1
|
Bae WJ, Lee SI. Activating Transcription Factor 3 (ATF3) Regulates Cellular Senescence and Osteoclastogenesis via STAT3/ERK and p65/AP-1 Pathways in Human Periodontal Ligament Cells. Int J Mol Sci 2025; 26:4959. [PMID: 40430099 PMCID: PMC12112613 DOI: 10.3390/ijms26104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Oral cellular aging plays a critical role in the pathogenesis of chronic periodontitis and alveolar bone resorption. Although activating transcription factor 3 (ATF3) has been implicated as a senescence-associated factor, its specific role in periodontal ligament cell (PDLC) senescence remains unclear. Human PDLCs were exposed to lipopolysaccharide (LPS, 1 μg/mL) and nicotine (5 mM) for 3 days to induce senescence. ATF3 expression was silenced using siRNA. The expression of senescence-associated secretory phenotype (SASP) factors (IFNγ, IL6, IL8, TNFα, and IL1β) and the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) were assessed by RT-PCR and immunoassay. Conditioned media (CM) from these cells were applied to mouse bone marrow macrophages (BMMs) to evaluate osteoclast differentiation and bone resorption. In addition, key signaling pathways, including STAT3, ERK, NF-κB (p65), and AP-1, were investigated by Western blotting and immunofluorescence. ATF3 knockdown markedly reduced the LPS/nicotine-induced expression of SASP factors and decreased NO and PGE2 levels. CM from ATF3-silenced PDLCs markedly inhibited osteoclast differentiation, as evidenced by reduced tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and diminished bone resorption. Moreover, ATF3 inhibition led to a decreased RANKL/OPG ratio and attenuated the phosphorylation of STAT3 and ERK, along with the reduced nuclear translocation of p65 and AP-1 components. These findings suggest that ATF3 plays a critical role in mediating cellular senescence and osteoclastogenesis in PDLCs. Targeting ATF3 may represent a novel therapeutic strategy for managing age-related oral diseases, such as chronic periodontitis.
Collapse
Affiliation(s)
- Won-Jung Bae
- Department of Pharmacology, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Sang-Im Lee
- Department of Dental Hygiene, College of Health Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Lissek T. The universal role of adaptive transcription in health and disease. FEBS J 2025; 292:2479-2505. [PMID: 39609264 PMCID: PMC12103072 DOI: 10.1111/febs.17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/25/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
In animals, adaptive transcription is a crucial mechanism to connect environmental stimulation to changes in gene expression and subsequent organism remodeling. Adaptive transcriptional programs involving molecules such as CREB, SRF, MEF2, FOS, and EGR1 are central to a wide variety of organism functions, including learning and memory, immune system plasticity, and muscle hypertrophy, and their activation increases cellular resilience and prevents various diseases. Yet, they also form the basis for many maladaptive processes and are involved in the progression of addiction, depression, cancer, cardiovascular disorders, autoimmune conditions, and metabolic dysfunction among others and are thus prime examples for mediating the adaptation-maladaptation dilemma. They are implicated in the therapeutic effects of major treatment modalities such as antidepressants and can have negative effects on treatment, for example, contributing to therapy resistance in cancer. This review examines the universal role of adaptive transcription as a mechanism for the induction of adaptive cell state transitions in health and disease and explores how many medical disorders can be conceptualized as caused by errors in cellular adaptation goals. It also considers the underlying principles in the basic structure of adaptive gene programs such as their division into a core and a directional program. Finally, it analyses how one might best reprogram cells via targeting of adaptive transcription in combination with complex stimulation patterns to leverage endogenous cellular reprogramming dynamics and achieve optimal health of the whole organism.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityGermany
| |
Collapse
|
3
|
Asinas ED, Clark R, Nelson J, Llorens JEA, Mansky K, Tasca A. Mandibular-Derived Monocytes from 1-Year-Old Mice Have Enhanced Osteoclast Differentiation and Differentially Regulated Gene Expression Compared to Femur-Derived Monocytes. BIOLOGY 2025; 14:273. [PMID: 40136529 PMCID: PMC11940643 DOI: 10.3390/biology14030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
It is well established that both men and women lose bone as they age. While recent studies suggest unique molecular signatures of mineral-resorbing cells at different anatomical locations, most studies focus on long bones, and little is known about craniofacial osteoclasts, especially during the aging process. To determine differences between osteoclasts at different skeletal sites, we analyzed the differentiation potential, demineralization activity, and gene expression of osteoclast precursors from 1-year-old male and female C57Bl/6J mice. In our study, we determined that mandibular-derived osteoclasts were larger in size compared to those in the femur but were significantly fewer in number. However, femur-derived osteoclasts demineralized larger and more numerous areas of a calcium phosphate surface compared to mandibular-derived osteoclasts. Bulk RNA sequencing demonstrated that the mandibular-derived monocytes were enriched for genes in the WNT signaling pathway, biomineralization, and osteogenesis pathways, while femur-derived monocytes were enriched for genes in the mitochondrial respiratory complex I. Overall, our data suggest that there are different mechanisms that regulate osteoclasts from different skeletal sites as we age. This information may help to guide the design of treatments to prevent aging-induced bone loss.
Collapse
Affiliation(s)
- Emilyn D. Asinas
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Rachel Clark
- Oral Biology Graduate Program, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA;
| | - Jadyn Nelson
- School of Dentistry Summer Research Program, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA;
| | | | - Kim Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Amy Tasca
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Fan Z, Li S, You L, Lan Y, Zhong Y, Ma Y, Xu J, Xu X. Single-cell sequencing decodes the secrets of the RAP phenomenon of corticotomy. Front Immunol 2024; 15:1397727. [PMID: 39430747 PMCID: PMC11487196 DOI: 10.3389/fimmu.2024.1397727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Corticotomy-assisted tooth movement is commonly performed in clinics, however, its time-limited efficacy and the fear of surgery among patients significantly limit its clinical application. Hence, researchers have investigated non-invasive methods to accelerate tooth movement. However, the molecular mechanisms underlying corticotomy-assisted tooth movement are not fully understood. Methods Micro-CT and TRAP stain were used to tooth movement and bone resorption. Single-cell RNA sequencing was used to study the transcriptome heterogeneity of macrophages after corticotomy. Transmission electron microscopy and iron ion detection was used to evaluate ferroptosis and iron metabolism. In addition, we carried out immunohistochemistry, quantitative real-time and flow cytometry verify the effect of iron on macrophage polarization. Results Single-cell RNA sequencing of digested alveolar bone identified a significant increase in iron metabolism-related genes post-corticotomy. Macrophages play a central role in this field. Following the dimensionality reduction of macrophages, we revealed a new developmental state via pseudotime analysis post-corticotomy. SCENIC analysis revealed that Atf3 is a key transcription factor influencing this new state. We found that Atf3+ macrophages were closely associated with osteoclasts. Moreover, cell chat revealed an increase in cellular communication between Atf3+ macrophages and other cell types after corticotomy. Discussion These findings suggested that Atf3+ macrophages might play a key role in corticotomy-accelerated tooth movement, thus providing potential targets for drug development.
Collapse
Affiliation(s)
- Zhibo Fan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shenghong Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Liping You
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yuxin Lan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yutong Zhong
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yuefan Ma
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jie Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Rutkowsky JM, Wong A, Toupadakis CA, Rutledge JC, Yellowley CE. Lipolysis products from triglyceride-rich lipoproteins induce stress protein ATF3 in osteoblasts. J Orthop Res 2024; 42:1033-1044. [PMID: 38044472 PMCID: PMC11009083 DOI: 10.1002/jor.25756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
High fat diets overwhelm the physiological mechanisms for absorption, storage, and utilization of triglycerides (TG); consequently TG, TG-rich lipoproteins (TGRL), and TGRL remnants accumulate, circulate systemically, producing dyslipidemia. This associates with, or is causative for increased atherosclerotic cardiovascular risk, ischemic stroke, fatty liver disease, and pancreatitis. TGRL hydrolysis by endothelial surface-bound lipoprotein lipase (LPL) generates metabolites like free fatty acids which have proinflammatory properties. While osteoblasts utilize fatty acids as an energy source, dyslipidemia is associated with negative effects on the skeleton. In this study we investigated the effects of TGRL lipolysis products (TGRL-LP) on expression of a stress responsive transcription factor, termed activating transcription factor 3 (ATF3), reactive oxygen species (ROS), ATF3 target genes, and angiopoietin-like 4 (Angptl4) in osteoblasts. As ATF3 negatively associates with osteoblast differentiation, we also investigated the skeletal effects of global ATF3 deletion in mice. TGRL-LP increased expression of Atf3, proinflammatory proteins Ptgs2 and IL-6, and induced ROS in MC3T3-E1 osteoblastic cells. Angptl4 is an endogenous inhibitor of LPL which was transcriptionally induced by TGRL-LP, while recombinant Angptl4 prevented TG-driven Atf3 induction. Atf3 global knockout male mice demonstrated increased trabecular and cortical microarchitectural parameters. In summary, we find that TGRL-LP induce osteoblastic cell stress as evidenced by expression of ATF3, which may contribute to the negative impact of dyslipidemia in the skeleton. Further, concomitant induction of Angptl4 in osteoblasts might play a protective role by reducing local lipolysis.
Collapse
Affiliation(s)
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine
| | | | - John C. Rutledge
- Department of Internal Medicine (Cardiology), School of Medicine, University of California Davis, Davis, CA 95616
| | - Clare E. Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine
| |
Collapse
|
6
|
Barvaux S, Okawa S, Del Sol A. SinCMat: A single-cell-based method for predicting functional maturation transcription factors. Stem Cell Reports 2024; 19:270-284. [PMID: 38215756 PMCID: PMC10874865 DOI: 10.1016/j.stemcr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
A major goal of regenerative medicine is to generate tissue-specific mature and functional cells. However, current cell engineering protocols are still unable to systematically produce fully mature functional cells. While existing computational approaches aim at predicting transcription factors (TFs) for cell differentiation/reprogramming, no method currently exists that specifically considers functional cell maturation processes. To address this challenge, here, we develop SinCMat, a single-cell RNA sequencing (RNA-seq)-based computational method for predicting cell maturation TFs. Based on a model of cell maturation, SinCMat identifies pairs of identity TFs and signal-dependent TFs that co-target genes driving functional maturation. A large-scale application of SinCMat to the Mouse Cell Atlas and Tabula Sapiens accurately recapitulates known maturation TFs and predicts novel candidates. We expect SinCMat to be an important resource, complementary to preexisting computational methods, for studies aiming at producing functionally mature cells.
Collapse
Affiliation(s)
- Sybille Barvaux
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg; University of Pittsburgh School of Medicine, Vascular Medicine Institute, Department of Computational and Systems Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg; CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
7
|
Chakraborty A, Li Y, Zhang C, Li Y, Rebello KR, Li S, Xu S, Vasquez HG, Zhang L, Luo W, Wang G, Chen K, Coselli JS, LeMaire SA, Shen YH. Epigenetic Induction of Smooth Muscle Cell Phenotypic Alterations in Aortic Aneurysms and Dissections. Circulation 2023; 148:959-977. [PMID: 37555319 PMCID: PMC10529114 DOI: 10.1161/circulationaha.123.063332] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Smooth muscle cell (SMC) phenotypic switching has been increasingly detected in aortic aneurysm and dissection (AAD) tissues. However, the diverse SMC phenotypes in AAD tissues and the mechanisms driving SMC phenotypic alterations remain to be identified. METHODS We examined the transcriptomic and epigenomic dynamics of aortic SMC phenotypic changes in mice with angiotensin II-induced AAD by using single-cell RNA sequencing and single-cell sequencing assay for transposase-accessible chromatin. SMC phenotypic alteration in aortas from patients with ascending thoracic AAD was examined by using single-cell RNA sequencing analysis. RESULTS Single-cell RNA sequencing analysis revealed that aortic stress induced the transition of SMCs from a primary contractile phenotype to proliferative, extracellular matrix-producing, and inflammatory phenotypes. Lineage tracing showed the complete transformation of SMCs to fibroblasts and macrophages. Single-cell sequencing assay for transposase-accessible chromatin analysis indicated that these phenotypic alterations were controlled by chromatin remodeling marked by the reduced chromatin accessibility of contractile genes and the induced chromatin accessibility of genes involved in proliferation, extracellular matrix, and inflammation. IRF3 (interferon regulatory factor 3), a proinflammatory transcription factor activated by cytosolic DNA, was identified as a key driver of the transition of aortic SMCs from a contractile phenotype to an inflammatory phenotype. In cultured SMCs, cytosolic DNA signaled through its sensor STING (stimulator of interferon genes)-TBK1 (tank-binding kinase 1) to activate IRF3, which bound and recruited EZH2 (enhancer of zeste homolog 2) to contractile genes to induce repressive H3K27me3 modification and gene suppression. In contrast, double-stranded DNA-STING-IRF3 signaling induced inflammatory gene expression in SMCs. In Sting-/- mice, the aortic stress-induced transition of SMCs into an inflammatory phenotype was prevented, and SMC populations were preserved. Finally, profound SMC phenotypic alterations toward diverse directions were detected in human ascending thoracic AAD tissues. CONCLUSIONS Our study reveals the dynamic epigenetic induction of SMC phenotypic alterations in AAD. DNA damage and cytosolic leakage drive SMCs from a contractile phenotype to an inflammatory phenotype.
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yang Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Kimberly R Rebello
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Shengyu Li
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Samantha Xu
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Kaifu Chen
- Department of Pediatrics, Harvard Medical School, Boston, MA (K.C.)
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
8
|
Ishizaka T, Horiuchi K, Kondo S, Isaji M, Nakagawa T, Inoue M, Rikitake H, Taguchi E, Susa M, Yoda M, Ono T, Kozai Y, Chiba K. Eribulin mesylate induces bone mass loss by promoting osteoclastic bone resorption in mice. Bone Rep 2023; 18:101693. [PMID: 37305428 PMCID: PMC10248043 DOI: 10.1016/j.bonr.2023.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Over the past few decades, the clinical outcomes of patients with cancer have significantly improved mostly owing to the development of effective chemotherapeutic treatments. However, chronic health conditions such as bone mass loss and risk of fragility fractures caused by chemotherapy have also emerged as crucial issues in patients treated for cancer. In this study, we aimed to understand the effect of eribulin mesylate (ERI), a microtubule-targeting agent currently used to treat metastatic breast cancer and certain subtypes of advanced sarcomas, on bone metabolism in mice. The administration of ERI reduced bone mass in mice, mainly by promoting osteoclast activity. Gene expression analysis of skeletal tissues revealed no change in the expression levels of the transcripts for RANK ligand, one of the master regulators of osteoclastogenesis; however, the transcript levels of osteoprotegerin, which neutralizes RANK ligand, were significantly reduced in ERI-treated mice compared with those in vehicle-treated controls, indicating a relative increase in RANK ligand availability after ERI treatment. In line with the increased bone resorption in ERI-treated mice, we found that zoledronate administration effectively suppressed bone loss in these mice. These results reveal a previously unrecognized effect of ERI on bone metabolism and suggest the application of bisphosphonates for patients with cancer undergoing treatment with ERI.
Collapse
Affiliation(s)
- Takahiro Ishizaka
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Shinya Kondo
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Masashi Isaji
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Takahiro Nakagawa
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Masahiro Inoue
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Hajime Rikitake
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Eiko Taguchi
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Michiro Susa
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Masaki Yoda
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takeshi Ono
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Yusuke Kozai
- Department of Education Planning, Kanagawa Dental University, 82 Inaokacho, Yokosuka, Kanagawa 238-8580, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
9
|
Chang YH, Lin H, Li HF, Chen HH, Hung HY. Exploration and biological evaluation of 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one as an activating transcription factor 3 inducer for managing metabolic syndrome. Eur J Med Chem 2023; 246:114951. [PMID: 36455354 DOI: 10.1016/j.ejmech.2022.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
The induction of activating transcription factor 3 (ATF3) was identified as a promising therapeutic mechanism to overcome metabolic syndrome. Hence, a structure-activity relationship campaign on the chiral lead (1b) was conducted with a scaffold-hopping approach, whereby achiral 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one (16c) was recognized as a potential ATF3 inducer with a lipid-lowering feature in a pre-differentiated 3T3-L1 cell model. Also, in a high-fat diet scenario, mice subjected to 16c demonstrated robust weight loss with shrinkage of the white adipose mass and fewer hypertrophic adipocytes, accompanied by a preferable glycemic profile compared to 1b. Additionally, the biochemical analysis revealed that 16c further ameliorated the liver function and improved the plasma triglyceride profile that were absent from mice treated with 1b. Taken together, 16c shows promise as an ATF3 stimulant for further development to alleviate metabolic syndrome.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan, ROC; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
10
|
Valentine H, Aiken W, Morrison B, Zhao Z, Fowle H, Wasserman JS, Thompson E, Chin W, Young M, Clarke S, Gibbs D, Harrison S, McLaughlin W, Kwok T, Jin F, Campbell KS, Horvath A, Thompson R, Lee NH, Zhou Y, Graña X, Ragin C, Badal S. Expanding the prostate cancer cell line repertoire with ACRJ-PC28, an AR-negative neuroendocrine cell line derived from an African-Caribbean patient. CANCER RESEARCH COMMUNICATIONS 2022; 2:1355-1371. [PMID: 36643868 PMCID: PMC9836004 DOI: 10.1158/2767-9764.crc-22-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Prostate cell lines from diverse backgrounds are important to addressing disparities in prostate cancer (PCa) incidence and mortality rates among Black men. ACRJ-PC28 was developed from a transrectal needle biopsy and established via inactivation of the CDKN2A locus and simultaneous expression of human telomerase. Characterization assays included growth curve analysis, immunoblots, IHC, 3D cultures, immunofluorescence imaging, confocal microscopy, flow cytometry, WGS, and RNA-Seq. ACRJ-PC28 has been passaged more than 40 times in vitro over 10 months with a doubling time of 45 hours. STR profiling confirmed the novelty and human origin of the cell line. RNA-Seq confirmed the expression of prostate specific genes alpha-methylacyl-CoA racemase (AMACR) and NKX3.1 and Neuroendocrine specific markers synaptophysin (SYP) and enolase 2 (ENO2) and IHC confirmed the presence of AMACR. Immunoblots indicated the cell line is of basal-luminal type; expresses p53 and pRB and is AR negative. WGS confirmed the absence of exonic mutations and the presence of intronic variants that appear to not affect function of AR, p53, and pRB. RNA-Seq data revealed numerous TP53 and RB1 mRNA splice variants and the lack of AR mRNA expression. This is consistent with retention of p53 function in response to DNA damage and pRB function in response to contact inhibition. Soft agar anchorage-independent analysis indicated that the cells are transformed, confirmed by principal component analysis (PCA) where ACRJ-PC28 cells cluster alongside other PCa tumor tissues, yet was distinct. The novel methodology described should advance prostate cell line development, addressing the disparity in PCa among Black men.
Collapse
Affiliation(s)
- Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica, West Indies
| | - William Aiken
- Department of Surgery, Radiology, Anaesthesia and Intensive Care, Section of Surgery, Faculty of Medical Sciences, The University of the West Indies, Mona, Jamaica
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Belinda Morrison
- Department of Surgery, Radiology, Anaesthesia and Intensive Care, Section of Surgery, Faculty of Medical Sciences, The University of the West Indies, Mona, Jamaica
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Jason S. Wasserman
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Elon Thompson
- Department of Urology Kingston Public Hospital, North Street, Kingston
| | - Warren Chin
- Department of Urology Kingston Public Hospital, North Street, Kingston
| | - Mark Young
- Department of Urology Kingston Public Hospital, North Street, Kingston
| | - Shannique Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica, West Indies
| | - Denise Gibbs
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon Harrison
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wayne McLaughlin
- CARIGEN, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica
| | - Tim Kwok
- Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fang Jin
- Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kerry S. Campbell
- Blood Cell Development and Function Program and Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Rory Thompson
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
- Department of Pathology, University Hospital of the West Indies, Mona, Kingston, Jamaica
| | - Norman H. Lee
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, GW Cancer Center, Washington, District of Columbia
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Camille Ragin
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica, West Indies
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Ali M, LaCanna R, Lian Z, Huang J, Tan Y, Shao W, Yu X, Tian Y. Transcriptional responses to injury of regenerative lung alveolar epithelium. iScience 2022; 25:104843. [PMID: 35996586 PMCID: PMC9391595 DOI: 10.1016/j.isci.2022.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
The significance of alveolar epithelial type 2 (AT2) cell proliferation for lung alveolar epithelial homeostasis and regeneration after injury has been widely accepted. However, the heterogeneity of AT2 cell population for cell proliferation capacity remains disputed. By single-cell RNA sequencing and genetic lineage labeling using the Ki67 knock-in mouse model, we map all proliferative AT2 cells in homeostatic and regenerating murine lungs after injury induced by Streptococcus pneumoniae infection. The proliferative AT2 cell population displays a unique transcriptional program, which is regulated by activating transcription factor 3 (ATF3) and thyroid hormone receptor alpha (THRA) transcription factors. Overexpression of these two transcription factors in AT2 cells promoted AT2 cell proliferation and improved lung function after injury. These results indicate that increased expression of ATF3 and THRA at the onset of lung epithelial regeneration is required to permit rapid AT2 cell proliferation and hence progression through the recovery of lung epithelium.
Collapse
Affiliation(s)
- Mir Ali
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ryan LaCanna
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Zhaorui Lian
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Wenna Shao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Tian
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
12
|
Wang W, Li N, Wang M, Zhao Y, Wu H, Shi J, Musa M, Chen X. Analysis of ceRNA networks during mechanical tension-induced osteogenic differentiation of periodontal ligament stem cells. Eur J Oral Sci 2022; 130:e12891. [PMID: 35969187 DOI: 10.1111/eos.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
The molecular mechanisms underlying osteogenic differentiation of periodontal ligament stem cells (PDLSCs) under mechanical tension remain unclear. This study aimed to identify a potential long non-coding ribonucleic acids (lncRNAs)/circular RNAs (circRNAs)-microRNAs (miRNAs)-messenger RNAs (mRNAs) network in mechanical tension-induced osteogenic differentiation of PDLSCs. PDLSCs were isolated from the healthy human periodontal ligament, identified, cultured, and exposed to tensile force. The expression of osteogenic markers was examined, and whole transcriptome sequencing was performed to identify the expression patterns of lncRNA, circRNA, miRNAs, and mRNAs. Enrichment analyses were also performed. Candidate targets of differentially expressed non-coding RNAs (ncRNAs) were predicted, and potential competitive endogenous RNA (ceRNA) networks were constructed by Cytoscape. We found that the osteogenic differentiation of PDLSCs was significantly enhanced under dynamic tension (magnitude: 12%, frequency: 0.7 Hz). Overall, 344 lncRNAs, 57 miRNAs, 41 circRNAs, and 70 mRNAs were differentially expressed in the tension group and the control group. Functional enrichment analysis showed that differentially expressed mRNAs were mainly enriched in osteogenesis-related and mechanical stress-related biological processes and signal transduction pathways (e.g., tumor necrosis factor [TNF] and Hippo signaling pathways). The lncRNA/circRNA-miRNA-mRNA networks were depicted, and potential key ceRNA networks were identified. Our findings may help to further explore the underlying regulatory mechanism of osteogenic differentiation of PDLSCs under mechanical tensile stress.
Collapse
Affiliation(s)
- Wenfang Wang
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ning Li
- Department of Orthodontics, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China
| | - Meijuan Wang
- Department of Anesthesiology, Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yunshan Zhao
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Shi
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Mazen Musa
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xi Chen
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Yamada T, Fukasawa K, Horie T, Kadota T, Lyu J, Tokumura K, Ochiai S, Iwahashi S, Suzuki A, Park G, Ueda R, Yamamoto M, Kitao T, Shirahase H, Ochi H, Sato S, Iezaki T, Hinoi E. The role of CDK8 in mesenchymal stem cells in controlling osteoclastogenesis and bone homeostasis. Stem Cell Reports 2022; 17:1576-1588. [PMID: 35777359 PMCID: PMC9287674 DOI: 10.1016/j.stemcr.2022.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/02/2023] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) are critical regulators of postnatal bone homeostasis. Osteoporosis is characterized by bone volume and strength deterioration, partly due to MSC dysfunction. Cyclin-dependent kinase 8 (CDK8) belongs to the transcription-related CDK family. Here, CDK8 in MSCs was identified as important for bone homeostasis. CDK8 level was increased in aged MSCs along with the association with aging-related signals. Mouse genetic studies revealed that CDK8 in MSCs plays a crucial role in bone resorption and homeostasis. Mechanistically, CDK8 in MSCs extrinsically controls osteoclastogenesis through the signal transducer and transcription 1 (STAT1)-receptor activator of the nuclear factor κ Β ligand (RANKL) axis. Moreover, aged MSCs have high osteoclastogenesis-supporting activity, partly through a CDK8-dependent manner. Finally, pharmacological inhibition of CDK8 effectively repressed MSC-dependent osteoclastogenesis and prevented ovariectomy-induced osteoclastic activation and bone loss. These findings highlight that the CDK8-STAT1-RANKL axis in MSCs could play a crucial role in bone resorption and homeostasis. Aging increases CDK8 expression level in MSCs and their progeny CDK8 in MSCs plays a crucial role in bone resorption and homeostasis CDK8 in MSCs extrinsically controls osteoclastogenesis through STAT1/RANKL axis CDK8 inhibitor prevents ovariectomy-induced osteoclastic activation and bone loss
Collapse
Affiliation(s)
- Takanori Yamada
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kazuya Fukasawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tetsuhiro Horie
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takuya Kadota
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Kyoto, Japan
| | - Jiajun Lyu
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Shinsuke Ochiai
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Sayuki Iwahashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akane Suzuki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Gyujin Park
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Rie Ueda
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Megumi Yamamoto
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Kyoto, Japan
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Kyoto, Japan
| | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Kyoto, Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Graduate School, Tokyo 113-8510, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takashi Iezaki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1196, Japan.
| |
Collapse
|
14
|
Kim JH, Kim K, Kim I, Seong S, Koh JT, Kim N. The ATF3-OPG Axis Contributes to Bone Formation by Regulating the Differentiation of Osteoclasts, Osteoblasts, and Adipocytes. Int J Mol Sci 2022; 23:ijms23073500. [PMID: 35408860 PMCID: PMC8998270 DOI: 10.3390/ijms23073500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Activating transcription factor 3 (ATF3) has been identified as a negative regulator of osteoblast differentiation in in vitro study. However, it was not associated with osteoblast differentiation in in vivo study. To provide an understanding of the discrepancy between the in vivo and in vitro findings regarding the function of ATF3 in osteoblasts, we investigated the unidentified roles of ATF3 in osteoblast biology. ATF3 enhanced osteoprotegerin (OPG) production, not only in osteoblast precursor cells, but also during osteoblast differentiation and osteoblastic adipocyte differentiation. In addition, ATF3 increased nodule formation in immature osteoblasts and decreased osteoblast-dependent osteoclast formation, as well as the transdifferentiation of osteoblasts to adipocytes. However, all these effects were reversed by the OPG neutralizing antibody. Taken together, these results suggest that ATF3 contributes to bone homeostasis by regulating the differentiation of various cell types in the bone microenvironment, including osteoblasts, osteoclasts, and adipocytes via inducing OPG production.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.)
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.)
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-61-379-2835
| |
Collapse
|
15
|
|
16
|
Glutamine Metabolism Is Essential for Stemness of Bone Marrow Mesenchymal Stem Cells and Bone Homeostasis. Stem Cells Int 2019; 2019:8928934. [PMID: 31611919 PMCID: PMC6757285 DOI: 10.1155/2019/8928934] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Skeleton has emerged as an endocrine organ which is both capable of regulating energy metabolism and being a target for it. Glutamine is the most bountiful and flexible amino acid in the body which provides adenosine 5′-triphosphate (ATP) demands for cells. Emerging evidences support that glutamine which acts as the second metabolic regulator after glucose exerts crucial roles in bone homeostasis at cellular level, including the lineage allocation and proliferation of bone mesenchymal stem cells (BMSCs), the matrix mineralization of osteoblasts, and the biosynthesis in chondrocytes. The integrated mechanism consisting of WNT, mammalian target of rapamycin (mTOR), and reactive oxygen species (ROS) signaling pathway in a glutamine-dependent pattern is responsible to regulate the complex intrinsic biological process, despite more extensive molecules are deserved to be elucidated in glutamine metabolism further. Indeed, dysfunctional glutamine metabolism enhances the development of degenerative bone diseases, such as osteoporosis and osteoarthritis, and glutamine or glutamine progenitor supplementation can partially restore bone defects which may promote treatment of bone diseases, although the mechanisms are not quite clear. In this review, we will summarize and update the latest research findings and clinical trials on the crucial regulatory roles of glutamine metabolism in BMSCs and BMSC-derived bone cells, also followed with the osteoclasts which are important in bone resorption.
Collapse
|
17
|
Hiraiwa M, Ozaki K, Yamada T, Iezaki T, Park G, Fukasawa K, Horie T, Kamada H, Tokumura K, Motono M, Kaneda K, Hinoi E. mTORC1 Activation in Osteoclasts Prevents Bone Loss in a Mouse Model of Osteoporosis. Front Pharmacol 2019; 10:684. [PMID: 31263418 PMCID: PMC6585391 DOI: 10.3389/fphar.2019.00684] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is widely implicated in the pathogenesis of various diseases, including cancer, obesity, and cardiovascular disease. Bone homeostasis is maintained by the actions of bone-resorbing osteoclasts and bone-forming osteoblasts. An imbalance in the sophisticated regulation of osteoclasts and osteoblasts leads to the pathogenesis as well as etiology of certain metabolic bone diseases, including osteoporosis and osteopetrosis. Here, we identified mTOR complex 1 (mTORC1) as a pivotal mediator in the regulation of bone resorption and bone homeostasis under pathological conditions through its expression in osteoclasts. The activity of mTORC1, which was indicated by the phosphorylation level of its downstream target p70S6 kinase, was reduced during osteoclast differentiation, in accordance with the upregulation of Hamartin (encoded by tuberous sclerosis complex 1 [Tsc1]), a negative regulator of mTORC1. Receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclastogenesis was impaired in Tsc1-deficient bone marrow macrophages. By contrast, osteoclastogenesis was markedly enhanced by Raptor deficiency but was unaffected by Rictor deficiency. The deletion of Tsc1 in osteoclast lineage cells in mice prevented bone resorption and bone loss in a RANKL-induced mouse model of osteoporosis, although neither bone volume nor osteoclastic parameter was markedly altered in these knockout mice under physiological conditions. Therefore, these findings suggest that mTORC1 is a key potential target for the treatment of bone diseases.
Collapse
Affiliation(s)
- Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Takanori Yamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan.,Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Kazuya Tokumura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Mei Motono
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| |
Collapse
|
18
|
Yamada T, Park G, Node J, Ozaki K, Hiraiwa M, Kitaguchi Y, Kaneda K, Hiramoto S, Hinoi E. Daily intake of polyamine-rich Saccharomyces cerevisiae S631 prevents osteoclastic activation and bone loss in ovariectomized mice. Food Sci Biotechnol 2019; 28:1241-1245. [PMID: 31275725 DOI: 10.1007/s10068-019-00561-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 11/28/2022] Open
Abstract
An imbalance in the sophisticated regulation between bone-resorbing osteoclasts and bone-forming osteoblasts leads to the pathogenesis and etiology of certain metabolic bone diseases including osteoporosis. Certain polyamines are related to the pathophysiology of some disorders, including Alzheimer's disease, infectious disease, cancer, and aging. Recently, we demonstrated that oral intake of polyamines (spermidine and spermine) prevented bone loss through preferential disturbance of osteoclastic activation in ovariectomy-induced mouse model of postmenopausal osteoporosis. Here, we showed that daily oral supplementation of a diet containing polyamine-rich Saccharomyces cerevisiae S631 significantly inhibited osteoclastic activation as well as reduction of bone volume in the cancellous bone without affecting uterine weight in ovariectomized mice. Our findings recommend that daily oral supplementation with polyamine-rich yeast diet would be beneficial for prophylaxis of metabolic bone diseases associated with abnormal osteoclast activation.
Collapse
Affiliation(s)
- Takanori Yamada
- 1Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Gyujin Park
- 1Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Junichi Node
- Health Care Research Center, Nisshin Pharma Inc, 5-3-1, Tsurugaoka, Fujimino-City, Saitama 356-8511 Japan
| | - Kakeru Ozaki
- 1Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Manami Hiraiwa
- 1Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Yuka Kitaguchi
- 1Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Katsuyuki Kaneda
- 1Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Shigeru Hiramoto
- Health Care Research Center, Nisshin Pharma Inc, 5-3-1, Tsurugaoka, Fujimino-City, Saitama 356-8511 Japan
| | - Eiichi Hinoi
- 1Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| |
Collapse
|
19
|
Onishi Y, Hiraiwa M, Kamada H, Iezaki T, Yamada T, Kaneda K, Hinoi E. Hypoxia affects Slc7a5 expression through HIF-2α in differentiated neuronal cells. FEBS Open Bio 2019; 9:241-247. [PMID: 30761250 PMCID: PMC6356171 DOI: 10.1002/2211-5463.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
An imbalance of branched‐chain amino acids (BCAAs) in the brain may result in neuropathological conditions, such as autism spectrum disorders. The L‐type amino acid transporter 1 (LAT1), encoded by the solute carrier transporter 7a5 (Slc7a5) gene, is critical for maintaining normal levels of BCAAs in the brain. However, our understanding of the mechanisms that regulate the expression of LAT1/Slc7a5 in neurons is currently limited. Here, we demonstrate that hypoxic conditions result in upregulated expression of Slc7a5 in differentiated neuronal cells (Neuro2A cells induced to differentiate using all‐trans retinoic acid). Mechanistically, hypoxia‐induced expression of Slc7a5 is markedly reduced by short hairpin RNA (shRNA)‐mediated knockdown of hypoxia‐inducible factor 2α (HIF‐2α), but not by shRNA targeting HIF‐1α, in differentiated neuronal cells. Moreover, hypoxia increased the binding of HIF‐2α to the proximal promoter of Slc7a5 in differentiated neuronal cells. These results indicate that hypoxia directly enhances the recruitment of HIF‐2α to the proximal promoter of Slc7a5, resulting in its upregulated expression in differentiated neuronal cells. These findings indicate that Slc7a5 may be a novel gene responsive to hypoxia in a HIF‐2α‐dependent manner in differentiated neuronal cells.
Collapse
Affiliation(s)
- Yuki Onishi
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan.,Venture Business Laboratory Organization of Frontier Science and Innovation Kanazawa University Japan
| | - Takanori Yamada
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology Division of Pharmaceutical Sciences Kanazawa University Graduate School Japan
| |
Collapse
|
20
|
Li YL, Hao WJ, Chen BY, Chen J, Li GQ. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Promotes Myocardial Repair after Myocardial Infarction. Chin Med J (Engl) 2018; 131:2302-2309. [PMID: 30246716 PMCID: PMC6166466 DOI: 10.4103/0366-6999.241794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Myocardial ischemia injury is one of the leading causes of death and disability worldwide. Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions. Activating transcription factor 3 (ATF3) plays a self-protective role in counteracting CF dysfunction. However, the precise function of CF-specific ATF3 during myocardial infarction (MI) injury/repair remains incompletely understood. The aim of this study was to determine whether CF-specific ATF3 affected cardiac repair after MI. Methods: Fifteen male C57BL/6 wild-type mice were performed with MI operation to observe the expression of ATF3 at 0, 0.5, 1.0, 3.0, and 7.0 days postoperation. Model for MI was constructed in ATF3TGfl/flCol1a2-Cre+ (CF-specific ATF3 overexpression group, n = 5) and ATF3TGfl/flCol1a2-Cre− male mice (without CF-specific ATF3 overexpression group, n = 5). In addition, five mice of ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre− were subjected to sham MI operation. Heart function was detected by ultrasound and left ventricular remodeling was observed by Masson staining (myocardial fibrosis area was detected by blue collagen deposition area) at the 28th day after MI surgery in ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre− mice received sham or MI operation. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect cell proliferation/cell cycle-related gene expression in cardiac tissue. BrdU staining was used to detect fibroblast proliferation. Results: After establishment of an MI model, we found that ATF3 proteins were increased in the heart of mice after MI surgery and dominantly expressed in CFs. Genetic overexpression of ATF3 in CFs (ATF3TGfl/flCol1a2-Cre+ group) resulted in an improvement in the heart function as indicated by increased cardiac ejection fraction (41.0% vs. 30.5%, t = 8.610, P = 0.001) and increased fractional shortening (26.8% vs. 18.1%, t = 7.173, P = 0.002), which was accompanied by a decrease in cardiac scar area (23.1% vs. 11.0%, t = 8.610, P = 0.001). qRT-PCR analysis of CFs isolated from ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre− ischemic hearts revealed a distinct transcriptional profile in ATF3-overexpressing CFs, displaying pro-proliferation properties. BrdU-positive cells significantly increased in ATF3-overexpressing CFs than control CFs under angiotensin II stimuli (11.5% vs. 6.8%, t = 31.599, P = 0.001) or serum stimuli (31.6% vs. 20.1%, t = 31.599, P = 0.001). The 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester assay showed that the cell numbers of the P2 and P3 generations were higher in the ATF3-overexpressing CFs at 24 h (P2: 91.6% vs. 71.8%, t = 8.465, P = 0.015) and 48 h (P3: 81.6% vs. 51.1%, t = 9.029, P = 0.012) after serum stimulation. Notably, ATF3 overexpression-induced CF proliferation was clearly increased in the heart after MI injury. Conclusions: We identify that CF-specific ATF3 might contribute to be MI repair through upregulating the expression of cell cycle/proliferation-related genes and enhancing cell proliferation.
Collapse
Affiliation(s)
- Yu-Lin Li
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wen-Jing Hao
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Bo-Ya Chen
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jing Chen
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Guo-Qi Li
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
21
|
Rohini M, Haritha Menon A, Selvamurugan N. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. Int J Biol Macromol 2018; 120:310-317. [PMID: 30144543 DOI: 10.1016/j.ijbiomac.2018.08.107] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
Activating transcription factor 3 (ATF3) is a stress-responsive factor that belongs to the activator protein 1 (AP-1) family of transcription factors. ATF3 expression is stimulated by various factors such as hypoxia, cytokines, and chemotherapeutic and DNA damaging agents. Upon stimulation, ATF3 can form homodimers or heterodimers with other members of the AP-1 family to repress or activate transcription. Under physiological conditions, ATF3 expression is transient and plays a pivotal role in controlling the expression of cell-cycle regulators and tumor suppressor, DNA repair, and apoptosis genes. However, under pathological conditions such as those during breast cancer, a sustained and prolonged expression of ATF3 has been observed. In this review, the structure and function of ATF3, its posttranslational modifications (PTM), and its interacting proteins are discussed with a special emphasis on breast cancer metastasis.
Collapse
Affiliation(s)
- M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Haritha Menon
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
22
|
Iezaki T, Horie T, Fukasawa K, Kitabatake M, Nakamura Y, Park G, Onishi Y, Ozaki K, Kanayama T, Hiraiwa M, Kitaguchi Y, Kaneda K, Manabe T, Ishigaki Y, Ohno M, Hinoi E. Translational Control of Sox9 RNA by mTORC1 Contributes to Skeletogenesis. Stem Cell Reports 2018; 11:228-241. [PMID: 30008325 PMCID: PMC6117477 DOI: 10.1016/j.stemcr.2018.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) regulates cellular function in various cell types. Although the role of mTORC1 in skeletogenesis has been investigated previously, here we show a critical role of mTORC1/4E-BPs/SOX9 axis in regulating skeletogenesis through its expression in undifferentiated mesenchymal cells. Inactivation of Raptor, a component of mTORC1, in limb buds before mesenchymal condensations resulted in a marked loss of both cartilage and bone. Mechanistically, we demonstrated that mTORC1 selectively controls the RNA translation of Sox9, which harbors a 5′ terminal oligopyrimidine tract motif, via inhibition of the 4E-BPs. Indeed, introduction of Sox9 or a knockdown of 4E-BP1/2 in undifferentiated mesenchymal cells markedly rescued the deficiency of the condensation observed in Raptor-deficient mice. Furthermore, introduction of the Sox9 transgene rescued phenotypes of deficient skeletal growth in Raptor-deficient mice. These findings highlight a critical role of mTORC1 in mammalian skeletogenesis, at least in part, through translational control of Sox9 RNA. mTORC1 controls skeletogenesis both in skeletogenic progenitors and in chondrocytes mTORC1/4E-BPs cascade regulates the translation of Sox9 RNA SOX9 is a critical mediator in the control of skeletogenesis by mTORC1 in vivo
Collapse
Affiliation(s)
- Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makoto Kitabatake
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa 920-0293, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Onishi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Kanayama
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuka Kitaguchi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takayuki Manabe
- Department of Neuroanatomy and Neuropharmacology, Faculty of Nursing, Chukyogakuin University, Mizunami, Gifu 509-6192, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa 920-0293, Japan
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
23
|
Förstner P, Rehman R, Anastasiadou S, Haffner-Luntzer M, Sinske D, Ignatius A, Roselli F, Knöll B. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma 2018; 35:2317-2329. [PMID: 29463176 DOI: 10.1089/neu.2017.5593] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) induces a neuroinflammatory response resulting in astrocyte and microglia activation at the lesion site. This involves upregulation of neuroinflammatory genes, including chemokines and interleukins. However, so far, there is lack of knowledge on transcription factors (TFs) modulating this TBI-associated gene expression response. Herein, we analyzed activating transcription factor 3 (ATF3), a TF encoding a regeneration-associated gene (RAG) predominantly studied in peripheral nervous system (PNS) injury. ATF3 contributes to PNS axon regeneration and was shown before to regulate inflammatory processes in other injury models. In contrast to PNS injury, data on ATF3 in central nervous system (CNS) injury are sparse. We used Atf3 mouse mutants and a closed-head weight-drop-based TBI model in adult mice to target the rostrolateral cortex resulting in moderate injury severity. Post-TBI, ATF3 was upregulated already at early time points (i.e,. 1-4 h) post-injury in the brain. Mortality and weight loss upon TBI were slightly elevated in Atf3 mutants. ATF3 deficiency enhanced TBI-induced paresis and hematoma formation, suggesting that ATF3 limits these injury outcomes in wild-type mice. Next, we analyzed TBI-associated RAG and inflammatory gene expression in the cortical impact area. In contrast to the PNS, only some RAGs (Atf3, Timp1, and Sprr1a) were induced by TBI, and, surprisingly, some RAG encoding neuropeptides were downregulated. Notably, we identified ATF3 as TF-regulating proneuroinflammatory gene expression, including CCL and CXCL chemokines (Ccl2, Ccl3, Ccl4, and Cxcl1) and lipocalin. In Atf3 mutant mice, mRNA abundance was further enhanced upon TBI compared to wild-type mice, suggesting immune gene repression by wild-type ATF3. In accord, more immune cells were present in the lesion area of ATF3-deficient mice. Overall, we identified ATF3 as a new TF-mediating TBI-associated CNS inflammatory responses.
Collapse
Affiliation(s)
- Philip Förstner
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Rida Rehman
- 2 Department of Neurology, Ulm University , Ulm, Germany .,3 Department of Biomedical Engineering and Sciences (BMES), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) , H-12, Islamabad, Pakistan
| | | | - Melanie Haffner-Luntzer
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | - Daniela Sinske
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Anita Ignatius
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | | | - Bernd Knöll
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| |
Collapse
|
24
|
ATF3 mediates the inhibitory action of TNF-α on osteoblast differentiation through the JNK signaling pathway. Biochem Biophys Res Commun 2018; 499:696-701. [PMID: 29605296 DOI: 10.1016/j.bbrc.2018.03.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/02/2023]
Abstract
Tumor necrosis factor (TNF)-α, which is a proinflammatory cytokine, inhibits osteoblast differentiation under diverse inflammatory conditions. Activating transcription factor 3 (ATF3), which is a member of the ATF/cAMP response element-binding protein family of transcription factors, has been implicated in the regulation of cell proliferation and differentiation. However, the precise interactions between ATF3 and the TNF-α signaling pathway in the regulation of osteoblast differentiation remain unclear. In this study, we examined the role of ATF3 in the TNF-α-mediated inhibition of osteoblast differentiation and investigated the signaling pathways involved. The treatment of cells with TNF-α downregulated osteogenic markers, but significantly upregulated the expression of Atf3. The inhibition of Atf3 by small interfering RNAs rescued osteogenesis, which was inhibited by TNF-α. Conversely, the enforced expression of Atf3 enhanced the TNF-α-mediated inhibition of osteoblast differentiation, as revealed by the measurement of osteogenic markers and alkaline phosphatase staining. Mechanistically, TNF-α-induced Atf3 expression was significantly suppressed by the inhibition of the c-Jun N-terminal kinase (JNK) pathway. Furthermore, the overexpression of Atf3 did not affect the rescue effect that inhibiting TNF-α expression using a JNK inhibitor had on alkaline phosphatase activity and mineralization. Taken together, these results indicate that ATF3 mediates the inhibitory action of TNF-α on osteoblast differentiation and that the TNF-α-activated JNK pathway is responsible for the induction of Atf3 expression.
Collapse
|
25
|
Horie T, Fukasawa K, Iezaki T, Park G, Onishi Y, Ozaki K, Kanayama T, Hiraiwa M, Kitaguchi Y, Kaneda K, Hinoi E. Hypoxic Stress Upregulates the Expression of Slc38a1 in Brown Adipocytes via Hypoxia-Inducible Factor-1α. Pharmacology 2017; 101:64-71. [DOI: 10.1159/000480405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
Abstract
The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes.
Collapse
|
26
|
Use antibiotics in cell culture with caution: genome-wide identification of antibiotic-induced changes in gene expression and regulation. Sci Rep 2017; 7:7533. [PMID: 28790348 PMCID: PMC5548911 DOI: 10.1038/s41598-017-07757-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/29/2017] [Indexed: 01/29/2023] Open
Abstract
Standard cell culture guidelines often use media supplemented with antibiotics to prevent cell contamination. However, relatively little is known about the effect of antibiotic use in cell culture on gene expression and the extent to which this treatment could confound results. To comprehensively characterize the effect of antibiotic treatment on gene expression, we performed RNA-seq and ChIP-seq for H3K27ac on HepG2 cells, a human liver cell line commonly used for pharmacokinetic, metabolism and genomic studies, cultured in media supplemented with penicillin-streptomycin (PenStrep) or vehicle control. We identified 209 PenStrep-responsive genes, including transcription factors such as ATF3 that are likely to alter the regulation of other genes. Pathway analyses found a significant enrichment for "xenobiotic metabolism signaling" and "PXR/RXR activation" pathways. Our H3K27ac ChIP-seq identified 9,514 peaks that are PenStrep responsive. These peaks were enriched near genes that function in cell differentiation, tRNA modification, nuclease activity and protein dephosphorylation. Our results suggest that PenStrep treatment can significantly alter gene expression and regulation in a common liver cell type such as HepG2, advocating that antibiotic treatment should be taken into account when carrying out genetic, genomic or other biological assays in cultured cells.
Collapse
|
27
|
Chan CM, Macdonald CD, Litherland GJ, Wilkinson DJ, Skelton A, Europe-Finner GN, Rowan AD. Cytokine-induced MMP13 Expression in Human Chondrocytes Is Dependent on Activating Transcription Factor 3 (ATF3) Regulation. J Biol Chem 2017; 292:1625-1636. [PMID: 27956552 PMCID: PMC5290940 DOI: 10.1074/jbc.m116.756601] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/29/2016] [Indexed: 12/18/2022] Open
Abstract
Irreversible breakdown of cartilage extracellular matrix (ECM) by the collagenase matrix metalloproteinase 13 (MMP13) represents a key event in osteoarthritis (OA) progression. Although inflammation is most commonly associated with inflammatory joint diseases, it also occurs in OA and is thus relevant to the prevalent tissue destruction. Here, inflammation generates a cFOS AP-1 early response that indirectly affects MMP13 gene expression. To ascertain a more direct effect on prolonged MMP13 production we examined the potential molecular events occurring between the rapid, transient expression of cFOS and the subsequent MMP13 induction. Importantly, we show MMP13 mRNA expression is mirrored by nascent hnRNA transcription. Employing ChIP assays, cFOS recruitment to the MMP13 promoter occurs at an early stage prior to gene transcription and that recruitment of transcriptional initiation markers also correlated with MMP13 expression. Moreover, protein synthesis inhibition following early FOS expression resulted in a significant decrease in MMP13 expression thus indicating a role for different regulatory factors modulating expression of the gene. Subsequent mRNA transcriptome analyses highlighted several genes induced soon after FOS that could contribute to MMP13 expression. Specific small interfering RNA-mediated silencing highlighted that ATF3 was as highly selective for MMP13 as cFOS. Moreover, ATF3 expression was AP-1(cFOS/cJUN)-dependent and expression levels were maintained after the early transient cFOS response. Furthermore, ATF3 bound the proximal MMP13 AP-1 motif in stimulated chondrocytes at time points that no longer supported binding of FOS Consequently, these findings support roles for both cFOS (indirect) and ATF3 (direct) in effecting MMP13 transcription in human chondrocytes.
Collapse
Affiliation(s)
- Chun Ming Chan
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Christopher D Macdonald
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Gary J Litherland
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - David J Wilkinson
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Andrew Skelton
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - G Nicholas Europe-Finner
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Andrew D Rowan
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
28
|
Jeong BC, Kim JH, Kim K, Kim I, Seong S, Kim N. ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins. Bone 2017; 95:33-40. [PMID: 27829167 DOI: 10.1016/j.bone.2016.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/27/2016] [Accepted: 11/05/2016] [Indexed: 11/26/2022]
Abstract
Activating transcription factor 3 (ATF3), a member of the ATF/cAMP response element-binding protein family of transcription factors, has been implicated in the regulation of cell proliferation and differentiation. However, whether ATF3 is involved in osteoclast differentiation and activity has not been well-studied. In the present study, we examined the role of ATF3 in osteoclast differentiation and function. ATF3 expression was down-regulated during RANKL-induced osteoclast differentiation. Overexpression of ATF3 in bone marrow-derived monocyte/macrophage lineage cells (BMMs) promoted osteoclast differentiation and activity and strongly induced the expression of osteoclast genes encoding nuclear factor of activated T-cells c1 (NFATc1) and tartrate-resistant acid phosphatase (TRAP) compared to that in the control group. In contrast, small interfering RNA-mediated knockdown of ATF3 prevented the formation of multinucleated osteoclasts and markedly abrogated the expression of osteoclast marker genes. Mechanistically, ATF3 synergistically enhanced c-Fos- or NFAT-mediated transcriptional activity of the NFATc1 or TRAP promoter, respectively. Furthermore, ATF3 physically interacted with c-Fos and NFATc1 and enhanced the binding affinity of c-Fos and NFATc1 to the promoters. Interestingly, ATF3 is involved in calcium signaling during osteoclastogenesis. Taken together, these results suggest that ATF3 is a new co-factor of c-Fos and NFATc1 to activate osteoclast differentiation and activity.
Collapse
Affiliation(s)
- Byung-Chul Jeong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Pharmacology, Seonam University Medical School, Namwon, Chonbuk 55724, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|