1
|
Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, Nasiri K, Esfahaniani M, Yasamineh S. Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases. Stem Cell Rev Rep 2024; 20:688-721. [PMID: 38308730 DOI: 10.1007/s12015-024-10687-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
2
|
Liu Z, Li Q, Wang X, Wu Y, Zhang Z, Mao J, Gong S. Proanthocyanidin enhances the endogenous regeneration of alveolar bone by elevating the autophagy of PDLSCs. J Periodontal Res 2023; 58:1300-1314. [PMID: 37715945 DOI: 10.1111/jre.13186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of proanthocyanidin (PA) on osteogenesis mediated by periodontal ligament stem cells (PDLSCs) and endogenous alveolar bone regeneration. BACKGROUND Leveraging the osteogenic potential of resident stem cells is a promising strategy for alveolar bone regeneration. PA has been reported to be effective in osteogenesis. However, the effect and mechanism of PA on the osteogenic differentiation of PDLSCs remain elusive. METHODS Human PDLSCs were treated with various doses of PA to assess the cell proliferation using Cell Counting Kit-8. The osteogenic differentiation ability was detected by qRT-PCR analysis, western blot analysis, Alizarin red S staining, and Alkaline Phosphatase staining. The level of autophagy was evaluated by confocal laser scanning microscopy, transmission electron microscopy, and western blot analysis. RNA sequencing was utilized to screen the potential signaling pathway. The alveolar bone defect model of rats was created to observe endogenous bone regeneration. RESULTS PA activated intracellular autophagy in PDLSCs, resulting in enhanced osteogenic differentiation. Moreover, this effect could be abolished by the autophagy inhibitor 3-Methyladenine. Mechanistically, the PI3K/Akt/mTOR pathway was negatively correlated with PA-mediated autophagy activation. Lastly, PA promoted the alveolar bone regeneration in vivo, and this effect was reversed when the autophagy process was blocked. CONCLUSION PA may activate autophagy by inhibiting PI3K/Akt/mTOR signaling pathway to promote the osteogenesis of PDLSCs and enhance endogenous alveolar bone regeneration.
Collapse
Affiliation(s)
- Zhuo Liu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qilin Li
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyao Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yaxin Wu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhixing Zhang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
3
|
Lampiasi N. The Migration and the Fate of Dental Pulp Stem Cells. BIOLOGY 2023; 12:biology12050742. [PMID: 37237554 DOI: 10.3390/biology12050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
4
|
FTY720 Attenuates LPS-Induced Inflammatory Bone Loss by Inhibiting Osteoclastogenesis via the NF- κB and HDAC4/ATF Pathways. J Immunol Res 2023; 2023:8571649. [PMID: 36644540 PMCID: PMC9839404 DOI: 10.1155/2023/8571649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Osteoclast (OC) abnormalities lead to many osteolytic diseases, such as osteoporosis, inflammatory bone erosion, and tumor-induced osteolysis. Exploring effective strategies to remediate OCs dysregulation is essential. FTY720, also known as fingolimod, has been approved for the treatment of multiple sclerosis and has anti-inflammatory and immunosuppressive effects. Here, we found that FTY720 inhibited osteoclastogenesis and OC function by inhibiting nuclear factor kappa-B (NF-κB) signaling. Interestingly, we also found that FTY720 inhibited osteoclastogenesis by upregulating histone deacetylase 4 (HDAC4) expression levels and downregulating activating transcription factor 4 (ATF4) expression levels. In vivo, FTY720 treatment prevented lipopolysaccharide- (LPS-) induced calvarial osteolysis and significantly reduced the number of tartrate-resistant acid phosphatase- (TRAP-) positive OCs. Taken together, these results demonstrate that FTY720 can inhibit osteoclastogenesis and ameliorate inflammation-induced bone loss. Which may provide evidence of a new therapeutic target for skeletal diseases caused by OC abnormalities.
Collapse
|
5
|
Meng L, Wei Y, Liang Y, Hu Q, Xie H. Stem cell homing in periodontal tissue regeneration. Front Bioeng Biotechnol 2022; 10:1017613. [PMID: 36312531 PMCID: PMC9607953 DOI: 10.3389/fbioe.2022.1017613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
The destruction of periodontal tissue is a crucial problem faced by oral diseases, such as periodontitis and tooth avulsion. However, regenerating periodontal tissue is a huge clinical challenge because of the structural complexity and the poor self-healing capability of periodontal tissue. Tissue engineering has led to advances in periodontal regeneration, however, the source of exogenous seed cells is still a major obstacle. With the improvement of in situ tissue engineering and the exploration of stem cell niches, the homing of endogenous stem cells may bring promising treatment strategies in the future. In recent years, the applications of endogenous cell homing have been widely reported in clinical tissue repair, periodontal regeneration, and cell therapy prospects. Stimulating strategies have also been widely studied, such as the combination of cytokines and chemokines, and the implantation of tissue-engineered scaffolds. In the future, more research needs to be done to improve the efficiency of endogenous cell homing and expand the range of clinical applications.
Collapse
Affiliation(s)
- Lingxi Meng
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yige Wei
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaxian Liang
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Hu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Huixu Xie,
| |
Collapse
|
6
|
Fraser D, Caton J, Benoit DSW. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a widespread inflammatory disease that leads to loss of the tooth supporting periodontal tissues. The few therapies available to regenerate periodontal tissues have high costs and inherent limitations, inspiring the development of new approaches. Studies have shown that periodontal tissues have an inherent capacity for regeneration, driven by multipotent cells residing in the periodontal ligament (PDL). The purpose of this review is to describe the current understanding of the mechanisms driving periodontal wound healing and regeneration that can inform the development of new treatment approaches. The biologic basis underlying established therapies such as guided tissue regeneration (GTR) and growth factor delivery are reviewed, along with examples of biomaterials that have been engineered to improve the effectiveness of these approaches. Emerging therapies such as those targeting Wnt signaling, periodontal cell delivery or recruitment, and tissue engineered scaffolds are described in the context of periodontal wound healing, using key in vivo studies to illustrate the impact these approaches can have on the formation of new cementum, alveolar bone, and PDL. Finally, design principles for engineering new therapies are suggested which build on current knowledge of periodontal wound healing and regeneration.
Collapse
|
7
|
Periodontal Cell Therapy: A Systematic Review and Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:377-397. [DOI: 10.1007/978-3-030-96881-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Lyu P, Li B, Li P, Bi R, Cui C, Zhao Z, Zhou X, Fan Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front Cell Dev Biol 2021; 9:654715. [PMID: 34760881 PMCID: PMC8573197 DOI: 10.3389/fcell.2021.654715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are two peptides that regulate mineral ion homeostasis, skeletal development, and bone turnover by activating parathyroid hormone 1 receptor (PTH1R). PTH1R signaling is of profound clinical interest for its potential to stimulate bone formation and regeneration. Recent pre-clinical animal studies and clinical trials have investigated the effects of PTH and PTHrP analogs in the orofacial region. Dental mesenchymal stem cells (MSCs) are targets of PTH1R signaling and have long been known as major factors in tissue repair and regeneration. Previous studies have begun to reveal important roles for PTH1R signaling in modulating the proliferation and differentiation of MSCs in the orofacial region. A better understanding of the molecular networks and underlying mechanisms for modulating MSCs in dental diseases will pave the way for the therapeutic applications of PTH and PTHrP in the future. Here we review recent studies involving dental MSCs, focusing on relationships with PTH1R. We also summarize recent basic and clinical observations of PTH and PTHrP treatment to help understand their use in MSCs-based dental and bone regeneration.
Collapse
Affiliation(s)
- Ping Lyu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Kang W, Du L, Liang Q, Zhang R, Lv C, Ge S. Transcriptome analysis reveals the mechanism of stromal cell-derived factor-1 and exendin-4 synergistically promoted periodontal ligament stem cells osteogenic differentiation. PeerJ 2021; 9:e12091. [PMID: 34532163 PMCID: PMC8404574 DOI: 10.7717/peerj.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) and Exendin-4 (EX-4) play beneficial roles in promoting periodontal ligament stem cells (PDLSCs) osteogenic differentiation, while the detailed mechanism has not been clarified. In this study, we aimed to evaluate the biological mechanism of SDF-1 and EX-4 alone or synergistic application in regulating PDLSCs differentiation by RNA-sequencing (RNA-seq). A total of 110, 116 and 109 differentially expressed genes (DEGs) were generated in osteogenic medium induced PDLSCs treated by SDF-1, EX-4, and SDF-1+EX-4, respectively. The DEGs in SDF-1 group were enriched in signal transduction related signaling pathways; the DEGs in EX-4 group were enriched in metabolism and biosynthesis-related pathways; and the DEGs generated in SDF-1+EX-4 group were mainly enriched in RNA polymerase II transcription, cell differentiation, chromatin organization, protein phosphorylation pathways. Based on Venn analysis, a total of 37 specific DEGs were identified in SDF-1+EX-4 group, which were mainly enriched in negative regulation of autophagy and cellular component disassembly signaling pathways. Short time-series expression miner (STEM) analysis grouped all expressed genes of PDLSCs into 49 clusters according to the dynamic expression patterns and 25 genes, including NRSN2, CHD9, TUBA1A, distributed in 10 gene clusters in SDF-1+EX-4 treated PDLSCs were significantly up-regulated compared with the SDF-1 and EX-4 alone groups. The gene set enrichment analysis indicated that SDF-1 could amplify the role of EX-4 in regulating varied signaling pathways, such as type II diabetes mellitus and insulin signaling pathways; while EX-4 could aggravate the effect of SDF-1 on PDLSCs biological roles via regulating primary immunodeficiency, tight junction signaling pathways. In summary, our study confirmed that SDF-1 and EX-4 combined application could enhance PDLSCs biological activity and promote PDLSCs osteogenic differentiation by regulating the metabolism, biosynthesis and immune-related signaling pathways.
Collapse
Affiliation(s)
- Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Lingqian Du
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qianyu Liang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Rui Zhang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Chunxu Lv
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
10
|
Fang L, Wang W, Chen J, Zuo A, Gao H, Yan T, Wang P, Lu Y, Lv R, Xu F, Chen Y, Lyu L. Osthole Attenuates Bleomycin-Induced Pulmonary Fibrosis by Modulating NADPH Oxidase 4-Derived Oxidative Stress in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3309944. [PMID: 34527170 PMCID: PMC8437590 DOI: 10.1155/2021/3309944] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the extensive accumulation of myofibroblasts and collagens. However, the exact mechanism that underlies this condition is unclear. Growing evidence suggests that NADPH oxidases (NOXs), especially NOX4-derived oxidative stress, play an important role in the development of lung fibrosis. Bleomycin (BLM) is a tumor chemotherapeutic agent, which has been widely employed to establish IPF animal models. Osthole (OST) is an active constituent of the fruit of Cnidium ninidium. Here, we used an in vivo mouse model and found that OST suppressed BLM-induced body weight loss, lung injury, pulmonary index increase, fibroblast differentiation, and pulmonary fibrosis. OST also significantly downregulated BLM-induced NOX4 expression and oxidative stress in the lungs. In vitro, OST could inhibit TGF-β1-induced Smad3 phosphorylation, differentiation, proliferation, collagen synthesis, NOX4 expression, and ROS generation in human lung fibroblasts in a concentration-dependent manner. Moreover, NOX4 overexpression could prevent the above effects of OST. We came to the conclusion that OST could significantly attenuate BLM-induced pulmonary fibrosis in mice, via the mechanism that involved downregulating TGF-β1/NOX4-mediated oxidative stress in lung fibroblasts.
Collapse
Affiliation(s)
- Lijun Fang
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Wang
- School of Public Health, Shandong University, Jinan, China
| | - Jiazheng Chen
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anju Zuo
- Department of General Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Hongmei Gao
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Tao Yan
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pengqi Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujia Lu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruijuan Lv
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences: The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences: The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences: The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Linmao Lyu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences: The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Liu S, Wang YN, Ma B, Shao J, Liu H, Ge S. Gingipain-Responsive Thermosensitive Hydrogel Loaded with SDF-1 Facilitates In Situ Periodontal Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36880-36893. [PMID: 34324286 DOI: 10.1021/acsami.1c08855] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing local drug delivery systems for periodontitis suffer from poor antibacterial effect and unsatisfied periodontal regeneration. In this study, a smart gingipain-responsive hydrogel (PEGPD@SDF-1) was synthesized as an environmentally sensitive carrier for on-demand drug delivery. The PEGPD@SDF-1 hydrogel was synthesized from polyethylene glycol diacrylate (PEG-DA) based scaffolds, dithiothreitol (DTT), and a novel designed functional peptide module (FPM) via Michael-type addition reaction, and the hydrogel was further loaded with stromal cell derived factor-1 (SDF-1). The FPM exhibiting a structure of anchor peptide-short antimicrobial peptide (SAMP)-anchor peptide could be cleaved by gingipain specifically, and the SAMP was released out of the hydrogel for antibacterial effect in response to gingipain. The hydrogel properties were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), swelling ratio analysis, degradation evaluation, and release curve description of the SAMP and SDF-1. Results in vitro indicated the PEGPD@SDF-1 hydrogel exhibited preferable biocompatibility and could promote the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Antibacterial testing demonstrated that the PEGPD@SDF-1 hydrogel released the SAMP stressfully in response to gingipain stimulation, thereby strongly inhibiting the growth of Porphyromonas gingivalis. Furthermore, the study in vivo indicated that the PEGPD@SDF-1 hydrogel inhibited P. gingivalis reproduction, created a low-inflammatory environment, facilitated the recruitment of CD90+/CD34- stromal cells, and induced osteogenesis. Taken together, these results suggest that the gingipain-responsive PEGPD@SDF-1 hydrogel could facilitate in situ periodontal tissue regeneration and is a promising candidate for the on-demand local drug delivery system for periodontitis.
Collapse
Affiliation(s)
- Shiyue Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Baojin Ma
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Hongrui Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
de Sousa BR, de Oliveira VC, Pinheiro AO, Ambrósio CE. Characterization of hematopoietic stem cells from the canine yolk sac. Anim Reprod 2021; 18:e20210012. [PMID: 34306214 PMCID: PMC8291774 DOI: 10.1590/1984-3143-ar2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The characterization of hematopoietic stem cells (HSC) from the canine yolk sac (cYS) can contribute to future gene therapies because it is possible to obtain information about the beginning of the development of the circulatory system through the characterization. The cYS is a likely source of HSC, which is a source of blood cell development in mammals. Studies in this field have been conducted for decades; however, interest in cellular therapy is currently at its peak with greater visibility, and these cells are a promising therapeutic tool for the treatment of diseases related to animals and humans. The aim of this study was to isolate and characterize HSC from the cYS embryos at 30 to 45 days of gestational age. Our results showed that the cYS was macroscopically located in the ventral region with a central portion and extremities. The cells in culture presented a circular morphology and cell clusters. The average cell viability was 22.55% dead cells out of 6.5 × 104 total cells. The cells were also able to form colonies on methylcellulose. Flow cytometry analysis revealed the expression of CD34, CD117, and CD45. Our results suggest that the cYS can be used as a source of hematopoietic cells, and this study is very important to understand the mechanism and development of the hematopoietic system in dogs.
Collapse
Affiliation(s)
- Bárbara Rossi de Sousa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Alessandra Oliveira Pinheiro
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
13
|
Liu ZQ, Shang LL, Ge SH. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling. J Dent Sci 2021; 16:937-947. [PMID: 34141108 PMCID: PMC8189879 DOI: 10.1016/j.jds.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND/PURPOSE Relieving immuno-inflammatory responses is the prerequisite step for treating periodontitis. The angiogenic small molecule, dimethyloxalylglycine (DMOG), and osteoinductive inorganic nanomaterial, nanosilicate (nSi) have a powerful effect on bone regeneration, whereas the roles in osteoimmunomodulation have not been totally uncovered. Our study aimed to explore the immunomodulatory effect of DMOG/nSi-loaded fibrous membranes on periodontal bone remodeling. MATERIALS AND METHODS The fibrous membranes were prepared by incorporating DMOG and nSi into poly (lactic-co-glycolic acid) (PLGA) with electrospinning. The morphology features, surface chemical property and biocompatibility of DMOG/nSi-PLGA fibrous membranes were characterized. Thereafter, the fibrous membranes were implanted into rat periodontal defects, bone remodeling potential and immunomodulatory effect were evaluated by micro-computed tomography (micro-CT), histological evaluation and immunohistochemical analysis. RESULTS DMOG/nSi-PLGA membranes possessed favorable physicochemical properties and biocompatibility. After the fibrous membranes implanted into periodontal defects, DMOG/nSi-PLGA membranes could relieve immuno-inflammatory responses of the defects (reduction of inflammatory cell infiltration, CD40L and CD11b-positive cells), increased CD206-positive M2 macrophages, and eventually facilitated periodontal bone regeneration. CONCLUSION DMOG/nSi-PLGA fibrous membranes exert protective effects during periodontal bone defect repairing, and steer immune response towards bone regeneration. Consequently, DMOG/nSi-PLGA fibrous membranes may serve as a promising scaffold in periodontal tissue engineering.
Collapse
Affiliation(s)
- Zi-Qi Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, Shandong, 250012, China
| | - Ling-Ling Shang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, Shandong, 250012, China
| | - Shao-Hua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1, Wenhua Road West, Jinan, Shandong, 250012, China
| |
Collapse
|
14
|
Hakki SS, Bozkurt BS, Hakki EE, Karaoz E, Unlu A, Kayis SA. SDF-1 modulates periodontal ligament-Mesenchymal Stem Cells (pdl-MSCs). J Periodontal Res 2021; 56:774-781. [PMID: 33733508 DOI: 10.1111/jre.12876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND/OBJECTIVES In this in vitro study, the effects of Stromal cell-derived factor-1 (SDF-1) was evaluated on the periodontal ligament-Mesenchymal Stem Cells (pdl-MSCs) functions. MATERIAL AND METHODS Real-time cell analyzer-single plate (RTCA-SP) was employed for proliferation, and RTCA-dual purpose (DP) was utilized for pdl-MSCs migration potential treated with different SDF-1 concentrations (0, 0.1, 1, 10, 100, 200, and 400 ng/ml). Based on the dose-response findings, 10 ng/ml SDF-1 was used for further mRNA experiments. RNAs isolated at 6 and 24 h were checked using quantitative RT-PCR for mineralized tissue-associated genes including type I collagen (COL I), osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2). cRNA was synthesized for 6 h, and whole-genome array analysis was performed for over 47.000 probes. Data were subjected to quantile normalization before analysis. RESULTS Increased proliferation and migration were observed in pdl-MSCs treated with 0.1, 1, and 10 ng/ml SDF-1. Increased COL I was observed at both time points: 6 and 24 h. While there was no significant change for OCN, OPN, and Runx2 at 6 h, SDF-1 up-regulated OCN and OPN, but down-regulated Runx2 mRNA expressions at 24 h. IL-8 and ESM1 genes were differentially expressed over twofold when the pdl-MSCs were exposed to SDF-1 at whole-genome array analysis. IL-8 induction was confirmed with RT-PCR. CONCLUSION Findings of this study displayed that SDF-1 modulated pdl-MSCs which were important for periodontal regeneration, inducing migration and proliferation, and regulating extracellular matrix synthesis in favor of the formation of new attachment.
Collapse
Affiliation(s)
- Sema S Hakki
- Faculty of Dentistry, Department of Periodontology, Selcuk University, Konya, Turkey.,Research Center of Dental Faculty, Selcuk University, Konya, Turkey
| | - Buket S Bozkurt
- Research Center of Dental Faculty, Selcuk University, Konya, Turkey.,Faculty of Dentistry, Research Lab of Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Erdogan E Hakki
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Molecular Genetics & Biotechnology Laboratories Konya, Selcuk University, Konya, Turkey
| | - Erdal Karaoz
- Faculty of Medicine, Department of Histology & Embryology, Istinye University, İstanbul, Turkey.,Center for Stem Cell and Tissue Engineering Research & Practice, Istinye University, İstanbul, Turkey.,Center for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), Liv Hospital, İstanbul, Turkey
| | - Ali Unlu
- Faculty of Medicine, Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Seyit Ali Kayis
- Faculty of Medicine, Department of Biostatistics, Bolu Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
15
|
Liang Q, Du L, Zhang R, Kang W, Ge S. Stromal cell-derived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo. Cell Prolif 2021; 54:e12997. [PMID: 33511708 PMCID: PMC7941242 DOI: 10.1111/cpr.12997] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Stromal cell‐derived factor‐1 (SDF‐1) actively directs endogenous cell homing. Exendin‐4 (EX‐4) promotes stem cell osteogenic differentiation. Studies revealed that EX‐4 strengthened SDF‐1‐mediated stem cell migration. However, the effects of SDF‐1 and EX‐4 on periodontal ligament stem cells (PDLSCs) and bone regeneration have not been investigated. In this study, we aimed to evaluate the effects of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro and periodontal bone regeneration in vivo. Methods Cell‐counting kit‐8 (CCK8), transwell assay, qRT‐PCR and western blot were used to determine the effects and mechanism of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro. A rat periodontal bone defect model was developed to evaluate the effects of topical application of SDF‐1 and systemic injection of EX‐4 on endogenous cell recruitment, osteoclastogenesis and bone regeneration in vivo. Results SDF‐1/EX‐4 cotherapy had additive effects on PDLSC proliferation, migration, alkaline phosphatase (ALP) activity, mineral deposition and osteogenesis‐related gene expression compared to SDF‐1 or EX‐4 in vitro. Pretreatment with ERK inhibitor U0126 blocked SDF‐1/EX‐4 cotherapy induced ERK signal activation and PDLSC proliferation. SDF‐1/EX‐4 cotherapy significantly promoted new bone formation, recruited more CXCR4+ cells and CD90+/CD34‐ stromal cells to the defects, enhanced early‐stage osteoclastogenesis and osteogenesis‐related markers expression in regenerated bone compared to control, SDF‐1 or EX‐4 in vivo. Conclusions SDF‐1/EX‐4 cotherapy synergistically regulated PDLSC activities, promoted periodontal bone formation, thereby providing a new strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Qianyu Liang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| | - Lingqian Du
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan Shandong, China
| | - Rui Zhang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China.,Department of Endodontics, Hospital of stomatology, Zunyi Medical University, Zunyi Guizhou, China
| | - Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| |
Collapse
|
16
|
Ding T, Li J, Zhang X, Du L, Li Y, Li D, Kong B, Ge S. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex regeneration. Biomater Sci 2021; 8:2459-2471. [PMID: 32191780 DOI: 10.1039/d0bm00102c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regeneration of periodontal tissue defects remains a clinical challenge due to its complex tissue structure (e.g. periodontal ligament, alveolar bone and cementum) and poor self-healing ability. In situ tissue engineering has emerged as a promising approach that combines frameworks with growth factors that are specifically chosen for the recruitment of endogenous stem cells to the site of injury and to evoke the innate regenerative potential of the body. Herein, a core/shell fibrous super-assembled framework (SAF)-based sequential growth factor delivery system is developed, in which basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) are designed to release in a sequential manner to facilitate in situ regeneration of the cementum-ligament-bone complex. The in situ tissue engineering framework (iTE-framework) shows ameliorated physicochemical properties and improved hydrophilicity, with an initial burst release of bFGF in the first few days, followed by a slow and constant release of BMP-2 up to 4 weeks. The iTE-framework shows excellent biocompatibility, significantly promoting the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in vitro. After implantation in rat periodontal defects, the iTE-framework effectively triggers the recruitment of mesenchymal stem cells (MSCs) to the defect site, significantly promotes the formation of new bones, and facilitates the regeneration of the periodontal ligament and cementum tissue in vivo. Therefore, this sequential delivery system provides a promising therapeutic strategy for cementum-ligament-bone complex regeneration.
Collapse
Affiliation(s)
- Tian Ding
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| | - Jianhua Li
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| | - Xingshuang Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Lingqian Du
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| | - Yang Li
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Dengwang Li
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| |
Collapse
|
17
|
Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioact Mater 2020; 6:1175-1188. [PMID: 33163699 PMCID: PMC7593348 DOI: 10.1016/j.bioactmat.2020.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The coupled process of osteogenesis-angiogenesis plays a crucial role in periodontal tissue regeneration. Although various cytokines or chemokines have been widely applied in periodontal in situ tissue engineering, most of them are macromolecular proteins with the drawbacks of short effective half-life, poor stability and high cost, which constrain their clinical translation. Our study aimed to develop a difunctional structure for periodontal tissue regeneration by incorporating an angiogenic small molecule, dimethyloxalylglycine (DMOG), and an osteoinductive inorganic nanomaterial, nanosilicate (nSi) into poly (lactic-co-glycolic acid) (PLGA) fibers by electrospinning. The physiochemical properties of DMOG/nSi-PLGA fibrous membranes were characterized. Thereafter, the effect of DMOG/nSi-PLGA membranes on periodontal tissue regeneration was evaluated by detecting osteogenic and angiogenic differentiation potential of periodontal ligament stem cells (PDLSCs) in vitro. Additionally, the fibrous membranes were transplanted into rat periodontal defects, and tissue regeneration was assessed with histological evaluation, micro-computed tomography (micro-CT), and immunohistochemical analysis. DMOG/nSi-PLGA membranes possessed preferable mechanical property and biocompatibility. PDLSCs seeded on the DMOG/nSi-PLGA membranes showed up-regulated expression of osteogenic and angiogenic markers, higher alkaline phosphatase (ALP) activity, and more tube formation in comparison with single application. Further, in vivo study showed that the DMOG/nSi-PLGA membranes promoted recruitment of CD90+/CD34− stromal cells, induced angiogenesis and osteogenesis, and regenerated cementum-ligament-bone complex in periodontal defects. Consequently, the combination of DMOG and nSi exerted admirable effects on periodontal tissue regeneration. DMOG/nSi-PLGA fibrous membranes could enhance and orchestrate osteogenesis-angiogenesis, and may have the potential to be translated as an effective scaffold in periodontal tissue engineering. Dual-load fibrous structure possessed preferable mechanical property and biocompatibility. Fibrous structure can orchestrate and enhance osteogenesis-angiogenesis coupling. Difunctional fibrous structure can recruit CD90+/CD34− stromal cells to periodontal defects. Difunctional fibrous structure obtained functional periodontal tissue regeneration.
Collapse
|
18
|
Nishida Y, Hashimoto Y, Orita K, Nishino K, Kinoshita T, Nakamura H. Intra-Articular Injection of Stromal Cell-Derived Factor 1α Promotes Meniscal Healing via Macrophage and Mesenchymal Stem Cell Accumulation in a Rat Meniscal Defect Model. Int J Mol Sci 2020; 21:ijms21155454. [PMID: 32751701 PMCID: PMC7432222 DOI: 10.3390/ijms21155454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
The stromal-cell-derived factor-1α (SDF-1) is well-known for playing important roles in the regeneration of tissue by enhancing cell migration. However, the effect of SDF-1 in meniscal healing remains unknown. The purpose of this study is to investigate the effects of intra-articular injection of SDF-1 on meniscus healing in a rat meniscal defect model. The intra-articular SDF-1 injection was performed at meniscectomy and one week later. Macroscopic and histological assessments of the reparative meniscus were conducted at one, two and six weeks after meniscectomy in rats. In the macroscopic evaluation, the SDF-1 group showed an increase in the size of the reparative meniscus at six weeks after meniscectomy compared to the phosphate-buffered saline (PBS) injection (no-treatment) group. Histological findings showed that intra-articular injection of SDF-1 enhanced the migration of macrophages to the site of the regenerative meniscus at one and two weeks after meniscectomy. CD68- and CD163-positive cells in the SDF-1 group at one week after meniscectomy were significantly higher than in the no-treatment group. CD163-positive cells in the SDF-1 group at two weeks were significantly higher than in the no-treatment group. At one week after meniscectomy, there were cells expressing mesenchymal-stem-cell-related markers in the SDF-1 group. These results indicate the potential of regenerative healing of the meniscus by SDF-1 injection via macrophage and mesenchymal stem cell accumulation. In the present study, intra-articular administration of SDF-1 contributed to meniscal healing via macrophage, CD90-positive cell and CD105-positive cell accumulation in a rat meniscal defect model. The SDF-1–CXCR4 pathway plays an important role in the meniscal healing process. For potential clinical translation, SDF-1 injection therapy seems to be a promising approach for the biological augmentation in meniscal injury areas to enhance healing capacity.
Collapse
|
19
|
Wei DH, Deng JL, Shi RZ, Ma L, Shen JM, Hoffman R, Hu YH, Wang H, Gao JL. Epimedin C Protects H 2O 2-Induced Peroxidation Injury by Enhancing the Function of Endothelial Progenitor HUVEC Populations. Biol Pharm Bull 2019; 42:1491-1499. [PMID: 31204351 DOI: 10.1248/bpb.b19-00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cell injury and apoptosis induced by oxidative stress serve important roles in many vascular diseases. The repair of endothelial cell vascular injury relies on the function of local endothelial progenitor cells (EPCs). Our previous study indicated that epimedin C, a major flavonoid derived from Herba epimedii (yin yang huo), could promote vascularization by inducing endothelial-like differentiation of mesenchymal stem cells C3H/10T1/2 both in vivo and in vitro. In view of the significant cardiovascular protective effects of Herba epimedii, we detected a protective effect of epimedin C on hydrogen peroxide (H2O2)-induced peroxidation injury in human umbilical vein endothelial cells (HUVECs) and the role of EPC in this process. The results show that epimedin C increased the expression of the stem cell marker, CD34 and PROM1, and subsequently enhanced the expression and function of vascular endothelial growth factor and matrix metalloproteinase (MMP)-2 in local vascular endothelial cells. In conclusion, epimedin C protects H2O2-induced peroxidation injury by enhancing the function of endothelial progenitor HUVEC populations.
Collapse
Affiliation(s)
- Dan-Hong Wei
- Department of Neuroscience Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine
| | | | | | - Li Ma
- Zhejiang Chinese Medical University
| | | | - Robert Hoffman
- Zhejiang Chinese Medical University.,Five Branches University
| | - Ying-Hong Hu
- Department of Neuroscience Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Hui Wang
- Zhejiang Chinese Medical University
| | | |
Collapse
|
20
|
Explanation of Osteoblastic Differentiation of Stem Cells by Photo Biomodulation Using the Resonant Recognition Model. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9101979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differentiation of stem cells into different tissues is a promising approach to treat a large number of diseases, as well as for tissue transplantation and repair. It has been shown that parathyroid hormone, similarly to stromal self-derived factor, and the radiation of specific electromagnetic frequencies of blue and green light, can encourage stem cell differentiation into osteoblasts. Here, we analysed parathyroid hormone, its receptor and stromal self-derived factor using the Resonant Recognition Model, which proposes that protein function is based on specific frequencies of electromagnetic radiation within ultra-violet, visible, infra-red and far infra-red light. The purpose of this research is to predict the characteristic frequencies related to parathyroid hormone activities, particularly differentiation of stem cells into osteoblasts. We have found that the most effective wavelength for stem cell differentiation would be 502 nm, which is between 420 nm and 540 nm, already experimentally proven to be effective in stimulating osteoblast differentiation. Thus, we propose that wavelength radiation of 502 nm will be even more efficient for differentiation of stem cells into osteoblasts.
Collapse
|
21
|
He XT, Li X, Xia Y, Yin Y, Wu RX, Sun HH, Chen FM. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: Experimental studies in vitro and in rats. Acta Biomater 2019; 88:162-180. [PMID: 30735811 DOI: 10.1016/j.actbio.2019.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Recently, we found that although high-stiffness matrices stimulated osteogenic differentiation of bone marrow-derived stromal cells (BMSCs), the macrophages (Mφs) in high-stiffness transglutaminase crosslinked gelatins (TG-gels) tended to undergo M1 polarization and hence compromised cell osteogenesis. In this study, we hypothesized that the copresentation of interleukin (IL)-4 and stromal cell-derived factor (SDF)-1α in high-stiffness TG-gels may enhance periodontal regeneration by modulating Mφ polarization and promoting endogenous stem cell recruitment. We found that Mφs were more likely to polarize toward an immunomodulatory M2 state in the presence of IL-4 and hence positively influence the osteogenic differentiation of BMSCs when these cells coexisted in either indirect or direct co-culture systems. In cell migration assays, BMSCs exhibited an enhanced capability to move toward gels containing SDF-1α, and more cells could be recruited into the three-dimensional matrix of TG-gels. When TG-gels containing IL-4 and/or SDF-1α were used to repair periodontal defects, more new bone (MicroCT) was formed in animals that received the dual cytokine-loaded transplants at 4 weeks postsurgery. Mφs were recruited to all the transplanted gels, and after one week, more M1-phenotype cells were found in the groups without IL-4, while the presence of IL-4 was more likely to result in M2 polarization (immunofluorescence staining). When the tissue biopsies were histologically examined, the TG-gels containing both IL-4 and SDF-1α led to a generally satisfactory regeneration with respect to attachment recovery (epithelial and connective tissue) and hybrid tissue regeneration (bone, periodontal ligament and cementum). Our data suggest that the incorporation of IL-4 into high-stiffness TG-gels may promote the M2 polarization of Mφs and that SDF-1α can be applied to guide endogenous cell homing. Overall, building capacity for Mφ modulation and cell recruitment in high-stiffness hydrogels represents a simple and effective strategy that can support high levels of periodontal tissue regeneration. STATEMENT OF SIGNIFICANCE: The development of hydrogel-based regenerative therapies centered on the mobilization and stimulation of native cells for therapeutics opens a window toward realizing periodontal endogenous regeneration. In the present study, the parallel use of immunomodulatory and homing factors in high-stiffness hydrogel materials is shown to induce stem cell homing, modulate cell differentiation and indeed induce regrowth of the periodontium. We found that incorporation of interleukin (IL)-4 in high-stiffness TG-gels coaxed macrophages to polarize into M2 phenotypes, and stromal cell-derived factor (SDF)-1α could be applied to direct endogenous cell homing. Hence, we present for the first time a clinically relevant strategy based on macrophage modulation and host cell recruitment that can support high levels of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xiao-Tao He
- State Key Laboratory of Military Stomatology Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yu Xia
- State Key Laboratory of Military Stomatology Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Hai-Hua Sun
- State Key Laboratory of Military Stomatology Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China; Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China.
| |
Collapse
|
22
|
Xu X, Li X, Wang J, He X, Sun H, Chen F. Concise Review: Periodontal Tissue Regeneration Using Stem Cells: Strategies and Translational Considerations. Stem Cells Transl Med 2019; 8:392-403. [PMID: 30585445 PMCID: PMC6431686 DOI: 10.1002/sctm.18-0181] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a widespread disease characterized by inflammation-induced progressive damage to the tooth-supporting structures until tooth loss occurs. The regeneration of lost/damaged support tissue in the periodontium, including the alveolar bone, periodontal ligament, and cementum, is an ambitious purpose of periodontal regenerative therapy and might effectively reduce periodontitis-caused tooth loss. The use of stem cells for periodontal regeneration is a hot field in translational research and an emerging potential treatment for periodontitis. This concise review summarizes the regenerative approaches using either culture-expanded or host-mobilized stem cells that are currently being investigated in the laboratory and with preclinical models for periodontal tissue regeneration and highlights the most recent evidence supporting their translational potential toward a widespread use in the clinic for combating highly prevalent periodontal disease. We conclude that in addition to in vitro cell-biomaterial design and transplantation, the engineering of biomaterial devices to encourage the innate regenerative capabilities of the periodontium warrants further investigation. In comparison to cell-based therapies, the use of biomaterials is comparatively simple and sufficiently reliable to support high levels of endogenous tissue regeneration. Thus, endogenous regenerative technology is a more economical and effective as well as safer method for the treatment of clinical patients. Stem Cells Translational Medicine 2019;8:392-403.
Collapse
Affiliation(s)
- Xin‐Yue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Jia Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Xiao‐Tao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Hai‐Hua Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Fa‐Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| |
Collapse
|
23
|
Kang W, Liang Q, Du L, Shang L, Wang T, Ge S. Sequential application of bFGF and BMP-2 facilitates osteogenic differentiation of human periodontal ligament stem cells. J Periodontal Res 2019; 54:424-434. [DOI: 10.1111/jre.12644] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Qianyu Liang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Lingqian Du
- Department of Stomatology; The Second Hospital of Shandong University; Jinan China
| | - Lingling Shang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| |
Collapse
|
24
|
Jin H, Liu Z, Li W, Jiang Z, Li Y, Zhang B. Polyethylenimine-alginate nanocomposites based bone morphogenetic protein 2 gene-activated matrix for alveolar bone regeneration. RSC Adv 2019; 9:26598-26608. [PMID: 35528551 PMCID: PMC9070436 DOI: 10.1039/c9ra05164c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
The repair and treatment of lost or damaged alveolar bone is of great significance in dentistry. Gene-activated matrix (GAM) technology provides a new way for bone regeneration. It is a local gene delivery system, which can not only recruit cells, but also influence their fate. For this purpose, we fabricated a bone morphogenetic protein 2 (BMP-2) gene-loaded absorbable gelatin sponge (AGS) and studied its effect on promoting alveolar bone formation and preventing resorption following tooth extraction in rats. In order to obtain better transfection efficiency, polyethylenimine-alginate (PEI-al) nanocomposites were synthesized and used as gene vectors to deliver BMP-2 cDNA plasmids (PEI-al/pBMP-2). The transfection efficiency, BMP-2 protein expression and osteogenic differentiation of the cells were investigated in vitro. In vivo, we established an alveolar bone regeneration model by extracting the rats' left mandibular incisors. The rats were randomly assigned into 3 groups: control group, unfilled sockets; AGS group, sockets filled with PEI-al solution-loaded gelatin sponges; AGS/BMP group, sockets filled with PEI-al/pBMP-2 solution-loaded gelatin sponge. Radiological and histological assays were performed at 4 and 8 weeks later. In vitro transfection assays indicated that PEI-al/pBMP-2 complexes could effectively transfect MC3T3-E1 cells, promoting the secretion of BMP-2 protein for at least 14 days, as well as increasing the expression of osteogenesis-related gene, ALP activity and calcium deposition. In vivo, western blot analysis showed BMP-2 protein was expressed in bone tissues of AGS/BMP group. The relative height of the residual alveolar ridge and bone mineral density (BMD) of the AGS/BMP group were significantly greater than those in the AGS and control groups at 4 and 8 weeks, respectively. Histological examination showed that, at 4 weeks, osteoblasts had grown in a cubic shape around the new bone in the AGS/BMP group, suggesting new bone formation. In conclusion, the combination of PEI-al/pBMP-2 complexes and gelatin sponge could promote alveolar bone regeneration, which may provide an easy and valuable method for alveolar ridge preservation and augmentation. Polyethylenimine-alginate nanocomposites based bone morphogenetic protein 2 gene-activated matrix may provide an easy and valuable method for alveolar ridge regeneration.![]()
Collapse
Affiliation(s)
- Han Jin
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Zhongshuang Liu
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Wei Li
- Department of Stomatology
- Harbin Children's Hospital
- Harbin
- China
| | - Zhuling Jiang
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Department of Implantology
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| |
Collapse
|
25
|
Han J, Ma B, Liu H, Wang T, Wang F, Xie C, Li M, Liu H, Ge S. Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model. J Biomed Mater Res A 2018; 106:3099-3110. [DOI: 10.1002/jbm.a.36502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Han
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Periodontology; School of Stomatology, Shandong University; Jinan 250012 China
| | - Baojin Ma
- State Key Laboratory of Crystal Materials; Shandong University; Jinan 250100 China
| | - Hongrui Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Bone Metabolism; School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Jinan 250100 China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Periodontology; School of Stomatology, Shandong University; Jinan 250012 China
| | - Fang Wang
- Department of Periodontology; Yantai Stomatological Hospital; Yantai 264001 China
| | - Chengjia Xie
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Periodontology; School of Stomatology, Shandong University; Jinan 250012 China
| | - Minqi Li
- Department of Bone Metabolism; School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Jinan 250100 China
| | - Hong Liu
- State Key Laboratory of Crystal Materials; Shandong University; Jinan 250100 China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Jinan 250012 China
- Department of Periodontology; School of Stomatology, Shandong University; Jinan 250012 China
| |
Collapse
|
26
|
Cai X, Yang F, Walboomers XF, Wang Y, Jansen JA, van den Beucken JJJP, Plachokova AS. Periodontal regeneration via chemoattractive constructs. J Clin Periodontol 2018; 45:851-860. [PMID: 29779212 PMCID: PMC6055718 DOI: 10.1111/jcpe.12928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
Abstract
Aim Chemoattractants, such as stromal cell‐derived factor‐1α (SDF‐1α), can offer an advantage for periodontal regeneration by recruiting the patient’s own stem cells to stimulate self‐repair. We here developed a chemoattractive construct for periodontal regeneration using SDF‐1α and evaluated its efficacy in vivo. Materials and Methods SDF‐1α was loaded on gelatin sponge and tested in vitro for SDF‐1α release. Subsequently, SDF‐1α constructs were implanted into rat periodontal defects for 1 and 6 weeks, with unloaded materials and empty defects as controls. The regenerative efficacy was evaluated by micro‐CT, histological and histomorphometrical analyses. Results In vitro results showed limited SDF‐1α release up to 35 days. In contrast, SDF‐1α constructs significantly improved periodontal defect regeneration in terms of alveolar bone height, new bone area and functional ligament length. Additionally, SDF‐1α constructs decreased the inflammatory response at Week 6. Conclusion Chemoattractive constructs significantly improved periodontal regeneration in terms of alveolar bone height, new bone area and functional ligament length.
Collapse
Affiliation(s)
- Xinjie Cai
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Yang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | | | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - John A Jansen
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | | | - Adelina S Plachokova
- Department of Implantology and Periodontology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
27
|
Auersvald CM, Santos FR, Nakano MM, Leoni GB, de Sousa Neto MD, Scariot R, Giovanini AF, Deliberador TM. The local administration of parathyroid hormone encourages the healing of bone defects in the rat calvaria: Micro-computed tomography, histological and histomorphometric evaluation. Arch Oral Biol 2017; 79:14-19. [PMID: 28282513 DOI: 10.1016/j.archoralbio.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the effect of a single-dose local administration of PTH on bone healing in rat calvarial bone defects by means of micro-computed tomography, histological and histomorphometric analysis. DESIGN Critical-size cranial osteotomy defects were created in 42 male rats. The animals were randomly divided into 3 groups. In the C Group, the bone defect was only filled with a blood clot. In the S Group, it was filled with a collagen sponge and covered with bovine cortical membrane. In the PTH Group, the defect was filled with a collagen sponge soaked with PTH and covered with bovine cortical membrane. The groups were further split in two for euthanasia 15 and 60days post-surgery. Data was statistically analyzed with t-tests for independent samples or the nonparametric Mann-Whitney test when applicable. Intragroup comparisons were analyzed with paired t-tests (p<0.05). RESULTS Micro-CT analysis results did not demonstrate statistically significant intergroup differences. At 15days post-surgery, the histomorphometric analysis showed that the PTH Group exhibited a significantly higher percentage of bone formation compared with the S Group. At 60days post-surgery, a higher percentage of new bone was observed in the PTH group. CONCLUSION The results suggest that the local administration of PTH encouraged the bone healing in critical-size calvarial defects in rats.
Collapse
Affiliation(s)
- Caroline Moreira Auersvald
- Graduate Program in Dentistry, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza, 5300 - Cidade Industrial, Curitiba, PR, 81280-330, Brazil
| | - Felipe Rychuv Santos
- Graduate Program in Dentistry, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza, 5300 - Cidade Industrial, Curitiba, PR, 81280-330, Brazil
| | - Mayara Mytie Nakano
- Graduate Program in Dentistry, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza, 5300 - Cidade Industrial, Curitiba, PR, 81280-330, Brazil
| | - Graziela Bianchi Leoni
- Departamento de Odontologia Restauradora, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/no - Campus da USP Ribeirão Preto, SP, CEP 14040-904, Brazil
| | - Manoel Damião de Sousa Neto
- Departamento de Odontologia Restauradora, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/no - Campus da USP Ribeirão Preto, SP, CEP 14040-904, Brazil
| | - Rafaela Scariot
- Graduate Program in Dentistry, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza, 5300 - Cidade Industrial, Curitiba, PR, 81280-330, Brazil
| | - Allan Fernando Giovanini
- Graduate Program in Dentistry, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza, 5300 - Cidade Industrial, Curitiba, PR, 81280-330, Brazil
| | - Tatiana Miranda Deliberador
- Graduate Program in Dentistry, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza, 5300 - Cidade Industrial, Curitiba, PR, 81280-330, Brazil.
| |
Collapse
|