1
|
Michelini G, Carlisi CO, Eaton NR, Elison JT, Haltigan JD, Kotov R, Krueger RF, Latzman RD, Li JJ, Levin-Aspenson HF, Salum GA, South SC, Stanton K, Waldman ID, Wilson S. Where do neurodevelopmental conditions fit in transdiagnostic psychiatric frameworks? Incorporating a new neurodevelopmental spectrum. World Psychiatry 2024; 23:333-357. [PMID: 39279404 PMCID: PMC11403200 DOI: 10.1002/wps.21225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Features of autism spectrum disorder, attention-deficit/hyperactivity disorder, learning disorders, intellectual disabilities, and communication and motor disorders usually emerge early in life and are associated with atypical neurodevelopment. These "neurodevelopmental conditions" are grouped together in the DSM-5 and ICD-11 to reflect their shared characteristics. Yet, reliance on categorical diagnoses poses significant challenges in both research and clinical settings (e.g., high co-occurrence, arbitrary diagnostic boundaries, high within-disorder heterogeneity). Taking a transdiagnostic dimensional approach provides a useful alternative for addressing these limitations, accounting for shared underpinnings across neurodevelopmental conditions, and characterizing their common co-occurrence and developmental continuity with other psychiatric conditions. Neurodevelopmental features have not been adequately considered in transdiagnostic psychiatric frameworks, although this would have fundamental implications for research and clinical practices. Growing evidence from studies on the structure of neurodevelopmental and other psychiatric conditions indicates that features of neurodevelopmental conditions cluster together, delineating a "neurodevelopmental spectrum" ranging from normative to impairing profiles. Studies on shared genetic underpinnings, overlapping cognitive and neural profiles, and similar developmental course and efficacy of support/treatment strategies indicate the validity of this neurodevelopmental spectrum. Further, characterizing this spectrum alongside other psychiatric dimensions has clinical utility, as it provides a fuller view of an individual's needs and strengths, and greater prognostic utility than diagnostic categories. Based on this compelling body of evidence, we argue that incorporating a new neurodevelopmental spectrum into transdiagnostic frameworks has considerable potential for transforming our understanding, classification, assessment, and clinical practices around neurodevelopmental and other psychiatric conditions.
Collapse
Affiliation(s)
- Giorgia Michelini
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Christina O Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nicholas R Eaton
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - John D Haltigan
- Department of Psychiatry, Division of Child and Youth Mental Health, University of Toronto, Toronto, ON, Canada
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Robert F Krueger
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - James J Li
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Giovanni A Salum
- Child Mind Institute, New York, NY, USA
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para a Infância e Adolescência, São Paulo, Brazil
| | - Susan C South
- Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Kasey Stanton
- Department of Psychology, University of Wyoming, Laramie, WY, USA
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Eckardt N, Sinke C, Bleich S, Lichtinghagen R, Zedler M. Investigation of the relationship between neuroplasticity and grapheme-color synesthesia. Front Neurosci 2024; 18:1434309. [PMID: 39224579 PMCID: PMC11366591 DOI: 10.3389/fnins.2024.1434309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Grapheme-color synesthesia is a normal and healthy variation of human perception. It is characterized by the association of letters or numbers with color perceptions. The etiology of synesthesia is not yet fully understood. Theories include hyperconnectivity in the brain, cross-activation of adjacent or functionally proximate sensory areas of the brain, or various models of lack of inhibitory function in the brain. The growth factor brain-derived neurotrophic (BDNF) plays an important role in the development of neurons, neuronal pathways, and synapses, as well as in the protection of existing neurons in both the central and peripheral nervous systems. ELISA methods were used to compare BDNF serum concentrations between healthy test subjects with and without grapheme-color synesthesia to establish a connection between concentration and the occurrence of synesthesia. The results showed that grapheme-color synesthetes had an increased BDNF serum level compared to the matched control group. Increased levels of BDNF can enhance the brain's ability to adapt to changing environmental conditions, injuries, or experiences, resulting in positive effects. It is discussed whether the integration of sensory information is associated with or results from increased neuroplasticity. The parallels between neurodegeneration and brain regeneration lead to the conclusion that synesthesia, in the sense of an advanced state of consciousness, is in some cases a more differentiated development of the brain rather than a relic of early childhood.
Collapse
Affiliation(s)
- Nadine Eckardt
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Division of Clinical Psychology & Sexual Medicine, Hannover Medical School, Hanover, Germany
| | - Stefan Bleich
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hanover, Germany
| | - Markus Zedler
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
3
|
Carpita B, Nardi B, Bonelli C, Pascariello L, Massimetti G, Cremone IM, Pini S, Palego L, Betti L, Giannaccini G, Dell’Osso L. Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology? Biomedicines 2024; 12:1529. [PMID: 39062102 PMCID: PMC11274613 DOI: 10.3390/biomedicines12071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
To date, although several studies have investigated the circulating levels of brain-derived neurotrophic factor (BDNF) in children with autism spectrum disorder (ASD), only a few authors have addressed their evaluation in adults. Furthermore, an important limitation of these studies lies in the fact that circulating BDNF is stored in platelets and released into the circulation when needed. To the best of our knowledge, a very limited number of studies have related peripheral BDNF values to platelet counts, and yet no study has evaluated intra-platelet BDNF levels in adults with ASD. In this framework, the aim of the present work is to pave the way in this field and evaluate platelet BNDF levels in adult ASD patients, as well as their correlation with autistic symptoms and related psychopathological dimensions. We recruited 22 ASD and 22 healthy controls, evaluated with the Adult autism subthreshold spectrum (AdAS Spectrum), the Social Anxiety Spectrum-self report (SHY-SR), the Trauma and loss spectrum-self report (TALS-SR), the Work and Social Adjustment Scale (WSAS), and the Mood Spectrum-self report for suicidality. Intra-platelet BDNF levels were also assessed. The results highlighted lower BDNF levels in the ASD group; moreover, AdAS Spectrum and WSAS total score as well as AdAS Spectrum Restricted interest and rumination, WSAS Private leisure activities, TALS-SR Arousal, and SHY-SR Childhood domains were significant negative predictors of platelet BDNF levels.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Chiara Bonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Lavinia Pascariello
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Gabriele Massimetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Lionella Palego
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Gino Giannaccini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| |
Collapse
|
4
|
Mostafavi Abdolmaleky H, Alam R, Nohesara S, Deth RC, Zhou JR. iPSC-Derived Astrocytes and Neurons Replicate Brain Gene Expression, Epigenetic, Cell Morphology and Connectivity Alterations Found in Autism. Cells 2024; 13:1095. [PMID: 38994948 PMCID: PMC11240613 DOI: 10.3390/cells13131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Reza Alam
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
5
|
Ilchibaeva T, Tsybko A, Lipnitskaya M, Eremin D, Milutinovich K, Naumenko V, Popova N. Brain-Derived Neurotrophic Factor (BDNF) in Mechanisms of Autistic-like Behavior in BTBR Mice: Crosstalk with the Dopaminergic Brain System. Biomedicines 2023; 11:biomedicines11051482. [PMID: 37239153 DOI: 10.3390/biomedicines11051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Disturbances in neuroplasticity undoubtedly play an important role in the development of autism spectrum disorders (ASDs). Brain neurotransmitters and brain-derived neurotrophic factor (BDNF) are known as crucial players in cerebral and behavioral plasticity. Such an important neurotransmitter as dopamine (DA) is involved in the behavioral inflexibility of ASD. Additionally, much evidence from human and animal studies implicates BDNF in ASD pathogenesis. Nonetheless, crosstalk between BDNF and the DA system has not been studied in the context of an autistic-like phenotype. For this reason, the aim of our study was to compare the effects of either the acute intracerebroventricular administration of a recombinant BDNF protein or hippocampal adeno-associated-virus-mediated BDNF overexpression on autistic-like behavior and expression of key DA-related and BDNF-related genes in BTBR mice (a widely recognized model of autism). The BDNF administration failed to affect autistic-like behavior but downregulated Comt mRNA in the frontal cortex and hippocampus; however, COMT protein downregulation in the hippocampus and upregulation in the striatum were insignificant. BDNF administration also reduced the receptor TrkB level in the frontal cortex and midbrain and the BDNF/proBDNF ratio in the striatum. In contrast, hippocampal BDNF overexpression significantly diminished stereotypical behavior and anxiety; these alterations were accompanied only by higher hippocampal DA receptor D1 mRNA levels. The results indicate an important role of BDNF in mechanisms underlying anxiety and repetitive behavior in ASDs and implicates BDNF-DA crosstalk in the autistic-like phenotype of BTBR mice.
Collapse
Affiliation(s)
- Tatiana Ilchibaeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Anton Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Marina Lipnitskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Dmitry Eremin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Milutinovich
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vladimir Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Nina Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Parellada M, Andreu-Bernabeu Á, Burdeus M, San José Cáceres A, Urbiola E, Carpenter LL, Kraguljac NV, McDonald WM, Nemeroff CB, Rodriguez CI, Widge AS, State MW, Sanders SJ. In Search of Biomarkers to Guide Interventions in Autism Spectrum Disorder: A Systematic Review. Am J Psychiatry 2023; 180:23-40. [PMID: 36475375 PMCID: PMC10123775 DOI: 10.1176/appi.ajp.21100992] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to catalog and evaluate response biomarkers correlated with autism spectrum disorder (ASD) symptoms to improve clinical trials. METHODS A systematic review of MEDLINE, Embase, and Scopus was conducted in April 2020. Seven criteria were applied to focus on original research that includes quantifiable response biomarkers measured alongside ASD symptoms. Interventional studies or human studies that assessed the correlation between biomarkers and ASD-related behavioral measures were included. RESULTS A total of 5,799 independent records yielded 280 articles for review that reported on 940 biomarkers, 755 of which were unique to a single publication. Molecular biomarkers were the most frequently assayed, including cytokines, growth factors, measures of oxidative stress, neurotransmitters, and hormones, followed by neurophysiology (e.g., EEG and eye tracking), neuroimaging (e.g., functional MRI), and other physiological measures. Studies were highly heterogeneous, including in phenotypes, demographic characteristics, tissues assayed, and methods for biomarker detection. With a median total sample size of 64, almost all of the reviewed studies were only powered to identify biomarkers with large effect sizes. Reporting of individual-level values and summary statistics was inconsistent, hampering mega- and meta-analysis. Biomarkers assayed in multiple studies yielded mostly inconsistent results, revealing a "replication crisis." CONCLUSIONS There is currently no response biomarker with sufficient evidence to inform ASD clinical trials. This review highlights methodological imperatives for ASD biomarker research necessary to make definitive progress: consistent experimental design, correction for multiple comparisons, formal replication, sharing of sample-level data, and preregistration of study designs. Systematic "big data" analyses of multiple potential biomarkers could accelerate discovery.
Collapse
Affiliation(s)
- Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Mónica Burdeus
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Antonia San José Cáceres
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Elena Urbiola
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Linda L Carpenter
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Nina V Kraguljac
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - William M McDonald
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Charles B Nemeroff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Carolyn I Rodriguez
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Alik S Widge
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Matthew W State
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Stephan J Sanders
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| |
Collapse
|
7
|
Jameson C, Boulton KA, Silove N, Nanan R, Guastella AJ. Ectodermal origins of the skin-brain axis: a novel model for the developing brain, inflammation, and neurodevelopmental conditions. Mol Psychiatry 2023; 28:108-117. [PMID: 36284159 PMCID: PMC9812765 DOI: 10.1038/s41380-022-01829-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 01/09/2023]
Abstract
Early life development and its divergence is influenced by multiple genetic, neurological, and environmental factors. Atypical neurodevelopment, such as that observed in autism spectrum disorder, likely begins in early gestation during a period of entwined growth between the brain and epithelial barriers of the skin, gastrointestinal tract, and airway. This review coalesces epidemiological and neuroinflammatory evidence linking cutaneous atopic disease with both reduced skin barrier integrity and determinants of neurodivergence. We consider the shared developmental origin of epidermal and neural tissue with related genetic and environmental risk factors to evaluate potential pre- and postnatal modifiers of the skin-brain connection. Initial postnatal skin barrier integrity may provide a useful marker for both cortical integrity and meaningful subgroups of children showing early neurodevelopmental delays. It may also modify known risk factors to neurodevelopment, such as pathogen caused immune system activation. These novel insights of a skin-brain-neurodevelopment connection may advance detection and intervention opportunities.
Collapse
Affiliation(s)
- C. Jameson
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| | - K. A. Boulton
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| | - N. Silove
- grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia ,grid.413973.b0000 0000 9690 854XChild Development Unit, The Children’s Hospital at Westmead, Westmead, NSW Australia
| | - R. Nanan
- grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XCharles Perkins Centre Nepean’s and Sydney Medical School Nepean, The University of Sydney, Nepean, Discipline of Paediatrics, University of Sydney, Camperdown, NSW Australia
| | - A. J. Guastella
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopmental Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, NSW Australia
| |
Collapse
|
8
|
Differential Regulation of the BDNF Gene in Cortical and Hippocampal Neurons. J Neurosci 2022; 42:9110-9128. [PMID: 36316156 PMCID: PMC9761680 DOI: 10.1523/jneurosci.2535-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin that supports the survival, differentiation, and signaling of various neuronal populations. Although it has been well described that expression of BDNF is strongly regulated by neuronal activity, little is known whether regulation of BDNF expression is similar in different brain regions. Here, we focused on this fundamental question using neuronal populations obtained from rat cerebral cortices and hippocampi of both sexes. First, we thoroughly characterized the role of the best-described regulators of BDNF gene - cAMP response element binding protein (CREB) family transcription factors, and show that activity-dependent BDNF expression depends more on CREB and the coactivators CREB binding protein (CBP) and CREB-regulated transcriptional coactivator 1 (CRTC1) in cortical than in hippocampal neurons. Our data also reveal an important role of CREB in the early induction of BDNF mRNA expression after neuronal activity and only modest contribution after prolonged neuronal activity. We further corroborated our findings at BDNF protein level. To determine the transcription factors regulating BDNF expression in these rat brain regions in addition to CREB family, we used in vitro DNA pulldown assay coupled with mass spectrometry, chromatin immunoprecipitation (ChIP), and bioinformatics, and propose a number of neurodevelopmentally important transcription factors, such as FOXP1, SATB2, RAI1, BCL11A, and TCF4 as brain region-specific regulators of BDNF expression. Together, our data reveal complicated brain region-specific fine-tuning of BDNF expression.SIGNIFICANCE STATEMENT To date, majority of the research has focused on the regulation of brain-derived neurotrophic factor (BDNF) in the brain but much less is known whether the regulation of BDNF expression is universal in different brain regions and neuronal populations. Here, we report that the best described regulators of BDNF gene from the cAMP-response element binding protein (CREB) transcription factor family have a more profound role in the activity-dependent regulation of BDNF in cortex than in hippocampus. Our results indicate a brain region-specific fine tuning of BDNF expression. Moreover, we have used unbiased determination of novel regulators of the BDNF gene and report a number of neurodevelopmentally important transcription factors as novel potential regulators of the BDNF expression.
Collapse
|
9
|
Mishra A, Singla R, Kumar R, Sharma A, Joshi R, Sarma P, Kaur G, Prajapat M, Bhatia A, Medhi B. Granulocyte Colony-Stimulating Factor Improved Core Symptoms of Autism Spectrum Disorder via Modulating Glutamatergic Receptors in the Prefrontal Cortex and Hippocampus of Rat Brains. ACS Chem Neurosci 2022; 13:2942-2961. [PMID: 36166499 DOI: 10.1021/acschemneuro.2c00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic neuroinflammation-induced anomalous glutamate receptor activation has been identified as one of the important factors in the pathogenesis of autism spectrum disorder (ASD). Thus, the current study was designed to elucidate the neuroprotective effect of the granulocyte colony-stimulating factor (G-CSF), a haemopoietic growth factor, an anti-inflammatory, and a neuroprotectant to decipher the underlying mechanism(s) in the valproic acid (VPA)-induced experimental model of ASD. Experimentally, the ASD rat model was induced by a single dose of VPA (600 mg/kg; i.p.) on gestation day 12.5 to the pregnant female rats. After birth, pups were treated with vehicle, normal saline 0.9% i.p., risperidone (2.5 mg/kg; i.p.), and G-CSF (10, 35, and 70 μg/kg; i.p.) from postnatal day (PND) 23 to 43. All the groups were subjected to various developmental and behavior tests from birth. The rats were sacrificed on PND 55, and their brain was excised and processed for biochemical parameters (oxidative stress, inflammatory markers, BDNF), histological examination (H&E, Nissl staining), NMDA, and AMPA receptor expression by immunohistochemistry, western blot, and real-time polymerase chain reaction evaluation. Also, the possible interaction of the G-CSF with NMDA and AMPA receptors was evaluated using the in-silico method. The results of the study showed that in VPA-exposed rats, postnatal treatment of G-CSF rescued all the behavioral abnormalities, oxidative stress, and inflammatory parameters in a dose-dependent manner while risperidone did not show any significant results. The in-silico analysis showed the direct interaction of G-CSF with NMDA and AMPA receptors. The upregulated expression of NMDA and AMPA both in the prefrontal cortex as well as hippocampus was alleviated by G-CSF thereby validating its anti-inflammatory and excitoprotective properties. Thus, G-CSF demonstrated neuroprotection against the core symptoms of autism in the VPA-induced rodent model, making it a potential candidate for the treatment of ASD.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rubal Singla
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rohit Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - AmitRaj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Gurjeet Kaur
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh160012, India
| |
Collapse
|
10
|
BDNF, proBDNF and IGF-1 serum levels in naïve and medicated subjects with autism. Sci Rep 2022; 12:13768. [PMID: 35962006 PMCID: PMC9374711 DOI: 10.1038/s41598-022-17503-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) promote the development and maintenance of neural circuits. Alterations in these factors might contribute to autism spectrum disorder (ASD). We asked whether serum BDNF, proBDNF, and IGF-1 levels are altered in an ASD population compared to controls. We measured serum BDNF, proBDNF, and IGF-1 immunoreactive protein in boys and girls aged 5–15 years old with mild to moderate ASD and non-autistic controls by ELISA. IGF-1 was increased in ASD serum compared to controls and was correlated with age and with CARS scores. Serum BDNF levels did not differ between groups, however, proBDNF serum levels were decreased in subjects with ASD compared to non-autistic controls. Medicated, but not unmedicated, ASD subjects exhibited lower serum proBDNF levels compared to controls, while neither IGF-1 nor BDNF levels differed between treatment groups. These data support the involvement of proBDNF and IGF-1 in the pathogenesis and treatment of autism.
Collapse
|
11
|
Sharma A, Bhalla S, Mehan S. PI3K/AKT/mTOR signalling inhibitor chrysophanol ameliorates neurobehavioural and neurochemical defects in propionic acid-induced experimental model of autism in adult rats. Metab Brain Dis 2022; 37:1909-1929. [PMID: 35687217 DOI: 10.1007/s11011-022-01026-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/05/2022] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder marked by social and communication deficits as well as repetitive behaviour. Several studies have found that overactivation of the PI3K/AKT/mTOR signalling pathways during brain development plays a significant role in autism pathogenesis. Overexpression of the PI3K/AKT/mTOR signalling pathway causes neurological disorders by increasing cell death, neuroinflammation, and oxidative stress. Chrysophanol, also known as chrysophanic acid, is a naturally occurring chemical obtained from the plant Rheum palmatum. This study aimed to examine the neuroprotective effect of CPH on neurobehavioral, molecular, neurochemical, and gross pathological alterations in ICV-PPA induced experimental model of autism in adult rats. The effects of ICV-PPA on PI3K/AKT/mTOR downregulation in the brain were studied in autism-like rats. Furthermore, we investigated how CPH affected myelin basic protein (MBP) levels in rat brain homogenate and apoptotic biomarkers such as caspase-3, Bax, and Bcl-2 levels in rat brain homogenate and blood plasma samples. Rats were tested for behavioural abnormalities such as neuromuscular dysfunction using an actophotometer, motor coordination using a beam crossing task (BCT), depressive behaviour using a forced swim test (FST), cognitive deficiency, and memory consolidation using a Morris water maze (MWM) task. In PPA-treated rats, prolonged oral CPH administration from day 12 to day 44 of the experimental schedule reduces autistic-like symptoms. Furthermore, in rat brain homogenates, blood plasma, and CSF samples, cellular, molecular, and cell death markers, neuroinflammatory cytokines, neurotransmitter levels, and oxidative stress indicators were investigated. The recent findings imply that CPH also restores abnormal neurochemical levels and may prevent autism-like gross pathological alterations, such as demyelination volume, in the rat brain.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
12
|
Han YMY, Yau SY, Chan MMY, Wong CK, Chan AS. Altered Cytokine and BDNF Levels in Individuals with Autism Spectrum Disorders. Brain Sci 2022; 12:brainsci12040460. [PMID: 35447993 PMCID: PMC9026457 DOI: 10.3390/brainsci12040460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Previous studies have shown that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASDs). The present study examined whether immunological abnormalities are associated with cognitive and behavioral deficits in children with ASD and whether children with ASD show different immunological biomarkers and brain-derived neurotrophic factor BDNF levels than typically developing (TD) children. Sixteen children with TD and 18 children with ASD, aged 6–18 years, voluntarily participated in the study. Participants’ executive functions were measured using neuropsychological tests, and behavioral measures were measured using parent ratings. Immunological measures were assessed by measuring the participants’ blood serum levels of chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5). Children with ASD showed greater deficits in cognitive functions as well as altered levels of immunological measures when compared to TD children, and their cognitive functions and behavioral deficits were significantly associated with increased CCL5 levels and decreased BDNF levels. These results provide evidence to support the notion that altered immune functions and neurotrophin deficiency are involved in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yvonne M. Y. Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
- Correspondence: ; Tel.: +852-2766-7578
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
| | - Melody M. Y. Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
13
|
El Ghamry R, El-Sheikh M, Abdel Meguid M, Nagib S, Aly El Gabry D. Plasma brain-derived neurotrophic factor (BDNF) in Egyptian children with attention deficit hyperactivity disorder. MIDDLE EAST CURRENT PSYCHIATRY 2021. [DOI: 10.1186/s43045-021-00099-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
To date, researchers do not fully understand what the aetiology of attention deficit hyperactivity disorder (ADHD) is. As a neurotrophin, the brain-derived neurotrophic factor (BDNF) contributes to the growth of neurons as well as to the efficiency and plasticity of the neuronal synapse, which suggests that it may be a contributing aetiological factor in ADHD. Therefore, we sought to investigate the relationship between ADHD and plasma BDNF, including whether there is an association between BDNF and the degree of severity of ADHD and with ADHD subtypes.
Results
We found significantly elevated plasma BDNF in ADHD subjects in comparison with healthy subjects, but differences among the three subtypes of ADHD did not reach statistical significance.
Conclusion
Compared with the control group, elevated plasma BDNF levels were found in the ADHD group, which suggests it may contribute to the aetiology of ADHD.
Collapse
|
14
|
Shin K, Lim G, Hong YS, Kim S, Hwang S, Lee J, Sin S, Cho A, Kim Y, Gautam R, Jo J, Acharya M, Maharjan A, Lee D, K C PB, Kim C, Heo Y, Kim HA. Exposure to lead on expression levels of brain immunoglobulins, inflammatory cytokines, and brain-derived neurotropic factor in fetal and postnatal mice with autism-like characteristics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:891-900. [PMID: 34187350 DOI: 10.1080/15287394.2021.1945985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders, and their incidence is increasing worldwide. Increased exposure to environmental metal lead (Pb) has been proposed as a risk factor associated with ASD. In the present study, BTBR T+ tf/J (BTBR) mice with ASD-like behavioral characteristics and control FVB mice were exposed gestationally and/or neonatally to Pb, and compared with highly social FVB mice to investigate neuroimmunological abnormalities. IgG1 and IgG2a levels in fetal brains from BTBR dams exposed to Pb (BTBR-Pb) were significantly higher than those of BTBR-controls (BTBR-C). However, this change did not occur in FVB mice exposed to Pb. The IgG1:IgG2a ratio was higher in both fetal and postnatal brains of BTBR mice compared to FVB animals regardless of Pb exposure. The IL-4:IFN-γ ratio was elevated in BTBR-Pb relative to BTBR-C mice, but this ratio was not markedly affected following Pb exposure in FVB animals. These findings suggest the potential for a Pb-driven predominant TH2-like reactivity profile in brain microenvironment present in BTBR mice. Brain-derived neurotrophic factor was decreased in fetal and postnatal BTBR-Pb brains relative to BTBR-C brains but not in FVB-Pb relative to FVB-C mice. Taken together, data demonstrate that Pb exposure might contribute to developmental brain abnormalities associated with ASD, particularly in individuals with genetic susceptibility to ASD.
Collapse
Affiliation(s)
- KyeongMin Shin
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - GyeongDong Lim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - SoNam Kim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - SoRyeon Hwang
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - JaeHee Lee
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - SoJung Sin
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - AhRang Cho
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - YeonGyeong Kim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - JiHun Jo
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Anju Maharjan
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Pramod B K C
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yong Heo
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Hyoung-Ah Kim
- Department of Preventive Medicine, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Dremencov E, Jezova D, Barak S, Gaburjakova J, Gaburjakova M, Kutna V, Ovsepian SV. Trophic factors as potential therapies for treatment of major mental disorders. Neurosci Lett 2021; 764:136194. [PMID: 34433100 DOI: 10.1016/j.neulet.2021.136194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Kutna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
16
|
Farmer CA, Thurm AE, Honnekeri B, Kim P, Swedo SE, Han JC. The contribution of platelets to peripheral BDNF elevation in children with autism spectrum disorder. Sci Rep 2021; 11:18158. [PMID: 34518555 PMCID: PMC8438074 DOI: 10.1038/s41598-021-97367-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key peptide in neurocognitive development, has been reported to be elevated in the serum of children with autism spectrum disorder (ASD). In a few studies, however, no differences or the converse have been documented. As a secondary analysis of a natural history study, we examined differences in ELISA serum BDNF between a group of children aged 1 to 9 years (69% white) with ASD (n = 94) and those with typical development (n = 52) or non-ASD developmental delay (n = 21), while accounting for the potential confounding effects of platelet quantity. Platelet counts were measured within 4 h of blood draw using an automated cell counter. Taqman single nucleotide polymorphism (SNP) assays were used to genotype 11 SNPs within the BDNF locus. Unadjusted mean BDNF concentration was higher in children with ASD than in children with typical development (standardized mean difference = 0.23; 95% CI 0.07, 0.38), but not children with non-ASD developmental delay. The magnitude of this difference was reduced after adjusting for platelet count (standardized mean difference = 0.18; 95% CI 0.02, 0.33). Although some BDNF SNPs were related to BDNF concentration, the distributions of these genotypes did not differ across diagnostic groups. This study replicates previous work suggesting that average serum BDNF concentration is higher in ASD compared to typical development, and extends that work by highlighting the potentially confounding role of platelet counts. The etiology of platelet count differences warrants further elucidation. Nonetheless, our results suggest that elevation in BDNF may be partially explained by higher platelet counts in children with ASD, an association that should be considered in future analysis and interpretation.Registration: NCT00298246.
Collapse
Affiliation(s)
- Cristan A Farmer
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Audrey E Thurm
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bianca Honnekeri
- Grant Government Medical College and Sir J.J. Group of Hospitals, Mumbai, 400008, India
- Clinical Electives Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul Kim
- Human Brain Collection Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan E Swedo
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joan C Han
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Bozkurt H, Şimşek Ş, Şahin S. Elevated levels of cortisol, brain-derived neurotropic factor and tissue plasminogen activator in male children with autism spectrum disorder. Autism Res 2021; 14:2078-2084. [PMID: 34291889 DOI: 10.1002/aur.2582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated biological effects of cortisol, brain-derived neurotrophic factor (BDNF) and tissue plasminogen activator (tPA) on human metabolism and central nervous system. Our study investigated the serum levels of tPA along with BDNF and cortisol in children with autism spectrum disorder (ASD). Thirty three male children with ASD ranging in age from 2 to 15 years were selected for the study group and 27 age-matched healthy male children were selected for the control group. The ASD severity was determined by the score on the Autism Behavior Checklist (ABC). The mean cortisol levels for the study group and the control group were 79.1 ± 30.2 ng/ml and 60.0 ± 25.1 ng/ml, respectively. The mean BDNF levels for the study group and the control group were 5.9 ± 2.8 ng/ml and 3.7 ± 1.8 ng/ml, respectively. The mean tPA levels for the study group and the control group were 32.9 ± 18.5 ng/ml and 25.5 ± 15.1 ng/ml, respectively. Cortisol, BDNF and tPA levels were significantly higher in the study group compared to the control group (p < 0.001). There was no statistically significant effect in terms of age, ABC total and subscale scores on serum cortisol, BDNF and tPA levels in the study group (p > 0.05). It may be suggested that elevations may indicate a role in the pathogenesis of ASD or it may be the case that ASD may alter the levels or pathways of these metabolic factors. LAY SUMMARY: The underlying mechanism or a specific metabolic target relevant to autism spectrum disorder (ASD) has not yet been identified. Cortisol, brain-derived neurotrophic factor (BDNF) and tissue plasminogen activator (tPA) have biological effects on neuroplasticity but little is known about the role of cortisol and tPA-BDNF pathway in ASD. In the present study focused on male children with ASD, we have found higher blood levels of cortisol, BDNF and tPA than their healthy peers. This is the first clinical study to evaluate the serum tPA levels along with BDNF and cortisol in ASD. The results suggest that several neurotrophic and other related markers should be born in mind while examining children with ASD.
Collapse
Affiliation(s)
- Hasan Bozkurt
- Department of Child and Adolescent Psychiatry, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Şeref Şimşek
- Department of Child and Adolescent Psychiatry, Dicle University School of Medicine, Diyarbakır, Turkey
| | - Serkan Şahin
- Department of Child and Adolescent Psychiatry, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| |
Collapse
|
18
|
Squassina A. Personalized treatments in neuropsychiatric disorders. Drug Dev Res 2021; 82:618-620. [PMID: 34196012 DOI: 10.1002/ddr.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, Faculty of Medicine and Surgery, University of Cagliari, Cagliari, Italy.,Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
19
|
Liu YK, Gao H, Jin SB, Tu WJ, Chen YJ. Association of neonatal blood levels of brain-derived neurotrophic factor with development of autism spectrum disorder: a systematic review and meta-analysis. World J Pediatr 2021; 17:164-170. [PMID: 33650030 DOI: 10.1007/s12519-021-00415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Our goal was to evaluate the association between neonatal blood brain-derived neurotrophic factor (BDNF) level and autism spectrum disorder (ASD) diagnosis later in life. METHODS MEDLINE and Web of Science databases were searched from inception until September 16, 2020. Reference lists of all relevant articles also were reviewed. Mean blood BDNF concentrations, standard deviations, sample sizes, and other data needed for calculation of effect sizes were extracted by two independent investigators. The quality of the included studies was appraised using the Newcastle-Ottawa Scale for case-control studies. Data were pooled using the random-effects model. RESULTS Five case-control studies involving 1341 cases and 3395 controls were included in the meta-analysis. The meta-analysis of all included studies showed no significant difference in blood BDNF levels between neonates diagnosed with ASD later in life and healthy controls [standardized mean difference (SMD) = 0.261; 95% confidence interval (CI) - 0.052 to 0.573; P = 0.102], with high level of heterogeneity (Q = 64.346; I2 = 93.784; P < 0.001). A subgroup analysis by assay type showed decreased blood BDNF levels in ASDs compared to controls (SMD = - 0.070; 95% CI - 0.114 to - 0.026; P = 0.002), with high level of homogeneity (Q = 0.894; I2 = 0.000; P = 0.827). No evidence of publication bias was observed. CONCLUSIONS Neonates diagnosed with ASD later in life have decreased blood levels of BDNF measured by double-antibody immunoassay. More studies are warranted to facilitate a more robust conclusion.
Collapse
Affiliation(s)
- Ya-Kun Liu
- Department of General Surgery, Beijing Children's Hospital, Capital Medical University, No.56 Nanlishi St, Beijing, 100045, China
| | - Hua Gao
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, No. 107 West Wenhua St, Jinan, 250000, China
| | - Shao-Bin Jin
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, No. 107 West Wenhua St, Jinan, 250000, China
| | - Wen-Jun Tu
- Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, No. 238 Baidi St, Tianjin, 300192, China
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 619 Changcheng St, Taian, 271000, China
| | - Ya-Jun Chen
- Department of General Surgery, Beijing Children's Hospital, Capital Medical University, No.56 Nanlishi St, Beijing, 100045, China.
| |
Collapse
|
20
|
Liloia D, Mancuso L, Uddin LQ, Costa T, Nani A, Keller R, Manuello J, Duca S, Cauda F. Gray matter abnormalities follow non-random patterns of co-alteration in autism: Meta-connectomic evidence. Neuroimage Clin 2021; 30:102583. [PMID: 33618237 PMCID: PMC7903137 DOI: 10.1016/j.nicl.2021.102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 01/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by atypical brain anatomy and connectivity. Graph-theoretical methods have mainly been applied to detect altered patterns of white matter tracts and functional brain activation in individuals with ASD. The network topology of gray matter (GM) abnormalities in ASD remains relatively unexplored. METHODS An innovative meta-connectomic analysis on voxel-based morphometry data (45 experiments, 1,786 subjects with ASD) was performed in order to investigate whether GM variations can develop in a distinct pattern of co-alteration across the brain. This pattern was then compared with normative profiles of structural and genetic co-expression maps. Graph measures of centrality and clustering were also applied to identify brain areas with the highest topological hierarchy and core sub-graph components within the co-alteration network observed in ASD. RESULTS Individuals with ASD exhibit a distinctive and topologically defined pattern of GM co-alteration that moderately follows the structural connectivity constraints. This was not observed with respect to the pattern of genetic co-expression. Hub regions of the co-alteration network were mainly left-lateralized, encompassing the precuneus, ventral anterior cingulate, and middle occipital gyrus. Regions of the default mode network appear to be central in the topology of co-alterations. CONCLUSION These findings shed new light on the pathobiology of ASD, suggesting a network-level dysfunction among spatially distributed GM regions. At the same time, this study supports pathoconnectomics as an insightful approach to better understand neuropsychiatric disorders.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy.
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| |
Collapse
|
21
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
22
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
23
|
Barbosa AG, Pratesi R, Paz GSC, Dos Santos MAAL, Uenishi RH, Nakano EY, Gandolfi L, Pratesi CB. Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Sci Rep 2020; 10:17348. [PMID: 33060610 PMCID: PMC7566481 DOI: 10.1038/s41598-020-74239-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
There has been a significant increase in autism spectrum disorder (ASD) in the last decades that cannot be exclusively attributed to better diagnosis and an increase in the communication of new cases. Patients with ASD often show dysregulation of proteins associated with synaptic plasticity, notably brain-derived neurotrophic factor (BDNF). The objective of the present study was to analyze BDNF serum concentration levels in children with classic forms autism and a healthy control group to determine if there is a correlation between ASD and BDNF serum levels. Forty-nine children with severe classic form of autism, and 37 healthy children were enrolled in the study. Blood samples, from both patients and controls, were collected and BNDF levels from both groups were analyzed. The average BDNF serum concentration level was statistically higher for children with ASD (P < 0.000) compared to the control group. There is little doubt that BDNF plays a role in the pathophysiology of ASD development and evolution, but its brain levels may fluctuate depending on several known and unknown factors. The critical question is not if BDNF levels can be considered a prognostic or diagnostic marker of ASD, but to determine its role in the onset and progression of this disorder.
Collapse
Affiliation(s)
- Alexandre Garcia Barbosa
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Riccardo Pratesi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Geysa Stefanne Cutrim Paz
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Maria Aparecida Alves Leite Dos Santos
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Rosa Harumi Uenishi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Eduardo Y Nakano
- Department of Statistics, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Lenora Gandolfi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Claudia B Pratesi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
24
|
Zheng Z, Zheng P, Zou X. Peripheral Blood S100B Levels in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. J Autism Dev Disord 2020; 51:2569-2577. [PMID: 33006697 PMCID: PMC8254719 DOI: 10.1007/s10803-020-04710-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The S100 calcium-binding protein beta subunit (S100B) protein, which mostly exists in the central nervous system, is commonly noted as a marker of neuronal damage. We conducted the first systematic review with meta-analysis to compare peripheral blood S100B levels in individuals with ASD with those in healthy controls. A systematic search was carried out for studies published before May 5, 2020. In total, this meta-analysis involved ten studies with 822 participants and 451 cases. The meta-analysis revealed that individuals with ASD had higher peripheral blood S100B levels than healthy controls [standardized mean difference (SMD) = 0.97, 95% confidence interval (95% CI) = 0.41–1.53; p < 0.001]. Peripheral blood S100B levels may have potential as a useful biomarker for ASD.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaobing Zou
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
25
|
Abstract
The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF concentration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further, we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological conditions.
Collapse
Affiliation(s)
- Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482, Zweibrücken, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University, D-39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
26
|
Mansouri M, Pouretemad H, Roghani M, Wegener G, Ardalan M. Autistic-like behaviours and associated brain structural plasticity are modulated by oxytocin in maternally separated rats. Behav Brain Res 2020; 393:112756. [PMID: 32535183 DOI: 10.1016/j.bbr.2020.112756] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Early psycho-social experiences influence the developing brain and possible onset of various neurodevelopmental disorders, such as Autism Spectrum Disorder (ASD). ASD is characterized by a variety of brain abnormalities, including alteration of oxytocin receptors in the brain. Recently, early life adverse experiences, such as maternal separation (MS), have been shown to constitute risk factors for ASD in preclinical studies. Therefore, the main aims of the current study were to i) explore the association between onset of autistic-like behaviours and molecular/structural changes in the brain following MS, and ii) evaluate the possible beneficial effects of oxytocin treatment on the same parameters. METHOD AND MATERIAL Male rats were exposed to the maternal separation from post-natal day (PND) 1 to PND14. After weaning, daily injections of oxytocin (1 mg/kg, ip) were administered (PND 22-30), followed by examination of autism-related behaviours at adolescence (PND 42-50). Brain structural plasticity was examined using stereological methods, and the plasma level of brain derived neurotrophic factor (BDNF) was analysed using ELISA. RESULTS We found that maternal separation induced autistic-like behaviours, which was associated with increase in the hippocampal CA1 stratum radiatum (CA1.SR) volume. In addition, we observed increase in the infralimbic brain region volume and in the number of the pyramidal neurons in the same brain region. Maternal separation significantly increased the plasma BDNF levels. Treatment with oxytocin improved autistic like behaviours, normalized the number of neurons and the volume of the infralimbic region as well as the plasma BDNF level (p < 0.05). CONCLUSION Maternal separation induced autistic-like behaviours, brain structural impairment together with plasma BDNF level abnormality, which could be improved by oxytocin treatment.
Collapse
Affiliation(s)
- Monireh Mansouri
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran; Center of Excellence in Cognitivr Neuropsychology, Institue for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamidreza Pouretemad
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran; Department of Psychology, Shahid Beheshti University, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa; AUGUST Centre, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Park DI. Genomics, transcriptomics, proteomics and big data analysis in the discovery of new diagnostic markers and targets for therapy development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:61-90. [PMID: 32711818 DOI: 10.1016/bs.pmbts.2020.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly complex endophenotypes and underlying molecular mechanisms have prevented effective diagnosis and treatment of autism spectrum disorder. Despite extensive studies to identify relevant biosignatures, no biomarker and therapeutic targets are available in the current clinical practice. While our current knowledge is still largely incomplete, -omics technology and machine learning-based big data analysis have provided novel insights on the etiology of autism spectrum disorders, elucidating systemic impairments that can be translated into biomarker and therapy target candidates. However, more integrated and sophisticated approaches are vital to realize molecular stratification and individualized treatment strategy. Ultimately, systemic approaches based on -omics and big data analysis will significantly contribute to more effective biomarker and therapy development for autism spectrum disorder.
Collapse
Affiliation(s)
- Dong Ik Park
- Danish Research Institute of Translational Neuroscience (DANDRITE)-Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Danish National Research Foundation Center, PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
28
|
Alolaby RR, Jiraanont P, Durbin-Johnson B, Jasoliya M, Tang HT, Hagerman R, Tassone F. Molecular Biomarkers Predictive of Sertraline Treatment Response in Young Children With Autism Spectrum Disorder. Front Genet 2020; 11:308. [PMID: 32346385 PMCID: PMC7174723 DOI: 10.3389/fgene.2020.00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Sertraline is one among several selective serotonin reuptake inhibitors (SSRIs) that exhibited improvement of language development in Autism Spectrum Disorder (ASD); however, the molecular mechanism has not been elucidated. A double blind, randomized, 6-month, placebo-controlled, clinical trial of low-dose sertraline in children ages (3-6 years) with ASD was conducted at the UC Davis MIND Institute. It aimed at evaluating the efficacy and benefit with respect to early expressive language development and global clinical improvement. This study aimed to identify molecular biomarkers that might be key players in the serotonin pathway and might be predictive of a clinical response to sertraline. Fifty eight subjects with the diagnosis of ASD were randomized to sertraline or placebo. Eight subjects from the sertraline arm and five from the placebo arm discontinued from the study. Furthermore, four subjects did not have a successful blood draw. Hence, genotypes for 41 subjects (20 on placebo and 21 on sertraline) were determined for several genes involved in the serotonin pathway including the serotonin transporter-linked polymorphic region (5-HTTLPR), the tryptophan hydroxylase 2 (TPH2), and the Brain-Derived Neurotrophic Factor (BDNF). In addition, plasma levels of BDNF, Matrix metallopeptidase 9 (MMP-9) and a selected panel of cytokines were determined at baseline and post-treatment. Intent-to-treat analysis revealed several primary significant correlations between molecular changes and the Mullen Scales of Early Learning (MSEL) and Clinical Global Impression Scale - Improvement (CGI-I) of treatment and control groups but they were not significant after adjustment for multiple testing. Thus, sertraline showed no benefit for treatment of young children with ASD in language development or changes in molecular markers in this study. These results indicate that sertraline may not be beneficial for the treatment of children with ASD; however, further investigation of larger groups as well as longer term follow-up studies are warranted.
Collapse
Affiliation(s)
- Reem Rafik Alolaby
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, United States
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Mittal Jasoliya
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Quan H, Koltai E, Suzuki K, Aguiar AS, Pinho R, Boldogh I, Berkes I, Radak Z. Exercise, redox system and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165778. [PMID: 32222542 DOI: 10.1016/j.bbadis.2020.165778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Regular exercise induces a wide range of redox system-associated molecular adaptive responses to the nervous system. The intermittent induction of reactive oxygen species (ROS) during acute exercise sessions and the related upregulation of antioxidant/repair and housekeeping systems are associated with improved physiological function. Exercise-induced proliferation and differentiation of neuronal stem cells are ROS dependent processes. The increased production of brain derived neurotrophic factor (BDNF) and the regulation by regular exercise are dependent upon redox sensitive pathways. ROS are causative and associative factors of neurodegenerative diseases and regular exercise provides significant neuroprotective effects against Alzheimer's disease, Parkinson's disease, and hypoxia/reperfusion related disorders. Regular exercise regulates redox homeostasis in the brain with complex multi-level molecular pathways.
Collapse
Affiliation(s)
- Helong Quan
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua City, Zhejiang, China
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| | - Aderbal S Aguiar
- Research Group on Biology of Exercise, Department of Health Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Berkes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| |
Collapse
|
30
|
Septyaningtrias DE, Lin CW, Ouchida R, Nakai N, Suda W, Hattori M, Morita H, Honda K, Tamada K, Takumi T. Altered microbiota composition reflects enhanced communication in 15q11-13 CNV mice. Neurosci Res 2019; 161:59-67. [PMID: 31863791 DOI: 10.1016/j.neures.2019.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a complex and heterogeneous neurodevelopmental disorder. In addition to the core symptoms of ASD, many patients with ASD also show comorbid gut dysbiosis, which may lead to various gastrointestinal (GI) problems. Intriguingly, there is evidence that gut microbiota communicate with the central nervous system to modulate behavioral output through the gut-brain axis. To investigate how the microbiota composition is changed in ASD and to identify which microbes are involved in autistic behaviors, we performed a 16S rRNA gene-based metagenomics analysis in an ASD mouse model. Here, we focused on a model with human 15q11-13 duplication (15q dup), the most frequent chromosomal aberration or copy number variation found in ASD. Species diversity of the microbiome was significantly decreased in 15q dup mice. A combination of antibiotics treatment and behavioral analysis showed that neomycin improved social communication in 15q dup mice. Furthermore, comparison of the microbiota composition of mice treated with different antibiotics enabled us to identify beneficial operational taxonomic units (OTUs) for ultrasonic vocalization.
Collapse
Affiliation(s)
- Dian Eurike Septyaningtrias
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami, Hiroshima, 734-8553, Japan
| | - Chia-Wen Lin
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Rika Ouchida
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, 230-0045, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, 230-0045, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Kita, Okayama, 700-8530, Japan
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, 230-0045, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami, Hiroshima, 734-8553, Japan; RIKEN Center for Science and Technology Hub, Medical Sciences Innovation Hub Program (MIH), Japan; Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Chuo, Kobe, 650-0017, Japan.
| |
Collapse
|
31
|
Ghafouri-Fard S, Namvar A, Arsang-Jang S, Komaki A, Taheri M. Expression Analysis of BDNF, BACE1, and Their Natural Occurring Antisenses in Autistic Patients. J Mol Neurosci 2019; 70:194-200. [PMID: 31760580 DOI: 10.1007/s12031-019-01432-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/03/2019] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) as a multifaceted neurological syndrome affects many aspects of neuropsychologic functions. Dysregulated expressions of several genes have been documented in ASD patients. The current project aimed at comparison of transcript levels of brain derived neurotrophic factor (BDNF), beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), and their natural occurring antisenses in the peripheral blood of ASD individuals (n = 50, male/female = 38/12, age (mean ± standard deviation (SD)): 6 ± 1.4, age range: 3-8) and matched healthy persons (n = 50, male/female = 37/13, age (mean ± SD): 6 ± 1.74, age range: 3-8). We demonstrated remarkable higher levels of these genes in ASD patients. BACE1 transcript levels were correlated with transcript levels of BACE1-AS in all study participants. However, BACE1 transcript levels were not correlated with participants' age. BACE1-AS and BDNF transcript levels were correlated with age in female participants. Significant correlations were detected between transcript levels of BDNF and those of other genes in all study groups. The current results render further indications for contribution of BDNF, BACE1, and their antisenses in the course of ASD and suggested expression levels of these transcripts as putative markers for this neurobehavioral disorder. Such results might be applied in clinical setting for diagnosis of complicated ASD cases.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Namvar
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Fuentealba CR, Fiedler JL, Peralta FA, Avalos AM, Aguayo FI, Morgado-Gallardo KP, Aliaga EE. Region-Specific Reduction of BDNF Protein and Transcripts in the Hippocampus of Juvenile Rats Prenatally Treated With Sodium Valproate. Front Mol Neurosci 2019; 12:261. [PMID: 31787877 PMCID: PMC6853897 DOI: 10.3389/fnmol.2019.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by a deep deficit in language and social interaction, accompanied by restricted, stereotyped and repetitive behaviors. The use of genetic autism animal models has revealed that the alteration of the mechanisms controlling the formation and maturation of neural circuits are points of convergence for the physiopathological pathways in several types of autism. Brain Derived Neurotrophic Factor (BDNF), a key multifunctional regulator of brain development, has been related to autism in several ways. However, its precise role is still elusive, in part, due to its extremely complex posttranscriptional regulation. In order to contribute to this topic, we treated prenatal rats with Valproate, a well-validated model of autism, to analyze BDNF levels in the hippocampus of juvenile rats. Valproate-treated rats exhibited an autism-like behavioral profile, characterized by a deficit in social interaction, anxiety-like behavior and repetitive behavior. In situ hybridization (ISH) experiments revealed that Valproate reduced BDNF mRNA, especially long-3′UTR-containing transcripts, in specific areas of the dentate gyrus (DG) and CA3 regions. At the same time, Valproate reduced BDNF immunoreactivity in the suprapyramidal and lucidum layers of CA3, but improved hippocampus-dependent spatial learning. The molecular changes reported here may help to explain the cognitive and behavioral signs of autism and reinforce BDNF as a potential molecular target for this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Constanza R Fuentealba
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Jenny L Fiedler
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Francisco A Peralta
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Felipe I Aguayo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Katherine P Morgado-Gallardo
- Department of Psychology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Esteban E Aliaga
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
33
|
Dell'Osso L, Carpita B, Cremone IM, Muti D, Diadema E, Barberi FM, Massimetti G, Brondino N, Petrosino B, Politi P, Aguglia E, Lorenzi P, Carmassi C, Gesi C. The mediating effect of trauma and stressor related symptoms and ruminations on the relationship between autistic traits and mood spectrum. Psychiatry Res 2019; 279:123-129. [PMID: 30366638 DOI: 10.1016/j.psychres.2018.10.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022]
Abstract
An increasing number of studies highlighted significant correlations between autistic traits (AT) and mood spectrum symptoms. Moreover, recent data showed that individuals with high AT are likely to develop trauma and stressor-related disorders. This study aims to investigate the relationship between AT and mood symptoms among university students, focusing in particular on how AT interact with ruminations and trauma-related symptomatology in predicting mood symptoms. 178 students from three Italian Universities of excellence were assessed with The Structured Clinical Interview for DSM-5 (SCID-5), the Adult Autism Subthreshold Spectrum (AdAS Spectrum), the Ruminative Response Scale (RRS), the Trauma and Loss Spectrum (TALS) and the Moods Spectrum (MOODS). Considering the AdAS Spectrum total scores, 133 subjects (74.7%) were categorized as "low scorers" and 45 subjects (25.3%) as "high scorers". Students in the high scorer group showed significantly higher scores on RRS, TALS-SR and MOOD-SR total scores. Total and direct effects of AdAS Spectrum total score on MOODS-SR total score were both statistically significant. AdAS Spectrum total score also showed a significant indirect effect on MOODS-SR total score through TALS and RRS total scores. Results showed a significant relationship between AT and mood spectrum, which is partially mediated by ruminations and trauma/stressor-related symptomatology.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Dario Muti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Elisa Diadema
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | | | - Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, Pavia 27100, Italy
| | - Beatrice Petrosino
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, Pavia 27100, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Primo Lorenzi
- Clinical Psychology and Psychotherapy, University of Florence, Careggi Hospital, Florence, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Camilla Gesi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
34
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
35
|
Tomassoni-Ardori F, Fulgenzi G, Becker J, Barrick C, Palko ME, Kuhn S, Koparde V, Cam M, Yanpallewar S, Oberdoerffer S, Tessarollo L. Rbfox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels. eLife 2019; 8:49673. [PMID: 31429825 PMCID: PMC6715404 DOI: 10.7554/elife.49673] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent modulator of brain synaptic plasticity. Signaling defects caused by dysregulation of its Ntrk2 (TrkB) kinase (TrkB.FL) and truncated receptors (TrkB.T1) have been linked to the pathophysiology of several neurological and neurodegenerative disorders. We found that upregulation of Rbfox1, an RNA binding protein associated with intellectual disability, epilepsy and autism, increases selectively hippocampal TrkB.T1 isoform expression. Physiologically, increased Rbfox1 impairs BDNF-dependent LTP which can be rescued by genetically restoring TrkB.T1 levels. RNA-seq analysis of hippocampi with upregulation of Rbfox1 in conjunction with the specific increase of TrkB.T1 isoform expression also shows that the genes affected by Rbfox1 gain of function are surprisingly different from those influenced by Rbfox1 deletion. These findings not only identify TrkB as a major target of Rbfox1 pathophysiology but also suggest that gain or loss of function of Rbfox1 regulate different genetic landscapes.
Collapse
Affiliation(s)
- Francesco Tomassoni-Ardori
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Gianluca Fulgenzi
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Jodi Becker
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Colleen Barrick
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Mary Ellen Palko
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Skyler Kuhn
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, United States
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, United States
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, United States
| | - Sudhirkumar Yanpallewar
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| |
Collapse
|
36
|
Kim JY, Son MJ, Son CY, Radua J, Eisenhut M, Gressier F, Koyanagi A, Carvalho AF, Stubbs B, Solmi M, Rais TB, Lee KH, Kronbichler A, Dragioti E, Shin JI, Fusar-Poli P. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry 2019; 6:590-600. [PMID: 31230684 DOI: 10.1016/s2215-0366(19)30181-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Numerous studies have identified potential risk factors and biomarkers for autism spectrum disorder. We aimed to study the strength and validity of the suggested environmental risk factors or biomarkers of autism spectrum disorder. METHODS We did an umbrella review and systematically appraised the relevant meta-analyses of observational studies. We searched PubMed, Embase, and the Cochrane Database of Systematic Reviews for papers published between database inception and Oct 17, 2018, and screened the reference list of relevant articles. We obtained the summary effect, 95% CI, heterogeneity, and 95% prediction intervals. We examined small study effects and excess significance. We did analyses under credibility ceilings. This review is registered with PROSPERO, number CRD42018091704. FINDINGS 46 eligible articles yielded data on 67 environmental risk factors (544 212 cases, 81 708 787 individuals) and 52 biomarkers (15 614 cases, 15 433 controls). Evidence of association was convincing for maternal age of 35 years or over (relative risk [RR] 1·31, 95% CI 1·18-1·45), maternal chronic hypertension (odds ratio [OR] 1·48, 1·29-1·70), maternal gestational hypertension (OR 1·37, 1·21-1·54), maternal overweight before or during pregnancy (RR 1·28, 1·19-1·36), pre-eclampsia (RR 1·32, 1·20-1·45), prepregnancy maternal antidepressant use (RR 1·48, 1·29-1·71), and maternal selective serotonin reuptake inhibitor (SSRI) use during pregnancy (OR 1·84, 1·60-2·11). Only two associations, maternal overweight before or during pregnancy and SSRI use during pregnancy, retained their high level of evidence under subset sensitivity analyses. Evidence from biomarkers was scarce, being supported by p values close to the significance threshold and too few cases. INTERPRETATION Convincing evidence suggests that maternal factors, such as age and features of metabolic syndrome, are associated with risk of autism spectrum disorder. Although SSRI use during pregnancy was also associated with such risk when exposed and non-exposed groups were compared, this association could be affected by other confounding factors, considering that prepregnancy maternal antidepressant use was also convincingly associated with higher risk of autism spectrum disorder. Findings from previous studies suggest that one possible confounding factor is underlying maternal psychiatric disorders. FUNDING None.
Collapse
Affiliation(s)
- Jong Yeob Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Ji Son
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chei Yun Son
- Department of Psychological & Brain Sciences, Washington University in St. Louis, MO, USA
| | - Joaquim Radua
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; FIDMAG Germanes Hospitalaries, CIBERSAM, Barcelona, Spain; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael Eisenhut
- Department of Pediatrics, Luton & Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Florence Gressier
- CESP, Inserm UMR1178, Department of Psychiatry, Assistance Publique-Hôpitaux de Paris, Bicêtre University Hospital, Le Kremlin Bicêtre, France
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Fundació Sant Joan de Déu, Barcelona, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain; Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Andre F Carvalho
- Centre for Addiction & Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marco Solmi
- Department of Neurosciences and Neurosciences Center, University of Padua, Padua, Italy; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Theodor B Rais
- Department of Psychiatry, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Department of Pediatrics, Severance Children's Hospital, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Elena Dragioti
- Pain and Rehabilitation center and Department of Medicine and Health Sciences (IMH), Faculty of Health Sciences University of Linköping, Linköping, Sweden
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Department of Pediatrics, Severance Children's Hospital, Seoul, South Korea.
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; OASIS Service, South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
37
|
Ning Z, Williams JM, Kumari R, Baranov PV, Moore T. Opposite Expression Patterns of Spry3 and p75NTR in Cerebellar Vermis Suggest a Male-Specific Mechanism of Autism Pathogenesis. Front Psychiatry 2019; 10:416. [PMID: 31275178 PMCID: PMC6591651 DOI: 10.3389/fpsyt.2019.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Autism is a genetically complex neurobehavioral disorder with a population prevalence of more than 1%. Cerebellar abnormalities, including Purkinje cell deficits in the vermis, are consistently reported, and rodent models of cerebellar dysfunction exhibit features analogous to human autism. We previously analyzed the regulation and expression of the pseudoautosomal region 2 gene SPRY3, which is adjacent to X chromosome-linked TMLHE, a known autism susceptibility gene. SPRY3 is a regulator of branching morphogenesis and is strongly expressed in Purkinje cells. We previously showed that mouse Spry3 is not expressed in cerebellar vermis lobules VI-VII and X, regions which exhibit significant Purkinje cell loss or abnormalities in autism. However, these lobules have relatively high expression of p75NTR, which encodes a neurotrophin receptor implicated in autism. We propose a mechanism whereby inappropriate SPRY3 expression in these lobules could interact with TrkB and p75NTR signaling pathways resulting in Purkinje cell pathology. We report preliminary characterization of X and Y chromosome-linked regulatory sequences upstream of SPRY3, which are polymorphic in the general population. We suggest that an OREG-annotated region on chromosome Yq12 ∼60 kb from SPRY3 acts as a silencer of Y-linked SPRY3 expression. Deletion of a β-satellite repeat, or alterations in chromatin structure in this region due to trans-acting factors, could affect the proposed silencing function, leading to reactivation and inappropriate expression of Y-linked SPRY3. This proposed male-specific mechanism could contribute to the male bias in autism prevalence.
Collapse
Affiliation(s)
| | | | | | | | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Ko HM, Jin Y, Park HH, Lee JH, Jung SH, Choi SY, Lee SH, Shin CY. Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:679-688. [PMID: 30402028 PMCID: PMC6205935 DOI: 10.4196/kjpp.2018.22.6.679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon 27841, Korea
| | - Yeonsun Jin
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan 31499, Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Korea
| | - So Young Choi
- Department of Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
39
|
Noroozi R, Omrani MD, Sayad A, Taheri M, Ghafouri-Fard S. Cytoplasmic FMRP interacting protein 1/2 (CYFIP1/2) expression analysis in autism. Metab Brain Dis 2018; 33:1353-1358. [PMID: 29752658 DOI: 10.1007/s11011-018-0249-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/06/2018] [Indexed: 11/26/2022]
Abstract
Cytoplasmic FMRP interacting proteins 1 and 2 (CYFIP1/2) have been previously shown to be associated with central nervous system (CNS) disorders such as autism spectrum disorder (ASD). Moreover, dysregulation of their expression levels results in disturbances in CNS maturation and neuronal interconnections. In the present study, we compared expression levels of CYFIP1/2 in peripheral blood of 30 ASD patients and 41 healthy subjects by means of real time PCR. Expression analysis showed significant over-expression of CYFIP1/2 in ASD patients compared with healthy subjects (Fold change = 3.252, P < 0.0001 and Fold change = 4.14, P = 0.001 respectively). Such over-expression was also seen for CYFIP1 in male and female patients when compared with the corresponding control subjects. In addition, a significant correlation was found between CYFIP1 transcript levels and age in female subjects. A significant correlation was detected between expression levels of these genes in control subjects. The current study provides further supports for contribution of CYFIP1/2 in the pathogenesis of ASD and potentiates it as a peripheral marker for ASD diagnosis. Future studies in larger sample sizes are needed to confirm the results of the current study.
Collapse
Affiliation(s)
- Rezvan Noroozi
- Department of medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Department of medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Korzeniewski SJ, Allred EN, O'Shea TM, Leviton A, Kuban KCK. Elevated protein concentrations in newborn blood and the risks of autism spectrum disorder, and of social impairment, at age 10 years among infants born before the 28th week of gestation. Transl Psychiatry 2018; 8:115. [PMID: 29884819 PMCID: PMC5993745 DOI: 10.1038/s41398-018-0156-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/01/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Among the 1 of 10 children who are born preterm annually in the United States, 6% are born before the third trimester. Among children who survive birth before the 28th week of gestation, the risks of autism spectrum disorder (ASD) and non-autistic social impairment are severalfold higher than in the general population. We examined the relationship between top quartile inflammation-related protein concentrations among children born extremely preterm and ASD or, separately, a high score on the Social Responsiveness Scale (SRS total score ≥65) among those who did not meet ASD criteria, using information only from the subset of children whose DAS-II verbal or non-verbal IQ was ≥70, who were assessed for ASD, and who had proteins measured in blood collected on ≥2 days (N = 763). ASD (N = 36) assessed at age 10 years is associated with recurrent top quartile concentrations of inflammation-related proteins during the first post-natal month (e.g., SAA odds ratio (OR); 95% confidence interval (CI): 2.5; 1.2-5.3) and IL-6 (OR; 95% CI: 2.6; 1.03-6.4)). Top quartile concentrations of neurotrophic proteins appear to moderate the increased risk of ASD associated with repeated top quartile concentrations of inflammation-related proteins. High (top quartile) concentrations of SAA are associated with elevated risk of ASD (2.8; 1.2-6.7) when Ang-1 concentrations are below the top quartile, but not when Ang-1 concentrations are high (1.3; 0.3-5.8). Similarly, high concentrations of TNF-α are associated with heightened risk of SRS-defined social impairment (N = 130) (2.0; 1.1-3.8) when ANG-1 concentrations are not high, but not when ANG-1 concentrations are elevated (0.5; 0.1-4.2).
Collapse
Affiliation(s)
- Steven J Korzeniewski
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Elizabeth N Allred
- Departments of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Alan Leviton
- Departments of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Karl C K Kuban
- Departments of Pediatrics, Boston Medical Center and Boston University, Boston, MA, USA
| |
Collapse
|
41
|
Francis K, Dougali A, Sideri K, Kroupis C, Vasdekis V, Dima K, Douzenis A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr Scand 2018. [PMID: 29532458 DOI: 10.1111/acps.12872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. METHOD BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. RESULTS BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. CONCLUSIONS Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD.
Collapse
Affiliation(s)
- K Francis
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece.,Child and Adolescent Psychiatric Unit, Kuwait Centre for Mental Health, Kuwait, Kuwait
| | - A Dougali
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece
| | - K Sideri
- Allergy Research Center, Attikon General Hospital, University of Athens Medical School, Athens, Greece
| | - C Kroupis
- Laboratory of Clinical Biochemistry, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - V Vasdekis
- Department of Statistics, Athens University of Economic and Business, Athens, Greece
| | - K Dima
- Laboratory of Clinical Biochemistry, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - A Douzenis
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece
| |
Collapse
|
42
|
Lochman I, Švachová V, Mílková Pavlíková K, Medřická H, Novák V, Trilecová L, Pavliska L, Procházka V. Serum Cytokine and Growth Factor Levels in Children with Autism Spectrum Disorder. Med Sci Monit 2018; 24:2639-2646. [PMID: 29705814 PMCID: PMC5946742 DOI: 10.12659/msm.906817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The immune system may have a role in the pathogenesis of autism spectrum disorder (ASD), including typical and atypical autism. The aim of this study was to determine whether a cytokine and growth factor panel could be identified for the diagnosis and prognosis in children with ASD, including typical and atypical autism. MATERIAL AND METHODS This study included 26 children with ASD (typical or atypical) and 11 of their siblings who did not have ASD. A panel of ten serum cytokines and growth factors were investigated using addressable laser bead assay (ALBIA) and enzyme-linked immunosorbent assay (ELISA) kits. Results were correlated with scores using the Childhood Autism Rating Scale (CARS) and Autism Diagnostic Observation Schedule (ADOS) for the children with ASD and compared with the findings from their siblings without ASD. RESULTS There were no statistically significant differences in serum cytokine and growth factor levels between children with ASD and their siblings. The scores using CARS and ADOS were significantly greater in children with typical autism compared with children with atypical autism as part of the ASD spectrum. Serum levels of cytokines and growth factors showed a positive correlation with CARS and ADOS scores but differed between children with typical and atypical autism and their siblings. CONCLUSIONS The findings of this study showed that serum measurement of appropriately selected panels of cytokines and growth factors might have a role in the diagnosis of ASD.
Collapse
Affiliation(s)
- Ivo Lochman
- Department of Immunology and Serology, The SPADIA LAB Laboratory Plc., Ostrava, Czech Republic
| | - Veronika Švachová
- Department of Immunology and Serology, The SPADIA LAB Laboratory Plc., Ostrava, Czech Republic
| | | | - Hana Medřická
- Department of Paediatric Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Vilém Novák
- Department of Paediatric Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Lenka Trilecová
- Department of Immunology and Serology, The SPADIA LAB Laboratory Plc., Ostrava, Czech Republic
| | - Lubomír Pavliska
- Department of the Deputy Director for Science and Research, University Hospital Ostrava, Ostrava, Czech Republic
| | - Václav Procházka
- Department of the Deputy Director for Science and Research, University Hospital Ostrava, Ostrava, Czech Republic
| |
Collapse
|
43
|
Interleukin-6 levels in the serum and saliva of patients with oral lichen planus compared with healthy controls: a meta-analysis study. Cent Eur J Immunol 2018; 43:103-108. [PMID: 29731693 PMCID: PMC5927179 DOI: 10.5114/ceji.2018.74880] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
Interleukin-6 (IL-6) is a cytokine that contributes to the pathogenesis of oral lichen planus (OLP). The aim of this meta-analysis study is the evaluation of IL-6 levels in the serum and saliva of patients with OLP compared with healthy controls. We searched the studies in 5 databases: PubMed/Medline, Scopus, ScienceDirect, Web of Science, and Cochrane Library, from 1983 to Oct 31, 2016. Eleven studies were analysed for the meta-analysis study. The reviewers independently evaluated the quality of each included study using the Newcastle-Ottawa Quality Assessment Scale (NOS). A random-effects meta-analysis, using Comprehensive Meta-Analysis software version 2.0, was used to reflect the variation in studies. Heterogeneity between estimates was evaluated by the Q and I2 statistics and for the Q statistic; heterogeneity was considered for p < 0.1. Eleven studies included 529 OLP patients and 333 healthy controls. The review identified two different biomaterials used for IL-6 assays: saliva and serum. The mean quality score of eleven studies was 7 (high quality). Estimates pooled from 6 studies showed significant high saliva IL-6 levels in OLP patients compared with healthy controls (the standardised difference in means (SDM) = 4.534, 95% CI = 1.915-7.153, p = 0.001). Also, estimates pooled from 7 studies showed significantly high serum IL-6 levels in OLP patients compared with healthy controls (SDM = 1.482, 95% CI = 0.524-2.439, p = 0.002). The higher levels of IL-6 in saliva compared with serum suggest that measurement of this marker in saliva may be more useful than serum for diagnostic and therapeutic aims.
Collapse
|
44
|
Zhang J, Luo W, Li Q, Xu R, Wang Q, Huang Q. Peripheral brain-derived neurotrophic factor in attention-deficit/hyperactivity disorder: A comprehensive systematic review and meta-analysis. J Affect Disord 2018; 227:298-304. [PMID: 29132072 DOI: 10.1016/j.jad.2017.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Accepted: 11/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Studies suggest that dysfunction of BDNF is a possible contributor to the pathology and symptoms of attention-deficit/hyperactivity disorder (ADHD). Several studies have found changes of peripheral BDNF levels in ADHD, but findings are not always consistent. The aim of our study was to assess the association between peripheral BDNF levels and ADHD by using a meta-analysis. METHODS A systematic search of Pubmed, Web of Science and China National Knowledge Infrastructure identified 10 articles encompassing a sample of 1183 individuals for the meta-analysis. Meta-analysis was performed in a fixed/random effect model by using the software Review Manager 5.2. RESULTS Our meta-analysis suggests that peripheral BDNF levels did not differ significantly between ADHD and controls with the standardized mean difference (SMD) of 0.62 (95% CI -0.12 to 1.35, p = 0.10). However, it is intriguing that BDNF levels were significantly higher in males with ADHD compared with controls (SMD = 0.49, 95% CI = 0.14-0.84, p = 0.006), whereas there was no difference in BDNF levels between ADHD female patients and control groups (SMD = 0.21,95% CI = -0.44 to 0.86, p = 0.53). LIMITATIONS High heterogeneity was noted across sampled studies, which may be a function of sample size, participants sampled, variations in study design, or other factors. CONCLUSIONS We found that though there was no significantly difference in peripheral BDNF levels between ADHD patients and control groups overall, BDNF levels were significantly higher in males with ADHD compared with controls. Our results suggested a sex-specific association between peripheral blood BDNF levels and ADHD male patients.
Collapse
Affiliation(s)
- Jian Zhang
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Wanjun Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qiyang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ruoting Xu
- Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qiqiong Wang
- Department of Neonatology, NanFang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qitao Huang
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
45
|
Gomez-Fernandez A, de la Torre-Aguilar MJ, Gil-Campos M, Flores-Rojas K, Cruz-Rico MD, Martin-Borreguero P, Perez-Navero JL. Children With Autism Spectrum Disorder With Regression Exhibit a Different Profile in Plasma Cytokines and Adhesion Molecules Compared to Children Without Such Regression. Front Pediatr 2018; 6:264. [PMID: 30320048 PMCID: PMC6169449 DOI: 10.3389/fped.2018.00264] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Background: In the etiopathogenesis of autism spectrum disorder (ASD), it has been suggested that a proinflammatory condition, as well as an alteration in adhesion molecules in the early stages of neurodevelopment, may play a role in the pathophysiology of the disorder. This study set out to evaluate the plasma levels of certain inflammatory cytokines, adhesion molecules, and growth factors in a sample of pediatric patients with ASD and compare them to the levels in a control group of healthy children. Methods: Fifty-four children (45 males and nine females) aged 2-6, who were diagnosed with ASD, and a control group of 54 typically-developing children of similar ages were selected. The diagnosis of ASD was carried out in accordance with the DSM-5 criteria and the data obtained from a developmental semi-structured clinical interview and the ADOS evaluation test. Additional testing was carried out to identify the children's developmental level and severity of ASD symptomatology. Patients with ASD were further divided into two subgroups based on developmental parameters: ASD children with neurodevelopmental regression (AMR) and ASD children without neurodevelopmental regression (ANMR). Analyses of plasma molecules, such as cathepsin, IL1β, IL6, IL8, MPO, RANTES, MCP, BDNF, PAI NCAM, sICAM, sVCAM and NGF, were performed. Results: Higher levels of NGF were observed in the ASD group compared with the levels in the control group (p < 0.05). However, in the analysis of the ASD subgroups, lower plasma levels of NCAM and higher levels of NGF were found in the group of ASD children without developmental regression compared to the levels in the group of typically-developing children. Conclusions: These results suggest differences that could be related to different pathophysiological mechanisms in ASD. There is not a specific profile for the expression of relevant plasma cytokines, adhesion molecules or growth factors in children with ASD compared with that in typically-developing children. However, in the ANMR and AMR subgroups, some of the adhesion molecules and neuronal growth factors show differences that may be related to synaptogenesis.
Collapse
Affiliation(s)
- Antonio Gomez-Fernandez
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Maria J de la Torre-Aguilar
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Mercedes Gil-Campos
- Pediatric Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Cordoba, Spain
| | - Katherine Flores-Rojas
- Pediatric Metabolism Unit, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Cordoba, Spain
| | - Maria D Cruz-Rico
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center of Biomedical Research, University of Granada, Granada, Spain
| | - Pilar Martin-Borreguero
- Department of Child and Adolescent Clinical Psychiatry and Psychology, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Juan Luis Perez-Navero
- Department of Pediatrics, Reina Sofia University Hospital, University of Córdoba, Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
46
|
Kalkman HO, Feuerbach D. Microglia M2A Polarization as Potential Link between Food Allergy and Autism Spectrum Disorders. Pharmaceuticals (Basel) 2017; 10:ph10040095. [PMID: 29232822 PMCID: PMC5748650 DOI: 10.3390/ph10040095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022] Open
Abstract
Atopic diseases are frequently co-morbid with autism spectrum disorders (ASD). Allergic responses are associated with an activation of mast cells, innate lymphoid cells, and Th2 cells. These cells produce type-2 cytokines (IL4 and IL13), which stimulate microglia and macrophages to adopt a phenotype referred to as ‘alternative activation’ or ‘M2A’. M2A-polarized macrophages and microglia play a physiological role in tissue repair by secreting growth factors such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1. In ASD there is evidence for increased type-2 cytokines, microglia activation, M2A polarization, and increased levels of growth factors. In neurons, these growth factors drive a signal transduction pathway that leads to activation of the enzyme mammalian Target of Rapamycin (mTOR), and thereby to the inhibition of autophagy. Activation of mTOR is an effect that is also common to several of the genetic forms of autism. In the central nervous system, redundant synapses are removed via an autophagic process. Activation of mTOR would diminish the pruning of redundant synapses, which in the context of ASD is likely to be undesired. Based on this line of reasoning, atopic diseases like food allergy, eczema or asthma would represent risk factors for autism spectrum disorders.
Collapse
|
47
|
Zheng Z, Zhang L, Li S, Zhao F, Wang Y, Huang L, Huang J, Zou R, Qu Y, Mu D. Association among obesity, overweight and autism spectrum disorder: a systematic review and meta-analysis. Sci Rep 2017; 7:11697. [PMID: 28916794 PMCID: PMC5601947 DOI: 10.1038/s41598-017-12003-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity, overweight and autism spectrum disorder (ASD) remain serious public health problems. Although lots of studies have recently explored the association among obesity, overweight and ASD, the findings are inconsistent. Thus, we conducted a meta-analysis of epidemiological studies to examine the association among obesity, overweight and ASD. PubMed, Embase, and the Cochrane Library were used for literature searches to identify eligible studies published in English before November 15, 2016. Relevant studies estimating the association among obesity, overweight and ASD were included. Fifteen studies encompassing 49,937,078 participants and 1,045,538 individuals with ASD were included in this study. A random effects model was chosen to synthesize the effect sizes of individual studies. The prevalence of obesity was significantly higher in individuals with ASD than in controls (OR = 1.84, 95% confidence interval [CI]: 1.37-2.48, P < 0.001). However, the prevalence of overweight in individuals with ASD was not significantly different from that in controls (OR = 1.07, 95% CI: 0.83-1.38, P = 0.62). Both sensitivity analysis and publication bias testing revealed that the findings were robust. The meta-analysis showed a significant association between obesity and ASD. However, no significant association was identified between overweight and ASD.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Lan Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Jinglan Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Rong Zou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
48
|
Hellings JA, Arnold LE, Han JC. Dopamine antagonists for treatment resistance in autism spectrum disorders: review and focus on BDNF stimulators loxapine and amitriptyline. Expert Opin Pharmacother 2017; 18:581-588. [PMID: 28335658 DOI: 10.1080/14656566.2017.1308483] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Drug development and repurposing are urgently needed for individuals with autism spectrum disorders (ASD) and psychiatric comorbidity, which often presents as aggression and self-injury. Areas covered: We review dopamine antagonists, including classical and atypical, as well as unconventional antipsychotics in ASD. The older antipsychotic loxapine is discussed in terms of preliminary albeit limited evidence in ASD. Emerging promise of amitriptyline in ASD is discussed, together with promising BDNF effects of loxapine and amitriptyline. Expert opinion: In ASD, pharmacotherapy and specifically dopamine antagonist drugs are often prescribed for challenging behaviors including aggression. The novel antipsychotics risperidone and aripiprazole have received most study in ASD and are FDA-approved for irritability in children with ASD over age 5 years; individuals with ASD are prone to weight gain, Type II diabetes and associated side effects. Low dose loxapine has properties of classical and novel antipsychotics but importantly appears more weight neutral, and with promising use in adolescents and adults with ASD. Amitriptyline appears effective in ASD for irritability, aggression, gastrointestinal problems, and insomnia, in children, adolescents and adults however our adult data on amitriptyline in ASD is still in preparation for publication. Both loxapine and amitriptyline may stimulate BDNF; further studies are warranted.
Collapse
Affiliation(s)
- Jessica A Hellings
- a Kansas City Regional Center of Missouri Department of Mental Health , University of Missouri-Kansas City , Kansas City , MO , USA
| | - L Eugene Arnold
- b Department of Psychiatry , The Ohio State University Nisonger Center , Columbus , OH , USA
| | - Joan C Han
- c 454R Le Bonheur Children's Foundation Research Center , University of Tennessee , Memphis , TN , USA
| |
Collapse
|
49
|
Mizoguchi Y, Monji A. Microglial Intracellular Ca 2+ Signaling in Synaptic Development and its Alterations in Neurodevelopmental Disorders. Front Cell Neurosci 2017; 11:69. [PMID: 28367116 PMCID: PMC5355421 DOI: 10.3389/fncel.2017.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by deficits in social interaction, difficulties with language and repetitive/restricted behaviors. Microglia are resident innate immune cells which release many factors including proinflammatory cytokines, nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) when they are activated in response to immunological stimuli. Recent in vivo imaging has shown that microglia sculpt and refine the synaptic circuitry by removing excess and unwanted synapses and be involved in the development of neural circuits or synaptic plasticity thereby maintaining the brain homeostasis. BDNF, one of the neurotrophins, has various important roles in cell survival, neurite outgrowth, neuronal differentiation, synaptic plasticity and the maintenance of neural circuits in the CNS. Intracellular Ca2+ signaling is important for microglial functions including ramification, de-ramification, migration, phagocytosis and release of cytokines, NO and BDNF. BDNF induces a sustained intracellular Ca2+ elevation through the upregulation of the surface expression of canonical transient receptor potential 3 (TRPC3) channels in rodent microglia. BDNF might have an anti-inflammatory effect through the inhibition of microglial activation and TRPC3 could play important roles in not only inflammatory processes but also formation of synapse through the modulation of microglial phagocytic activity in the brain. This review article summarizes recent findings on emerging dual, inflammatory and non-inflammatory, roles of microglia in the brain and reinforces the importance of intracellular Ca2+ signaling for microglial functions in both normal neurodevelopment and their potential contributing to neurodevelopmental disorders such as ASDs.
Collapse
Affiliation(s)
- Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University Saga, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University Saga, Japan
| |
Collapse
|