1
|
Han R, Mei H, Huang Q, Ma C, Zhao Y, Jeyaraj A, Zhuang J, Wang Y, Chen X, Liu S, Li X. CsNAC17 enhances resistance to Colletotrichum gloeosporioides by interacting with CsbHLH62 in Camellia sinensis. HORTICULTURE RESEARCH 2025; 12:uhae295. [PMID: 39949880 PMCID: PMC11822394 DOI: 10.1093/hr/uhae295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 02/16/2025]
Abstract
The pathogen Colletotrichum gloeosporioides causes anthracnose, a serious threat to tea trees around the world, particularly in warm and humid regions. RNA-Seq data have previously indicated NAC transcription factors are involved in anthracnose resistance, but underlying mechanisms remain unclear. The BiFC, Split-LUC, and Co-IP assays validated the interaction between CsbHLH62 and CsNAC17 identified through yeast two-hybrid (Y2H) screening. CsNAC17 or CsbHLH62 overexpression enhanced anthracnose resistance, as well as enhanced levels of H2O2, hypersensitivity, and cell death in Nicotiana benthamiana. The NBS-LRR gene CsRPM1 is regulated by CsNAC17 by binding directly to its promoter (i.e. CACG, CATGTG), while CsbHLH62 facilitates CsNAC17's binding and increases transcriptional activity of CsRPM1. Additionally, transient silencing of CsNAC17 and CsbHLH62 in tea plant leaves using the virus-induced gene silencing (VIGS) system resulted in decreased resistance to anthracnose. Conversely, transient overexpression of CsNAC17 and CsbHLH62 in tea leaves significantly enhanced the resistance against anthracnose. Based on these results, it appears that CsbHLH62 facilitates the activity of CsNAC17 on CsRPM1, contributing to increased anthracnose resistance.
Collapse
Affiliation(s)
- Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiwei Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxin Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shujing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Xie Y, Cao C, Huang D, Gong Y, Wang B. Effects of microbial biocontrol agents on tea plantation microecology and tea plant metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1492424. [PMID: 39902199 PMCID: PMC11788416 DOI: 10.3389/fpls.2024.1492424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
The quality of fresh tea leaves is crucial to the final product, and maintaining microbial stability in tea plantations is essential for optimal plant growth. Unique microbial communities play a critical role in shaping tea flavor and enhancing plant resilience against biotic stressors. Tea production is frequently challenged by pests and diseases, which can compromise both yield and quality. While biotic stress generally has detrimental effects on plants, it also activates defense metabolic pathways, leading to shifts in microbial communities. Microbial biocontrol agents (MBCAs), including entomopathogenic and antagonistic microorganisms, present a promising alternative to synthetic pesticides for mitigating these stresses. In addition to controlling pests and diseases, MBCAs can influence the composition of tea plant microbial communities, potentially enhancing plant health and resilience. However, despite significant advances in laboratory research, the field-level impacts of MBCAs on tea plant microecology remain insufficiently explored. This review provides insights into the interactions among tea plants, insects, and microorganisms, offering strategies to improve pest and disease management in tea plantations.
Collapse
Affiliation(s)
- Yixin Xie
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Beibei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
3
|
Mahadevan N, Sinniah GD, Gunasekaram P, Karunajeewa DGNP. How Tea Plant Defends Against Blister Blight Disease: Facts Revealed and Unexplored Horizons. PLANT DISEASE 2024; 108:2253-2263. [PMID: 38616396 DOI: 10.1094/pdis-10-23-2033-fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Tea (Camellia sinensis [L.] O. Kuntze) is cultivated as a beverage crop. Despite being a hardy perennial, the tea plant is susceptible to various biotic stresses. Among them, the foliar disease blister blight (BB) is considered the most serious threat to the tea industry, particularly in Asia. BB caused by Exobasidium vexans (Basidiomycetes) was first reported from Northern India in 1868 and gradually established in other tea-growing countries. The fungus E. vexans attacks young harvestable shoots and causes 20 to 50% crop loss. Over the past 150 years, scientific research has delved into various aspects of BB disease, including pathogen biology, disease cycle, epidemiology, disease forecasting, crop loss assessment, and disease management strategies. In a recent shift in research focus, scientists have begun to investigate the resistance mechanisms of tea plants against BB and apply this knowledge to commercial tea cultivation. Although progress has been significant in understanding the fundamental aspects of BB resistance, the detailed molecular mechanisms driving this resistance remain under investigation. This paper focuses on the current understanding of defense mechanisms employed by tea plants against E. vexans and, conversely, how E. vexans overcomes these defenses. Furthermore, we discuss the application of plant resistance strategies in commercial tea cultivation. Lastly, we identify existing research gaps and propose future research directions in the field.
Collapse
Affiliation(s)
- Niranjan Mahadevan
- Plant Pathology Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka
- Department of Plant Sciences, Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | - Ganga Devi Sinniah
- Plant Pathology Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka
| | - Pradeep Gunasekaram
- Advisory and Extension Division, Tea Research Institute of Sri Lanka, Talawakelle 22100, Sri Lanka
| | | |
Collapse
|
4
|
Han Y, Deng X, Tong H, Chen Y. Effect of blister blight disease caused by Exobasidium on tea quality. Food Chem X 2024; 21:101077. [PMID: 38226324 PMCID: PMC10788223 DOI: 10.1016/j.fochx.2023.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Blister blight, as one of the most threatening and damaging disease worldwide, mainly infects young organs and tissues seriously affecting tea growth and quality. In this study, the spread of pathogen on tea leaves were examined by toluidine blue staining, scanning electron microscope and transmission electron microscope analysis. The composition and abundance of fungal community on leaf tissues were firstly analyzed. Sensory evaluation and metabolites analysis indicated that diseased tea leaves had strong sweet taste and soluble sugars contributed significantly to the taste, while metabolites showing bitter and astringent taste (caffeine, catechins) were significantly decreased. According to the biological functions of differential metabolites, sugars including 7 monosaccharides (d-xylose, d-arabinose, d-mannose, d-glucuronic acid, glucose, d-galactose and d-fructose), 2 disaccharide (sucrose and maltose) and 1 trisaccharide (raffinose) were the main differential sugars increased in content (>2 fold change), which was of great significance to sweet taste of diseased tea.
Collapse
Affiliation(s)
- Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Cao R, Dong X, Zhao Y, Yin J. Effects of blister blight disease on endophytic microbial diversity and community structure in tea ( Camellia sinensis) leaves. 3 Biotech 2023; 13:421. [PMID: 38037657 PMCID: PMC10684454 DOI: 10.1007/s13205-023-03846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
In this study, metagenomic sequencing technology was employed to analyze the ITS1 region sequence of the ITS rDNA gene of endophytic fungi and 16S sequence of endophytic bacteria in tea leaves with varying degrees of infection by tea blister blight disease as well as healthy tea leaves. Subsequently, a comparative analysis was conducted on the endophytic microbial diversity and the community structure in tea leaves. The findings of this investigation reveal a shift in the dominant endophytic fungal genera from Ascomycota to Basidiomycota as the disease progressed. Furthermore, a negative correlation was observed between Exobasidium and Talaromyce, with Talaromyce exhibiting potential as an antagonist against the disease. Meanwhile, our findings reveal that Proteobacteria, Firmicutes, and Actinobacteria were the three most abundant bacteria phyla in tea leaves. As the disease progressed, there was an increase in the relative abundance of Actinobacteria, while Variovorax, Sphingomonas, and Pseudomonas were found to have higher abundance in later stages. The diversity analysis results indicated that the endophytic microbial diversity and the community structure in tea leaves in the diseased group were lower than those in the healthy control group. In general, blister blight disease altered the community structure of endophytic microorganisms in tea leaves, resulting in a few species with high abundance. The study lays a foundation for investigating the pathogenic mechanism of tea blister disease and establishing a theoretical basis for controlling diseases in tea trees.
Collapse
Affiliation(s)
- Rui Cao
- College of Tea Science, Guizhou University, Guiyang, 550025 China
| | - Xuan Dong
- College of Tea Science, Guizhou University, Guiyang, 550025 China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025 China
| | - Yichen Zhao
- College of Tea Science, Guizhou University, Guiyang, 550025 China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025 China
| | - Jie Yin
- College of Tea Science, Guizhou University, Guiyang, 550025 China
| |
Collapse
|
6
|
Hazra A, Ghosh S, Naskar S, Rahaman P, Roy C, Kundu A, Chaudhuri RK, Chakraborti D. Global transcriptome analysis reveals fungal disease responsive core gene regulatory landscape in tea. Sci Rep 2023; 13:17186. [PMID: 37821523 PMCID: PMC10567763 DOI: 10.1038/s41598-023-44163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fungal infections are the inevitable limiting factor for productivity of tea. Transcriptome reprogramming recruits multiple regulatory pathways during pathogen infection. A comprehensive meta-analysis was performed utilizing previously reported, well-replicated transcriptomic datasets from seven fungal diseases of tea. The study identified a cumulative set of 18,517 differentially expressed genes (DEGs) in tea, implicated in several functional clusters, including the MAPK signaling pathway, transcriptional regulation, and the biosynthesis of phenylpropanoids. Gene set enrichment analyses under each pathogen stress elucidated that DEGs were involved in ethylene metabolism, secondary metabolism, receptor kinase activity, and various reactive oxygen species detoxification enzyme activities. Expressional fold change of combined datasets highlighting 2258 meta-DEGs shared a common transcriptomic response upon fungal stress in tea. Pervasive duplication events caused biotic stress-responsive core DEGs to appear in multiple copies throughout the tea genome. The co-expression network of meta-DEGs in multiple modules demonstrated the coordination of appropriate pathways, most of which involved cell wall organization. The functional coordination was controlled by a number of hub genes and miRNAs, leading to pathogenic resistance or susceptibility. This first-of-its-kind meta-analysis of host-pathogen interaction generated consensus candidate loci as molecular signatures, which can be associated with future resistance breeding programs in tea.
Collapse
Affiliation(s)
- Anjan Hazra
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sudipta Naskar
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Piya Rahaman
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chitralekha Roy
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
7
|
Yang X, Cao K, Ren X, Cao G, Xun W, Qin J, Zhou X, Jin L. Field Control Effect and Initial Mechanism: A Study of Isobavachalcone against Blister Blight Disease. Int J Mol Sci 2023; 24:10225. [PMID: 37373374 DOI: 10.3390/ijms241210225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Blister blight (BB) disease is caused by the obligate biotrophic fungal pathogen Exobasidium vexans Massee and seriously affects the yield and quality of Camellia sinensis. The use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption. Botanic fungicide isobavachalcone (IBC) has the potential to control fungal diseases on many crops but has not been used on tea plants. In this study, the field control effects of IBC were evaluated by comparison and in combination with natural elicitor chitosan oligosaccharides (COSs) and the chemical pesticide pyraclostrobin (Py), and the preliminary action mode of IBC was also investigated. The bioassay results for IBC or its combination with COSs showed a remarkable control effect against BB (61.72% and 70.46%). IBC, like COSs, could improve the disease resistance of tea plants by enhancing the activity of tea-plant-related defense enzymes, including polyphenol oxidase (PPO), catalase (CAT), phenylalanine aminolase (PAL), peroxidase (POD), superoxide dismutase (SOD), β-1,3-glucanase (Glu), and chitinase enzymes. The fungal community structure and diversity of the diseased tea leaves were examined using Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of the ribosomal rDNA genes. It was obvious that IBC could significantly alter the species' richness and the diversity of the fungal community in affected plant sites. This study broadens the application range of IBC and provides an important strategy for the control of BB disease.
Collapse
Affiliation(s)
- Xiuju Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Kunqian Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiaoli Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Guangyun Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weizhi Xun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiayong Qin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Linhong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Molecular regulation of immunity in tea plants. Mol Biol Rep 2023; 50:2883-2892. [PMID: 36538170 DOI: 10.1007/s11033-022-08177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Tea, which is mainly produced using the young leaves and buds of tea plants (Camellia sinensis (L.) O. Kuntze), is one of the most common non-alcoholic beverages consumed in the world. The standard of tea mostly depends on the variety and quality of tea plants, which generally grow in subtropical areas, where the warm and humid conditions are also conducive to the occurrence of diseases. In fighting against pathogens, plants rely on their sophisticated innate immune systems which has been extensively studied in model plants. Many components involved in pathogen associated molecular patterns (PAMPs) triggered immunity (PTI) and effector triggered immunity (ETI) have been found. Nevertheless, the molecular regulating network against pathogens (e.g., Pseudopestalotiopsis sp., Colletotrichum sp. and Exobasidium vexans) causing widespread disease (such as grey blight disease, anthracnose, and blister blight) in tea plants is still unclear. With the recent release of the genome data of tea plants, numerous genes involved in tea plant immunity have been identified, and the molecular mechanisms behind tea plant immunity is being studied. Therefore, the recent achievements in identifying and cloning functional genes/gene families, in finding crucial components of tea immunity signaling pathways, and in understanding the role of secondary metabolites have been summarized and the opportunities and challenges in the future studies of tea immunity are highlighted in this review.
Collapse
|
9
|
Zhang ZB, Xiong T, Chen JH, Ye F, Cao JJ, Chen YR, Zhao ZW, Luo T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J Mol Evol 2023; 91:156-168. [PMID: 36859501 DOI: 10.1007/s00239-023-10099-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis), is one of the most popular nonalcoholic beverages in the world and has numerous health benefits for humans. Along with new progress in biotechnologies, the refined chromosome-scale reference tea genomes have been achieved, which facilitates great promise for the understanding of fundamental genomic architecture and evolution of the tea plants. Here, we summarize recent achievements in genome sequencing in tea plants and review the new progress in origin and evolution of tea plants by population sequencing analysis. Understanding the genomic characterization of tea plants is import to improve tea quality and accelerate breeding in tea plants.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Hui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Jia Cao
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Zi-Wei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
10
|
Rapid and precise detection of cryptic tea pathogen Exobasidium vexans: RealAmp validation of LAMP approach. World J Microbiol Biotechnol 2022; 39:52. [PMID: 36564678 DOI: 10.1007/s11274-022-03506-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
This work embodies the development of a real time loop mediated isothermal amplification (RealAmp) assay for the rapid detection of the cryptic tea phytopathogen, Exobasidium vexans, the causal organism of blister blight disease. Due to the widespread popularity of tea as a beverage and the associated agro-economy, the rapid detection and management of the fast-spreading blister blight disease have been a longstanding necessity. Loop-mediated isothermal amplification (LAMP) primers were designed targeting the E. vexans ITS rDNA region and the reaction temperature was optimized at 62 °C with a 60 min reaction time. Amplification of the E. vexans isolates in the initial LAMP reactions was confirmed by both agarose gel electrophoresis and SYBR Green I dye based colour change visualization. The specificity of the LAMP primers for E. vexans was validated by negative testing of seven different phytopathogenic test fungi using LAMP and RealAmp assay. The positive findings in RealAmp assay for E. vexans strain were corroborated via detecting fluorescence signals in real-time. Further, the LAMP assays performed with gDNA isolated from infected tea leaves revealed positive amplification for the presence of E. vexans. The results demonstrate that this rapid and precise RealAmp assay has the potential to be applied for field-based detection of E. vexans in real-time.
Collapse
|
11
|
Chen Y, Wu W, Yang B, Xu F, Tian S, Lu J, Fu P. Grapevine VaRPP13 protein enhances oomycetes resistance by activating SA signal pathway. PLANT CELL REPORTS 2022; 41:2341-2350. [PMID: 36348066 DOI: 10.1007/s00299-022-02924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Expression of the VaRPP13 in Arabidopsis and tobacco enhanced resistance to oomycete pathogens, and this enhancement is closely related to the activation of salicylic acid (SA) signaling pathway. Resistance (R) genes, which usually contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR) domain, play crucial roles in disease resistance. In this study, we cloned a CC-NBS-LRR gene VaRPP13 from Vitis amurensis 'Shuang Hong' grapevine, and investigated its function on disease resistance. VaRPP13 expression was induced by Plasmopara viticola, an oomycetes pathogen causing downy mildew disease in grapevine. Heterologous expression VaRPP13 could also enhance resistance to Hyaloperonospora arabidopsidis in Arabidopsis thaliana and Phytophthora capsici in Nicotiana benthamiana, both oomycete pathogens. Further study indicated that VaRPP13 could enhance the expression of genes in SA signal pathway, while exogenous SA could also induce the expression of VaRPP13. In conclusion, our studies demonstrated that VaRPP13 contributes to a broad-spectrum resistance to oomycetes via activating SA signaling pathway.
Collapse
Affiliation(s)
- Yuchen Chen
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bohan Yang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Xu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Tian
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peining Fu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Zhang Z, Liu Z, Li S, Xiong T, Ye F, Han Y, Sun M, Cao J, Luo T, Zhang C, Chen J, Zhang W, Lian S, Yuan H. Effect of prior drought and heat stress on Camellia sinensis transcriptome changes to Ectropis oblique (Lepidoptera: Geometridae) resistance. Genomics 2022; 114:110506. [PMID: 36265745 DOI: 10.1016/j.ygeno.2022.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 01/15/2023]
Abstract
Tea plants are continuously confronted with a wide range of biotic and abiotic stressors in the field, which can occur concurrently or sequentially. To elucidate the molecular mechanisms in responses to such individual and combined stresses, we used RNAseq to compare the temporal changes in the transcriptome of Camellia sinensis to Ectropis oblique Prout alone or in combination with exposure to drought and heat. Compared with the individual stress, tea plants exhibit significant differences in transcriptome profiles under the combined stresses. Additionally, many unique genes exhibited significant differences in expression in individual and combined stress conditions. Our research showed novel insights into the molecular mechanisms of E. oblique Prout resistance in tea plants and provided a valuable resource for developing tea varieties with broad spectrum stress tolerance.
Collapse
Affiliation(s)
- Zaibao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Zixiao Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan, China
| | - Shuangru Li
- Shandong Academy of Sciences Yida Technology Consulting Co., Ltd., Shangdong, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Fan Ye
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Yanting Han
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Mengke Sun
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Jiajia Cao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Chi Zhang
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, Henan, China
| | - Jiahui Chen
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Wei Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan, China.
| | - Hongyu Yuan
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| |
Collapse
|
13
|
Agisha V, Ashwin N, Vinodhini R, Nalayeni K, Ramesh Sundar A, Malathi P, Viswanathan R. Transcriptome analysis of sugarcane reveals differential switching of major defense signaling pathways in response to Sporisorium scitamineum isolates with varying virulent attributes. FRONTIERS IN PLANT SCIENCE 2022; 13:969826. [PMID: 36325538 PMCID: PMC9619058 DOI: 10.3389/fpls.2022.969826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
Sugarcane smut caused by the basidiomycetous fungus Sporisorium scitamineum is one of the most devastating diseases that affect sugarcane production, globally. At present, the most practical and effective management strategy for the disease is the cultivation of resistant cultivars. In this connection, a detailed understanding of the host's defense mechanism in response to smut isolates with varying degrees of virulence at the molecular level would facilitate the development of reliable and durable smut-resistant sugarcane varieties. Hence, in this study, a comparative whole transcriptome analysis was performed employing Illumina RNA-seq in the smut susceptible cultivar Co 97009 inoculated with two distinct S. scitamineum isolates, Ss97009 (high-virulent) and SsV89101 (low-virulent) during the early phases of infection (2 dpi and 5 dpi) and at the phase of sporogenesis (whip emergence) (60 dpi). Though the differential gene expression profiling identified significant transcriptional changes during the early phase of infection in response to both the isolates, the number of differentially expressed genes (DEGs) were more abundant at 60 dpi during interaction with the high virulent isolate Ss97009, as compared to the low virulent isolate SsV89101. Functional analysis of these DEGs revealed that a majority of them were associated with hormone signaling and the synthesis of defense-related metabolites, suggesting a complex network of defense mechanisms is being operated in response to specific isolates of the smut pathogen. For instance, up-regulation of hormone-related genes, transcription factors, and flavonoid biosynthesis pathway genes was observed in response to both the isolates in the early phase of interaction. In comparison to early phases of infection, only a few pathogenesis-related proteins were up-regulated at 60 dpi in response to Ss97009, which might have rendered the host susceptible to infection. Strikingly, few other carbohydrate metabolism-associated genes like invertases were up-regulated in Ss97009 inoculated plants during the whip emergence stage, representing a shift from sucrose storage to smut symptoms. Altogether, this study established the major switching of defense signaling pathways in response to S. scitamineum isolates with different virulence attributes and provided novel insights into the molecular mechanisms of sugarcane-smut interaction.
Collapse
Affiliation(s)
| | | | | | | | - Amalraj Ramesh Sundar
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Sugarcane Breeding Institute, Coimbatore, India
| | | | | |
Collapse
|
14
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
15
|
Gong P, Kang J, Sadeghnezhad E, Bao R, Ge M, Zhuge Y, Shangguan L, Fang J. Transcriptional Profiling of Resistant and Susceptible Cultivars of Grapevine ( Vitis L.) Reveals Hypersensitive Responses to Plasmopara viticola. Front Microbiol 2022; 13:846504. [PMID: 35572700 PMCID: PMC9097084 DOI: 10.3389/fmicb.2022.846504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Grapevine downy mildew is the most serious disease of grapevine cultivars that affects the rate of resistance/susceptibility to Plasmopara viticola. In this study, we used the susceptible cultivar "Zitian Seedless" and the resistant cultivar "Kober 5BB" as materials to determine the transcriptome differences and phenotypes of the leaves after inoculation with downy mildew. The differences in microstructures and molecular levels were compared and analyzed. Fluorescence staining and microscopic observations confirmed that hypersensitive cell death occurred around the stomata in "Kober 5BB" infected by downy mildew zoospores. Meanwhile, transcriptomic profiling indicated that there were 11,713 and 6,997 gene expression differences between the resistant and susceptible cultivars at 72 h after inoculation when compared to control (0 h), respectively. The differentially expressed genes of the two cultivars are significantly enriched in different pathways, including response to plant-pathogen interaction, mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, phenylpropanoid, and flavonoid biosynthesis. Furthermore, the results of functional enrichment analysis showed that H2O2 metabolism, cell death, reactive oxygen response, and carbohydrate metabolism are also involved in the defense response of "Kober 5BB," wherein a total of 322 key genes have been identified. The protein interaction network showed that metacaspases (MCAs), vacuolar processing enzymes (VPEs), and Papain-like cysteine proteases (PLCPs) play an important role in the execution of hypersensitive responses (HR). In conclusion, we demonstrated that HR cell death is the key strategy in the process of grape defense against downy mildew, which may be mediated or activated by Caspase-like proteases.
Collapse
Affiliation(s)
- Peijie Gong
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jun Kang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruoxuan Bao
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengqing Ge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaxian Zhuge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Cao Q, Lv W, Jiang H, Chen X, Wang X, Wang Y. Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress. Int J Biol Macromol 2022; 205:749-760. [PMID: 35331791 DOI: 10.1016/j.ijbiomac.2022.03.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 01/04/2023]
Abstract
Glutathione S-transferases (GSTs) are ubiquitous enzymes involved in the regulation of plant growth, development, and stress responses. Unfortunately, the comprehensive identification of GSTs in tea plant has not been achieved. In this study, a total of 88 CsGSTs proteins were identified and divided into eight classes, among which the tau class was the largest. Chromosomal localization analysis revealed an uneven distribution of CsGSTs across the tea plant genome. Tandem duplication is the main force driving tea plant CsGSTs expansion. CsGSTs structures and conserved motifs were similar. The analysis of cis-regulatory elements in promoter regions showed that CsGSTs can response to multiple stresses, and that MYB may be involved in the transcriptional regulation of CsGST. RNA-Seq data revealed that the expression of most GSTUs was associated with various stresses, including pathogen and insect attack, cold spells, drought and salt stresses, nitrogen nutrition, bud dormancy, and morphological development, and the expression of these CsGSTs was obviously different in eight tissues. In addition, we proved that CsGSTU19, localized at the nucleus and cell membrane, was involved in tea plant defense against temperature stresses and Co. camelliae infection. These findings provide references for the further functional analysis of GSTs in the future.
Collapse
Affiliation(s)
- Qinghai Cao
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou, 310008, Zhejiang, China
| | - Wuyun Lv
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Hong Jiang
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xueling Chen
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou, 310008, Zhejiang, China.
| | - Yuchun Wang
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
17
|
Zhang Q, Guo N, Zhang Y, Yu Y, Liu S. Genome-Wide Characterization and Expression Analysis of Pathogenesis-Related 1 ( PR-1) Gene Family in Tea Plant ( Camellia sinensis (L.) O. Kuntze) in Response to Blister-Blight Disease Stress. Int J Mol Sci 2022; 23:ijms23031292. [PMID: 35163217 PMCID: PMC8836084 DOI: 10.3390/ijms23031292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/13/2023] Open
Abstract
Pathogenesis-related 1 (PR-1) proteins, which are defense proteins in plant–pathogen interactions, play an important role in the resistance and defense of plants against diseases. Blister blight disease is caused by Exobasidium vexans Massee and a major leaf disease of tea plants (Camellia sinensis (L.) O. Kuntze). However, the systematic characterization and analysis of the PR-1 gene family in tea plants is still lacking, and the defense mechanism of this family remains unknown. In this study, 17 CsPR-1 genes were identified from the tea plant genome and classified into five groups based on their signal peptide, isoelectric point, and C-terminus extension. Most of the CsPR-1 proteins contained an N-terminal signal peptide and a conserved PR-1 like domain. CsPR-1 genes comprised multiple cis-acting elements and were closely related to the signal-transduction pathways involving TCA, NPR1, EDS16, BGL2, PR4, and HCHIB. These characteristics imply an important role of the genes in the defense of the tea plant. In addition, the RNA-seq data and real-time PCR analysis demonstrated that the CsPR-1-2, -4, -6, -7, -8, -9, -10, -14, -15, and -17 genes were significantly upregulated under tea blister-blight stress. This study could help to increase understanding of CsPR-1 genes and their defense mechanism in response to tea blister blight.
Collapse
|
18
|
Parmar R, Seth R, Sharma RK. Genome-wide identification and characterization of functionally relevant microsatellite markers from transcription factor genes of Tea (Camellia sinensis (L.) O. Kuntze). Sci Rep 2022; 12:201. [PMID: 34996959 PMCID: PMC8742041 DOI: 10.1038/s41598-021-03848-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Tea, being one of the most popular beverages requires large set of molecular markers for genetic improvement of quality, yield and stress tolerance. Identification of functionally relevant microsatellite or simple sequence repeat (SSR) marker resources from regulatory “Transcription factor (TF) genes” can be potential targets to expedite molecular breeding efforts. In current study, 2776 transcripts encoding TFs harbouring 3687 SSR loci yielding 1843 flanking markers were identified from traits specific transcriptome resource of 20 popular tea cultivars. Of these, 689 functionally relevant SSR markers were successfully validated and assigned to 15 chromosomes (Chr) of CSS genome. Interestingly, 589 polymorphic markers including 403 core-set of TF-SSR markers amplified 2864 alleles in key TF families (bHLH, WRKY, MYB-related, C2H2, ERF, C3H, NAC, FAR1, MYB and G2-like). Their significant network interactions with key genes corresponding to aroma, quality and stress tolerance suggests their potential implications in traits dissection. Furthermore, single amino acid repeat reiteration in CDS revealed presence of favoured and hydrophobic amino acids. Successful deployment of markers for genetic diversity characterization of 135 popular tea cultivars and segregation in bi-parental population suggests their wider utility in high-throughput genotyping studies in tea.
Collapse
Affiliation(s)
- Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
19
|
Singh G, Singh V, Singh V. Systems scale characterization of circadian rhythm pathway in Camellia sinensis. Comput Struct Biotechnol J 2022; 20:598-607. [PMID: 35116135 PMCID: PMC8790616 DOI: 10.1016/j.csbj.2021.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022] Open
Abstract
Tea (Camellia sinensis) is among the most valuable commercial crops being a non-alcoholic beverage having antioxidant properties. Like in other plants, circadian oscillator in tea modulates several biological processes according to earth's revolution dependent variations in environmental cues like light and temperature. In the present study, we report genome wide identification and characterization of circadian oscillator (CO) proteins in tea. We first mined the genes (24, in total) involved in circadian rhythm pathway in the 56 plant species having available genomic information and then built their hidden Markov models (HMMs). Using these HMMs, 24 proteins were identified in tea and were further assessed for their functional annotation. Expression analysis of all these 24 CO proteins was then performed in 3 abiotic (A) and 3 biotic conditions (B) stress conditions and co-expressed as well as differentially expressed genes in the selected 6 stress conditions were elaborated. A methodology to identify the differentially expressed genes in specific types of stresses (A or B) is proposed and novel markers among CO proteins are presented. By mapping the identified CO proteins against the recently reported genome wide interologous protein-protein interaction network of tea (TeaGPIN), an interaction sub-network of tea CO proteins (TeaCO-PIN) is developed and analysed. Out of 24 CO proteins, structures of 4 proteins could be successfully predicted and validated using consensus of three structure prediction algorithms and their stability was further assessed using molecular dynamic simulations at 100 ns. Phylogenetic analysis of these proteins is performed to examine their molecular evolution.
Collapse
Affiliation(s)
| | | | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| |
Collapse
|
20
|
Chen K, Peng Y, Zhang L, Wang L, Mao D, Zhao Z, Bai L, Wang L. Whole transcriptome analysis resulted in the identification of Chinese sprangletop (Leptochloa chinensis) genes involved in cyhalofop-butyl tolerance. BMC Genomics 2021; 22:521. [PMID: 34238252 PMCID: PMC8268407 DOI: 10.1186/s12864-021-07856-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/25/2021] [Indexed: 12/05/2022] Open
Abstract
Background Chinese sprangletop [Leptochloa chinensis (L.) Nees] is an annual malignant weed, which can often be found in paddy fields. Cyhalofop-butyl is a specialized herbicide which is utilized to control L. chinensis. However, in many areas, L. chinensis has become tolerant to this key herbicide due to its continuous long-term use. Results In this study, we utilized a tolerant (LC18002) and a sensitive (LC17041) L. chinensis populations previously identified in our laboratory, which were divided into four different groups. We then employed whole transcriptome analysis to identify candidate genes which may be involved in cyhalofop-butyl tolerance. This analysis resulted in the identification of six possible candidate genes, including three cytochrome P450 genes and three ATP-binding cassette transporter genes. We then carried out a phylogenetic analysis to identify homologs of the differentially expressed cytochrome P450 genes. This phylogenetic analysis indicated that all genes have close homologs in other species, some of which have been implicated in non-target site resistance (NTSR). Conclusions This study is the first to use whole transcriptome analysis to identify herbicide non-target resistance genes in L. chinensis. The differentially expressed genes represent promising targets for better understanding herbicide tolerance in L. chinensis. The six genes belonging to classes already associated in herbicide tolerance may play important roles in the metabolic resistance of L. chinensis to cyhalofop-butyl, although the exact mechanisms require further study. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07856-z.
Collapse
Affiliation(s)
- Ke Chen
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China.,Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China.,Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Yajun Peng
- Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Liang Zhang
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China.,Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China.,Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, 410082, Changsha, People's Republic of China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125, Changsha, People's Republic of China
| | - Zhenghong Zhao
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China
| | - Lianyang Bai
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China. .,Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China. .,Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China.
| | - Lifeng Wang
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China. .,Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China. .,Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China.
| |
Collapse
|
21
|
Tente E, Ereful N, Rodriguez AC, Grant P, O'Sullivan DM, Boyd LA, Gordon A. Reprogramming of the wheat transcriptome in response to infection with Claviceps purpurea, the causal agent of ergot. BMC PLANT BIOLOGY 2021; 21:316. [PMID: 34215204 PMCID: PMC8252325 DOI: 10.1186/s12870-021-03086-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/07/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Ergot, caused by the fungal pathogen Claviceps purpurea, infects the female flowers of a range of cereal crops, including wheat. To understand the interaction between C. purpurea and hexaploid wheat we undertook an extensive examination of the reprogramming of the wheat transcriptome in response to C. purpurea infection through floral tissues (i.e. the stigma, transmitting and base ovule tissues of the ovary) and over time. RESULTS C. purpurea hyphae were observed to have grown into and down the stigma at 24 h (H) after inoculation. By 48H hyphae had grown through the transmitting tissue into the base, while by 72H hyphae had surrounded the ovule. By 5 days (D) the ovule had been replaced by fungal tissue. Differential gene expression was first observed at 1H in the stigma tissue. Many of the wheat genes differentially transcribed in response to C. purpurea infection were associated with plant hormones and included the ethylene (ET), auxin, cytokinin, gibberellic acid (GA), salicylic acid and jasmonic acid (JA) biosynthetic and signaling pathways. Hormone-associated genes were first detected in the stigma and base tissues at 24H, but not in the transmitting tissue. Genes associated with GA and JA pathways were seen in the stigma at 24H, while JA and ET-associated genes were identified in the base at 24H. In addition, several defence-related genes were differential expressed in response to C. purpurea infection, including antifungal proteins, endocytosis/exocytosis-related proteins, NBS-LRR class proteins, genes involved in programmed cell death, receptor protein kinases and transcription factors. Of particular interest was the identification of differential expression of wheat genes in the base tissue well before the appearance of fungal hyphae, suggesting that a mobile signal, either pathogen or plant-derived, is delivered to the base prior to colonisation. CONCLUSIONS Multiple host hormone biosynthesis and signalling pathways were significantly perturbed from an early stage in the wheat - C. purpurea interaction. Differential gene expression at the base of the ovary, ahead of arrival of the pathogen, indicated the potential presence of a long-distance signal modifying host gene expression.
Collapse
Affiliation(s)
- Eleni Tente
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Nelzo Ereful
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Philippine Genome Center, Plant Physiology Laboratory, Institute of Plant Breeding, University of the Philippines, Los Baños, Laguna, The Philippines
| | | | - Paul Grant
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Present Address: Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Donal M O'Sullivan
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, RG6 6AR, UK
| | - Lesley A Boyd
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| | - Anna Gordon
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| |
Collapse
|
22
|
Pandey AK, Sinniah GD, Babu A, Tanti A. How the Global Tea Industry Copes With Fungal Diseases - Challenges and Opportunities. PLANT DISEASE 2021; 105:1868-1879. [PMID: 33734810 DOI: 10.1094/pdis-09-20-1945-fe] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tea (Camellia sinensis [L.] O. Kuntze) is a plantation crop, grown commercially in Asia, Africa, and South America. Among biotic threats to tea production, diseases caused by fungal pathogens are most significant. Worldwide, tea plants are challenged by several root, stem, and foliar diseases. Foliar diseases, blister blight, gray blight, and brown blight are particularly important as they adversely affect the bud and the two youngest leaves, causing loss of harvestable shoots. Over the past several decades, climate change and field management practices have influenced the risk of crop damage by several fungal pathogens, as well as the development and spread of diseases. Management interventions, such as the adoption of good cultural/agronomic practices, use of fungicides and microbial biocontrol agents, plant defense elicitors, and deployment of resistant cultivars, have mitigated damage to tea plants caused by fungal diseases. A clearer understanding of knowledge gaps and the benefits of plant disease management strategies available is needed. The present article reviews the prevailing knowledge of major fungal pathogens of the tea crop, their genetic variability, the damage they cause and its economic impact, and the need for new disease management strategies as climate change intensifies. We will also emphasize important knowledge gaps that are priority targets for future research.
Collapse
Affiliation(s)
- Abhay K Pandey
- Tea Research Association, North Bengal Regional R & D Center, Nagrakata 735225, West Bengal, India
| | - Ganga D Sinniah
- Tea Research Institute of Sri Lanka, Plant Pathology Division, St. Coombs, Talawakelle 22100, Sri Lanka
| | - Azariah Babu
- Tea Research Association, North Bengal Regional R & D Center, Nagrakata 735225, West Bengal, India
| | - Amarjyoti Tanti
- Tocklai Tea Research Institute, Tea Research Association, Jorhat 785008, Assam, India
| |
Collapse
|
23
|
Wang S, Liu L, Mi X, Zhao S, An Y, Xia X, Guo R, Wei C. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:862-875. [PMID: 33595875 DOI: 10.1111/tpj.15203] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 05/18/2023]
Abstract
Gray blight (GB) is one of the most destructive diseases of tea plants, causing considerable damage and productivity losses; however, the dynamic roles of defense genes during pathogen infection remain largely unclear. To explore the numerous molecular interactions associated with GB stress in tea plants, we employed transcriptome, sRNAome and degradome sequencing from 1 to 13 days post-inoculation (dpi) at 3-day intervals. The transcriptomics results showed that differentially expressed genes (DEGs) related to flavonoid synthesis, such as chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL), were particularly induced at 4 dpi. Consistent with this, the contents of catechins (especially gallocatechin), which are the dominant flavonoids in tea plants, also increased in the leaves of tea plants infected with GB. Combined analysis of the sRNAome and degradome revealed that microRNAs could mediate tea plant immunity by regulating DEG expression at the post-transcriptional level. Co-expression network analysis demonstrated that miR530b-ethylene responsive factor 96 (ERF96) and miRn211-thaumatin-like protein (TLP) play crucial roles in the response to GB. Accordingly, gene-specific antisense oligonucleotide assays suggested that suppressing ERF96 decreased the levels of reactive oxygen species (ROS), whereas suppressing TLP increased the levels of ROS. Furthermore, ERF96 was induced, but TLP was suppressed, in susceptible tea cultivars. Our results collectively demonstrate that ERF96 is a negative regulator and TLP is a positive regulator in the response of tea plants to GB. Taken together, our comprehensive integrated analysis reveals a dynamic regulatory network linked to GB stress in tea plants and provides candidate genes for improvement of tea plants.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
24
|
Seth R, Maritim TK, Parmar R, Sharma RK. Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze). HORTICULTURE RESEARCH 2021; 8:99. [PMID: 33931616 PMCID: PMC8087774 DOI: 10.1038/s41438-021-00532-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/09/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
The most daunting issue of global climate change is the deleterious impact of extreme temperatures on tea productivity and quality, which has resulted in a quest among researchers and growers. The current study aims to unravel molecular programming underpinning thermotolerance by characterizing heat tolerance and sensitivity response in 20 tea cultivars. The significantly higher negative influence of heat stress was recorded in a sensitive cultivar with reduced water retention (47%), chlorophyll content (33.79%), oxidation potential (32.48%), and increase in membrane damage (76.4%). Transcriptional profiling of most tolerant and sensitive cultivars identified 78 differentially expressed unigenes with chaperon domains, including low and high molecular weight heat shock protein (HSP) and heat shock transcription factors (HSFs) involved in heat shock response (HSR). Further, predicted transcriptional interactome network revealed their key role in thermotolerance via well-co-ordinated transcriptional regulation of aquaporins, starch metabolism, chlorophyll biosynthesis, calcium, and ethylene mediated plant signaling system. The study identified the key role of HSPs (CsHSP90) in regulating HSR in tea, wherein, structure-based molecular docking revealed the inhibitory role of geldanamycin (GDA) on CsHSP90 by blocking ATP binding site at N-terminal domain of predicted structure. Subsequently, GDA mediated leaf disc inhibitor assay further affirmed enhanced HSR with higher expression of CsHSP17.6, CsHSP70, HSP101, and CsHSFA2 genes in tea. Through the current study, efforts were made to extrapolate a deeper understanding of chaperons mediated regulation of HSR attributing thermotolerance in tea.
Collapse
Affiliation(s)
- Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Tony Kipkoech Maritim
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India
- Tea breeding and genetic improvement division, KALRO-Tea Research Institute, Box 820, 20200, Kericho, Kenya
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
25
|
Genome-wide identification, evolutionary relationship and expression analysis of AGO, DCL and RDR family genes in tea. Sci Rep 2021; 11:8679. [PMID: 33883595 PMCID: PMC8060290 DOI: 10.1038/s41598-021-87991-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 12/05/2022] Open
Abstract
Three gene families in plants viz. Argonaute (AGOs), Dicer-like (DCLs) and RNA dependent RNA polymerase (RDRs) constitute the core components of small RNA mediated gene silencing machinery. The present study endeavours to identify members of these gene families in tea and to investigate their expression patterns in different tissues and various stress regimes. Using genome-wide analysis, we have identified 18 AGOs, 5 DCLs and 9 RDRs in tea, and analyzed their phylogenetic relationship with orthologs of Arabidopsis thaliana. Gene expression analysis revealed constitutive expression of CsAGO1 in all the studied tissues and stress conditions, whereas CsAGO10c showed most variable expression among all the genes. CsAGO10c gene was found to be upregulated in tissues undergoing high meristematic activity such as buds and roots, as well as in Exobasidium vexans infected samples. CsRDR2 and two paralogs of CsAGO4, which are known to participate in biogenesis of hc-siRNAs, showed similarities in their expression levels in most of the tea plant tissues. This report provides first ever insight into the important gene families involved in biogenesis of small RNAs in tea. The comprehensive knowledge of these small RNA biogenesis purveyors can be utilized for tea crop improvement aimed at stress tolerance and quality enhancement.
Collapse
|
26
|
Bordoloi KS, Krishnatreya DB, Baruah PM, Borah AK, Mondal TK, Agarwala N. Genome-wide identification and expression profiling of chitinase genes in tea ( Camellia sinensis (L.) O. Kuntze) under biotic stress conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:369-385. [PMID: 33707875 PMCID: PMC7907415 DOI: 10.1007/s12298-021-00947-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 05/05/2023]
Abstract
Chitinases are a diverse group of enzymes having the ability to degrade chitin. Chitin is the second most abundant polysaccharide on earth, predominantly found in insect exoskeletons and fungal cell walls. In this study, we performed a genome-wide search for chitinase genes and identified a total of 49 chitinases in tea. These genes were categorized into 5 classes, where an expansion of class V chitinases has been observed in comparison to other plant species. Extensive loss of introns in 46% of the GH18 chitinases indicates that an evolutionary pressure is acting upon these genes to lose introns for rapid gene expression. The promoter upstream regions in 65% of the predicted chitinases contain methyl-jasmonate, salicylic acid and defense responsive cis-acting elements, which may further illustrate the possible role of chitinases in tea plant's defense against various pests and pathogens. Differential expression analysis revealed that transcripts of two GH19 chitinases TEA028279 and TEA019397 got upregulated during three different fungal infections in tea. While GH19 chitinase TEA031377 showed an increase in transcript abundance in the two insect infested tea tissues. Semi-quantitative RT-PCR analysis revealed that five GH19 chitinases viz. TEA018892, TEA031484, TEA28279, TEA033470 and TEA031277 showed significant increase in expression in the tea plants challenged with a biotrophic pathogen Exobasidium vexans. The study endeavours in highlighting biotic stress responsive defensive role of chitinase genes in tea.
Collapse
Affiliation(s)
| | | | - Pooja Moni Baruah
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam 781014 India
| | - Anuj Kumar Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028 India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa, IARI, New Delhi, 110012 India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam 781014 India
| |
Collapse
|
27
|
Li P, Xu Y, Zhang Y, Fu J, Yu S, Guo H, Chen Z, Chen C, Yang X, Wang S, Zhao J. Metabolite Profiling and Transcriptome Analysis Revealed the Chemical Contributions of Tea Trichomes to Tea Flavors and Tea Plant Defenses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11389-11401. [PMID: 32852206 DOI: 10.1021/acs.jafc.0c04075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tea trichomes contain special flavor-determining metabolites; however, little is known about how and why tea trichomes produce them. Integrated metabolite and transcriptome profiling on tea trichomes in comparison with that on leaves showed that trichomes contribute to tea plant defense and tea flavor and nutritional quality. These unicellular, nonglandular, and unbranched tea trichomes produce a wide array of tea characteristic metabolites, such as UV-protective flavonoids, insect-toxic caffeine, herbivore-defensive volatiles, and theanine, as evidenced by the expression of whole sets of genes involved in different metabolic pathways. Both dry and fresh trichomes contain several volatiles and flavonols that were not found or at much low levels in trichome-removed leaves, including benzoic acid derivatives, lipid oxidation derivatives, and monoterpene derivatives. Trichomes also specifically expressed many disease signaling genes and various antiherbivore or antiabiotic peptides. Trichomes are one of the domestication traits in tea plants. Tea trichomes contribute to tea plant defenses and tea flavors.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Huimin Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaogen Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
28
|
Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kondratev N, Denton-Giles M, Bradshaw RE, Cox MP, Dijkwel PP. Camellia Plant Resistance and Susceptibility to Petal Blight Disease Are Defined by the Timing of Defense Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:982-995. [PMID: 32223579 DOI: 10.1094/mpmi-10-19-0304-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The family Sclerotiniaceae includes important phytopathogens, such as Botrytis cinerea and Sclerotinia sclerotiorum, that activate plant immune responses to facilitate infection propagation. The mechanisms of plant resistance to these necrotrophic pathogens are still poorly understood. To discover mechanisms of resistance, we used the Ciborinia camelliae (Sclerotiniaceae)-Camellia spp. pathosystem. This fungus induces rapid infection of the blooms of susceptible cultivar Nicky Crisp (Camellia japonica × Camellia pitardii var. pitardii), while Camellia lutchuensis is highly resistant. Genome-wide analysis of gene expression in resistant plants revealed fast modulation of host transcriptional activity 6 h after ascospore inoculation. Ascospores induced the same defense pathways in the susceptible Camellia cultivar but much delayed and coinciding with disease development. We next tested the hypothesis that differences in defense timing influences disease outcome. We induced early defense in the susceptible cultivar using methyl jasmonate and this strongly reduced disease development. Conversely, delaying the response in the resistant species, by infecting it with actively growing fungal mycelium, increased susceptibility. The same plant defense pathways, therefore, contribute to both resistance and susceptibility, suggesting that defense timing is a critical factor in plant health, and resistance against necrotrophic pathogens may occur during the initial biotrophy-like stages.
Collapse
Affiliation(s)
- Nikolai Kondratev
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Matthew Denton-Giles
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Rosie E Bradshaw
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Murray P Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
30
|
Liu ZW, Li H, Liu JX, Wang Y, Zhuang J. Integrative transcriptome, proteome, and microRNA analysis reveals the effects of nitrogen sufficiency and deficiency conditions on theanine metabolism in the tea plant ( Camellia sinensis). HORTICULTURE RESEARCH 2020; 7:65. [PMID: 32377356 PMCID: PMC7192918 DOI: 10.1038/s41438-020-0290-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is associated with amino acid metabolism in higher plants. Theanine is an important amino acid in tea plants. To explore the relationship between theanine metabolism and N conditions, we examined the differentially expressed genes (DEGs), proteins (DEPs), and microRNAs (DEMs) involved in theanine metabolism in tea plant shoots and roots under N sufficiency and deficiency conditions. Transcriptome, proteome, and microRNA analyses were performed on tea plant shoots and roots under N sufficiency and deficiency conditions. The contents of theanine, expression levels of genes involved in theanine metabolism, contents of proteinogenic amino acids, and activity of enzymes were analyzed. The DEP-DEG correlation pairs and negative DEM-DEG interactions related to theanine metabolism were identified based on correlation analyses. The expression profiles of DEGs and negative DEM-DEG pairs related to theanine biosynthesis were consistent with the sequencing results. Our results suggest that the molecular and physiological mechanism of theanine accumulation is significantly affected by N sufficiency and deficiency conditions. The DEGs, DEPs, and DEMs and the activity of the enzymes involved in theanine biosynthesis might play vital roles in theanine accumulation under N sufficiency and deficiency conditions in the shoots and roots of tea plants.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hui Li
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yu Wang
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
31
|
Zhao J, Li P, Xia T, Wan X. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Crit Rev Biotechnol 2020; 40:667-688. [PMID: 32321331 DOI: 10.1080/07388551.2020.1752617] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diversity and complexity of secondary metabolites in tea plants contribute substantially to the popularity of tea, by determining tea flavors and their numerous health benefits. The most significant characteristics of tea plants are that they concentrate the complex plant secondary metabolites into one leaf: flavonoids, alkaloids, theanine, volatiles, and saponins. Many fundamental questions regarding tea plant secondary metabolism remain unanswered. This includes how tea plants accumulate high levels of monomeric galloylated catechins, unlike the polymerized flavan-3-ols in most other plants, as well as how they are evolved to selectively synthesize theanine and caffeine, and how tea plants properly transport and store these cytotoxic products and then reuse them in defense. Tea plants coordinate many metabolic pathways that simultaneously take place in young tea leaves in response to both developmental and environmental cues. With the available genome sequences of tea plants and high-throughput metabolomic tools as great platforms, it is of particular interest to launch metabolic genomics studies using tea plants as a model system. Plant metabolic genomics are to investigate all aspects of plant secondary metabolism at the genetic, genome, and molecular levels. This includes plant domestication and adaptation, divergence and convergence of secondary metaboloic pathways. The biosynthesis, transport, storage, and transcriptional regulation mechanisms of all metabolites are of core interest in the plant as a whole. This review highlights relevant contexts of metabolic genomics, outstanding questions, and strategies for answering them, with aim to guide future research for genetic improvement of nutrition quality for healthier plant foods.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
32
|
Li FD, Tong W, Xia EH, Wei CL. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. BMC Bioinformatics 2019; 20:553. [PMID: 31694521 PMCID: PMC6836513 DOI: 10.1186/s12859-019-3166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tea is the oldest and among the world’s most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. Results We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. Conclusions The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.
Collapse
Affiliation(s)
- Fang-Dong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.,School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
33
|
Singh G, Singh V, Singh V. Construction and analysis of an interologous protein-protein interaction network of Camellia sinensis leaf (TeaLIPIN) from RNA-Seq data sets. PLANT CELL REPORTS 2019; 38:1249-1262. [PMID: 31197449 DOI: 10.1007/s00299-019-02440-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
An interologous PPI network of tea leaf is designed by developing reference transcriptome assembly and using experimentally validated PPIs in plants. Key regulatory proteins are proposed and potential TFs are predicted. Worldwide, tea (Camellia sinensis) is the most consumed beverage primarily due to the taste, flavour, and aroma of its newly formed leaves; and has been used as an important ingredient in several traditional medicinal systems because of its antioxidant properties. For this medicinally and commercially important plant, design principles of gene-regulatory and protein-protein interaction (PPI) networks at sub-cellular level are largely un-characterized. In this work, we report a tea leaf interologous PPI network (TeaLIPIN) consisting of 11,208 nodes and 197,820 interactions. A reference transcriptome assembly was first developed from all the 44 samples of 6 publicly available leaf transcriptomes (1,567,288,290 raw reads). By inferring the high-confidence interactions among potential proteins coded by these transcripts using known experimental information about PPIs in 14 plants, an interologous PPI network was constructed and its modular architecture was explored. Comparing this network with 10,000 realizations of two types of corresponding random networks (Erdős-Rényi and Barabási-Albert models) and examining over three network centrality metrics, we predict 2750 bottleneck proteins (having p values < 0.01). 247 of these are deduced to have transcription factor domains by in-house developed HMM models of known plant TFs and these were also mapped to the draft tea genome for searching their probable loci of origin. Co-expression analysis of the TeaLIPIN proteins was also performed and top ranking modules are elaborated. We believe that the proposed novel methodology can easily be adopted to develop and explore the PPI interactomes in other plant species by making use of the available transcriptomic data.
Collapse
Affiliation(s)
- Gagandeep Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India.
| |
Collapse
|
34
|
Genome-wide identification, characterization, and expression analysis of nucleotide-binding leucine-rich repeats gene family under environmental stresses in tea (Camellia sinensis). Genomics 2019; 112:1351-1362. [PMID: 31408701 DOI: 10.1016/j.ygeno.2019.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
Abstract
Plants often use nucleotide-binding leucine-rich repeats (NLRs) to recognize specific virulence proteins and activate the hypersensitive response thereby defending against invaders. However, data on NLRs and the resistance mechanism of NLR protein mediation in tea plant are extremely limited. In this study, 400 and 303 CsNLRs were identified from the genomes of C. sinensis var. sinensis (CSS) and C. sinensis var. assamica (CSA), respectively. Phylogenetic analysis revealed that the numbers in CNL groups are predominant in both CSS and CSA. RNA-Seq revealed that the expression of CsNLRs is induced by Colletotrichum fructicola, cold, drought, salt stress and exogenous methyl jasmonate. The 21 CsCNLs that are highly expressed in tea plant under biotic and abiotic stresses as well as during bud dormancy and in different tissues are identified. Gene structure analysis revealed several cis-regulatory elements associated with phytohormones and light responsiveness in the promoter regions of these 21 CsCNLs.
Collapse
|
35
|
Kundu A, Singh PK, Dey A, Ganguli S, Pal A. Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep 2019; 9:8858. [PMID: 31221982 PMCID: PMC6586629 DOI: 10.1038/s41598-019-45383-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mungbean Yellow Mosaic India Virus (MYMIV)-infection creates major hindrance in V. mungo cultivation and poses significant threat to other grain legume production. Symptoms associated include severe patho-physiological alterations characterized by chlorotic foliar lesion accompanied by reduced growth. However, dissection of the host's defense machinery remains a tough challenge due to limited of host's genomic resources. A comparative RNA-Seq transcriptomes of resistant (VM84) and susceptible (T9) plants was carried out to identify genes potentially involved in V. mungo resistance against MYMIV. Distinct gene expression landscapes were observed in VM84 and T9 with 2158 and 1679 differentially expressed genes (DEGs), respectively. Transcriptomic responses in VM84 reflect a prompt and intense immune reaction demonstrating an efficient pathogen surveillance leading to activation of basal and induced immune responses. Functional analysis of the altered DEGs identified multiple regulatory pathways to be activated or repressed over time. Up-regulation of DEGs including NB-LRR, WRKY33, ankyrin, argonaute and NAC transcription factor revealed an insight on their potential roles in MYMIV-resistance; and qPCR validation shows a propensity of their accumulation in VM84. Analyses of the current RNA-Seq dataset contribute immensely to decipher molecular responses that underlie MYMIV-resistance and will aid in the improvement strategy of V. mungo and other legumes through comparative functional genomics.
Collapse
Affiliation(s)
- Anirban Kundu
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
- Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 7000118, India
| | | | - Avishek Dey
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
| | - Sayak Ganguli
- Theoretical and Computational Biology, AIIST, Palta, Kolkata, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
36
|
Parmar R, Seth R, Singh P, Singh G, Kumar S, Sharma RK. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze. Sci Rep 2019; 9:7487. [PMID: 31097754 PMCID: PMC6522520 DOI: 10.1038/s41598-019-43925-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Tea is popular health beverage consumed by millions of people worldwide. Drought is among the acute abiotic stress severely affecting tea cultivation, globally. In current study, transcriptome sequencing of four diverse tea genotypes with inherent contrasting genetic response to drought (tolerant & sensitive) generated more than 140 million reads. De novo and reference-based assembly and functional annotation of 67,093 transcripts with multifarious public protein databases yielded 54,484 (78.2%) transcripts with significant enrichment of GO and KEGG drought responsive pathways in tolerant genotypes. Comparative DGE and qRT analysis revealed key role of ABA dependent & independent pathways, potassium & ABC membrane transporters (AtABCG22, AtABCG11, AtABCC5 & AtABCC4) and antioxidant defence system against oxidative stress in tolerant genotypes, while seems to be failed in sensitive genotypes. Additionally, highly expressed UPL3HECT E3 ligases and RING E3 ligases possibly enhance drought tolerance by actively regulating functional modification of stress related genes. Further, ascertainment of, 80803 high quality putative SNPs with functional validation of key non-synonymous SNPs suggested their implications for developing high-throughput genotyping platform in tea. Futuristically, functionally relevant genomic resources can be potentially utilized for gene discovery, genetic engineering and marker-assisted genetic improvement for better yield and quality in tea under drought conditions.
Collapse
Affiliation(s)
- Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pradeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Sanjay Kumar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
37
|
Zheng C, Ma JQ, Ma CL, Shen SY, Liu YF, Chen L. Regulation of Growth and Flavonoid Formation of Tea Plants ( Camellia sinensis) by Blue and Green Light. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2408-2419. [PMID: 30721059 DOI: 10.1021/acs.jafc.8b07050] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The effects of blue (BL) and green light (GL) treatment during the dark period were examined in Camellia sinensis as a first step to understanding the spectral effects of artificial BL and GL on plant secondary metabolism and light signaling interactions. BL could induce the expression of CRY2/3, SPAs, HY5, and R2R3-MYBs to promote the accumulation of anthocyanins and catechins in tea plants. GL, on the other hand, could stimulate the accumulation of several functional substances (e.g., procyanidin B2/B3 and l-ascorbate) and temper these BL responses via down-regulation of CRY2/3 and PHOT2. Furthermore, the molecular events that triggered by BL and GL signals were partly overlapped with abiotic/biotic stress responses. We indicate the possibility of a targeted use of BL and GL to regulate the amount of functional metabolites to enhance tea quality and taste, and to potentially trigger defense mechanisms of tea plants.
Collapse
Affiliation(s)
- Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou , China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou , China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou , China
| | - Si-Yan Shen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou , China
| | - Yu-Fei Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou , China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs , Tea Research Institute of the Chinese Academy of Agricultural Sciences , Hangzhou , China
| |
Collapse
|
38
|
Gao Y, Zhao M, Wu XH, Li D, Borthakur D, Ye JH, Zheng XQ, Lu JL. Analysis of Differentially Expressed Genes in Tissues of Camellia sinensis during Dedifferentiation and Root Redifferentiation. Sci Rep 2019; 9:2935. [PMID: 30814540 PMCID: PMC6393419 DOI: 10.1038/s41598-019-39264-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 12/04/2022] Open
Abstract
Tissue culture is very important for identifying the gene function of Camellia sinensis (L.) and exploiting novel germplasm through transgenic technology. Regeneration system of tea plant has been explored but not been well established since the molecular mechanism of tea plant regeneration is not clear yet. In this study, transcriptomic analysis was performed in the initial explants of tea plant and their dedifferentiated and redifferentiated tissues. A total of 93,607 unigenes were obtained through de novo assembly, and 7,193 differentially expressed genes (DEGs) were screened out from the 42,417 annotated unigenes. Much more DEGs were observed during phase transition rather than at growth stages of callus. Our KOG and KEGG analysis, and qPCR results confirmed that phase transition of tea plant was closely related to the mechanism that regulate expression of genes encoding the auxin- and cytokinin-responsive proteins, transcription factor MYB15 and ethylene-responsive transcription factor ERF RAP2-12. These findings provide a reliable foundation for elucidating the mechanism of the phase transition and may help to optimize the regeneration system by regulating the gene expression pattern.
Collapse
Affiliation(s)
- Ying Gao
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Min Zhao
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Xiao-Han Wu
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Da Li
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | | | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China.
| |
Collapse
|
39
|
Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [ Camellia sinensis (L.) O. Kuntze]. Int J Mol Sci 2019; 20:ijms20030539. [PMID: 30696008 PMCID: PMC6387076 DOI: 10.3390/ijms20030539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
This study explicates molecular insights commencing Self-Incompatibility (SI) and CC (cross-compatibility/fertilization) in self (SP) and cross (CP) pollinated pistils of tea. The fluorescence microscopy analysis revealed ceased/deviated pollen tubes in SP, while successful fertilization occurred in CP at 48 HAP. Global transcriptome sequencing of SP and CP pistils generated 109.7 million reads with overall 77.9% mapping rate to draft tea genome. Furthermore, concatenated de novo assembly resulted into 48,163 transcripts. Functional annotations and enrichment analysis (KEGG & GO) resulted into 3793 differentially expressed genes (DEGs). Among these, de novo and reference-based expression analysis identified 195 DEGs involved in pollen-pistil interaction. Interestingly, the presence of 182 genes [PT germination & elongation (67), S-locus (11), fertilization (43), disease resistance protein (30) and abscission (31)] in a major hub of the protein-protein interactome network suggests a complex signaling cascade commencing SI/CC. Furthermore, tissue-specific qRT-PCR analysis affirmed the localized expression of 42 DE putative key candidates in stigma-style and ovary, and suggested that LSI initiated in style and was sustained up to ovary with the active involvement of csRNS, SRKs & SKIPs during SP. Nonetheless, COBL10, RALF, FERONIA-rlk, LLG and MAPKs were possibly facilitating fertilization. The current study comprehensively unravels molecular insights of phase-specific pollen-pistil interaction during SI and fertilization, which can be utilized to enhance breeding efficiency and genetic improvement in tea.
Collapse
|
40
|
Transcriptome-based mining and expression profiling of Pythium responsive transcription factors in Zingiber sp. Funct Integr Genomics 2018; 19:249-264. [PMID: 30415383 DOI: 10.1007/s10142-018-0644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/29/2018] [Accepted: 10/29/2018] [Indexed: 01/18/2023]
Abstract
Transcription factors (TFs) fine-tune the host defense transcriptome in response to pathogen invasions. No information is available on Zingiber zerumbet (Zz) TFs involved in defense response against Pythium myriotylum. Here, we provide a global identification, characterization, and temporal expression profiling of Zz TFs following an incompatible interaction with P. myriotylum using a transcriptome sequencing approach. We identified a total of 903 TFs belonging to 96 families based on their conserved domains. Evolutionary analysis clustered the Zz TFs according to their phylogenetic affinity, providing glimpses of their functional diversities. High throughput expression array analysis highlighted a complex interplay between activating and repressing transcription factors in fine-tuning Zz defense response against P. myriotylum. The high differential modulation of TFs involved in cell wall fortification, lignin biosynthesis, and SA/JA hormone crosstalk allows us to envisage that this mechanism plays a central role in restricting P. myriotylum proliferation in Zz. This study lays a solid foundation and provides valuable resources for the investigation of the evolutionary history and biological functions of Zz TF genes involved in defense response.
Collapse
|
41
|
Unraveling the Roles of Regulatory Genes during Domestication of Cultivated Camellia: Evidence and Insights from Comparative and Evolutionary Genomics. Genes (Basel) 2018; 9:genes9100488. [PMID: 30308953 PMCID: PMC6211025 DOI: 10.3390/genes9100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
With the increasing power of DNA sequencing, the genomics-based approach is becoming a promising resolution to dissect the molecular mechanism of domestication of complex traits in trees. Genus Camellia possesses rich resources with a substantial value for producing beverage, ornaments, edible oil and more. Currently, a vast number of genetic and genomic research studies in Camellia plants have emerged and provided an unprecedented opportunity to expedite the molecular breeding program. In this paper, we summarize the recent advances of gene expression and genomic resources in Camellia species and focus on identifying genes related to key economic traits such as flower and fruit development and stress tolerances. We investigate the genetic alterations and genomic impacts under different selection programs in closely related species. We discuss future directions of integrating large-scale population and quantitative genetics and multiple omics to identify key candidates to accelerate the breeding process. We propose that future work of exploiting the genomic data can provide insights related to the targets of domestication during breeding and the evolution of natural trait adaptations in genus Camellia.
Collapse
|
42
|
Wang WW, Zheng C, Hao WJ, Ma CL, Ma JQ, Ni DJ, Chen L. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis. PLoS One 2018; 13:e0201670. [PMID: 30067831 PMCID: PMC6070272 DOI: 10.1371/journal.pone.0201670] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022] Open
Abstract
Tea plant (Camellia sinensis (L) O. Kuntze) respond to herbivore attack through large changes in defense related metabolism and gene expression. Ectropis oblique (Prout) is one of the most devastating insects that feed on tea leaves and tender buds, which can cause severe production loss and deteriorate the quality of tea. To elucidate the biochemicals and molecular mechanism of defense against tea geometrid (TG), transcriptome and metabolome of TG interaction with susceptible (SG) and resistance (RG) tea genotypes were analyzed by using UPLC-Q-TOF-MS, GC-MS, and RNA-seq technologies. This revealed that jasmonic acid was highly induced in RG, following a plethora of secondary metabolites involved in defense against TG could be induced by jasmonic acid signaling pathway. However, the constitutively present of salicylic acid in SG might be a suppressor of jasmonate signaling and thus misdirect tea plants against TG. Furthermore, flavonoids and terpenoids biosynthesis pathways were highly activated in RG to constitute the chemical barrier on TG feeding behavior. In contrast, fructose and theanine, which can act as feeding stimulants were observed to highly accumulate in SG. Being present in the major hub, 39 transcription factors or protein kinases among putative candidates were identified as master regulators from protein-protein interaction network analysis. Together, the current study provides a comprehensive gene expression and metabolite profiles, which can shed new insights into the molecular mechanism of tea defense against TG. The candidate genes and specific metabolites identified in the present study can serve as a valuable resource for unraveling the possible defense mechanism of plants against various biotic stresses.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wan-Jun Hao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - De-Jiang Ni
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- * E-mail: (LC); (DJN)
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (LC); (DJN)
| |
Collapse
|
43
|
Transcriptome and miRNA analyses of the response to Corynespora cassiicola in cucumber. Sci Rep 2018; 8:7798. [PMID: 29773833 PMCID: PMC5958113 DOI: 10.1038/s41598-018-26080-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/04/2018] [Indexed: 01/11/2023] Open
Abstract
Cucumber (Cucumis sativus L.) target leaf spot (TLS), which is caused by the fungus Corynespora cassiicola (C. cassiicola), seriously endangers the production of cucumber. In this assay, we performed comprehensive sequencing of the transcriptome and microRNAs (miRNAs) of a resistant cucumber (Jinyou 38) during C. cassiicola inoculation using the Illumina NextSeq 500 platform. The possible genes related to the response to C. cassiicola were associated with plant hormones, transcription factors, primary metabolism, Ca2+ signaling pathways, secondary metabolism and defense genes. In total, 150 target genes of these differentially expressed miRNAs were predicted by the bioinformatic analysis. By analyzing the function of the target genes, several candidate miRNAs that may be related to the response to C. cassiicola stress were selected. We also predicted 7 novel miRNAs and predicted their target genes. Moreover, the expression patterns of the candidate genes and miRNAs were tested by quantitative real-time RT-PCR. According to the analysis, genes and miRNAs associated with secondary metabolism, particularly the phenylpropanoid biosynthesis pathway, may play a major role in the resistance to C. cassiicola stress in cucumber. These results offer a foundation for future studies exploring the mechanism and key genes of resistance to cucumber TLS.
Collapse
|
44
|
Wang Y, Hao X, Lu Q, Wang L, Qian W, Li N, Ding C, Wang X, Yang Y. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H 2O 2 have crucial roles in the resistance of tea plant ( Camellia sinensis (L.) O. Kuntze) to anthracnose. HORTICULTURE RESEARCH 2018; 5:18. [PMID: 29619229 PMCID: PMC5878829 DOI: 10.1038/s41438-018-0025-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 05/04/2023]
Abstract
Anthracnose causes severe losses of tea production in China. Although genes and biological processes involved in anthracnose resistance have been reported in other plants, the molecular response to anthracnose in tea plant is unknown. We used the susceptible tea cultivar Longjing 43 and the resistant cultivar Zhongcha 108 as materials and compared transcriptome changes in the leaves of both cultivars following Colletotrichum fructicola inoculation. In all, 9015 and 8624 genes were differentially expressed between the resistant and susceptible cultivars and their controls (0 h), respectively. In both cultivars, the differentially expressed genes (DEGs) were enriched in 215 pathways, including responses to sugar metabolism, phytohormones, reactive oxygen species (ROS), biotic stimuli and signalling, transmembrane transporter activity, protease activity and signalling receptor activity, but DEG expression levels were higher in Zhongcha 108 than in Longjing 43. Moreover, functional enrichment analysis of the DEGs showed that hydrogen peroxide (H2O2) metabolism, cell death, secondary metabolism, and carbohydrate metabolism are involved in the defence of Zhongcha 108, and 88 key genes were identified. Protein-protein interaction (PPI) network demonstrated that putative mitogen-activated protein kinase (MAPK) cascades are activated by resistance (R) genes and mediate downstream defence responses. Histochemical analysis subsequently validated the strong hypersensitive response (HR) and H2O2 accumulation that occurred around the hyphal infection sites in Zhongcha 108. Overall, our results indicate that the HR and H2O2 are critical mechanisms in tea plant defence against anthracnose and may be activated by R genes via MAPK cascades.
Collapse
Affiliation(s)
- Yuchun Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Qinhua Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Lu Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Wenjun Qian
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Nana Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Changqing Ding
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008 People’s Republic of China
| |
Collapse
|
45
|
Singh G, Singh G, Singh P, Parmar R, Paul N, Vashist R, Swarnkar MK, Kumar A, Singh S, Singh AK, Kumar S, Sharma RK. Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert. Sci Rep 2017; 7:11835. [PMID: 28928460 PMCID: PMC5605536 DOI: 10.1038/s41598-017-12025-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022] Open
Abstract
Stevia is a natural source of commercially important steviol glycosides (SGs), which share biosynthesis route with gibberellic acids (GAs) through plastidal MEP and cytosolic MVA pathways. Ontogeny-dependent deviation in SGs biosynthesis is one of the key factor for global cultivation of Stevia, has not been studied at transcriptional level. To dissect underlying molecular mechanism, we followed a global transcriptome sequencing approach and generated more than 100 million reads. Annotation of 41,262 de novo assembled transcripts identified all the genes required for SGs and GAs biosynthesis. Differential gene expression and quantitative analysis of important pathway genes (DXS, HMGR, KA13H) and gene regulators (WRKY, MYB, NAC TFs) indicated developmental phase dependent utilization of metabolic flux between SGs and GAs synthesis. Further, identification of 124 CYPs and 45 UGTs enrich the genomic resources, and their PPI network analysis with SGs/GAs biosynthesis proteins identifies putative candidates involved in metabolic changes, as supported by their developmental phase-dependent expression. These putative targets can expedite molecular breeding and genetic engineering efforts to enhance SGs content, biomass and yield. Futuristically, the generated dataset will be a useful resource for development of functional molecular markers for diversity characterization, genome mapping and evolutionary studies in Stevia.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Gagandeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Pradeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Navgeet Paul
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Radhika Vashist
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Mohit Kumar Swarnkar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ashok Kumar
- Agrotechnology of Medicinal, Aromatic and Commercially Important Plants, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanatsujat Singh
- Agrotechnology of Medicinal, Aromatic and Commercially Important Plants, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Anil Kumar Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- ICAR-Indian Institute of Agricultural Biotechnology, PDU Campus, IINRG, Namkum, Ranchi, Jharkhand, India
| | - Sanjay Kumar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
46
|
Iquebal MA, Soren KR, Gangwar P, Shanmugavadivel PS, Aravind K, Singla D, Jaiswal S, Jasrotia RS, Chaturvedi SK, Singh NP, Varshney RK, Rai A, Kumar D. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:958. [PMID: 28638398 PMCID: PMC5461349 DOI: 10.3389/fpls.2017.00958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 05/06/2023]
Abstract
Background: Chickpea (Cicer arietinum L.) contributes 75% of total pulse production. Being cheaper than animal protein, makes it important in dietary requirement of developing countries. Weed not only competes with chickpea resulting into drastic yield reduction but also creates problem of harboring fungi, bacterial diseases and insect pests. Chemical approach having new herbicide discovery has constraint of limited lead molecule options, statutory regulations and environmental clearance. Through genetic approach, transgenic herbicide tolerant crop has given successful result but led to serious concern over ecological safety thus non-transgenic approach like marker assisted selection is desirable. Since large variability in tolerance limit of herbicide already exists in chickpea varieties, thus the genes offering herbicide tolerance can be introgressed in variety improvement programme. Transcriptome studies can discover such associated key genes with herbicide tolerance in chickpea. Results: This is first transcriptomic studies of chickpea or even any legume crop using two herbicide susceptible and tolerant genotypes exposed to imidazoline (Imazethapyr). Approximately 90 million paired-end reads generated from four samples were processed and assembled into 30,803 contigs using reference based assembly. We report 6,310 differentially expressed genes (DEGs), of which 3,037 were regulated by 980 miRNAs, 1,528 transcription factors associated with 897 DEGs, 47 Hub proteins, 3,540 putative Simple Sequence Repeat-Functional Domain Marker (SSR-FDM), 13,778 genic Single Nucleotide Polymorphism (SNP) putative markers and 1,174 Indels. Randomly selected 20 DEGs were validated using qPCR. Pathway analysis suggested that xenobiotic degradation related gene, glutathione S-transferase (GST) were only up-regulated in presence of herbicide. Down-regulation of DNA replication genes and up-regulation of abscisic acid pathway genes were observed. Study further reveals the role of cytochrome P450, xyloglucan endotransglucosylase/hydrolase, glutamate dehydrogenase, methyl crotonoyl carboxylase and of thaumatin-like genes in herbicide resistance. Conclusion: Reported DEGs can be used as genomic resource for future discovery of candidate genes associated with herbicide tolerance. Reported markers can be used for future association studies in order to develop marker assisted selection (MAS) for refinement. In endeavor of chickpea variety development programme, these findings can be of immense use in improving productivity of chickpea germplasm.
Collapse
Affiliation(s)
- Mir A. Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Khela R. Soren
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Priyanka Gangwar
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - P. S. Shanmugavadivel
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - K. Aravind
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Deepak Singla
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Rahul S. Jasrotia
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sushil K. Chaturvedi
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Narendra P. Singh
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Rajeev K. Varshney
- Genetic Gains, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| |
Collapse
|
47
|
Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Sci Rep 2017; 7:45295. [PMID: 28349986 PMCID: PMC5368571 DOI: 10.1038/srep45295] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/23/2017] [Indexed: 01/29/2023] Open
Abstract
Trillium govanianum, an endangered medicinal herb native to the Himalaya, is less studied at the molecular level due to the non-availability of genomic resources. To facilitate the basic understanding of the key genes and regulatory mechanism of pharmaceutically important biosynthesis pathways, first spatial transcriptome sequencing of T. govanianum was performed. 151,622,376 (~11.5 Gb) high quality reads obtained using paired-end Illumina sequencing were de novo assembled into 69,174 transcripts. Functional annotation with multiple public databases identified array of genes involved in steroidal saponin biosynthesis and other secondary metabolite pathways including brassinosteroid, carotenoid, diterpenoid, flavonoid, phenylpropanoid, steroid and terpenoid backbone biosynthesis, and important TF families (bHLH, MYB related, NAC, FAR1, bZIP, B3 and WRKY). Differentially expressed large number of transcripts, together with CYPs and UGTs suggests involvement of these candidates in tissue specific expression. Combined transcriptome and expression analysis revealed that leaf and fruit tissues are the main site of steroidal saponin biosynthesis. In conclusion, comprehensive genomic dataset created in the current study will serve as a resource for identification of potential candidates for genetic manipulation of targeted bioactive metabolites and also contribute for development of functionally relevant molecular marker resource to expedite molecular breeding and conservation efforts in T. govanianum.
Collapse
|
48
|
Bhandawat A, Singh G, Seth R, Singh P, Sharma RK. Genome-Wide Transcriptional Profiling to Elucidate Key Candidates Involved in Bud Burst and Rattling Growth in a Subtropical Bamboo ( Dendrocalamus hamiltonii). FRONTIERS IN PLANT SCIENCE 2017; 7:2038. [PMID: 28123391 PMCID: PMC5225089 DOI: 10.3389/fpls.2016.02038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/20/2016] [Indexed: 05/29/2023]
Abstract
Bamboo, one of the fastest growing plants, can be a promising model system to understand growth. The study provides an insight into the complex interplay between environmental signaling and cellular machineries governing initiation and persistence of growth in a subtropical bamboo (Dendrocalamus hamiltonii). Phenological and spatio-temporal transcriptome analysis of rhizome and shoot during the major vegetative developmental transitions of D. hamiltonii was performed to dissect factors governing growth. Our work signifies the role of environmental cues, predominantly rainfall, decreasing day length, and high humidity for activating dormant bud to produce new shoot, possibly through complex molecular interactions among phosphatidylinositol, calcium signaling pathways, phytohormones, circadian rhythm, and humidity responses. We found the coordinated regulation of auxin, cytokinin, brassinosteroid signaling and cell cycle modulators; facilitating cell proliferation, cell expansion, and cell wall biogenesis supporting persistent growth of emerging shoot. Putative master regulators among these candidates were identified using predetermined Arabidopsis thaliana protein-protein interaction network. We got clues that the growth signaling begins far back in rhizome even before it emerges out as new shoot. Putative growth candidates identified in our study can serve in devising strategies to engineer bamboos and timber trees with enhanced growth and biomass potentials.
Collapse
Affiliation(s)
- Abhishek Bhandawat
- Molecular Genetics and Genomics Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Gagandeep Singh
- Molecular Genetics and Genomics Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Romit Seth
- Molecular Genetics and Genomics Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Pradeep Singh
- Molecular Genetics and Genomics Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Ram K. Sharma
- Molecular Genetics and Genomics Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| |
Collapse
|