1
|
Zheng M, Yang X, Li J, Zhang C, Ma S, Shi D, Cao Y, Li T. Investigation of the Thermostable Branched-Chain Transaminase From Aeribacillus pallidus: Identification, Characterization, and Application. Chem Biodivers 2025:e202500678. [PMID: 40230241 DOI: 10.1002/cbdv.202500678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
A yet unidentified branched-chain transaminase (BCAT), ApBCAT, was identified in the thermostable Aeribacillus pallidus. Notably, ApBCAT exhibits exceptional thermal stability and demonstrates the ability to catalyze a wide range of natural and unnatural amino acids. This combination of broad substrate spectrum and thermal resistance is unusual in the BCAT family, indicating the promising industrial potential of ApBCAT.
Collapse
Affiliation(s)
- Mengze Zheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xiaole Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Jiahuan Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Chuanzhi Zhang
- Jiangsu Deyuan Pharmaceutical Co., Ltd, Lianyungang, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Dahua Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yang Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Bio-Pharmaceutical Research Institute Lian Yun Gang Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Lianyungang, China
| | - Tingting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
2
|
Xu L, Li HM, Lin J. Efficient synthesis of 2'-deoxyguanosine in one-pot cascade by employing an engineered purine nucleoside phosphorylase from Brevibacterium acetylicum. World J Microbiol Biotechnol 2023; 39:286. [PMID: 37606812 DOI: 10.1007/s11274-023-03721-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
2'-deoxyguanosine is a key medicinal intermediate that could be used to synthesize anti-cancer drug and biomarker in type 2 diabetes. In this study, an enzymatic cascade using thymidine phosphorylase from Escherichia coli (EcTP) and purine nucleoside phosphorylase from Brevibacterium acetylicum (BaPNP) in a one-pot whole cell catalysis was proposed for the efficient synthesis of 2'-deoxyguanosine. BaPNP was semi-rationally designed to improve its activity, yielding the best triple variant BaPNP-Mu3 (E57A/T189S/L243I), with a 5.6-fold higher production of 2'-deoxyguanosine than that of wild-type BaPNP (BaPNP-Mu0). Molecular dynamics simulation revealed that the engineering of BaPNP-Mu3 resulted in a larger and more flexible substrate entrance channel, which might contribute to its catalytic efficiency. Furthermore, by coordinating the expression of BaPNP-Mu3 and EcTP, a robust whole cell catalyst W05 was created, capable of producing 14.8 mM 2'-deoxyguanosine (74.0% conversion rate) with a high time-space yield (1.32 g/L/h) and therefore being very competitive for industrial applications.
Collapse
Affiliation(s)
- Lian Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| | - Hui-Min Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| |
Collapse
|
3
|
Hou Y, Zhao W, Ding X, Zhang X, Li Z, Tan Z, Zhou J, Wang H, Jia S. Co-production of 7-chloro-tryptophan and indole pyruvic acid based on an efficient FAD/FADH 2 regeneration system. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12619-9. [PMID: 37354265 DOI: 10.1007/s00253-023-12619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023]
Abstract
Efficient FAD/FADH2 regeneration is vital for enzymatic biocatalysis and metabolic pathway optimization. Here, we constructed an efficient and simple FAD/FADH2 regeneration system through a combination of L-amino acid deaminase (L-AAD) and halogenase (CombiAADHa), which was applied for catalyzing the conversion of an L-amino acid to halide and an α-keto acid. For cell-free biotransformation, the optimal activity ratio of L-AAD and halogenase was set between 1:50 and 1:60. Within 6 h, 170 mg/L of 7-chloro-tryptophan (7-Cl-Trp) and 193 mg/L of indole pyruvic acid (IPA) were synthesized in the selected mono-amino acid system. For whole-cell biotransformation, 7-Cl-Trp and IPA synthesis was enhanced by 15% (from 96 to 110 mg/L) and 12% (from 115 to 129 mg/L), respectively, through expression fine-tuning and the strengthening of FAD/FADH2 supply. Finally, ultrasound treatment was applied to improve membrane permeability and adjust the activity ratio, resulting in 1.6-and 1.4-fold higher 7-Cl-Trp and IPA yields. The products were then purified. This system could also be applied to the synthesis of other halides and α-keto acids. KEY POINTS: • In this study, a whole cell FAD/FADH2 regeneration system co-expressing l-AAD and halogenase was constructed • This study found that the activity and ratio of enzyme and the concentration of cofactors had a significant effect on the catalytic process for the efficient co-production of 7-chlorotryptophan and indole pyruvate.
Collapse
Affiliation(s)
- Ying Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Wanying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xincheng Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zhibin Li
- College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhilei Tan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hongxing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
4
|
Janis MK, Zou W, Zastrow ML. A Single Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540396. [PMID: 37214816 PMCID: PMC10197653 DOI: 10.1101/2023.05.11.540396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cyanobacteriochrome (CBCR) GAF domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, becoming fluorescent. The third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803 binds phycocyanobilin (PCB) natively, yielding red/green photoswitching properties but also binds phycoerythrobilin (PEB). GAF3-PCB has low quantum yields but non-photoswitching GAF3-PEB is brighter, making it a promising platform for new genetically encoded fluorescent tools. GAF3, however, shows low PEB binding efficiency (chromophorylation) at ∼3% compared to total protein expressed in E. coli . Here we explored site-directed mutagenesis and plasmid-based methods to improve GAF3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. We found that a single mutation improved chromophorylation while tuning the emission over ∼30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised by ∼7-fold. Moreover, we show that protein-chromophore interactions can tune autoisomerization of PEB to PUB in a GAF domain, which will facilitate future engineering of similar GAF domain-derived fluorescent proteins.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| |
Collapse
|
5
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
6
|
Characterization of a New Marine Leucine Dehydrogenase from Pseudomonas balearica and Its Application for L-tert-Leucine Production. Catalysts 2022. [DOI: 10.3390/catal12090971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Leucine dehydrogenase (LeuDH) has emerged as the most promising biocatalyst for L-tert-leucine (L-Tle) production via asymmetric reduction in trimethylpyruvate (TMP). In this study, a new LeuDH named PbLeuDH from marine Pseudomonas balearica was heterologously over-expressed in Escherichia coli, followed by purification and characterization. PbLeuDH possessed a broad substrate scope, displaying activities toward numerous L-amino acids and α-keto acids. Notably, compared with those reported LeuDHs, PbLeuDH exhibited excellent catalytic efficiency for TMP with a Km value of 4.92 mM and a kcat/Km value of 24.49 s−1 mM−1. Subsequently, L-Tle efficient production was implemented from TMP by whole-cell biocatalysis using recombinant E. coli as a catalyst, which co-expressed PbLeuDH and glucose dehydrogenase (GDH). Ultimately, using a fed-batch feeding strategy, 273 mM (35.8 g L−1) L-Tle was achieved with a 96.1% yield and 2.39 g L−1 h−1 productivity. In summary, our research provides a competitive biocatalyst for L-Tle green biosynthesis and lays a solid foundation for the realization of large-scale L-Tle industrial production.
Collapse
|
7
|
Hu S, Li Y, Zhang A, Li H, Chen K, Ouyang P. Designing of an Efficient Whole-Cell Biocatalyst System for Converting L-Lysine Into Cis-3-Hydroxypipecolic Acid. Front Microbiol 2022; 13:945184. [PMID: 35832817 PMCID: PMC9271919 DOI: 10.3389/fmicb.2022.945184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Cis-3-hydroxypipecolic acid (cis-3-HyPip), a key structural component of tetrapeptide antibiotic GE81112, which has attracted substantial attention for its broad antimicrobial properties and unique ability to inhibit bacterial translation initiation. In this study, a combined strategy to increase the productivity of cis-3-HyPip was investigated. First, combinatorial optimization of the ribosomal binding site (RBS) sequence was performed to tune the gene expression translation rates of the pathway enzymes. Next, in order to reduce the addition of the co-substrate α-ketoglutarate (2-OG), the major engineering strategy was to reconstitute the tricarboxylic acid (TCA) cycle of Escherichia coli to force the metabolic flux to go through GetF catalyzed reaction for 2-OG to succinate conversion, a series of engineered strains were constructed by the deletion of the relevant genes. In addition, the metabolic flux (gltA and icd) was improved and glucose concentrations were optimized to enhance the supply and catalytic efficiency of continuous 2-OG supply powered by glucose. Finally, under optimal conditions, the cis-3-HyPip titer of the best strain catalysis reached 33 mM, which was remarkably higher than previously reported.
Collapse
|
8
|
Dai Y, Li M, Jiang B, Zhang T, Chen J. Whole-cell biosynthesis of d-tagatose from maltodextrin by engineered Escherichia coli with multi-enzyme co-expression system. Enzyme Microb Technol 2021; 145:109747. [PMID: 33750537 DOI: 10.1016/j.enzmictec.2021.109747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/11/2023]
Abstract
d-tagatose is a functional sweetener that occurs in small quantity in nature. It is mainly produced through the isomerization of d-galactose by l-arabinose isomerase (l-AI; EC 5.3.1.4). However, the cost of d-galactose is much higher than those commonly used for the production of functional sweeteners such as glucose, maltodextrin, or starch. Here, a multi-enzyme catalytic system consists of five enzymes that utilizes maltodextrin as substrate to synthesize d-tagatose were co-expressed in E. coli, resulting in recombinant cells harboring the plasmids pETDuet-αgp-pgm and pCDFDuet-pgi-gatz-pgp. The activity of this whole-cell catalyst was optimal at 60 °C and pH 7.5, and 1 mM Mg2+ and 50 mM phosphate were the optimal cofactors for activity. Under the optimal reaction conditions, 2.08 and 3.2 g L-1d-tagatose were produced by using 10 and 20 g L-1 maltodextrin as substrates with recombinant cells for 24 h. This co-expression system provides a one-pot synthesis approach for the production of d-tagatose using inexpensive substrate, avoiding enzymes purification steps and supplementation of expensive cofactors.
Collapse
Affiliation(s)
- Yiwei Dai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Jiang W, Zeng W. Construction of a Self-Purification and Self-Assembly Coenzyme Regeneration System for the Synthesis of Chiral Drug Intermediates. ACS OMEGA 2021; 6:1911-1916. [PMID: 33521431 PMCID: PMC7841785 DOI: 10.1021/acsomega.0c04668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
As one of the important research contents of synthetic biology, the construction of a regulatory system exhibits great potential in the synthesis of high value-added chemicals such as drug intermediates. In this work, a self-assembly coenzyme regeneration system, leucine dehydrogenase (LeuDH)-formate dehydrogenase (FDH) protein co-assembly system, was constructed by using the polypeptide, SpyTag/SpyCatcher. Then, it was demonstrated that the nonchromatographic inverse transition cycling purification method could purify intracellular coupling proteins and extracellular coupling proteins well. The conversion rate of the pure LeuDH-FDH protein assembly (FR-LR) was shown to be 1.6-fold and 32.3-fold higher than that of the free LeuDH-FDH system (LeuDH + FDH) and free LeuDH, respectively. This work has paved a new way of constructing a protein self-assembly system and engineering self-purification coenzyme regeneration system for the synthesis of chiral amino acids or chiral α-hydroxy acids.
Collapse
Affiliation(s)
- Wei Jiang
- ; . Tel.: +86-05926162305. Fax: +86-05926162305
| | | |
Collapse
|
10
|
Zhang DP, Jing XR, Wu LJ, Fan AW, Nie Y, Xu Y. Highly selective synthesis of D-amino acids via stereoinversion of corresponding counterpart by an in vivo cascade cell factory. Microb Cell Fact 2021; 20:11. [PMID: 33422055 PMCID: PMC7797136 DOI: 10.1186/s12934-020-01506-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND D-Amino acids are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. However, establishing a universal biocatalyst for the general synthesis of D-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we developed an efficient in vivo biocatalysis system for the synthesis of D-amino acids from L-amino acids by the co-expression of membrane-associated L-amino acid deaminase obtained from Proteus mirabilis (LAAD), meso-diaminopimelate dehydrogenases obtained from Symbiobacterium thermophilum (DAPDH), and formate dehydrogenase obtained from Burkholderia stabilis (FDH), in recombinant Escherichia coli. RESULTS To generate the in vivo cascade system, three strategies were evaluated to regulate enzyme expression levels, including single-plasmid co-expression, double-plasmid co-expression, and double-plasmid MBP-fused co-expression. The double-plasmid MBP-fused co-expression strain Escherichia coli pET-21b-MBP-laad/pET-28a-dapdh-fdh, exhibiting high catalytic efficiency, was selected. Under optimal conditions, 75 mg/mL of E. coli pET-21b-MBP-laad/pET-28a-dapdh-fdh whole-cell biocatalyst asymmetrically catalyzed the stereoinversion of 150 mM L-Phe to D-Phe, with quantitative yields of over 99% ee in 24 h, by the addition of 15 mM NADP+ and 300 mM ammonium formate. In addition, the whole-cell biocatalyst was used to successfully stereoinvert a variety of aromatic and aliphatic L-amino acids to their corresponding D-amino acids. CONCLUSIONS The newly constructed in vivo cascade biocatalysis system was effective for the highly selective synthesis of D-amino acids via stereoinversion.
Collapse
Affiliation(s)
- Dan-Ping Zhang
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiao-Ran Jing
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Lun-Jie Wu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - An-Wen Fan
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yao Nie
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
12
|
Pan X, Yu J, Du Q, Zeng S, Liu J, Jiao Q, Zhang H. Efficient synthesis of γ-glutamyl compounds by co-expression of γ-glutamylmethylamide synthetase and polyphosphate kinase in engineered Escherichia coli. J Ind Microbiol Biotechnol 2020; 47:573-583. [PMID: 32885332 DOI: 10.1007/s10295-020-02305-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
γ-Glutamyl compounds have unveiled their importance as active substances or precursors of pharmaceuticals. In this research, an approach for enzymatic synthesis of γ-glutamyl compounds was developed using γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays and polyphosphate kinase (PPK) from Corynebacterium glutamicum. GMAS and PPK were co-recombined in pETDuet-1 plasmid and co-expressed in E. coli BL21 (DE3), and the enzymatic properties of GMAS and PPK were investigated, respectively. Under the catalysis of the co-expression system, L-theanine was synthesized with 89.8% conversion when the substrate molar ratio of sodium glutamate and ethylamine (1:1.4) and only 2 mM ATP were used. A total of 14 γ-glutamyl compounds were synthesized by this one-pot method and purified by cation exchange resin and isoelectric point crystallization with a yield range from 22.3 to 72.7%. This study provided an efficient approach for the synthesis of γ-glutamyl compounds by GMAS and PPK co-expression system.
Collapse
Affiliation(s)
- Xinru Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Jinhai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Qinglin Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shuiyun Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Hongjuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
13
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
14
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
15
|
Coenzyme Binding Site Analysis of an Isopropanol Dehydrogenase with Wide Substrate Spectrum and Excellent Organic Solvent Tolerance. Appl Biochem Biotechnol 2019; 190:18-29. [PMID: 31301008 DOI: 10.1007/s12010-019-03091-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
NAD(P)H-dependent enzymes are ideal biocatalysts for the industrial production of chiral compounds, such as chiral alcohols, chiral amino acids, and chiral amines; however, efficient strategies for the regeneration of coenzyme are expected as costly of the coenzymes. Herein, a solvent-tolerant isopropanol dehydrogenase (IDH) showing lower similarity (37%) with other proteins was obtained and characterized. The enzyme exhibits high catalysis ability of its substrates methanol, ethanol, ethylene glycol, glycerol, isopropanol, n-butanol, isobutanol, and acetone. And it has good adaptability in organic solvents (isopropanol, acetonitrile, acetone, and acetophenone). Interaction force and the corresponding amino acid residues between IDH and NAD+ or NADP+ were parsed by docking. The wide substrate spectrum, excellent organic solvent tolerance, and good biocatalytic activity make the excavated enzyme a promising biocatalyst for the production of chiral compounds industrially and the construction of coenzyme regeneration systems in aqueous organic phase or organic phase.
Collapse
|
16
|
Liu S, Zhang X, Liu F, Xu M, Yang T, Long M, Zhou J, Osire T, Yang S, Rao Z. Designing of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Production of 1,2-Amino Alcohols from Epoxides. ACS Synth Biol 2019; 8:734-743. [PMID: 30840437 DOI: 10.1021/acssynbio.8b00364] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optically pure 1,2-amino alcohols are highly valuable products as intermediates for chiral pharmaceutical products. Here we designed an environmentally friendly non-natural biocatalytic cascade for efficient synthesis of 1,2-amino alcohols from cheaper epoxides. A redesignated ω-transaminase PAKω-TA was tested and showed good bioactivity at a lower pH than other reported transaminases. The cascade was efficiently constructed as a single one-pot E. coli recombinant, by coupling SpEH (epoxide hydrolase), MnADH (alcohol dehydrogenase), and PAKω-TA. Furthermore, RBS regulation strategy was used to overcome the rate limiting step by increasing expression of MnADH. For cofactor regeneration and amino donor source, an interesting point was involved as that a cofactor self-sufficient system was designed by expression of GluDH. It established a "bridge" between the cofactor and the cosubstrate, such that the cofactor self-sufficient system could release cofactor (NADP+) and cosubstrate (l-Glutamine) regenerated simultaneously. The recombinant E. coli BL21 (SGMP) with cofactor self-sufficient whole-cell cascade biocatalysis showed high ee value (>99%) and high yield, with 99.6% conversion of epoxide ( S)-1a to 1,2-amino alcohol ( S)-1d in 10 h. It further converted ( S)-2a-5a to ( S)-2d-5d with varying conversion rates ranging between 65-96.4%. This study first provides one-step synthesis of optically pure 1,2-amino alcohols from ( S)-epoxides employing a synthetic redox-self-sufficient cascade.
Collapse
Affiliation(s)
- Song Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Narancic T, Almahboub SA, O’Connor KE. Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67. [DOI: 10.1007/s11274-019-2642-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
|
18
|
Zhang X, Xu Z, Liu S, Qian K, Xu M, Yang T, Xu J, Rao Z. Improving the Production of Salt-Tolerant Glutaminase by Integrating Multiple Copies of Mglu into the Protease and 16S rDNA Genes of Bacillus subtilis 168. Molecules 2019; 24:E592. [PMID: 30736411 PMCID: PMC6384544 DOI: 10.3390/molecules24030592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, the Micrococcus luteus K-3 glutaminase was successfully over-expressed in the GRAS (Generally Recognized as Safe) Bacillus subtilis strain 168 by integration of the Mglu gene in the 16S rDNA locus. This was done in order to screen a strain producing high levels of recombinant glutaminase from the selected candidates. The transcription of the glutaminase genes in the B. subtilis 168 chromosome and the expression of glutaminase protein was further assessed by qPCR, SDS-PAGE analysis and an enzyme activity assay. To further increase the production of glutaminase, the nprB and nprE genes, which encode specific proteases, were disrupted by integration of the Mglu gene. After continuous cell culturing without the addition of antibiotics, the integrated recombinant strains showed excellent genetic stability, demonstrating favorable industrialization potential. After the fermentation temperature was optimized, a 5-L bioreactor was used for fed-batch fermentation of the recombinant glutaminase producing strain at 24 °C, and the highest enzyme activity achieved was approximately 357.6 U/mL.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Zhaoyang Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Song Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Kai Qian
- School of Medicine, Yichun University, Yichun 336000, Jiangxi, China.
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Zhiming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
19
|
Highly Efficient Deracemization of Racemic 2-Hydroxy Acids in a Three-Enzyme Co-Expression System Using a Novel Ketoacid Reductase. Appl Biochem Biotechnol 2018; 186:563-575. [PMID: 29675666 DOI: 10.1007/s12010-018-2760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022]
Abstract
Enantiopure 2-hydroxy acids (2-HAs) are important intermediates for the synthesis of pharmaceuticals and fine chemicals. Deracemization of racemic 2-HAs into the corresponding single enantiomers represents an economical and highly efficient approach for synthesizing chiral 2-HAs in industry. In this work, a novel ketoacid reductase from Leuconostoc lactis (LlKAR) with higher activity and substrate tolerance towards aromatic α-ketoacids was discovered by genome mining, and then its enzymatic properties were characterized. Accordingly, an engineered Escherichia coli (HADH-LlKAR-GDH) co-expressing 2-hydroxyacid dehydrogenase, LlKAR, and glucose dehydrogenase was constructed for efficient deracemization of racemic 2-HAs. Most of the racemic 2-HAs were deracemized to their (R)-isomers at high yields and enantiomeric purity. In the case of racemic 2-chloromandelic acid, as much as 300 mM of substrate was completely transformed into the optically pure (R)-2-chloromandelic acid (> 99% enantiomeric excess) with a high productivity of 83.8 g L-1 day-1 without addition of exogenous cofactor, which make this novel whole-cell biocatalyst more promising and competitive in practical application.
Collapse
|
20
|
Efficient biosynthesis of l-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system. Appl Microbiol Biotechnol 2018; 102:2129-2141. [DOI: 10.1007/s00253-018-8741-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/13/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
|
21
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
22
|
Zore OV, Pande P, Okifo O, Basu AK, Kasi RM, Kumar CV. Nanoarmoring: strategies for preparation of multi-catalytic enzyme polymer conjugates and enhancement of high temperature biocatalysis. RSC Adv 2017; 7:29563-29574. [PMID: 29403641 PMCID: PMC5796544 DOI: 10.1039/c7ra05666d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report a general and modular approach for the synthesis of multi enzyme-polymer conjugates (MECs) consisting of five different enzymes of diverse isoelectric points and distinct catalytic properties conjugated within a single universal polymer scaffold. The five model enzymes chosen include glucose oxidase (GOx), acid phosphatase (AP), lactate dehydrogenase (LDH), horseradish peroxidase (HRP) and lipase (Lip). Poly(acrylic acid) (PAA) is used as the model synthetic polymer scaffold that will covalently conjugate and stabilize multiple enzymes concurrently. Parallel and sequential synthetic protocols are used to synthesise MECs, 5-P and 5-S, respectively. Also, five different single enzyme-PAA conjugates (SECs) including GOx-PAA, AP-PAA, LDH-PAA, HRP-PAA and Lip-PAA are synthesized. The composition, structure and morphology of MECs and SECs are confirmed by agarose gel electrophoresis, dynamic light scattering, circular dichroism spectroscopy and transmission electron microscopy. The bioreactor comprising MEC functions as a single biocatalyst can carry out at least five different or orthogonal catalytic reactions by virtue of the five stabilized enzymes, which has never been achieved to-date. Using activity assays relevant for each of the enzymes, for example AP, the specific activity of AP at room temperature and 7.4 pH in PB is determined and set at 100%. Interestingly, MECs 5-P and 5-S show specific activities of 1800% and 600%, respectively, compared to 100% specific activity of AP at room temperature (RT). The catalytic efficiencies of 5-P and 5-S are 1.55 × 10-3 and 1.68 × 10-3, respectively, compared to 9.11 × 10-5 for AP under similar RT conditions. Similarly, AP relevant catalytic activities of 5-P and 5-S at 65 °C show 100 and 300%, respectively, relative to native AP activity at RT as the native AP is catalytically inactive at 65 °C The catalytic activity trends suggest: (1) MECs show enhanced catalytic activities compared to native enzymes under similar assay conditions and (2) 5-S is better suited for high temperature biocatalysis, while both 5-S and 5-P are suitable for room temperature biocatalysis. Initial cytotoxicity results show that these MECs are non-lethal to human cells including human embryonic kidney [HEK] cells when treated with doses of 0.01 mg mL-1 for 72 h. This cytotoxicity data is relevant for future biological applications.
Collapse
Affiliation(s)
- Omkar V. Zore
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
- Institute of Materials Science, U-3136, University of Connecticut Storrs, CT 06269-3069, USA
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
| | | | - Ashis K. Basu
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
| | - Rajeswari M. Kasi
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
- Institute of Materials Science, U-3136, University of Connecticut Storrs, CT 06269-3069, USA
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
- Institute of Materials Science, U-3136, University of Connecticut Storrs, CT 06269-3069, USA
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT 06269-3125, USA
| |
Collapse
|
23
|
|
24
|
Development of a multi-enzymatic desymmetrization and its application for the biosynthesis of l -norvaline from dl -norvaline. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Chen H, Huang R, Zhang YHP. Systematic comparison of co-expression of multiple recombinant thermophilic enzymes in Escherichia coli BL21(DE3). Appl Microbiol Biotechnol 2017; 101:4481-4493. [PMID: 28251267 DOI: 10.1007/s00253-017-8206-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
Abstract
The precise control of multiple heterologous enzyme expression levels in one Escherichia coli strain is important for cascade biocatalysis, metabolic engineering, synthetic biology, natural product synthesis, and studies of complexed proteins. We systematically investigated the co-expression of up to four thermophilic enzymes (i.e., α-glucan phosphorylase (αGP), phosphoglucomutase (PGM), glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH)) in E. coli BL21(DE3) by adding T7 promoter or T7 terminator of each gene for multiple genes in tandem, changing gene alignment, and comparing one or two plasmid systems. It was found that the addition of T7 terminator after each gene was useful to decrease the influence of the upstream gene. The co-expression of the four enzymes in E. coli BL21(DE3) was demonstrated to generate two NADPH molecules from one glucose unit of maltodextrin, where NADPH was oxidized to convert xylose to xylitol. The best four-gene co-expression system was based on two plasmids (pET and pACYC) which harbored two genes. As a result, apparent enzymatic activities of the four enzymes were regulated to be at similar levels and the overall four-enzyme activity was the highest based on the formation of xylitol. This study provides useful information for the precise control of multi-enzyme-coordinated expression in E. coli BL21(DE3).
Collapse
Affiliation(s)
- Hui Chen
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA, 24061, USA
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA, 24061, USA
| | - Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA, 24061, USA. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|