1
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
2
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
3
|
Bruschi M, Midjek L, Ajlil Y, Vairy S, Lancien M, Ghermaoui S, Kergrohen T, Verreault M, Idbaih A, de Biagi CAO, Liu I, Filbin MG, Beccaria K, Blauwblomme T, Puget S, Tauziede-Espariat A, Varlet P, Dangouloff-Ros V, Boddaert N, Le Teuff G, Grill J, Montagnac G, Elkhatib N, Debily MA, Castel D. Diffuse midline glioma invasion and metastasis rely on cell-autonomous signaling. Neuro Oncol 2024; 26:553-568. [PMID: 37702430 PMCID: PMC10912010 DOI: 10.1093/neuonc/noad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Diffuse midline gliomas (DMG) are pediatric tumors with negligible 2-year survival after diagnosis characterized by their ability to infiltrate the central nervous system. In the hope of controlling the local growth and slowing the disease, all patients receive radiotherapy. However, distant progression occurs frequently in DMG patients. Current clues as to what causes tumor infiltration circle mainly around the tumor microenvironment, but there are currently no known determinants to predict the degree of invasiveness. METHODS In this study, we use patient-derived glioma stem cells (GSCs) to create patient-specific 3D avatars to model interindividual invasion and elucidate the cellular supporting mechanisms. RESULTS We show that GSC models in 3D mirror the invasive behavior of the parental tumors, thus proving the ability of DMG to infiltrate as an autonomous characteristic of tumor cells. Furthermore, we distinguished 2 modes of migration, mesenchymal and ameboid-like, and associated the ameboid-like modality with GSCs derived from the most invasive tumors. Using transcriptomics of both organoids and primary tumors, we further characterized the invasive ameboid-like tumors as oligodendrocyte progenitor-like, with highly contractile cytoskeleton and reduced adhesion ability driven by crucial over-expression of bone morphogenetic pathway 7 (BMP7). Finally, we deciphered MEK, ERK, and Rho/ROCK kinases activated downstream of the BMP7 stimulation as actionable targets controlling tumor cell motility. CONCLUSIONS Our findings identify 2 new therapeutic avenues. First, patient-derived GSCs represent a predictive tool for patient stratification in order to adapt irradiation strategies. Second, autocrine and short-range BMP7-related signaling becomes a druggable target to prevent DMG spread and metastasis.
Collapse
Affiliation(s)
- Marco Bruschi
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lilia Midjek
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Yassine Ajlil
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Stephanie Vairy
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Manon Lancien
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Samia Ghermaoui
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thomas Kergrohen
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Maite Verreault
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neurologie 2-Mazarin, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neurologie 2-Mazarin, Paris, France
| | - Carlos Alberto Oliveira de Biagi
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Kevin Beccaria
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Stephanie Puget
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Arnault Tauziede-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, ParisFrance
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR 1266, INSERM, IMA-BRAIN, Université de Paris, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, ParisFrance
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR 1266, INSERM, IMA-BRAIN, Université de Paris, Paris, France
| | - Volodia Dangouloff-Ros
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris Cité, Institut Imagine INSERM U1163, ParisFrance
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris Cité, Institut Imagine INSERM U1163, ParisFrance
| | - Gwenael Le Teuff
- Department of Biostatistics and Epidemiology, Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Nadia Elkhatib
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Marie-Anne Debily
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Biologie, Université Evry Paris-Saclay, Evry, France
| | - David Castel
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
4
|
Jeon H, Jang SY, Kwak G, Yi YW, You MH, Park NY, Jo JH, Yang JW, Jang HJ, Jeong SY, Moon SK, Doo HM, Nahm M, Kim D, Chang JW, Choi BO, Hong YB. TGFβ4 alleviates the phenotype of Charcot-Marie-Tooth disease type 1A. Brain 2023; 146:3608-3615. [PMID: 37143322 DOI: 10.1093/brain/awad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFβ4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFβ4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFβ4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFβ4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.
Collapse
Affiliation(s)
- Hyeonjin Jeon
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - So Young Jang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Mi-Hyeon You
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Na Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Ju Hee Jo
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Ji Won Yang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Hye Ji Jang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Sun-Young Jeong
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Seung Kee Moon
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Hyun Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Donghoon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Department of Pharmacology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Jong Wook Chang
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
5
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. FRONTIERS IN TOXICOLOGY 2022; 4:816370. [PMID: 35295221 PMCID: PMC8915868 DOI: 10.3389/ftox.2022.816370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.
Collapse
Affiliation(s)
- Katharina Koch
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kristina Bartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Hartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Jördis Klose
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Eliška Kuchovská
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Melanie Pahl
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kevin Schlüppmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
7
|
Wang Y, Li L, Wu Y, Zhang S, Ju Q, Yang Y, Jin Y, Shi H, Sun C. CD44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of Parkinson's disease. Pharmacol Res 2022; 177:106133. [PMID: 35182746 DOI: 10.1016/j.phrs.2022.106133] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
CD44 is a transmembrane protein that transduces extracellular stimuli to immune response. Neuroinflammation is a causative factor in neurodegenerative diseases, such as Parkinson's disease (PD). Owing to its role in inflammation, this study investigated whether CD44 is involved in the pathological progression of PD. Our data showed that CD44 deficiency largely abolished proinflammatory cytokine expression in primary microglia and astrocytes. In PD model mice, CD44 knockout improved behavioral defects, prevented TH loss in the SNpc and striatum, and blocked activation of microglia and astrocytes. Moreover, CD44 neutralization by anti-CD44 antibody recapitulated the phenotypes observed in CD44 knockout mice. Mechanistically, CD44 neutralization blocked TLR4 expression and NF-κB p65 nuclear translocation induced by lipopolysaccharide in BV2 cells. Overall, our results indicate that CD44 deficiency has a beneficial role against PD, which is likely due to repression of the TLR4/NF-κB axis, leading to reduced neuroinflammation. Therefore, CD44 might be a therapeutic target for the development of anti-PD agents.
Collapse
Affiliation(s)
- Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yuting Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Shouping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Qianqian Ju
- Department of Cardiothoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Diseases, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, China.
| | - Hui Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China; Department of Cardiothoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Diseases, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
8
|
Chen X, Tang X, Wang Y, Gu X, Huang T, Yang Y, Ling J. Silk-inspired fiber implant with multi-cues enhanced bionic microenvironment for promoting peripheral nerve repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112674. [DOI: 10.1016/j.msec.2022.112674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
9
|
Russo K, Wharton KA. BMP/TGF-β signaling as a modulator of neurodegeneration in ALS. Dev Dyn 2022; 251:10-25. [PMID: 33745185 PMCID: PMC11929146 DOI: 10.1002/dvdy.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary focuses on the emerging intersection between BMP/TGF-β signaling roles in nervous system function and the amyotrophic lateral sclerosis (ALS) disease state. Future research is critical to elucidate the molecular underpinnings of this intersection of the cellular processes disrupted in ALS and those influenced by BMP/TGF-β signaling, including synapse structure, neurotransmission, plasticity, and neuroinflammation. Such knowledge promises to inform us of ideal entry points for the targeted modulation of dysfunctional cellular processes in an effort to abrogate ALS pathologies. It is likely that different interventions are required, either at discrete points in disease progression, or across multiple dysfunctional processes which together lead to motor neuron degeneration and death. We discuss the challenging, but intriguing idea that modulation of the pleiotropic nature of BMP/TGF-β signaling could be advantageous, as a way to simultaneously treat defects in more than one cell process across different forms of ALS.
Collapse
Affiliation(s)
- Kathryn Russo
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | - Kristi A Wharton
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Liu S, Zhang W, Yang L, Zhou F, Liu P, Wang Y. Overexpression of bone morphogenetic protein 7 reduces oligodendrocytes loss and promotes functional recovery after spinal cord injury. J Cell Mol Med 2021; 25:8764-8774. [PMID: 34390115 PMCID: PMC8435414 DOI: 10.1111/jcmm.16832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/03/2021] [Accepted: 07/22/2021] [Indexed: 12/04/2022] Open
Abstract
Spinal cord injury (SCI), as a severe disease with no effective therapeutic measures, has always been a hot topic for scientists. Bone morphogenetic protein 7 (BMP7), as a multifunctional cytokine, has been reported to exert protective effects on the nervous system. The present study aimed to investigate the neuroprotective effect and the potential mechanisms of BMP7 on rats that suffered SCI. Rat models of SCI were established by the modified Allen's method. Adeno‐associated virus (AAV) was injected at T9 immediately before SCI to overexpress BMP7. Results showed that the expression of BMP7 decreased in the injured spinal cords that were at the same time demyelinated. AAV‐BMP7 partly reversed oligodendrocyte (OL) loss, and it was beneficial to maintain the normal structure of myelin. The intervention group showed an increase in the number of axons and Basso‐Beattie‐Bresnahan scores. Moreover, double‐labelled immunofluorescence images indicated p‐Smad1/5/9 and p‐STAT3 in OLs induced by BMP7 might be involved in the protective effects of BMP7. These findings suggest that BMP7 may be a feasible therapy for SCI to reduce demyelination and promote functional recovery.
Collapse
Affiliation(s)
- Shuxin Liu
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Yang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng Liu
- Department of Disease Prevention and Control, People's Liberation Army Joint Logistic Support Force 921th Hospital, Changsha, China
| | - Yaping Wang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 2021; 22:346-366. [PMID: 33504982 PMCID: PMC7838852 DOI: 10.1038/s41580-020-00322-w] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The ability of cells to deal with different types of stressful situations in a precise and coordinated manner is key for survival and involves various signalling networks. Over the past 25 years, p38 kinases — in particular, p38α — have been implicated in the cellular response to stress at many levels. These span from environmental and intracellular stresses, such as hyperosmolarity, oxidative stress or DNA damage, to physiological situations that involve important cellular changes such as differentiation. Given that p38α controls a plethora of functions, dysregulation of this pathway has been linked to diseases such as inflammation, immune disorders or cancer, suggesting the possibility that targeting p38α could be of therapeutic interest. In this Review, we discuss the organization of this signalling pathway focusing on the diversity of p38α substrates, their mechanisms and their links to particular cellular functions. We then address how the different cellular responses can be generated depending on the signal received and the cell type, and highlight the roles of this kinase in human physiology and in pathological contexts. p38α — the best-characterized member of the p38 kinase family — is a key mediator of cellular stress responses. p38α is activated by a plethora of signals and functions through a multitude of substrates to regulate different cellular behaviours. Understanding context-dependent p38α signalling provides important insights into p38α roles in physiology and pathology.
Collapse
Affiliation(s)
- Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
12
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Zhang Y, Jiang K, Xie G, Ding J, Peng S, Liu X, Sun C, Tang X. FGF21 impedes peripheral myelin development by stimulating p38 MAPK/c-Jun axis. J Cell Physiol 2020; 236:1345-1361. [PMID: 32657446 DOI: 10.1002/jcp.29942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 01/13/2023]
Abstract
Fibroblast growth factor 21 (FGF21) as a metabolic stress hormone, is mainly secreted by the liver. In addition to its well-defined roles in energy homeostasis, FGF21 has been shown to promote remyelination after injury in the central nervous system. In the current study, we sought to examine the potential roles of FGF21 in the peripheral nervous system (PNS) myelination. In the PNS myelin development, Fgf21 expression was reversely correlated with myelin gene expression. In cultured primary Schwann cells (SCs), the application of recombinant FGF21 greatly attenuates myelination-associated gene expression, including Oct6, Krox20, Mbp, Mpz, and Pmp22. Accordingly, the injection of FGF21 into neonatal rats markedly mitigates the myelination in sciatic nerves. On the contrary, the infusion of the anti-FGF21 antibody accelerates the myelination. Mechanistically, both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were stimulated by FGF21 in SCs and sciatic nerves. Following experiments including pharmaceutical intervention and gene manipulation revealed that the p38 MAPK/c-Jun axis, rather than ERK, is targeted by FGF21 for mediating its repression on myelination in SCs. Taken together, our data provide a new aspect of FGF21 by acting as a negative regulator for the myelin development process in the PNS via activation of p38 MAPK/c-Jun.
Collapse
Affiliation(s)
- Yunzhong Zhang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregenetation, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, China.,School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ketao Jiang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregenetation, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, China
| | - Guoqing Xie
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregenetation, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, China
| | - Jie Ding
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregenetation, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, China
| | - Su Peng
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregenetation, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, China
| | - Xiaoyu Liu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregenetation, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, China
| | - Cheng Sun
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregenetation, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, China
| | - Xin Tang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregenetation, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth. eNeuro 2020; 7:ENEURO.0066-20.2020. [PMID: 32349983 PMCID: PMC7294463 DOI: 10.1523/eneuro.0066-20.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, including known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesenchymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. These data therefore identify an unexpected paracrine role for nerve mesenchymal cells and suggest that multiple cell types contribute to creating a highly pro-growth environment for peripheral axons.
Collapse
|
15
|
Zhang Y, Zhang M, Xie W, Wan J, Tao X, Liu M, Zhen Y, Lin F, Wu B, Zhai Z, Wang C. Gremlin-1 is a key regulator of endothelial-to-mesenchymal transition in human pulmonary artery endothelial cells. Exp Cell Res 2020; 390:111941. [PMID: 32145252 DOI: 10.1016/j.yexcr.2020.111941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). Gremlin-1 promotes vascular remodeling of PAH and mediates epithelial-mesenchymal transition, which is similar to EndMT. In the present study we investigated the potential role of gremlin-1 plays in EndMT of pulmonary artery endothelial cells (PAECs). METHODS Immunofluorescence staining was performed to detect the expression of alpha smooth muscle actin (α-SMA) and von Willebrand factor (VWF). Migration and angiogenic responses of PAECs were determined by transwell assay and tube formation assay, respectively. Protein expression levels were determined by western blotting. RESULTS Gremlin-1 induced EndMT of PAECs in a phospho-smad2/3-dependent manner. This was characterized by the loss of platelet endothelial cell adhesion molecule 1 and an increase in protein levels of a-SMA, nerve-cadherin, and matrix metalloproteinase 2. It was also determined that gremlin-1 facilitated the migration and angiogenic responses of PAECs in a dose-dependent manner. Bone morphogenetic protein 7 (BMP-7) was found to attenuate gremlin-1-mediated EndMT, migration and angiogenesis of PAECs by inducing phosphorylation of Smad1/5/8 and suppressing phosphorylation of Smad2/3. CONCLUSION Gremlin-1 mediates EndMT in PAECs, and BMP-7 reverses gremlin-1-induced EndMT by an induction of p-Smad1/5/8 and suppression of p-Smad2/3.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Meng Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, NO 2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Jun Wan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Yanan Zhen
- Division of Cardiovascular Surgery, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Fan Lin
- Division of Cardiovascular Surgery, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Bo Wu
- Department of Lung Transplantation, the People's Hospital of Wuxi, 299 Qingyang Rd, Wuxi, 214023, China
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
16
|
Zhang Z, Li X, Li A, Wu G. miR-485-5p suppresses Schwann cell proliferation and myelination by targeting cdc42 and Rac1. Exp Cell Res 2020; 388:111803. [DOI: 10.1016/j.yexcr.2019.111803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
|
17
|
FGF21 Protects Dopaminergic Neurons in Parkinson's Disease Models Via Repression of Neuroinflammation. Neurotox Res 2020; 37:616-627. [PMID: 31997152 DOI: 10.1007/s12640-019-00151-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor21 (FGF21), a member of the FGF family, plays multiple biological functions including anti-inflammation, anti-oxidative stress, and anti-apoptosis. It has been shown that FGF21 protects cells from acute injury in several kinds of cells such as islet β-cells, endothelial cells, cardiomyocytes, and dopaminergic neurons. However, whether FGF21 plays neuroprotective roles against Parkinsonian syndrome in vivo has not been elucidated. Our results showed that FGF21 markedly improves cell survival in MPP+-treated SH-SY5Y cells and primary dopaminergic neurons. Furthermore, we treated MPTP-induced Parkinson's disease (PD) model mice with the recombinant FGF21 via intranasal pathway. The results showed that FGF21 treatment significantly improves behavioral performances and prevents tyrosine hydroxylase (TH) loss in the substantia nigra par compacta (SNpc) and striatum. Mechanistically, FGF21 stimulates the AMPK/PGC-1α axis to promote mitochondrial functions. Moreover, FGF21 attenuates microglia and astrocyte activation induced by MPTP, leading to a low level of inflammation in the brain. Our data indicate that FGF21 prevents dopaminergic neuron loss and shows beneficial effects against MPTP-induced PD syndrome in mice, indicating it might be a potent candidate for developing novel drugs to deal with PD.
Collapse
|
18
|
Xuan H, Tang X, Zhu Y, Ling J, Yang Y. Freestanding Hyaluronic Acid/Silk-Based Self-healing Coating toward Tissue Repair with Antibacterial Surface. ACS APPLIED BIO MATERIALS 2020; 3:1628-1635. [DOI: 10.1021/acsabm.9b01196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongyun Xuan
- College of Life Science, Nantong University, Nantong 226019, PR China
| | - Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Yanxi Zhu
- Central Laboratory of Linyi People’s Hospital, Linyi 276003, PR China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| |
Collapse
|
19
|
Ornelas IM, Khandker L, Wahl SE, Hashimoto H, Macklin WB, Wood TL. The mechanistic target of rapamycin pathway downregulates bone morphogenetic protein signaling to promote oligodendrocyte differentiation. Glia 2020; 68:1274-1290. [PMID: 31904150 DOI: 10.1002/glia.23776] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) differentiate and mature into oligodendrocytes, which produce myelin in the central nervous system. Prior studies have shown that the mechanistic target of rapamycin (mTOR) is necessary for proper myelination of the mouse spinal cord and that bone morphogenetic protein (BMP) signaling inhibits oligodendrocyte differentiation, in part by promoting expression of inhibitor of DNA binding 2 (Id2). Here we provide evidence that mTOR functions specifically in the transition from early stage OPC to immature oligodendrocyte by downregulating BMP signaling during postnatal spinal cord development. When mTOR is deleted from the oligodendrocyte lineage, expression of the FK506 binding protein 1A (FKBP12), a suppressor of BMP receptor activity, is reduced, downstream Smad activity is increased and Id2 expression is elevated. Additionally, mTOR inhibition with rapamycin in differentiating OPCs alters the transcriptional complex present at the Id2 promoter. Deletion of mTOR in oligodendroglia in vivo resulted in fewer late stage OPCs and fewer newly formed oligodendrocytes in the spinal cord with no effect on OPC proliferation or cell cycle exit. Finally, we demonstrate that inhibiting BMP signaling rescues the rapamycin-induced deficit in myelin protein expression. We conclude that mTOR promotes early oligodendrocyte differentiation by suppressing BMP signaling in OPCs.
Collapse
Affiliation(s)
- Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Stacey E Wahl
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Hirokazu Hashimoto
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
20
|
Liu S, Niu C, Xu Z, Wang Y, Liang Y, Zhao Y, Zhao Y, Yang Y. Modulation of myelin formation by combined high affinity with extracellular matrix structure of electrospun silk fibroin nanoscaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1068-1082. [PMID: 31104582 DOI: 10.1080/09205063.2019.1621244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Remyelination is a major therapeutic goal in peripheral nerve regeneration, serving to restore function of demyelinated axons and provide neuroprotection. In order to apply myelin biogenesis strategies to peripheral nerve defects, the tissue engineered substitutes might be amenable to the promotion of this repair process. Electrospun nanofibers are considered as promising scaffolds for tissue engineering due to extracellular matrix mimicking factor and enhanced electrostatic interaction resulting in a controllable 3 D nanofibrous membrane. In order to explore the role of electrospun silk fibroin (SF) membrane in myelination, co-culture of dorsal root ganglion (DRG) neurons and Schwann cells (SCs) in vitro was established and observed. Scanning electron microscopy was used to observe DRG adhesion to the membranes, the electrospinning SF membrane is more favorable to the adhesion of DRG. The immunofluorescence staining of MAG and NF showed considerable amount of myelin were formed, and the myelin was tightly wrapped around the axons of the neurons, which was confirmed under the scanning electron microscope observation. Real-time quantitative PCR technique was used to determine the gene expression level of DRG neurons cultured at different time points. The results showed that the mRNA levels of N-cadherin, laminin, fibronectin were higher than those in the control group. Our results showed that the electrospun SF nanofibers can provide topographical and chemical cues that mimic (to a certain extent) the extracellular matrix.
Collapse
Affiliation(s)
- Sha Liu
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China
| | - Changmei Niu
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China
| | - Ziqi Xu
- b Medical School, Nantong University , Nantong , PR China
| | - Yingyu Wang
- c Wen Zheng College, Soochow University , Suzhou , PR China
| | - Yunyun Liang
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China
| | - Ying Zhao
- b Medical School, Nantong University , Nantong , PR China
| | - Yahong Zhao
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China.,d Department of Materials Science and Engineering , Institute for Nanobiotechnology, Johns Hopkins University , Baltimore , MD , USA
| | - Yumin Yang
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China
| |
Collapse
|
21
|
El Soury M, Fornasari BE, Morano M, Grazio E, Ronchi G, Incarnato D, Giacobini M, Geuna S, Provero P, Gambarotta G. Soluble Neuregulin1 Down-Regulates Myelination Genes in Schwann Cells. Front Mol Neurosci 2018; 11:157. [PMID: 29867349 PMCID: PMC5960709 DOI: 10.3389/fnmol.2018.00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerves are characterised by the ability to regenerate after injury. Schwann cell activity is fundamental for all steps of peripheral nerve regeneration: immediately after injury they de-differentiate, remove myelin debris, proliferate and repopulate the injured nerve. Soluble Neuregulin1 (NRG1) is a growth factor that is strongly up-regulated and released by Schwann cells immediately after nerve injury. To identify the genes regulated in Schwann cells by soluble NRG1, we performed deep RNA sequencing to generate a transcriptome database and identify all the genes regulated following 6 h stimulation of primary adult rat Schwann cells with soluble recombinant NRG1. Interestingly, the gene ontology analysis of the transcriptome reveals that NRG1 regulates genes belonging to categories that are regulated in the peripheral nerve immediately after an injury. In particular, NRG1 strongly inhibits the expression of genes involved in myelination and in glial cell differentiation, suggesting that NRG1 might be involved in the de-differentiation (or "trans-differentiation") process of Schwann cells from a myelinating to a repair phenotype. Moreover, NRG1 inhibits genes involved in the apoptotic process, and up-regulates genes positively regulating the ribosomal RNA processing, thus suggesting that NRG1 might promote cell survival and stimulate new protein expression. This in vitro transcriptome analysis demonstrates that in Schwann cells NRG1 drives the expression of several genes which partially overlap with genes regulated in vivo after peripheral nerve injury, underlying the pivotal role of NRG1 in the first steps of the nerve regeneration process.
Collapse
Affiliation(s)
- Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Benedetta E Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Elio Grazio
- Computational Epidemiology Group and Data Analysis Unit, Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | | | - Mario Giacobini
- Computational Epidemiology Group and Data Analysis Unit, Department of Veterinary Sciences, University of Torino, Turin, Italy
| | - Stefano Geuna
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Turin, Italy.,Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
22
|
Peng S, Wang C, Ma J, Jiang K, Jiang Y, Gu X, Sun C. Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis in Parkinson's disease models both in vitro and in vivo. Br J Pharmacol 2018; 175:631-643. [PMID: 29181847 DOI: 10.1111/bph.14110] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is a neurodegenerative disorder closely associated with dopaminergic neuron loss. It is well documented that Achyranthes bidentata polypeptides (ABPP) are potent neuroprotective agents in several kinds of neurons. Therefore, we proposed that ABPP might play a beneficial role against PD by protecting dopaminergic neurons from apoptosis. EXPERIMENTAL APPROACH SH-SY5Y cells and primary rat dopaminergic neurons were pretreated with ABPP fraction k (ABPPk), a purified fraction of ABPP, and then the cells were exposed to 1-methyl-4-phenylpyridinium iodide (MPP+ ) to induce apoptosis. Cell viability, LDH activity, a Tunel assay and protein levels of Bcl-2 and Bax were analysed. In an in vivo PD model induced by MPTP, ABPPk was intranasally delivered to mice. Behavioural tests, immunohistochemistry, immunostaining, Nissl staining, qRT-PCR and Western blot were employed to evaluate the potential effects of ABPPk on PD in mice. KEY RESULTS The application of ABPPk markedly enhanced the viability of SH-SY5Y cells and primary dopaminergic neurons treated with neurotoxic agent MPP+ . In an in vivo MPTP-induced PD model, ABPPk significantly improved behavioural performances and prevented tyrosine hydroxylase loss in the substantia nigra pars compacta and striatum. Furthermore, we showed that MPTP-induced astrocyte and microglia activation were largely attenuated by ABPPk, leading to low levels of neuroinflammation and a downregulation of the apoptotic signalling pathway. CONCLUSION AND IMPLICATIONS Taken together, our data show that ABPPk protects dopaminergic neurons from apoptosis, suggesting that ABPPk might be an effective intervention for treating the neuron loss associated with disorders such as PD.
Collapse
Affiliation(s)
- Su Peng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Ketao Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
23
|
Peng S, Xu L, Ma JY, Gu XS, Sun C. Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis induced by rotenone and 6-hydroxydopamine. Neural Regen Res 2018; 13:1981-1987. [PMID: 30233073 PMCID: PMC6183036 DOI: 10.4103/1673-5374.239446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It has been well documented that Achyranthes bidentata polypeptides (ABPPs) are potent neuroprotective agents in several types of neurons. However, whether ABPPs protect dopaminergic neurons from apoptosis induced by neurotoxins is still unknown. This study was designed to observe the effect of ABPPk, a purified fraction of ABPPs, on apoptosis of dopaminergic neurons. SH-5YHY cells and primary dopaminergic neurons were pre-treated with ABPPk (25, 50, or 100 ng/mL) for 12 hours. Cells were then exposed to 6-hydroxydopamine (50 or 150 μM) or rotenone (50 or 200 μM) for 36 hours to induce cell apoptosis. Our results demonstrate that ABPPk markedly increased viability in SH-SY5Y cells and primary dopaminergic neurons, decreased lactate dehydrogenase activity and number of apoptotic dopaminergic neurons, elevated mitochondrial membrane potential, and increased Bcl-2/Bax ratio. These findings suggest that ABPPk protects dopaminergic neurons from apoptosis, and that ABPPk treatment might be an effective intervention for treating dopaminergic neuronal loss associated with disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Su Peng
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Li Xu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Yu Ma
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Song Gu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Cheng Sun
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
24
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|