: 10.1016/j.ajpath.2019.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/23/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Fibrolamellar carcinoma (FLC) is characterized by in-frame fusion of DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) with protein kinase cAMP-activated catalytic subunit α (PRKACA) and by dense desmoplasia. Surgery is the only effective treatment because mechanisms supporting tumor survival are unknown. We used single-cell RNA sequencing to characterize a patient-derived FLC xenograft model and identify therapeutic targets. Human FLC cells segregated into four discrete clusters that all expressed the oncogene Yes-associated protein 1 (YAP1). The two communities most enriched with cells coexpressing FLC markers [CD68, A-kinase anchoring protein 12 (AKAP12), cytokeratin 7, epithelial cell adhesion molecule (EPCAM), and carbamoyl palmitate synthase-1] also had the most cells expressing YAP1 and its proproliferative target genes (AREG and CCND1), suggesting these were proliferative FLC cell clusters. The other two clusters were enriched with cells expressing profibrotic YAP1 target genes, ACTA2, ELN, and COL1A1, indicating these were fibrogenic FLC cells. All clusters expressed the YAP1 target gene and mesothelial progenitor marker mesothelin, and many mesothelin-positive cells coexpressed albumin. Trajectory analysis predicted that the four FLC communities were derived from a single cell type transitioning among phenotypic states. After establishing a novel FLC cell line that harbored the DNAJB1-PRKACA fusion, YAP1 was inhibited, which significantly reduced expression of known YAP1 target genes as well as cell growth and migration. Thus, both FLC epithelial and stromal cells appear to arise from DNAJB1-PRKACA fusion in a YAP1-dependent liver mesothelial progenitor, identifying YAP1 as a target for FLC therapy.
Collapse
Affiliation(s)
- Mark L Jewell
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Cynthia D Guy
- Department of Pathology, Duke University, Durham, North Carolina
| | - Jeongeun Hyun
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Seh-Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Richard T Premont
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - David S Hsu
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Thomas Ribar
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Anna Mae E Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
23
|
Husari A, Steinberg T, Dieterle MP, Prucker O, Rühe J, Jung B, Tomakidi P. On the relationship of YAP and FAK in hMSCs and osteosarcoma cells: Discrimination of FAK modulation by nuclear YAP depletion or YAP silencing. Cell Signal 2019; 63:109382. [PMID: 31376525 DOI: 10.1016/j.cellsig.2019.109382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
The HIPPO pathway effector YAP has been shown to be regulated by FAK-signaling. However, the existence of an inverse relationship between YAP and FAK is unknown. Here we demonstrate in hMSCs and in the human osteosarcoma derived cell line Saos that Verteporfin- or RNAi-dependent YAP depletion has opposing influence on FAK. While Verteporfin strikingly reduced cellular FAK protein and phosphorylation, RNAi led to an increase of both molecules and point on a generalizable aspect of the YAP/FAK interrelationship. YAP depletion also caused down-regulation of osteogenic genes in hMSCs, irrespective from the YAP intervention mode. Verteporfin induced topological changes in conjunction with reduced protein levels of β1 integrin, paxillin, and zyxin of focal adhesions (FAs) in hMSCs, suggesting FAK-decrease-related alterations in FAs, which seems to be a FAK-dependent mechanism. On the cell behavioral level, YAP-FAK-interrelation involves proliferation and senescence, as indicated by proliferation inhibition and increase of β-Galactosidase-activity in hMSCs. Our findings, derived from this dual strategy of YAP intervention, reveal a YAP-FAK relationship in conjunction with molecular and cell behavioral consequences. Moreover, they deepen the current scientific knowledge on YAP from a different scientific point of view, since this inverse YAP/FAK-relationship seems to be transferrable to other cell types, including cell entities with pathological background.
Collapse
Affiliation(s)
- Ayman Husari
- Department of Orthodontics, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany.
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Oswald Prucker
- IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany.
| | - Jürgen Rühe
- IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany.
| | - Britta Jung
- Department of Orthodontics, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| |
Collapse
|
24
|
Dinh TA, Jewell ML, Kanke M, Francisco A, Sritharan R, Turnham RE, Lee S, Kastenhuber ER, Wauthier E, Guy CD, Yeung RS, Lowe SW, Reid LM, Scott JD, Diehl AM, Sethupathy P. MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 7:803-817. [PMID: 30763770 PMCID: PMC6468197 DOI: 10.1016/j.jcmgh.2019.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Fibrolamellar carcinoma (FLC) is a rare liver cancer that primarily affects adolescents and young adults. It is characterized by a heterozygous approximately 400-kb deletion on chromosome 19 that results in a unique fusion between DnaJ heat shock protein family member B1 (DNAJB1) and the alpha catalytic subunit of protein kinase A (PRKACA). The role of microRNAs (miRNAs) in FLC remains unclear. We identified dysregulated miRNAs in FLC and investigated whether dysregulation of 1 key miRNA contributes to FLC pathogenesis. METHODS We analyzed small RNA sequencing (smRNA-seq) data from The Cancer Genome Atlas to identify dysregulated miRNAs in primary FLC tumors and validated the findings in 3 independent FLC cohorts. smRNA-seq also was performed on a FLC patient-derived xenograft model as well as purified cell populations of the liver to determine whether key miRNA changes were tumor cell-intrinsic. We then used clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (Cas9) technology and transposon-mediated gene transfer in mice to determine if the presence of DNAJB1-PRKACA is sufficient to suppress miR-375 expression. Finally, we established a new FLC cell line and performed colony formation and scratch wound assays to determine the functional consequences of miR-375 overexpression. RESULTS We identified miR-375 as the most dysregulated miRNA in primary FLC tumors (27-fold down-regulation; P = .009). miR-375 expression also was decreased significantly in a FLC patient-derived xenograft model compared to 4 different cell populations of the liver. Introduction of DNAJB1-PRKACA by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 engineering and transposon-mediated somatic gene transfer in mice was sufficient to induce significant loss of miR-375 expression (P < .05). Overexpression of miR-375 in FLC cells inhibited Hippo signaling pathway proteins, including yes-associated protein 1 and connective tissue growth factor, and suppressed cell proliferation and migration (P < .05). CONCLUSIONS We identified miR-375 as the most down-regulated miRNA in FLC tumors and showed that overexpression of miR-375 mitigated tumor cell growth and invasive potential. These findings open a potentially new molecular therapeutic approach. Further studies are necessary to determine how DNAJB1-PRKACA suppresses miR-375 expression and whether miR-375 has additional important targets in this tumor. Transcript profiling: GEO accession numbers: GSE114974 and GSE125602.
Collapse
Affiliation(s)
- Timothy A Dinh
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Mark L Jewell
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Adam Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Rigney E Turnham
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington
| | - Seona Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward R Kastenhuber
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cynthia D Guy
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, Washington
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lola M Reid
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John D Scott
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington
| | - Anna M Diehl
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina.
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York.
| |
Collapse
|
25
|
Chen C, Ge C, Liu Z, Li L, Zhao F, Tian H, Chen T, Li H, Yao M, Li J. ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:263. [PMID: 30376856 PMCID: PMC6208028 DOI: 10.1186/s13046-018-0919-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/27/2018] [Indexed: 01/27/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant cancers with a high incidence and high mortality in East Asia. Identifying biomarkers and clarifying the regulatory mechanisms of HCC are of great importance. Herein, we report the role and mechanism of activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element-binding protein family of transcription factors in HCC. Methods ATF3 overexpression vector and shRNAs were transfected into HCC cancer cells to upregulate or downregulate ATF3 expression. In vitro and in vivo assays were performed to investigate the functional role of ATF3 in hepatocellular carcinoma. RNA-Seq was performed to screen the differentially expressed genes downstream of ATF3. The dual-luciferase reporter assay, chromatin immunoprecipitation (Ch-IP) analysis and functional rescue experiments were used to confirm the target gene regulated by ATF3. Tissue microarrays (TMAs) comprising 236 human primary HCC tissues were obtained and immunohistochemical staining were carried out to analyze the clinical significance of ATF3. Results The results indicate that ATF3 significantly inhibited the proliferation and mobility of HCC cells both in vitro and in vivo. Cysteine-rich angiogenic inducer 61 (CYR61) is a key target for transcriptional regulation by ATF3. Both ATF3 and CYR61 were consistently downregulated in human HCC tissues, and their expression levels were significantly and positively correlated with each other. Conclusions Our findings indicate that ATF3 functions as a tumor suppressor in HCC through targeting and regulating CYR61. Electronic supplementary material The online version of this article (10.1186/s13046-018-0919-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Zheng Liu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangyu Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | | | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Wang J, Chen Y, Mo PL, Wei YJ, Liu KC, Zhang ZG, Zhang ZW, Chen XP, Zhang L. 1α,25-Dihydroxyvitamin D 3 inhibits aflatoxin B1-induced proliferation and dedifferentiation of hepatic progenitor cells by regulating PI3K/Akt and Hippo pathways. J Steroid Biochem Mol Biol 2018; 183:228-237. [PMID: 30099061 DOI: 10.1016/j.jsbmb.2018.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022]
Abstract
Hepatic progenitor cells (HPCs) might be the origin of hepatocellular carcinoma. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) (VD3) has been documented as an anticancer agent for various cancers. However, the potential effect of VD3 on the proliferation and malignant transformation of HPCs induced by aflatoxin B1 (AFB1) has not been determined. In this study, we found that AFB1 exhibited the stimulative effects on the proliferation, dedifferentiation and invasion of HPCs via activating AKT pathway but turning off Hippo pathway, which were terminated when VD3 was used in combination with AFB1. Furthermore, in AFB1-induced liver damage mouse model, VD3 also showed protective effect by reducing HPCs population. Together, these preclinical data not only provide a newly identified mechanism by which AFB1 affects HPCs but also strengthen the idea of developing VD3 as an anticancer agent.
Collapse
Affiliation(s)
- Jian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yan Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ping-Li Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361012, People's Republic of China
| | - Yi-Ju Wei
- Department of Pediatrics, Hematology Oncology, Pennsylvania State University College of Medicine, Hershey 17033, PA, USA
| | - Kuan-Cheng Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhan-Guo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhi-Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
27
|
Mueller KA, Glajch KE, Huizenga MN, Wilson RA, Granucci EJ, Dios AM, Tousley AR, Iuliano M, Weisman E, LaQuaglia MJ, DiFiglia M, Kegel-Gleason K, Vakili K, Sadri-Vakili G. Hippo Signaling Pathway Dysregulation in Human Huntington's Disease Brain and Neuronal Stem Cells. Sci Rep 2018; 8:11355. [PMID: 30054496 PMCID: PMC6063913 DOI: 10.1038/s41598-018-29319-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
The Hippo signaling pathway is involved in organ size regulation and tumor suppression. Although inhibition of Hippo leads to tumorigenesis, activation of Hippo may play a role in neurodegeneration. Specifically, activation of the upstream regulator, mammalian sterile 20 (STE20)-like kinase 1 (MST1), reduces activity of the transcriptional co-activator Yes-Associated Protein (YAP), thereby mediating oxidative stress-induced neuronal death. Here, we investigated the possible role of this pathway in Huntington's disease (HD) pathogenesis. Our results demonstrate a significant increase in phosphorylated MST1, the active form, in post-mortem HD cortex and in the brains of CAG knock-in HdhQ111/Q111 mice. YAP nuclear localization was also decreased in HD post-mortem cortex and in neuronal stem cells derived from HD patients. Moreover, there was a significant increase in phosphorylated YAP, the inactive form, in HD post-mortem cortex and in HdhQ111/Q111 brain. In addition, YAP was found to interact with huntingtin (Htt) and the chaperone 14-3-3, however this interaction was not altered in the presence of mutant Htt. Lastly, YAP/TEAD interactions and expression of Hippo pathway genes were altered in HD. Together, these results demonstrate that activation of MST1 together with a decrease in nuclear YAP could significantly contribute to transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Kaly A Mueller
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Kelly E Glajch
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Megan N Huizenga
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Remi A Wilson
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Eric J Granucci
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Amanda M Dios
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Adelaide R Tousley
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Maria Iuliano
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Elizabeth Weisman
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | | | - Marian DiFiglia
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Kimberly Kegel-Gleason
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | | | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA.
| |
Collapse
|
28
|
STK3 is a therapeutic target for a subset of acute myeloid leukemias. Oncotarget 2018; 9:25458-25473. [PMID: 29876001 PMCID: PMC5986655 DOI: 10.18632/oncotarget.25238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation and accumulation of immature myeloblasts, which impair normal hematopoiesis. While this definition categorizes the disease into a distinctive group, the large number of different genetic and epigenetic alterations actually suggests that AML is not a single disease, but a plethora of malignancies. Still, most AML patients are not treated with targeted medication but rather by uniform approaches such as chemotherapy. The identification of novel treatment options likely requires the identification of cancer cell vulnerabilities that take into account the different genetic and epigenetic make-up of the individual tumors. Here we show that STK3 depletion by knock-down, knock-out or chemical inhibition results in apoptotic cells death in some but not all AML cell lines and primary cells tested. This effect is mediated by a premature activation of cyclin dependent kinase 1 (CDK1) in presence of elevated cyclin B1 levels. The anti-leukemic effects seen in both bulk and progenitor AML cells suggests that STK3 might be a promising target in a subset of AML patients.
Collapse
|
29
|
Liu F, Wang G, Wang X, Che Z, Dong W, Guo X, Wang Z, Chen P, Hou D, Zhang Q, Zhang W, Pan Y, Yang D, Liu H. Targeting high Aurora kinases expression as an innovative therapy for hepatocellular carcinoma. Oncotarget 2018; 8:27953-27965. [PMID: 28427193 PMCID: PMC5438621 DOI: 10.18632/oncotarget.15853] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
The Aurora kinases A and B control tumorigenesis by inhibiting apoptosis and promoting proliferation and metastasis, however, it remains unknown whether Aurora A and B overexpressed concomitantly and its clinical significance in hepatocellular carcinoma (HCC). Here, we obsearved Aurora A and B tended to overexpress parallelly on protein level (r = 0.8679, P < 0.0001) and their co-overexpression (Aurora AHBH), associated with the worst prognosis, was an independent predictor for the survival. Importantly, with the lower IC50 and stronger anti-tumor effect than selective inhibitors, SNS-314, the pan-inhibitor of Aurora kinases, which induced YAP (Yes-associated protein) reduction and resulted in P21 accumulation, significantly promoted the polyploidy (> 4N) formation and apoptosis in HCC. High YAP expression (YAPH) was associated with Aurora AHBH, and appeared to be an independent predictor for survival, but P21 not. Moreover, silencing YAP also induced P21 accumulation, and knockdown P21, which enhanced YAP accumulation and weakened the SNS-314-induced YAP reduction, impaired SNS-314-induced apoptosis. Therefore, P21 enhanced the apoptotic effect of SNS-314 in HCC. Taken together, our findings indicated Aurora kinases/YAP/P21 was an oncogenic signaling axis in HCC, and revealed targeting Aurora AHBH induced apoptosis by YAP suppression. Our results also provided a solid evidence for SNS-314 as a potential targeted therapy, and a proof-of-concept evidence for a possible combined therapy of SNS-314 plus Hippo pathway inhibitors on HCC.
Collapse
Affiliation(s)
- Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Guangyong Wang
- Department of Gastroenterology, 411 Hospital of PLA, Shanghai 200081, China
| | - Xiaoqiang Wang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhihui Che
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Xinggang Guo
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zhenguang Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Ping Chen
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Daisen Hou
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Qi Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Wenli Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Dongqin Yang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
30
|
Key Anti-Fibrosis Associated Long Noncoding RNAs Identified in Human Hepatic Stellate Cell via Transcriptome Sequencing Analysis. Int J Mol Sci 2018; 19:ijms19030675. [PMID: 29495545 PMCID: PMC5877536 DOI: 10.3390/ijms19030675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is the main pathological basis for chronic cirrhosis, and activated hepatic stellate cells (HSCs) are the primary cells involved in liver fibrosis. Our study analyzed anti-fibrosis long noncoding RNAs (lncRNAs) in activated human HSCs (hHSCs). We performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine whether lncRNA expression profile changes between hHSCs activation and quiescence. Eight differentially expressed (DE) lncRNAs and three pairs of co-expression lncRNAs-mRNAs were verified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). A total of 34146 DE lncRNAs were identified in this study. Via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found several DE lncRNAs regulated hHSC activation by participating in DNA bending/packaging complex, growth factor binding and the Hippo signaling pathway (p < 0.05). With lncRNA–mRNA co-expression analysis, three lncRNAs were identified to be associated with connective tissue growth factor (CTGF), fibroblast growth factor 2 (FGF2) and netrin-4 (NTN4). The quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results of the eight DE lncRNAs and three pairs of co-expression lncRNAs–mRNAs were consistent with the RNA-seq data and previous reports. Several lncRNAs may serve as potential targets to reverse the progression of liver fibrosis. This study provides a first insight into lncRNA expression profile changes associated with activated human HSCs.
Collapse
|
31
|
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary liver cancer found in adolescents and young adults without underlying liver disease. A deletion of ~400 kD has been found in one copy of chromosome 19 in the tumor tissue of all patients tested. This produces a fusion of the genes DNAJB1 and PRKACA which, in turn, produces a chimeric transcript and protein. Transcriptomic analysis of the tumor has shown upregulation of various oncologically relevant pathways, including EGF/ErbB, Aurora Kinase A, pak21 and wnt. To explore other factors that may contribute to oncogenesis, we examined the microRNA (miRNA) and long non-coding RNA (lncRNA) expression in FLC. The non-coding RNA expression profile in tumor tissue samples is distinctly different from the adjacent normal liver and from other liver tumors. Furthermore, miRZip knock down or over expression of certain miRNAs led to changes in the levels of coding genes that recapitulated changes observed in FLC, suggesting mechanistically that the changes in the cellular levels of miRNA are not merely correlative. Thus, in addition to serving as diagnostic tools for FLC, non-coding RNAs may serve as therapeutic targets.
Collapse
|
32
|
Zhou H, Yang Y, Shen HB. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features. Bioinformatics 2017; 33:843-853. [PMID: 27993784 DOI: 10.1093/bioinformatics/btw723] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022] Open
Abstract
Motivation Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. Results In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. Availability and Implementation www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. Contacts hbshen@sjtu.edu.cn. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hang Zhou
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Ministry of Education of China, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Ministry of Education of China, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| |
Collapse
|
33
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
34
|
Lin C, Hu Z, Lei B, Tang B, Yu H, Qiu X, He S. Overexpression of Yes-associated protein and its association with clinicopathological features of hepatocellular carcinoma: A meta-analysis. Liver Int 2017; 37:1675-1681. [PMID: 28345185 PMCID: PMC5697662 DOI: 10.1111/liv.13428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/18/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Yes-associated protein (YAP) overexpression is reported to be associated with risk of hepatocellular carcinoma (HCC) but current studies have not explored the relationship between YAP expression with HCC clinicopathological features. METHODS To assess these associations, a meta-analysis was performed which included four eligible studies including 391 HCC cases and 334 controls. There were eight eligible studies to investigate the association between YAP expression in HCC and clinicopathological features of liver cancer patients. Literature was obtained from PubMed, Embase, Wangfang and China National Knowledge Infrastructure. RESULTS Analysis indicated that YAP expression in HCC was greater than in adjacent non-tumour tissue (odds ratio [OR], 15.80, 95% confidence interval [CI], 10.53-23.70, P<.00001; heterogeneity=.30). YAP overexpression in HCC was significantly associated with vascular invasion (OR, 2.21, 95% CI, 11.64-2.97, P<.00001, heterogeneity=.10), less cellular differentiation (OR, 2.38, 95% CI, 1.61-3.51, P<.00001, heterogeneity=.333), tumours larger than 5 cm (OR, 2.52, 95% CI, 1.75-3.62, P<.00001; heterogeneity=.17) and TNM tumour stage I + II (OR, 0.44, 95% CI, 0.28-0.75, P=.00003, heterogeneity=.12). CONCLUSIONS Overexpression of YAP contributes to HCC formation, and its overexpression is associated with vascular invasion, low cellular differentiation tumours larger than 5 cm and TNM tumour stage III + IV.
Collapse
Affiliation(s)
- Chengjie Lin
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairAffiliated Guilin Medical UniversityGuilinGuangxiChina
| | - Zhigao Hu
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairAffiliated Guilin Medical UniversityGuilinGuangxiChina
| | - Biao Lei
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairAffiliated Guilin Medical UniversityGuilinGuangxiChina
| | - Bo Tang
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hongping Yu
- Department of EpidemiologySchool of Public HealthGuangxi Medical UniversityNanningChina
| | - Xiaoqiang Qiu
- Department of EpidemiologySchool of Public HealthGuangxi Medical UniversityNanningChina
| | - Songqing He
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairAffiliated Guilin Medical UniversityGuilinGuangxiChina
| |
Collapse
|
35
|
Zhang Y, Yan S, Chen J, Gan C, Chen D, Li Y, Wen J, Kremerskothen J, Chen S, Zhang J, Cao Y. WWC2 is an independent prognostic factor and prevents invasion via Hippo signalling in hepatocellular carcinoma. J Cell Mol Med 2017; 21:3718-3729. [PMID: 28815883 PMCID: PMC5706493 DOI: 10.1111/jcmm.13281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/23/2017] [Indexed: 01/17/2023] Open
Abstract
WWC family proteins negatively regulate HEK293 cell proliferation and organ growth by suppressing the transcriptional activity of Yes‐associated protein (YAP), a major effector of the Hippo pathway. The function of the scaffolding protein WWC1 (also called KIBRA) has been intensively studied in cells and animal models. However, the expression and clinicopathologic significance of WWC2 in cancer are poorly characterized. This study aimed to clarify the biological function and mechanism of action of WWC2 in hepatocellular carcinoma (HCC). Retrospective analysis revealed WWC2 was significantly down‐regulated in 95 clinical HCC tissues compared to the paired adjacent non‐cancerous tissues. Moreover, loss of WWC2 expression was significantly associated with advanced clinicopathological features, including venous infiltration, larger tumour size and advanced TNM stage. Positive WWC2 expression was associated with significantly better 5‐year overall survival, and WWC2 was an independent prognostic factor for overall survival in HCC. Moreover, we confirmed WWC2 inhibits HCC cell invasive ability in vitro. Elevated YAP expression was also observed in the same cohort of HCC tissues. Pearson's correlation coefficient analysis indicated WWC2 expression correlated inversely with nuclear YAP protein expression in HCC. Mechanistically, we confirmed overexpression of WWC2 suppresses the invasive and metastatic potential of HCC cells by activating large tumour suppressor 1 and 2 kinases (LATS1/2), which in turn phosphorylates the transcriptional co‐activator YAP. Overall, this study indicates WWC2 functions as a tumour suppressor by negatively regulating the Hippo signalling pathway and may serve as a prognostic marker in HCC.
Collapse
Affiliation(s)
- Yijun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shumei Yan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiewei Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Caixia Gan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Li
- Department of Oncology, Tumor Angiogenesis and Microenvironment Laboratory (TAML), First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiahuai Wen
- Department of Breast Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Joachim Kremerskothen
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Shilu Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiangbo Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Cao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
36
|
Gong W, Zheng J, Liu X, Liu Y, Guo J, Gao Y, Tao W, Chen J, Li Z, Ma J, Xue Y. Knockdown of Long Non-Coding RNA KCNQ1OT1 Restrained Glioma Cells' Malignancy by Activating miR-370/CCNE2 Axis. Front Cell Neurosci 2017; 11:84. [PMID: 28381990 PMCID: PMC5360732 DOI: 10.3389/fncel.2017.00084] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/10/2017] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in solid tumors. Here, we elucidated the function and possible molecular mechanisms of lncRNA KCNQ1OT1 in human glioma U87 and U251 cells. Quantitative Real-Time polymerase chain reaction (qRT-PCR) demonstrated that KCNQ1OT1 expression was up-regulated in glioma tissues and cells. Knockdown of KCNQ1OT1 exerted tumor-suppressive function in glioma cells. Moreover, a binding region was confirmed between KCNQ1OT1 and miR-370 by dual-luciferase assays. qRT-PCR showed that miR-370 was down-regulated in human glioma tissue and cells. In addition, restoration of miR-370 exerted tumor-suppressive function via inhibiting cell proliferation, migration and invasion, while promoting the apoptosis of human glioma cells. Knockdown of KCNQ1OT1 decreased the expression level of Cyclin E2 (CCNE2) by binding to miR-370. Further, miR-370 bound to CCNE2 3′UTR region and decreased the expression of CCNE2. These results provided a comprehensive analysis of KCNQ1OT1-miR-370-CCNE2 axis in human glioma cells and might provide a novel strategy for glioma treatment.
Collapse
Affiliation(s)
- Wei Gong
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Junqing Guo
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yana Gao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Wei Tao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| |
Collapse
|
37
|
Ahmed AA, Mohamed AD, Gener M, Li W, Taboada E. YAP and the Hippo pathway in pediatric cancer. Mol Cell Oncol 2017; 4:e1295127. [PMID: 28616573 DOI: 10.1080/23723556.2017.1295127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is evolutionarily conserved in mammals and is stimulated by cell-cell contact, inhibiting cell proliferation in response to increased cell density. During early embryonic development, the Hippo signaling pathway regulates organ development and size, and its functions result in the coordinated balance between proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to cancer development in adults and children. Emerging studies have shed light on the upregulation of Hippo pathway members in several pediatric cancers and may offer prognostic information on rhabdomyosarcoma, osteosarcoma, Wilms tumor, neuroblastoma, medulloblastoma, and other brain gliomas. We review the results of such published studies and highlight the potential clinical application of this pathway in pediatric oncologic and pathologic studies. These studies support targeting this pathway as a novel treatment strategy.
Collapse
Affiliation(s)
- Atif A Ahmed
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | | | - Melissa Gener
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Weijie Li
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Eugenio Taboada
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| |
Collapse
|