1
|
Wang J, Li Q, Qiu Y, Kitanovski S, Wang C, Zhang C, Li F, Li X, Zhang Z, Huang L, Zhang J, Hoffmann D, Lu M, Lu H. Cell-type-specific expression analysis of liver transcriptomics with clinical parameters to decipher the cause of intrahepatic inflammation in chronic hepatitis B. IMETA 2024; 3:e221. [PMID: 39135698 PMCID: PMC11316924 DOI: 10.1002/imt2.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024]
Abstract
Functional cure for chronic hepatitis B (CHB) remains challenging due to the lack of direct intervention methods for hepatic inflammation. Multi-omics research offers a promising approach to understand hepatic inflammation mechanisms in CHB. A Bayesian linear model linked gene expression with clinical parameters, and population-specific expression analysis (PSEA) refined bulk gene expression into specific cell types across different clinical phases. These models were integrated into our analysis of key factors like inflammatory cells, immune activation, T cell exhaustion, chemokines, receptors, and interferon-stimulated genes (ISGs). Validation through multi-immune staining in liver specimens from CHB patients bolstered our findings. In CHB patients, increased gene expression related to immune cell activation and migration was noted. Marker genes of macrophages, T cells, immune-negative regulators, chemokines, and ISGs showed a positive correlation with serum alanine aminotransferase (ALT) levels but not hepatitis B virus DNA levels. The PSEA model confirmed T cells as the source of exhausted regulators, while macrophages primarily contributed to chemokine expression. Upregulated ISGs (ISG20, IFI16, TAP2, GBP1, PSMB9) in the hepatitis phase were associated with T cell and macrophage infiltration and positively correlated with ALT levels. Conversely, another set of ISGs (IFI44, ISG15, IFI44L, IFI6, MX1) mainly expressed by hepatocytes and B cells showed no correlation with ALT levels. Our study presents a multi-omics analysis integrating bulk transcriptomic, single-cell sequencing data, and clinical data from CHB patients to decipher the cause of intrahepatic inflammation in CHB. The findings confirm that macrophages secrete chemokines like CCL20, recruiting exhausted T cells into liver tissue; concurrently, hepatocyte innate immunity is suppressed, hindering the antiviral effects of ISGs.
Collapse
Affiliation(s)
- Jun Wang
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
- Institute of Virology, University Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB)University of Duisburg‐EssenEssenGermany
| | - Qian Li
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
- Institute of Virology, University Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
| | - Yuanwang Qiu
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB)University of Duisburg‐EssenEssenGermany
| | - Chen Wang
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
| | - Chenxia Zhang
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Fahong Li
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious DiseasesNational Medical Center for Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaoguang Li
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Zhenfeng Zhang
- School of Public Health and Emergency ManagementSouthern University of Science and TechnologyShenzhenChina
| | - Lihua Huang
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Jiming Zhang
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious DiseasesNational Medical Center for Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan HospitalFudan UniversityShanghaiChina
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB)University of Duisburg‐EssenEssenGermany
| | - Mengji Lu
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
- Institute of Virology, University Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Hongzhou Lu
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
| |
Collapse
|
2
|
Hillaire MLB, Lawrence P, Lagrange B. IFN-γ: A Crucial Player in the Fight Against HBV Infection? Immune Netw 2023; 23:e30. [PMID: 37670813 PMCID: PMC10475827 DOI: 10.4110/in.2023.23.e30] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 09/07/2023] Open
Abstract
About 0.8 million people die because of hepatitis B virus (HBV) infection each year. In around 5% of infected adults, the immune system is ineffective in countering HBV infection, leading to chronic hepatitis B (CHB). CHB is associated with hepatocellular carcinoma, which can lead to patient death. Unfortunately, although current treatments against CHB allow control of HBV infection, they are unable to achieve complete eradication of the virus. Cytokines of the IFN family represent part of the innate immune system and are key players in virus elimination. IFN secretion induces the expression of interferon stimulated genes, producing proteins that have antiviral properties and that are essential to cell-autonomous immunity. IFN-α is commonly used as a therapeutic approach for CHB. In addition, IFN-γ has been identified as the main IFN family member responsible for HBV eradication during acute infection. In this review, we summarize the key evidence gained from cellular or animal models of HBV replication or infection concerning the potential anti-HBV roles of IFN-γ with a particular focus on some IFN-γ-inducible genes.
Collapse
Affiliation(s)
| | - Philip Lawrence
- Confluence: Sciences et Humanités (EA 1598), Université Catholique de Lyon, Lyon, France
| | - Brice Lagrange
- Confluence: Sciences et Humanités (EA 1598), Université Catholique de Lyon, Lyon, France
| |
Collapse
|
3
|
Li N, Yu K, Dong M, Wang J, Yang F, Zhu H, Yu J, Yang J, Xie W, Mitra B, Mao R, Wu F, Guo H, Zhang J. Intrahepatic transcriptomics reveals gene signatures in chronic hepatitis B patients responded to interferon therapy. Emerg Microbes Infect 2022; 11:1876-1889. [PMID: 35815389 PMCID: PMC9336496 DOI: 10.1080/22221751.2022.2100831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains a substantial public health burden worldwide. Alpha-interferon (IFNα) is one of the two currently approved therapies for chronic hepatitis B (CHB), to explore the mechanisms underlying IFNα treatment response, we investigated baseline and 24-week on-treatment intrahepatic gene expression profiles in 21 CHB patients by mRNA-seq. The data analyses demonstrated that PegIFNα treatment significantly induced antiviral responses. Responders who achieved HBV DNA loss and HBeAg or HBsAg seroconversion displayed higher fold change and larger number of up-regulated interferon-stimulated genes (ISGs). Interestingly, lower expression levels of certain ISGs were observed in responders in their baseline biopsy samples. In HBeAg+ patients, non-responders had relative higher baseline HBeAg levels than responders. More importantly, HBeAg− patients showed higher HBsAg loss rate than HBeAg+ patients. Although a greater fold change of ISGs was observed in HBeAg− patients than HBeAg+ patients, upregulation of ISGs in HBeAg+ responders exceeded HBeAg− responders. Notably, PegIFNα treatment increased monocyte and mast cell infiltration, but decreased CD8 T cell and M1 macrophage infiltration in both responders and non-responders, while B cell infiltration was increased only in responders. Moreover, co-expression analysis identified ribosomal proteins as critical players in antiviral response. The data also indicate that IFNα may influence the production of viral antigens associated with endoplasmic reticulum. Collectively, the intrahepatic transcriptome analyses in this study enriched our understanding of IFN-mediated antiviral effects in CHB patients and provided novel insights into the development of potential strategies to improve IFNα therapy.
Collapse
Affiliation(s)
- Ning Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Kangkang Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingshu Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wentao Xie
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Bidisha Mitra
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, United States
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Feizhen Wu
- Key Laboratory of Epigenetics, Institutes of Biomedical Science, Fudan University, China
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, United States
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Li J, Kemper T, Broering R, Chen J, Yuan Z, Wang X, Lu M. Interferon Alpha Induces Cellular Autophagy and Modulates Hepatitis B Virus Replication. Front Cell Infect Microbiol 2022; 12:804011. [PMID: 35186790 PMCID: PMC8847603 DOI: 10.3389/fcimb.2022.804011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) infection causes acute and chronic liver diseases, including severe hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Interferon alpha 2a (IFNα-2a) is commonly used for treating chronic HBV infection. However, its efficacy remains relatively low. Yet, the immunological and molecular mechanisms for successful IFNα-2a treatment remain elusive. One issue is whether the application of increasing IFNα doses may modulate cellular processes and HBV replication in hepatic cells. In the present study, we focused on the interaction of IFNα signaling with other cellular signaling pathways and the consequence for HBV replication. The results showed that with the concentration of 6000 U/ml IFNα-2a treatment downregulated the activity of not only the Akt/mTOR signaling but also the AMPK signaling. Additionally, IFNα-2a treatment increased the formation of the autophagosomes by blocking autophagic degradation. Furthermore, IFNα-2a treatment inhibited the Akt/mTOR signaling and initiated autophagy under low and high glucose concentrations. In reverse, inhibition of autophagy using 3-methyladenine (3-MA) and glucose concentrations influenced the expression of IFNα-2a-induced ISG15 and IFITM1. Despite of ISGs induction, HBV replication and gene expression in HepG2.2.15 cells, a cell model with continuous HBV replication, were slightly increased at high doses of IFNα-2a. In conclusion, our study indicates that IFNα-2a treatment may interfere with multiple intracellular signaling pathways, facilitate autophagy initiation, and block autophagic degradation, thereby resulting in slightly enhanced HBV replication.
Collapse
Affiliation(s)
- Jia Li
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thekla Kemper
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyu Wang
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- State Key Laboratory for Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Mengji Lu, ; Xueyu Wang,
| | - Mengji Lu
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu, ; Xueyu Wang,
| |
Collapse
|
5
|
van Buuren N, Ramirez R, Turner S, Chen D, Suri V, Aggarwal A, Moon C, Kim S, Kornyeyev D, Bui N, Bhardwaj N, Chan HL, Marcellin P, Buti M, Wallin J, Gaggar A, Fletcher SP, Diehl L, Li L, Mo H, Feierbach B. Characterization of the liver immune microenvironment in liver biopsies from patients with chronic HBV infection. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 4:100388. [PMID: 34950863 PMCID: PMC8671126 DOI: 10.1016/j.jhepr.2021.100388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 01/05/2023]
Abstract
Background & Aims We aim to describe the liver immune microenvironment by analyzing liver biopsies from patients with chronic HBV infection (CHB). Host immune cell signatures and their corresponding localization were characterized by analyzing the intrahepatic transcriptome in combination with a custom multiplex immunofluorescence panel. Method Matching FFPE and fresh frozen liver biopsies were collected from immune active patients within the open-label phase IV study GS-US-174-0149. RNA-Seq was conducted on 53 CHB liver biopsies from 46 patients. Twenty-eight of the 53 samples had matched FFPE biopsies and were stained with a 12-plex panel including cell segmentation, immune and viral biomarkers. Corresponding serum samples were screened using the MSD Human V-plex Screen Service to identify peripheral correlates for the immune microenvironment. Results Using unsupervised clustering of the transcriptome, we reveal two unique liver immune signatures classified as immune high and immune low based on the quantification of the liver infiltrate gene signatures. Multiplex immunofluorescence analysis demonstrated large periportal lymphoid aggregates in immune high samples consisting of CD4 and CD8 T cells, B cells and macrophages. Differentiation of the high and low immune microenvironments was independent of HBeAg status and peripheral viral antigen levels. In addition, longitudinal analysis indicates that treatment and normalization of ALT correlates with a decrease in liver immune infiltrate and inflammation. Finally, we screened a panel of peripheral biomarkers and identified ICAM-1 and CXCL10 as biomarkers that strongly correlate with these unique immune microenvironments. Conclusion These data provide a description of immune phenotypes in patients with CHB and show that immune responses are downregulated in the liver following nucleotide analogue treatment. This may have important implications for both the safety and efficacy of immune modulator programs aimed at HBV cure. Lay summary Liver biopsies from patients with chronic hepatitis B were submitted to RNA-Seq and multiplex immunofluorescence and identified two different liver immune microenvironments: immune high and immune low. Immune high patients showed elevated immune pathways, including interferon signaling pathways, and increase presence of immune cells. Longitudinal analysis of biopsies from treatment experienced patients showed that treatment correlates with a marked decrease in inflammation and these findings may have important implications for both safety and efficacy of immune modulator programs for HBV cure.
Collapse
Key Words
- ALT, alanine aminotransferase
- BCR, B-cell receptor
- CHB, chronic HBV infection
- Chronic HBV
- DEG, differentially expressed gene
- FFPE, formalin-fixed paraffin-embedded
- Hepatitis B
- IHC, immunohistochemistry
- Immune Microenvironment
- Intrahepatic transcriptome
- PEG-IFNα, pegylated-interferon-α
- TCR, T-cell receptor
- TDF, tenofovir disoproxil fumarate
- TLS, tertiary lymphoid structures
- mIF, multiplex immunofluorescence
- multiplex immunofluorescence
- ssGSEA, single sample gene set enrichment analysis
Collapse
Affiliation(s)
- Nicholas van Buuren
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Ricardo Ramirez
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Scott Turner
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Diana Chen
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Vithika Suri
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Abhishek Aggarwal
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Christina Moon
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Sam Kim
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Dmytro Kornyeyev
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Nam Bui
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Neeru Bhardwaj
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States.,Current address: Foundation Medicine, Cambridge, MA, 02141, United States
| | | | | | - Maria Buti
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jeffrey Wallin
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Anuj Gaggar
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Simon P Fletcher
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Lauri Diehl
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Li Li
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Hongmei Mo
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| | - Becket Feierbach
- Gilead Sciences Inc. 324 Lakeside Dr., Foster City, CA, 94404, United States
| |
Collapse
|
6
|
Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H, Lu L. B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev 2021; 64:57-70. [DOI: 10.1016/j.cytogfr.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
7
|
Ye J, Chen J. Interferon and Hepatitis B: Current and Future Perspectives. Front Immunol 2021; 12:733364. [PMID: 34557195 PMCID: PMC8452902 DOI: 10.3389/fimmu.2021.733364] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health burden worldwide for which there is still no effective curative treatment. Interferon (IFN) consists of a group of cytokines with antiviral activity and immunoregulatory and antitumor effects, that play crucial roles in both innate and adaptive immune responses. IFN-α and its pegylated form have been used for over thirty years to treat chronic hepatitis B (CHB) with advantages of finite treatment duration and sustained virologic response, however, the efficacy is limited and side effects are common. Here, we summarize the status and unique advantages of IFN therapy against CHB, review the mechanisms of IFN-α action and factors affecting IFN response, and discuss the possible improvement of IFN-based therapy and the rationale of combinations with other antiviral agents in seeking an HBV cure.
Collapse
Affiliation(s)
- Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
8
|
He Y, Zhou Y, Wang H, Yin J, Chang Y, Hu P, Ren H, Xu H. Identifying potential biomarkers in hepatitis B virus infection and its response to the antiviral therapy by integrated bioinformatic analysis. J Cell Mol Med 2021; 25:6558-6572. [PMID: 34041839 PMCID: PMC8278120 DOI: 10.1111/jcmm.16655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
The antiviral treatment efficacy varies among chronic hepatitis B (CHB) patients and the underlying mechanism is unclear. An integrated bioinformatics analysis was performed to investigate the host factors that affect the therapeutic responsiveness in CHB patients. Four GEO data sets (GSE54747, GSE27555, GSE66698 and GSE66699) were downloaded from the Gene Expression Omnibus (GEO) database and analysed to identify differentially expressed genes(DEGs). Enrichment analyses of the DEGs were conducted using the DAVID database. Immune cell infiltration characteristics were analysed by CIBERSORT. Upstream miRNAs and lncRNAs of hub DEGs were identified by miRWalk 3.0 and miRNet in combination with the MNDR platform. As a result, seventy‐seven overlapping DEGs and 15 hub genes were identified including CCL5, CXCL9, MYH2, CXCR4, CD74, CCL4, HLA‐DRB1, ACTA1, CD69, CXCL10, HLA‐DRB5, HLA‐DQB1, CXCL13, STAT1 and CKM. The enrichment analyses revealed that the DEGs were mainly enriched in immune response and chemokine signalling pathways. Investigation of immune cell infiltration in liver samples suggested significantly different infiltration between responders and non‐responders, mainly characterized by higher proportions of CD8+ T cells and activated NK cells in non‐responders. The prediction of upstream miRNAs and lncRNAs led to the identification of a potential mRNA‐miRNA‐lncRNA regulatory network composed of 2 lncRNAs (H19 and GAS5) and 5 miRNAs (hsa‐mir‐106b‐5p, hsa‐mir‐17‐5p, hsa‐mir‐20a‐5p, hsa‐mir‐6720‐5p and hsa‐mir‐93‐5p) targeting CCL5 mRNA. In conclusion, our study suggested that host genetic factors could affect therapeutic responsiveness in CHB patients. The antiviral process might be associated with the chemokine‐mediated immune response and immune cell infiltration in the liver microenvironment.
Collapse
Affiliation(s)
- Yi He
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhou
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Huimin Wang
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Jingyang Yin
- Chongqing People's Hospital, Chongqing Medical University, Chongqing, China
| | - Yunan Chang
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongmei Xu
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Zhang Y, Lu W, Chen X, Cao Y, Yang Z. A Bioinformatic Analysis of Correlations between Polymeric Immunoglobulin Receptor (PIGR) and Liver Fibrosis Progression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5541780. [PMID: 33937393 PMCID: PMC8055406 DOI: 10.1155/2021/5541780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study is aimed at investigating the enriched functions of polymeric immunoglobulin receptor (PIGR) and its correlations with liver fibrosis stage. METHODS PIGR mRNA expression in normal liver, liver fibrosis, hepatic stellate cells (HSCs), and hepatitis virus infection samples was calculated in Gene Expression Omnibus (GEO) and Oncomine databases. Enrichment analysis of PIGR-related genes was conducted in Metascape and Gene Set Enrichment Analysis (GSEA). Logistic model and ROC curve were performed to evaluate the correlations between pIgR and liver fibrosis. RESULTS PIGR mRNA was upregulated in advanced liver fibrosis, cirrhosis compared to normal liver (all p < 0.05). PIGR mRNA was also overexpressed in activated HSCs compared to senescent HSCs, liver stem/progenitor cells, and reverted HSCs (all p < 0.05). Enrichment analysis revealed that PIGR-related genes involved in the defense response to virus and interferon (IFN) signaling. In GEO series, PIGR mRNA was also upregulated by hepatitis virus B, C, D, and E infection (all p < 0.05). After adjusting age and gender, multivariate logistic regression models revealed that high PIGR in the liver was a risk factor for liver fibrosis (OR = 82.2, p < 0.001). The area under curve (AUC), positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of PIGR for liver fibrosis stage >2 were 0.84, 0.86, 0.7, 0.61, and 0.90. CONCLUSION PIGR was correlated with liver fibrosis and might involve in hepatitis virus infection and HSC transdifferentiation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wenjun Lu
- Department of Rheumatology and Immunology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Jiangsu 212300, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
10
|
Chen J, Li Y, Lai F, Wang Y, Sutter K, Dittmer U, Ye J, Zai W, Liu M, Shen F, Wu M, Hu K, Li B, Lu M, Zhang X, Zhang J, Li J, Chen Q, Yuan Z. Functional Comparison of Interferon-α Subtypes Reveals Potent Hepatitis B Virus Suppression by a Concerted Action of Interferon-α and Interferon-γ Signaling. Hepatology 2021; 73:486-502. [PMID: 32333814 DOI: 10.1002/hep.31282] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Interferon (IFN)-α, composed of numerous subtypes, plays a crucial role in immune defense. As the most studied subtype, IFN-α2 has been used for treating chronic hepatitis B virus (HBV) infection, with advantages of finite treatment duration and sustained virologic response, but its efficacy remains relatively low. This study aimed to screen for IFN-α subtypes with the highest anti-HBV potency and to characterize mechanisms of IFN-α-mediated HBV restriction. APPROACH AND RESULTS Using cell culture-based HBV infection systems and a human-liver chimeric mouse model, IFN-α subtype-mediated antiviral response and signaling activation were comprehensively analyzed. IFN-α14 was identified as the most effective subtype in suppression of HBV covalently closed circular DNA transcription and HBV e antigen/HBV surface antigen production, with median inhibitory concentration values approximately 100-fold lower than those of the conventional IFN-α2. IFN-α14 alone elicited IFN-α and IFN-γ signaling crosstalk in a manner similar to the combined use of IFN-α2 and IFN-γ, inducing multiple potent antiviral effectors, which synergistically restricted HBV replication. Guanylate binding protein 5, one of the most differentially expressed genes between IFN-α14-treated and IFN-α2-treated liver cells, was identified as an HBV restriction factor. A strong IFN-α-IFN-α receptor subunit 1 interaction determines the anti-HBV activity of IFN-α. The in vivo anti-HBV activity of IFN-α14 and treatment-related transcriptional patterns were further confirmed, and few adverse effects were observed. CONCLUSIONS A concerted IFN-α and IFN-γ response in liver, which could be efficiently elicited by IFN-α subtype 14, is associated with potent HBV suppression. These data deepen the understanding of the divergent activities of IFN-α subtypes and the mechanism underlying the synergism between IFN-α and IFN-γ signaling, with implications for improved IFN therapy and HBV curative strategies.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fritz Lai
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingaporeSingapore
| | - Yang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Kathrin Sutter
- Institute for VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Ulf Dittmer
- Institute for VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Min Liu
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingaporeSingapore
| | - Fang Shen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Min Wu
- Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Baocun Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Mengji Lu
- Institute for VirologyUniversity Hospital EssenUniversity of Duisburg-EssenEssenGermany
| | - Xiaonan Zhang
- Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Jiming Zhang
- Department of Infectious DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qingfeng Chen
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingaporeSingapore
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
11
|
Fu WK, Cao J, Mi NN, Huang CF, Gao L, Zhang JD, Yue P, Bai B, Lin YY, Meng WB. Cytokines predict virological response in chronic hepatitis B patients receiving peginterferon alfa-2a therapy. World J Clin Cases 2020; 8:2255-2265. [PMID: 32548156 PMCID: PMC7281045 DOI: 10.12998/wjcc.v8.i11.2255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus infection remains a major global public health problem. Peginterferon-alpha-2a (PEG-IFN) has direct antiviral and immunoregulatory effects, and it has become one of the first choice drugs for the treatment of chronic hepatitis B (CHB). Cytokines play an important role in immunity, and they directly inhibit viral replication and indirectly determine the predominant pattern of the host immune response.
AIM To determine the correlation between cytokine/chemokine expression levels and response to PEG-IFN treatment in patients with CHB.
METHODS Forty-six kinds of cytokines were analyzed before PEG-IFN therapy and at 24 wk during therapy in 26 CHB patients.
RESULTS The monokine induced by INF-γ (CXCL9) and serum interferon-inducible protein 10 ( IP-10) levels at baseline were higher in virological responders than in non-virological responders (NRs) and decreased during treatment, whereas the NRs did not exhibit significant changes. The macrophage inflammatory protein 1d (MIP-1d) levels at baseline and during treatment were significantly higher in the virological responders than in the NRs, while thymus and activation-regulated chemokine (TARC) levels at baseline and during treatment were significantly lower in the virological responders than in the NRs. The CXCL9, IP-10, MIP-1d, and TARC baseline levels exhibited the expected effects for interferon treatment. The area under the receiver operating characteristic curve values of CXCL9, IP-10, MIP-1d, and TARC for predicting virological responses were 0.787, 0.799, 0.787, and 0.77 (P = 0.01, 0.013, 0.01, and 0.021), respectively.
CONCLUSION We found that cytokine levels before and during treatment may represent potential biomarkers to select CHB patients who can respond to PEG-IFN. Therefore, cytokines can be used as an indicator of antiviral drug selection before CHB treatment.
Collapse
Affiliation(s)
- Wen-Kang Fu
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jie Cao
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Laboratory Department of the First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ning-Ning Mi
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Chong-Fei Huang
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Long Gao
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jin-Duo Zhang
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ping Yue
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Bing Bai
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yan-Yan Lin
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Bo Meng
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Hepatopancreatobiliary of Gansu Province, Lanzhou 730000, Gansu Province, Chinao
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
12
|
Zhu Z, Huang S, Zhang Y, Sun C, Tang Y, Zhao Q, Zhou Q, Ju W, He X. Bioinformatics analysis on multiple Gene Expression Omnibus datasets of the hepatitis B virus infection and its response to the interferon-alpha therapy. BMC Infect Dis 2020; 20:84. [PMID: 31996147 PMCID: PMC6990549 DOI: 10.1186/s12879-019-4720-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis B virus (HBV) infection is a global health problem and interferon-alpha (IFN-α) is one of the effective therapies. However, little is known about the genetic background of the HBV infection or the genetic determinants of the IFN-α treatment response. Thus, we aim to explore the possible molecular mechanisms of HBV infection and its response to the IFN-α therapy with a comprehensive bioinformatics analysis. Methods The Gene Expression Omnibus datasets (GSE83148, GSE84044 and GSE66698) were collected and the differentially expressed genes (DEGs), key biological processes and intersecting pathways were analyzed. The expression of the co-expressed DEGs in the clinical samples was verified by quantitative real time polymerase chain reaction (qRT-PCR). Results Analysis of all the 3 datasets revealed that there were eight up-regulated and one down-regulated co-expressed DEGs following the HBV infection and after IFN-α treatment. In clinical samples, the mRNA level of HKDC1, EPCAM, GSN, ZWINT and PLD3 were significantly increased, while, the mRNA level of PLEKHA2 was significantly decreased in HBV infected liver tissues compared to normal liver tissues. PI3K-Akt signaling pathway, focal adhesion, HTLV-I infection, cytokine-cytokine receptor interaction, metabolic pathways, NF-κB signaling pathway were important pathways associated with the HBV infection and the response of IFN-α treatment. Conclusions The co-expressed genes, common biological processes and intersecting pathways identified in the study might play an important role in HBV infection and response of IFN-α treatment. The dysregulated genes may act as novel biomarkers and therapeutic targets for HBV.
Collapse
Affiliation(s)
- Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, Guangdong, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Qi Zhou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, 516081, Guangdong, China. .,Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China.
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
13
|
Kalra P, Brandl J, Gaub T, Niederalt C, Lippert J, Sahle S, Küpfer L, Kummer U. Quantitative systems pharmacology of interferon alpha administration: A multi-scale approach. PLoS One 2019; 14:e0209587. [PMID: 30759154 PMCID: PMC6374012 DOI: 10.1371/journal.pone.0209587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022] Open
Abstract
The therapeutic effect of a drug is governed by its pharmacokinetics which determine the downstream pharmacodynamic response within the cellular network. A complete understanding of the drug-effect relationship therefore requires multi-scale models which integrate the properties of the different physiological scales. Computational modelling of these individual scales has been successfully established in the past. However, coupling of the scales remains challenging, although it will provide a unique possibility of mechanistic and holistic analyses of therapeutic outcomes for varied treatment scenarios. We present a methodology to combine whole-body physiologically-based pharmacokinetic (PBPK) models with mechanistic intracellular models of signal transduction in the liver for therapeutic proteins. To this end, we developed a whole-body distribution model of IFN-α in human and a detailed intracellular model of the JAK/STAT signalling cascade in hepatocytes and coupled them at the liver of the whole-body human model. This integrated model infers the time-resolved concentration of IFN-α arriving at the liver after intravenous injection while simultaneously estimates the effect of this dose on the intracellular signalling behaviour in the liver. In our multi-scale physiologically-based pharmacokinetic/pharmacodynamic (PBPK/PD) model, receptor saturation is seen at low doses, thus giving mechanistic insights into the pharmacodynamic (PD) response. This model suggests a fourfold lower intracellular response after administration of a typical IFN-α dose to an individual as compared to the experimentally observed responses in in vitro setups. In conclusion, this work highlights clear differences between the observed in vitro and in vivo drug effects and provides important suggestions for future model-based study design.
Collapse
Affiliation(s)
- Priyata Kalra
- Department of Modelling of Biological Processes, COS/BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Julian Brandl
- Department of Modelling of Biological Processes, COS/BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
- Now at Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Gaub
- Clinical Sciences, Bayer Pharma, Kaiser-Wilhelm-Allee 1, Leverkusen, Germany
| | - Christoph Niederalt
- Clinical Sciences, Bayer Pharma, Kaiser-Wilhelm-Allee 1, Leverkusen, Germany
| | - Jörg Lippert
- Clinical Sciences, Bayer Pharma, Kaiser-Wilhelm-Allee 1, Leverkusen, Germany
| | - Sven Sahle
- Department of Modelling of Biological Processes, COS/BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Lars Küpfer
- Clinical Sciences, Bayer Pharma, Kaiser-Wilhelm-Allee 1, Leverkusen, Germany
| | - Ursula Kummer
- Department of Modelling of Biological Processes, COS/BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
14
|
Shen F, Li Y, Wang Y, Sozzi V, Revill PA, Liu J, Gao L, Yang G, Lu M, Sutter K, Dittmer U, Chen J, Yuan Z. Hepatitis B virus sensitivity to interferon-α in hepatocytes is more associated with cellular interferon response than with viral genotype. Hepatology 2018; 67:1237-1252. [PMID: 29059468 DOI: 10.1002/hep.29609] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Interferon-α (IFN-α) is used to treat chronic hepatitis B virus (HBV) infection, but only 20%-40% of patients respond well. Clinical observations have suggested that HBV genotype is associated with the response to IFN therapy; however, its role in viral responsiveness to IFN in HBV-infected hepatocytes remains unclear. Here, we produced infectious virions of HBV genotypes A to D to infect three well-recognized cell-culture-based HBV infection systems, including primary human hepatocytes (PHH), differentiated HepaRG (dHepaRG), and HepG2-NTCP cells to quantitatively compare the antiviral effect of IFN-α on HBV across genotypes and cell models. The efficacy of IFN-α against HBV in hepatocytes was generally similar across genotypes A2, B5, C2, and D3; however, it was significantly different among the infection models given that the half maximal inhibitory concentration value of IFN-α for inhibition of viral DNA replication in PHH (<20 U/mL) and dHepaRG cells were much lower than that in HepG2-NTCP cells (>500 U/mL). Notably, even in PHH, IFN-α did not reduce HBV covalently closed circular DNA at the concentrations for which viral antigens and DNA replication intermediates were strongly reduced. The three cell-culture models exhibited differential cellular response to IFN-α. The genes reported to be associated with responsiveness to IFN-α in patients were robustly induced in PHH while weakly induced in HepG2-NTCP cells upon IFN-α treatment. Reduction or promotion of IFN response in PHH or HepG2-NTCP cells significantly attenuated or improved the inhibitory capacity of IFN-α on HBV replication, respectively. CONCLUSION In the cell-culture-based HBV infection models, the sensitivity of HBV to IFN-α in hepatocytes is determined more by the cell-intrinsic IFN response than by viral genotype, and improvement of the IFN response in HepG2-NTCP cells promotes the efficacy of IFN-α against HBV. (Hepatology 2018;67:1237-1252).
Collapse
Affiliation(s)
- Fang Shen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Roche Innovation Center Shanghai, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yang Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Shanghai, China
| | - Guang Yang
- Roche Innovation Center Shanghai, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
15
|
Gill US, Pallett LJ, Kennedy PTF, Maini MK. Liver sampling: a vital window into HBV pathogenesis on the path to functional cure. Gut 2018; 67:767-775. [PMID: 29331944 PMCID: PMC6058064 DOI: 10.1136/gutjnl-2017-314873] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/29/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
In order to optimally refine the multiple emerging drug targets for hepatitis B virus (HBV), it is vital to evaluate virological and immunological changes at the site of infection. Traditionally liver biopsy has been the mainstay of HBV disease assessment, but with the emergence of non-invasive markers of liver fibrosis, there has been a move away from tissue sampling. Here we argue that liver biopsy remains an important tool, not only for the clinical assessment of HBV but also for research progress and evaluation of novel agents. The importance of liver sampling has been underscored by recent findings of specialised subsets of tissue-resident immune subsets capable of efficient pathogen surveillance, compartmentalised in the liver and not sampled in the blood. Importantly, the assessment of virological parameters, such as cccDNA quantitation, also requires access to liver tissue. We discuss strategies to maximise information obtained from the site of infection and disease pathology. Fine needle aspirates of the liver may allow longitudinal sampling of the local virus/host landscape. The careful utilisation of liver tissue and aspirates in conjunction with blood will provide critical information in the assessment of new therapeutics for the functional cure of HBV.
Collapse
Affiliation(s)
- Upkar S Gill
- Department of Hepatology, Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Patrick T F Kennedy
- Department of Hepatology, Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, UCL, London, UK
| |
Collapse
|
16
|
Asselah T, Marcellin P. Chronic HBV Infection: Interferon Therapy and Long-Term Outcomes. HEPATITIS B VIRUS AND LIVER DISEASE 2018:181-191. [DOI: 10.1007/978-981-10-4843-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Abstract
The two ligands B cell-activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) and the three receptors BAFF receptor (BAFF-R), transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI), and B cell maturation antigen (BCMA) are members of the "BAFF system molecules." BAFF system molecules are primarily involved in B cell homeostasis. The relevance of BAFF system molecules in host responses to microbial assaults has been investigated in clinical studies and in mice deficient for each of these molecules. Many microbial products modulate the expression of these molecules. Data from clinical studies suggest a correlation between increased expression levels of BAFF system molecules and elevated B cell responses. Depending on the pathogen, heightened B cell responses may strengthen the host response or promote susceptibility. Whereas pathogen-mediated increases in the expression levels of the ligands and/or the receptors appear to promote microbial clearance, certain pathogens have evolved to ablate B cell responses by suppressing the expression of TACI and/or BAFF-R on B cells. Other than its well-established role in B cell responses, the TACI-mediated activation of macrophages is also implicated in resistance to intracellular pathogens. An improved understanding of the role that BAFF system molecules play in infection may assist in devising novel strategies for vaccine development.
Collapse
Affiliation(s)
- Jiro Sakai
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
18
|
Han Q, Yang C, Li N, Li F, Sang J, Lv Y, Zhao W, Li C, Liu Z. Association of genetic variation in B-cell activating factor with chronic hepatitis B virus infection. Immunol Lett 2017; 188:53-58. [PMID: 28627389 DOI: 10.1016/j.imlet.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/09/2017] [Indexed: 12/24/2022]
Abstract
The outcome of hepatitis B virus (HBV) infection is considered to be related to the host immunogenetic susceptibility. B cell activating factor (BAFF) is involved in both B cell and T cell mediated immunity and its circulating levels were shown to be significantly elevated in HBV-related liver diseases. This study examined BAFF rs9514828 and rs12583006 polymorphisms in 386 patients with various liver diseases related to chronic HBV infection, 69 HBV infection resolvers, and 191 healthy controls. Both rs9514828 and rs12583006 polymorphisms and serum BAFF levels were determined in 232 patients with chronic HBV infection, and 61 healthy controls. The results showed that patients with chronic hepatitis had higher frequencies of rs9514828 genotype TT (19.75% vs. 11.86%, OR=2.397, 95% CI=1.121-5.125, P=0.023), genotypes CT+TT (74.69% vs. 63.55%, OR=1.478, 95% CI=1.050-2.080, P=0.045), and allele T (47.22% vs. 37.72%, OR=1.478, 95% CI=1.050-2.080, P=0.025) compared with patients with cirrhosis. Patients with chronic HBV infection and HBV infection resolvers had higher frequency of rs9514828 and rs12583006 haplotype TA compared with healthy controls (21.6% vs. 15.0%, OR=1.672, 95% CI=1.138-2.456, P=0.009 and 27.3% vs. 15.0%, OR=2.258, 95%CI=1.272-4.007, P=0.005, respectively). The rs9514828 and rs12583006 genotypes had no significant association with serum BAFF levels. These results suggest that the rs9514828 allele T may predispose to the liver inflammation in chronic HBV infection, and the rs9514828 and rs12583006 polymorphisms may combinatorially confer susceptibility to chronic HBV infection and resolution of the infection, possibly not through direct effect on serum BAFF levels.
Collapse
Affiliation(s)
- Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, 710061, Shaanxi Province, People's Republic of China
| | - Cuiling Yang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, 710061, Shaanxi Province, People's Republic of China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, 710061, Shaanxi Province, People's Republic of China
| | - Fang Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, 710061, Shaanxi Province, People's Republic of China
| | - Jiao Sang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, 710061, Shaanxi Province, People's Republic of China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Wenxuan Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, 710061, Shaanxi Province, People's Republic of China
| | - Chunyan Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, 710061, Shaanxi Province, People's Republic of China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, 710061, Shaanxi Province, People's Republic of China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| |
Collapse
|
19
|
Zu J, Zhuang G, Liang P, Cui F, Wang F, Zheng H, Liang X. Estimating age-related incidence of HBsAg seroclearance in chronic hepatitis B virus infections of China by using a dynamic compartmental model. Sci Rep 2017; 7:2912. [PMID: 28588249 PMCID: PMC5460177 DOI: 10.1038/s41598-017-03080-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/24/2017] [Indexed: 02/08/2023] Open
Abstract
The age-specific seroclearance pattern of hepatitis B surface antigen (HBsAg) in chronic hepatitis B virus (HBV) infections of China remains unclear. In this study, based on three national serosurvey data of hepatitis B in China, we propose an age- and time-dependent discrete model and use the method of non-linear least squares to estimate the age-specific annual rate of HBsAg seroclearance. We found that the HBsAg seroclearance in chronic HBV infections of China aged 1–59 years occurred at an average annual rate of 1.80% (95% CI, 1.54–2.06%) from 1993 to 2006. The HBsAg seroclearance occurred predominantly in the early childhood, 20–24 and 35–39 year age groups. Moreover, our model estimated that HBsAg seroclearance resulted in 23.38% of the decrease of total HBsAg prevalence for population aged 1–59 years in 2006. It also prevented 9.30% of new HBV infections (about 7.43 million people) and 9.95% of HBV-related deaths (about 0.25 million people) from 1993 to 2006. This study develops a new and efficient method to estimate the age-specific incidence of HBsAg seroclearance at a population-level and evaluate its effect.
Collapse
Affiliation(s)
- Jian Zu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China. .,Department of Ecology and Evolution, The University of Chicago, Chicago, IL, 60637, USA.
| | - Guihua Zhuang
- School of Public Health, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi, 710061, P.R. China.
| | - Peifeng Liang
- Department of Medical Statistics, Ningxia People' Hospital, Yinchuan, Ningxia, 750002, P.R. China
| | - Fuqiang Cui
- Chinese Center for Disease Control and Prevention, Beijing, 100050, P.R. China
| | - Fuzhen Wang
- Chinese Center for Disease Control and Prevention, Beijing, 100050, P.R. China
| | - Hui Zheng
- Chinese Center for Disease Control and Prevention, Beijing, 100050, P.R. China
| | - Xiaofeng Liang
- Chinese Center for Disease Control and Prevention, Beijing, 100050, P.R. China.
| |
Collapse
|
20
|
Phillips S, Mistry S, Riva A, Cooksley H, Hadzhiolova-Lebeau T, Plavova S, Katzarov K, Simonova M, Zeuzem S, Woffendin C, Chen PJ, Peng CY, Chang TT, Lueth S, De Knegt R, Choi MS, Wedemeyer H, Dao M, Kim CW, Chu HC, Wind-Rotolo M, Williams R, Cooney E, Chokshi S. Peg-Interferon Lambda Treatment Induces Robust Innate and Adaptive Immunity in Chronic Hepatitis B Patients. Front Immunol 2017; 8:621. [PMID: 28611778 PMCID: PMC5446997 DOI: 10.3389/fimmu.2017.00621] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
IFN-lambda (IFNλ) is a member of the type III IFN family and is reported to possess anti-pathogen, anti-cancer, and immunomodulatory properties; however, there are limited data regarding its impact on host immune responses in vivo. We performed longitudinal and comprehensive immunosurveillance to assess the ability of pegylated (peg)-IFNλ to augment antiviral host immunity as part of a clinical trial assessing the efficacy of peg-IFNλ in chronic hepatitis B (CHB) patients. These patients were pretreated with directly acting antiviral therapy (entecavir) for 12 weeks with subsequent addition of peg-IFNλ for up to 32 weeks. In a subgroup of patients, the addition of peg-IFNλ provoked high serum levels of antiviral cytokine IL-18. We also observed the enhancement of natural killer cell polyfunctionality and the recovery of a pan-genotypic HBV-specific CD4+ T cells producing IFN-γ with maintenance of HBV-specific CD8+ T cell antiviral and cytotoxic activities. It was only in these patients that we observed strong virological control with reductions in both viral replication and HBV antigen levels. Here, we show for the first time that in vivo peg-IFNλ displays significant immunostimulatory properties with improvements in the main effectors mediating anti-HBV immunity. Interestingly, the maintenance in HBV-specific CD8+ T cells in the presence of peg-IFNλ is in contrast to previous studies showing that peg-IFNα treatment for CHB results in a detrimental effect on the functionality of this important antiviral T cell compartment. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT01204762.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sameer Mistry
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Antonio Riva
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Helen Cooksley
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Slava Plavova
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Krum Katzarov
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Marieta Simonova
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Stephan Zeuzem
- Johann Wolfgang, Goethe University Medical Center, Frankfurt, Germany
| | - Clive Woffendin
- Oregon Clinical and Translational Research Institute, Portland, OR, United States
| | - Pei-Jer Chen
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | - Michael Dao
- Precision Diagnostic Laboratory, Santa Ana, CA, United States
| | | | | | - Megan Wind-Rotolo
- Research and Development, Bristol-Myers Squibb, Wallingford, CT, United States
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Zou ZQ, Zhang S, Lin Q, Qu RL, Li YF, Zhang FH, Xu AL. Immune response- and viral control-related pathways in the progression of chronic hepatitis B. Microb Pathog 2017; 105:100-105. [PMID: 28189731 DOI: 10.1016/j.micpath.2017.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Chronic hepatitis B (CHB) is a complicated and dynamic course, and is associated with advanced liver disease. Host immune response against viral infection plays a pivotal role in the progression of CHB. However, it is still uncharted that how the hepatic transcriptomes in patients with CHB are correlated with the clinical phases. OBJECTIVE This study aimed to identify the specific sub-networks across various phases of CHB and infer potential pathways for phenotypic outcome prediction. METHODS In this study, we performed the pairwise comparisons of the hepatic transcriptomes of CHB patients under different phases, and constructed the differential co-expression networks (DCNs). We firstly identified the critical genes from each DCN according to the adjacency matrix of the network. Then, the specific sub-networks were digged by iteratively affiliating genes that can increase the classification accuracy, using a snow-ball sampling strategy. Permutation test was implemented to determine the statistical significance of these sub-networks. Finally, each sub-network was given a most significant functional pathway. RESULTS We constructed 3 DCNs by pairwise comparing the hepatic transcriptomes among three CHB phases, and systemically tracked 1, 1 and 2 specific sub-networks and pathways, respectively. Relative to immune tolerant phase, TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) pathway was significantly changed in the immune clearance phase, and nuclear receptor transcription pathway and adenylate cyclase activating pathway were altered in inactive carrier state. The host genes related to DNA strand elongation showed significant difference between the immune clearance phase and inactive carrier state. CONCLUSIONS By pairwise comparing the hepatic transcriptomes of CHB patients under a network view, several immune- and viral control-related pathways were identified in this study. These results might serve as a foundation for characterizing the host transcriptomes responded to CHB infection, and hold clues for the development of potential targets for disease control.
Collapse
Affiliation(s)
- Zhi-Qiang Zou
- Yantai City Hospital for Infectious Diseases, Yantai 264001, China
| | - Shuai Zhang
- Clinical Laboratory, Yantai City Hospital for Infectious Diseases, Yantai 264001, China
| | - Qing Lin
- Clinical Laboratory, Yantai City Hospital for Infectious Diseases, Yantai 264001, China
| | - Ren-Liang Qu
- Clinical Laboratory, Yantai City Hospital for Infectious Diseases, Yantai 264001, China
| | - Yan-Fang Li
- Department of Hepatobiliary Internal Medicine, Yantai City Hospital for Infectious Diseases, Yantai 264001, China
| | - Fu-Hua Zhang
- Clinical Laboratory, Yantai City Hospital for Infectious Diseases, Yantai 264001, China
| | - Ai-Ling Xu
- Clinical Laboratory, Yantai City Hospital for Infectious Diseases, Yantai 264001, China.
| |
Collapse
|
22
|
Li Y, Wu Y, Zheng X, Cong J, Liu Y, Li J, Sun R, Tian ZG, Wei HM. Cytoplasm-Translocated Ku70/80 Complex Sensing of HBV DNA Induces Hepatitis-Associated Chemokine Secretion. Front Immunol 2016; 7:569. [PMID: 27994596 PMCID: PMC5136554 DOI: 10.3389/fimmu.2016.00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a serious disease, mainly due to its severe pathological consequences, which are difficult to cure using current therapies. When the immune system responds to hepatocytes experiencing rapid HBV replication, effector cells (such as HBV-specific CD8+ T cells, NK cells, NKT cells, and other subtypes of immune cells) infiltrate the liver and cause hepatitis. However, the precise recruitment of these cells remains unclear. In the present study, we found that the cytoplasm-translocated Ku70/80 complex in liver-derived cells sensed cytosolic HBV DNA and promoted hepatitis-associated chemokine secretion. Upon sensing HBV DNA, DNA-dependent protein kinase catalytic subunit and PARP1 were assembled. Then, IRF1 was activated and translocated into the nucleus, which upregulated CCL3 and CCL5 expression. Because CCR5, a major chemokine receptor for CCL3 and CCL5, is known to be critical in hepatitis B, Ku70/80 sensing of HBV DNA likely plays a critical role in immune cell recruitment in response to HBV infection.
Collapse
Affiliation(s)
- Young Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yang Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Jingjing Cong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Rui Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Zhigang G Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Haiming M Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| |
Collapse
|