1
|
Yang Y, Gong S, Zhou C, Xin W, Qin S, Yao M, Lan Q, Liao W, Zhao J, Huang Y. REST contributes to renal fibrosis through inducing mitochondrial energy metabolism imbalance in tubular epithelial cells. Cell Commun Signal 2025; 23:176. [PMID: 40200371 PMCID: PMC11980176 DOI: 10.1186/s12964-025-02166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Renal fibrosis represents the final common pathological manifestation of chronic kidney disease (CKD), yet the underlying mechanism remains elusive, and there is still a lack of effective targeted therapeutic strategy. Although previous research indicated that repressor element 1-silencing transcription factor (REST) contributed to acute kidney injury (AKI) in renal tubular epithelial cells (RTECs), its specific contribution to renal fibrosis and associated mechanisms remains largely unexplored. METHODS Renal biopsies from CKD patients were collected to evaluate the expression of REST. Kidney-specific Rest conditional knockout (Cdh16-Cre/Restflox/flox) mice were generated and employed unilateral ureter obstruction (UUO) models to investigate the role of REST in renal fibrosis. RNA sequencing was performed to elucidate the mechanism. Mitochondrial function was evaluated by transmission electron microscopy (TEM), reactive oxygen species (ROS), oxygen consumption rates (OCR), extracellular acidifcation rate (ECAR) and adenosine triphosphate (ATP). The severity of renal fibrosis was assessed through Western blot, immunofluorescent staining and immumohistochemical staining. Bioinformatic prediction, dual luciferase reporter gene assay, point mutation and chromatin immunoprecipitation (ChIP) assay were utilized to clarify the molecular mechanism. RESULTS REST was significantly up-regulated in the kidney tissues from CKD patients, UUO-induced fibrotic mouse models and TGF-β1-incubated RTECs. Notably, kidney-specific knockout of Rest prominently alleviated renal fibrosis by improving mitochondrial energy metabolism and restoring fatty acid oxidation. Mechanically, REST disturbed mitochondrial energy metabolism through repressing the transcription of oxoglutarate dehydrogenase-like (OGDHL) via directly binding to its promotor region. Further, pharmacological inhibition of REST using the specific REST inhibitor, X5050, significantly ameliorated the progression of renal fibrosis both in vitro and in vivo. CONCLUSIONS Our explorations revealed the upregulation of REST in renal fibrosis disrupts mitochondrial energy metabolism through transcriptionally suppressing OGDHL, which may act as a promising therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Yingxian Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Shuiqin Gong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Chun Zhou
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Wang Xin
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Shaozong Qin
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Mengying Yao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Qigang Lan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Wenhao Liao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China.
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
2
|
Gabaev I, Rowland A, Jovanovic E, Gawden-Bone CM, Crozier TWM, Teixeira-Silva A, Greenwood EJD, Gerber PP, Wit N, Nathan JA, Matheson NJ, Lehner PJ. CRISPR-Cas9 genetic screens reveal regulation of TMPRSS2 by the Elongin BC-VHL complex. Sci Rep 2025; 15:11907. [PMID: 40195420 PMCID: PMC11976923 DOI: 10.1038/s41598-025-95644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The TMPRSS2 cell surface protease is used by a broad range of respiratory viruses to facilitate entry into target cells. Together with ACE2, TMPRSS2 represents a key factor for SARS-CoV-2 infection, as TMPRSS2 mediates cleavage of viral spike protein, enabling direct fusion of the viral envelope with the host cell membrane. Since the start of the COVID-19 pandemic, TMPRSS2 has gained attention as a therapeutic target for protease inhibitors which would inhibit SARS-CoV-2 infection, but little is known about TMPRSS2 regulation, particularly in cell types physiologically relevant for SARS-CoV-2 infection. Here, we performed an unbiased genome-wide CRISPR-Cas9 library screen, together with a library targeted at epigenetic modifiers and transcriptional regulators, to identify cellular factors that modulate cell surface expression of TMPRSS2 in human colon epithelial cells. We find that endogenous TMPRSS2 is regulated by the Elongin BC-VHL complex and HIF transcription factors. Depletion of Elongin B or treatment of cells with PHD inhibitors resulted in downregulation of TMPRSS2 and inhibition of SARS-CoV-2 infection. We show that TMPRSS2 is still utilised by SARS-CoV-2 Omicron variants for entry into colonic epithelial cells. Our study enhances our understanding of the regulation of endogenous surface TMPRSS2 in cells physiologically relevant to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexandra Rowland
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Emilija Jovanovic
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christian M Gawden-Bone
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thomas W M Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ana Teixeira-Silva
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward J D Greenwood
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Niek Wit
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
3
|
Arruda BP, Martins PP, Kihara AH, Takada SH. Perinatal asphyxia and Alzheimer's disease: is there a correlation? Front Pediatr 2025; 13:1567719. [PMID: 40171172 PMCID: PMC11958199 DOI: 10.3389/fped.2025.1567719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
The perinatal development period is critical for the formation of brain structures responsible for cognitive functions. Disruptions during this phase, such as perinatal asphyxia, characterized by impaired gas exchange and hypoxia, can lead to long-lasting neuronal damage and increased susceptibility to neurodegenerative diseases, including Alzheimer's disease (AD). AD, the most common cause of dementia globally, is marked by amyloid plaques, neurofibrillary tangles, and progressive cognitive decline. Emerging evidence links perinatal asphyxia with an elevated risk of AD, highlighting the potential role of oxidative stress, neuroinflammation, and epigenetic modifications as mediators. This review explores the mechanisms underlying brain damage after perinatal asphyxia, emphasizing oxidative stress, inflammation, and epigenetic changes that contribute to lifelong neurodegenerative susceptibility. Additionally, biomarkers identified in animal models reveal parallels between perinatal asphyxia and AD pathology, such as amyloid precursor protein alterations, gliosis, and microglial activation. These findings suggest perinatal asphyxia may prime microglia and epigenetically alter gene expression, predisposing individuals to chronic neurodegeneration. Future research should leverage advanced methodologies, including transcriptomics, epigenomics, and aged brain organoid models, to elucidate early-life influences on AD development. Understanding these mechanisms may pave the way for novel prevention strategies targeting early-life risk factors for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruna Petrucelli Arruda
- Neurohistology Laboratory, Center for Computation, Mathematics and Cognition, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| | - Pamela Pinheiro Martins
- Neurohistology Laboratory, Center for Computation, Mathematics and Cognition, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Center for Computation, Mathematics and Cognition, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| | - Silvia Honda Takada
- Neurohistology Laboratory, Center for Computation, Mathematics and Cognition, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| |
Collapse
|
4
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2025; 480:759-784. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
5
|
Hsieh CL, Do AD, Hsueh CY, Raboshakga MO, Thanh TN, Tai TT, Kung HJ, Sung SY. L1CAM mediates neuroendocrine phenotype acquisition in prostate cancer cells. Prostate 2024; 84:1434-1447. [PMID: 39154281 DOI: 10.1002/pros.24782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND A specific type of prostate cancer (PC) that exhibits neuroendocrine (NE) differentiation is known as NEPC. NEPC has little to no response to androgen deprivation therapy and is associated with the development of metastatic castration-resistant PC (CRPC), which has an extremely poor prognosis. Our understanding of genetic drivers and activated pathways in NEPC is limited, which hinders precision medicine approaches. L1 cell adhesion molecule (L1CAM) is known to play an oncogenic role in metastatic cancers, including CRPC. However, the impact of L1CAM on NEPC progression remains elusive. METHODS L1CAM expression level was investigated using public gene expression databases of PC cohorts and patient-derived xenograft models. L1CAM knockdown was performed in different PC cells to study in vitro cell functions. A subline of CRPC cell line CWR22Rv1 was established after long-term exposure to abiraterone to induce NE differentiation. The androgen receptor-negative cell line PC3 was cultured under the tumor sphere-forming condition to enrich cancer stemness features. Several oxidative stress inducers were tested on PC cells to observe L1CAM-mediated gene expression and cell death. RESULTS L1CAM expression was remarkably high in NEPC compared to CRPC or adenocarcinoma tumors. L1CAM was also correlated with NE marker expressions and associated with the adenocarcinoma-to-NEPC progression in gene expression databases and CRPC cells with NE differentiation. L1CAM also promoted cancer stemness and NE phenotypes in PC3 cells under cancer stemness enrichment. L1CAM was also identified as a reactive oxygen species-induced gene, by which L1CAM counteracted CRPC cell death triggered by ionizing radiation. CONCLUSIONS Our results unveiled a new role of L1CAM in the acquisition of the NE phenotype in PC, contributing to the NE differentiation-related therapeutic resistance of CRPC.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- General Clinical Research Center, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Anh Duy Do
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Chia-Yen Hsueh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mafewu Olga Raboshakga
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Pre-Clinical Sciences, University of Limpopo, Sovenga, South Africa
| | - Tran Ngoc Thanh
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Tran Tien Tai
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, California, USA
- Taipei Medical University, Taipei, Taiwan
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Liu JY, Yin X, Dong YT. Exploration of the shared gene signatures and molecular mechanisms between Alzheimer's disease and intracranial aneurysm. Sci Rep 2024; 14:24628. [PMID: 39427050 PMCID: PMC11490550 DOI: 10.1038/s41598-024-75694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Although Alzheimer's disease (AD) and intracranial aneurysm (IA) were two different types of diseases that occurred in the brain, ruptured IA (RIA) survivors may experience varying degrees of cognitive dysfunction. Neither AD nor IA is easily recognizable by an early onset so that the incidence of adverse clinical outcomes would be on the rise. Therefore, we focused on the exploration of the shared genes and molecular mechanisms between AD and IA, which would be significant for the efficiency of co-screening and co-diagnosis. Two GEO datasets were selected for the weighted gene co-expression network analysis (WGCNA) and differentially expressed gene screening, obtaining 78 overlapped genes. Next, 9 hub genes were identified by the protein-protein interaction network, including PIK3CA, GAB1, IGF1R, PLCB1, PGR, PDGFRB, PLCE1, FGFR3, and SYNJ1. The interactions among the hub genes, miRNA, and TFs were also explored. Meanwhile, we performed GO and KEGG pathway enrichment analyses for the results of WGCNA and hub genes, which showed that the Ras signaling and Rap1 signaling were the main shared pathogenesis. In conclusion, the present bioinformatics analysis revealed that AD and IA had the shared genes and molecular mechanisms, and these outcomes were associated with inflammation and calcium homeostasis, which could provide research clues for further studies.
Collapse
Affiliation(s)
- Ji-Yun Liu
- Department of Clinical Laboratory, Guiyang Second People's Hospital, Guiyang, People's Republic of China
| | - Xuan Yin
- Department of Women Healthcare, Guiyang Maternal and Child Health Hospital, Guiyang, People's Republic of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, No. 9, Beijing Road, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
7
|
Singh A, Cheng D, Swaminathan J, Yang Y, Zheng Y, Gordon N, Gopalakrishnan V. REST-dependent downregulation of von Hippel-Lindau tumor suppressor promotes autophagy in SHH-medulloblastoma. Sci Rep 2024; 14:13596. [PMID: 38866867 PMCID: PMC11169471 DOI: 10.1038/s41598-024-63371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The RE1 silencing transcription factor (REST) is a driver of sonic hedgehog (SHH) medulloblastoma genesis. Our previous studies showed that REST enhances cell proliferation, metastasis and vascular growth and blocks neuronal differentiation to drive progression of SHH medulloblastoma tumors. Here, we demonstrate that REST promotes autophagy, a pathway that is found to be significantly enriched in human medulloblastoma tumors relative to normal cerebella. In SHH medulloblastoma tumor xenografts, REST elevation is strongly correlated with increased expression of the hypoxia-inducible factor 1-alpha (HIF1α)-a positive regulator of autophagy, and with reduced expression of the von Hippel-Lindau (VHL) tumor suppressor protein - a component of an E3 ligase complex that ubiquitinates HIF1α. Human SHH-medulloblastoma tumors with higher REST expression exhibit nuclear localization of HIF1α, in contrast to its cytoplasmic localization in low-REST tumors. In vitro, REST knockdown promotes an increase in VHL levels and a decrease in cytoplasmic HIF1α protein levels, and autophagy flux. In contrast, REST elevation causes a decline in VHL levels, as well as its interaction with HIF1α, resulting in a reduction in HIF1α ubiquitination and an increase in autophagy flux. These data suggest that REST elevation promotes autophagy in SHH medulloblastoma cells by modulating HIF1α ubiquitination and stability in a VHL-dependent manner. Thus, our study is one of the first to connect VHL to REST-dependent control of autophagy in a subset of medulloblastomas.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Donghang Cheng
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Jyothishmathi Swaminathan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Yanwen Yang
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Yan Zheng
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Nancy Gordon
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School for Biomedical Sciences, 6767 Bertner Ave, S3.8344 Mitchell BSRB, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Ravel-Godreuil C, Roy ER, Puttapaka SN, Li S, Wang Y, Yuan X, Eltzschig HK, Cao W. Transcriptional Responses of Different Brain Cell Types to Oxygen Decline. Brain Sci 2024; 14:341. [PMID: 38671993 PMCID: PMC11048388 DOI: 10.3390/brainsci14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain hypoxia is associated with a wide range of physiological and clinical conditions. Although oxygen is an essential constituent of maintaining brain functions, our understanding of how specific brain cell types globally respond and adapt to decreasing oxygen conditions is incomplete. In this study, we exposed mouse primary neurons, astrocytes, and microglia to normoxia and two hypoxic conditions and obtained genome-wide transcriptional profiles of the treated cells. Analysis of differentially expressed genes under conditions of reduced oxygen revealed a canonical hypoxic response shared among different brain cell types. In addition, we observed a higher sensitivity of neurons to oxygen decline, and dissected cell type-specific biological processes affected by hypoxia. Importantly, this study establishes novel gene modules associated with brain cells responding to oxygen deprivation and reveals a state of profound stress incurred by hypoxia.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Ethan R. Roy
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Srinivas N. Puttapaka
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| |
Collapse
|
9
|
Meyer K, Ling KH, Yeo PL, Spathopoulou A, Drake D, Choi J, Aron L, Garcia-Corral M, Ko T, Lee EA, Tam JM, Perlis RH, Church GM, Tsai LH, Yankner BA. Impaired neural stress resistance and loss of REST in bipolar disorder. Mol Psychiatry 2024; 29:153-164. [PMID: 37938767 PMCID: PMC11964151 DOI: 10.1038/s41380-023-02313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Neurodevelopmental changes and impaired stress resistance have been implicated in the pathogenesis of bipolar disorder (BD), but the underlying regulatory mechanisms are unresolved. Here we describe a human cerebral organoid model of BD that exhibits altered neural development, elevated neural network activity, and a major shift in the transcriptome. These phenotypic changes were reproduced in cerebral organoids generated from iPS cell lines derived in different laboratories. The BD cerebral organoid transcriptome showed highly significant enrichment for gene targets of the transcriptional repressor REST. This was associated with reduced nuclear REST and REST binding to target gene recognition sites. Reducing the oxygen concentration in organoid cultures to a physiological range ameliorated the developmental phenotype and restored REST expression. These effects were mimicked by treatment with lithium. Reduced nuclear REST and derepression of REST targets genes were also observed in the prefrontal cortex of BD patients. Thus, an impaired cellular stress response in BD cerebral organoids leads to altered neural development and transcriptional dysregulation associated with downregulation of REST. These findings provide a new model and conceptual framework for exploring the molecular basis of BD.
Collapse
Affiliation(s)
- Katharina Meyer
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - King-Hwa Ling
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Pei-Ling Yeo
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Derek Drake
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jaejoon Choi
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Liviu Aron
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Mariana Garcia-Corral
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Tak Ko
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jenny M Tam
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bruce A Yankner
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Islam M, Samal A, Davis DJ, Behura SK. Ablation of placental REST deregulates fetal brain metabolism and impacts gene expression of the offspring brain at the postnatal and adult stages. FASEB J 2024; 38:e23349. [PMID: 38069914 DOI: 10.1096/fj.202301344r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
In this study, the transcriptional repressor REST (Repressor Element 1 Silencing Transcription factor) was ablated in the mouse placenta to investigate molecular and cellular impacts on the offspring brain at different life stages. Ablation of placental REST deregulated several brain metabolites, including glucose and lactate that fuel brain energy, vitamin C (ascorbic acid) that functions in the epigenetic programming of the brain during postnatal development, and glutamate and creatine that help the brain to respond to stress conditions during adult life. Bulk RNA-seq analysis showed that a lack of placental REST persistently altered multiple transport genes, including those related to oxygen transportation in the offspring brain. While metabolic genes were impacted in the postnatal brain, different stress response genes were activated in the adult brain. DNA methylation was also impacted in the adult brain due to the loss of placental REST, but in a sex-biased manner. Single-nuclei RNA-seq analysis showed that specific cell types of the brain, particularly those of the choroid plexus and ependyma, which play critical roles in producing cerebrospinal fluid and maintaining metabolic homeostasis, were significantly impacted due to the loss of placental REST. These cells showed significant differential expression of genes associated with the metabotropic (G coupled protein) and ionotropic (ligand-gated ion channel) glutamate receptors, suggesting an impact of ablation of placental REST on the glutamatergic signaling of the offspring brain. The study expands our understanding of placental influences on the offspring brain.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Interdisciplnary Reproductive and Health Group, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
11
|
Ma TS, Worth KR, Maher C, Ng N, Beghè C, Gromak N, Rose AM, Hammond EM. Hypoxia-induced transcriptional stress is mediated by ROS-induced R-loops. Nucleic Acids Res 2023; 51:11584-11599. [PMID: 37843099 PMCID: PMC10681727 DOI: 10.1093/nar/gkad858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Hypoxia is a common feature of solid tumors and is associated with poor patient prognosis, therapy resistance and metastasis. Radiobiological hypoxia (<0.1% O2) is one of the few physiologically relevant stresses that activates both the replication stress/DNA damage response and the unfolded protein response. Recently, we found that hypoxia also leads to the robust accumulation of R-loops, which led us to question here both the mechanism and consequence of hypoxia-induced R-loops. Interestingly, we found that the mechanism of R-loop accumulation in hypoxia is dependent on non-DNA damaging levels of reactive oxygen species. We show that hypoxia-induced R-loops play a critical role in the transcriptional stress response, evidenced by the repression of ribosomal RNA synthesis and the translocation of nucleolin from the nucleolus into the nucleoplasm. Upon depletion of R-loops, we observed a rescue of both rRNA transcription and nucleolin translocation in hypoxia. Mechanistically, R-loops accumulate on the rDNA in hypoxia and promote the deposition of heterochromatic H3K9me2 which leads to the inhibition of Pol I-mediated transcription of rRNA. These data highlight a novel mechanistic insight into the hypoxia-induced transcriptional stress response through the ROS-R-loop-H3K9me2 axis. Overall, this study highlights the contribution of transcriptional stress to hypoxia-mediated tumorigenesis.
Collapse
Affiliation(s)
- Tiffany S Ma
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Katja R Worth
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Conor Maher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Natalie Ng
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anna M Rose
- Department of Pediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
12
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Roy R, Kuo PL, Candia J, Sarantopoulou D, Ubaida-Mohien C, Hernandez D, Kaileh M, Arepalli S, Singh A, Bektas A, Kim J, Moore AZ, Tanaka T, McKelvey J, Zukley L, Nguyen C, Wallace T, Dunn C, Wood W, Piao Y, Coletta C, De S, Sen J, Weng NP, Sen R, Ferrucci L. Epigenetic signature of human immune aging in the GESTALT study. eLife 2023; 12:e86136. [PMID: 37589453 PMCID: PMC10506794 DOI: 10.7554/elife.86136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.
Collapse
Affiliation(s)
- Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Pei-Lun Kuo
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Julián Candia
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on AgingBethesdaUnited States
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on AgingBethesdaUnited States
| | - Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Jaekwan Kim
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Ann Z Moore
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Julia McKelvey
- Clinical Research Core, National Institute on AgingBaltimoreUnited States
| | - Linda Zukley
- Clinical Research Core, National Institute on AgingBaltimoreUnited States
| | - Cuong Nguyen
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - Tonya Wallace
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - Christopher Dunn
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - William Wood
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Christopher Coletta
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Jyoti Sen
- Laboratory of Clinical Investigation, National Institute on AgingBaltimoreUnited States
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| |
Collapse
|
14
|
Huang T, Fakurazi S, Cheah PS, Ling KH. REST Targets JAK-STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells. Int J Mol Sci 2023; 24:9980. [PMID: 37373133 DOI: 10.3390/ijms24129980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
15
|
Gong S, Zhang A, Yao M, Xin W, Guan X, Qin S, Liu Y, Xiong J, Yang K, Xiong L, He T, Huang Y, Zhao J. REST contributes to AKI-to-CKD transition through inducing ferroptosis in renal tubular epithelial cells. JCI Insight 2023; 8:166001. [PMID: 37288660 PMCID: PMC10393228 DOI: 10.1172/jci.insight.166001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/20/2023] [Indexed: 06/09/2023] Open
Abstract
Ischemic-reperfusion injury (IRI) is a major pathogenic factor in acute kidney injury (AKI), which directly leads to the hypoxic injury of renal tubular epithelial cells (RTECs). Although emerging studies suggest repressor element 1-silencing transcription factor (REST) as a master regulator of gene repression under hypoxia, its role in AKI remains elusive. Here, we found that REST was upregulated in AKI patients, mice, and RTECs, which was positively associated with the degree of kidney injury, while renal tubule-specific knockout of Rest significantly alleviated AKI and its progression to chronic kidney disease (CKD). Subsequent mechanistic studies indicated that suppression of ferroptosis was responsible for REST-knockdown-induced amelioration of hypoxia-reoxygenation injury, during which process Cre-expressing adenovirus-mediated REST downregulation attenuated ferroptosis through upregulating glutamate-cysteine ligase modifier subunit (GCLM) in primary RTECs. Further, REST transcriptionally repressed GCLM expression via directly binding to its promoter region. In conclusion, our findings revealed the involvement of REST, a hypoxia regulatory factor, in AKI-to-CKD transition and identified the ferroptosis-inducing effect of REST, which may serve as a promising therapeutic target for ameliorating AKI and its progression to CKD.
Collapse
|
16
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
17
|
Oxidative Stress Response's Kinetics after 60 Minutes at Different (30% or 100%) Normobaric Hyperoxia Exposures. Int J Mol Sci 2022; 24:ijms24010664. [PMID: 36614106 PMCID: PMC9821105 DOI: 10.3390/ijms24010664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Oxygen is a powerful trigger for cellular reactions and is used in many pathologies, including oxidative stress. However, the effects of oxygen over time and at different partial pressures remain poorly understood. In this study, the metabolic responses of normobaric oxygen intake for 1 h to mild (30%) and high (100%) inspired fractions were investigated. Fourteen healthy non-smoking subjects (7 males and 7 females; age: 29.9 ± 11.1 years, height: 168.2 ± 9.37 cm; weight: 64.4 ± 12.3 kg; BMI: 22.7 ± 4.1) were randomly assigned in the two groups. Blood samples were taken before the intake at 30 min, 2 h, 8 h, 24 h, and 48 h after the single oxygen exposure. The level of oxidation was evaluated by the rate of reactive oxygen species (ROS) and the levels of isoprostane. Antioxidant reactions were observed by total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT). The inflammatory response was measured using interleukin-6 (IL-6), neopterin, creatinine, and urates. Oxidation markers increased from 30 min on to reach a peak at 8 h. From 8 h post intake, the markers of inflammation took over, and more significantly with 100% than with 30%. This study suggests a biphasic response over time characterized by an initial "permissive oxidation" followed by increased inflammation. The antioxidant protection system seems not to be the leading actor in the first place. The kinetics of enzymatic reactions need to be better studied to establish therapeutic, training, or rehabilitation protocols aiming at a more targeted use of oxygen.
Collapse
|
18
|
Kim I, Choi S, Yoo S, Lee M, Park JW. AURKB, in concert with REST, acts as an oxygen-sensitive epigenetic regulator of the hypoxic induction of MDM2. BMB Rep 2022. [PMID: 35410638 PMCID: PMC9252896 DOI: 10.5483/bmbrep.2022.55.6.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The acute response to hypoxia is mainly driven by hypoxia-inducible factors, but their effects gradually subside with time. Hypoxia-specific histone modifications may be important for the stable maintenance of long-term adaptation to hypoxia. However, little is known about the molecular mechanisms underlying the dynamic alterations of histones under hypoxic conditions. We found that the phosphorylation of histone H3 at Ser-10 (H3S10) was noticeably attenuated after hypoxic challenge, which was mediated by the inhibition of aurora kinase B (AURKB). To understand the role of AURKB in epigenetic regulation, DNA microarray and transcription factor binding site analyses combined with proteomics analysis were performed. Under normoxia, phosphorylated AURKB, in concert with the repressor element-1 silencing transcription factor (REST), phosphorylates H3S10, which allows the AURKB–REST complex to access the MDM2 proto-oncogene. REST then acts as a transcriptional repressor of MDM2 and downregulates its expression. Under hypoxia, AURKB is dephosphorylated and the AURKB–REST complex fails to access MDM2, leading to the upregulation of its expression. In this study, we present a case of hypoxia-specific epigenetic regulation of the oxygen-sensitive AURKB signaling pathway. To better understand the cellular adaptation to hypoxia, it is worthwhile to further investigate the epigenetic regulation of genes under hypoxic conditions.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Incheon 22212, Korea
| | - Sanga Choi
- Department of Pharmacology, Inha University College of Medicine, Incheon 22212, Korea
| | - Seongkyeong Yoo
- Department of Pharmacology, Inha University College of Medicine, Incheon 22212, Korea
| | - Mingyu Lee
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
19
|
Kiessling E, Peters F, Ebner LJ, Merolla L, Samardzija M, Baumgartner MR, Grimm C, Froese DS. HIF1 and DROSHA are involved in MMACHC repression in hypoxia. Biochim Biophys Acta Gen Subj 2022; 1866:130175. [DOI: 10.1016/j.bbagen.2022.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
20
|
Davis L, Recktenwald M, Hutt E, Fuller S, Briggs M, Goel A, Daringer N. Targeting HIF-2α in the Tumor Microenvironment: Redefining the Role of HIF-2α for Solid Cancer Therapy. Cancers (Basel) 2022; 14:1259. [PMID: 35267567 PMCID: PMC8909461 DOI: 10.3390/cancers14051259] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
Inadequate oxygen supply, or hypoxia, is characteristic of the tumor microenvironment and correlates with poor prognosis and therapeutic resistance. Hypoxia leads to the activation of the hypoxia-inducible factor (HIF) signaling pathway and stabilization of the HIF-α subunit, driving tumor progression. The homologous alpha subunits, HIF-1α and HIF-2α, are responsible for mediating the transcription of a multitude of critical proteins that control proliferation, angiogenic signaling, metastasis, and other oncogenic factors, both differentially and sequentially regulating the hypoxic response. Post-translational modifications of HIF play a central role in its behavior as a mediator of transcription, as well as the temporal transition from HIF-1α to HIF-2α that occurs in response to chronic hypoxia. While it is evident that HIF-α is highly dynamic, HIF-2α remains vastly under-considered. HIF-2α can intensify the behaviors of the most aggressive tumors by adapting the cell to oxidative stress, thereby promoting metastasis, tissue remodeling, angiogenesis, and upregulating cancer stem cell factors. The structure, function, hypoxic response, spatiotemporal dynamics, and roles in the progression and persistence of cancer of this HIF-2α molecule and its EPAS1 gene are highlighted in this review, alongside a discussion of current therapeutics and future directions.
Collapse
Affiliation(s)
- Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Schuyler Fuller
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Madison Briggs
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Arnav Goel
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Nichole Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
21
|
Batie M, Kenneth NS, Rocha S. Systems approaches to understand oxygen sensing: how multi-omics has driven advances in understanding oxygen-based signalling. Biochem J 2022; 479:245-257. [PMID: 35119457 PMCID: PMC8883490 DOI: 10.1042/bcj20210554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Hypoxia is a common denominator in the pathophysiology of a variety of human disease states. Insight into how cells detect, and respond to low oxygen is crucial to understanding the role of hypoxia in disease. Central to the hypoxic response is rapid changes in the expression of genes essential to carry out a wide range of functions to adapt the cell/tissue to decreased oxygen availability. These changes in gene expression are co-ordinated by specialised transcription factors, changes to chromatin architecture and intricate balances between protein synthesis and destruction that together establish changes to the cellular proteome. In this article, we will discuss the advances of our understanding of the cellular oxygen sensing machinery achieved through the application of 'omics-based experimental approaches.
Collapse
Affiliation(s)
- Michael Batie
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Niall S. Kenneth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Sonia Rocha
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| |
Collapse
|
22
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
23
|
Stewart AS, Schaaf CR, Luff JA, Freund JM, Becker TC, Tufts SR, Robertson JB, Gonzalez LM. HOPX + injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. Am J Physiol Gastrointest Liver Physiol 2021; 321:G588-G602. [PMID: 34549599 PMCID: PMC8616590 DOI: 10.1152/ajpgi.00165.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Schaaf
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer A Luff
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John M Freund
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Sara R Tufts
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - James B Robertson
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Liara M Gonzalez
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
24
|
Le N, Hufford TM, Park JS, Brewster RM. Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family. FASEB J 2021; 35:e21961. [PMID: 34665878 PMCID: PMC8573611 DOI: 10.1096/fj.202100443r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Many organisms rely on oxygen to generate cellular energy (adenosine triphosphate or ATP). During severe hypoxia, the production of ATP decreases, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution of the N-myc Downstream Regulated Gene (ndrg) family, ndrg1-4, and their transcriptional response to hypoxia. These genes have been primarily studied in cancer cells and hence little is understood about their normal function and regulation. We show here using in situ hybridization that ndrgs are expressed in metabolically demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. To investigate whether ndrgs are hypoxia-responsive, we exposed embryos to different durations and severity of hypoxia and analyzed transcript levels. We observed that ndrgs are differentially regulated by hypoxia and that ndrg1a has the most robust response, with a ninefold increase following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where the transcript is not observed under normoxic conditions and changes in Ndrg1a protein expression post-reoxygenation. These findings provide an entry point into understanding the role of this conserved gene family in the adaptation of normal cells to hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Nguyet Le
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Timothy M. Hufford
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jong S. Park
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Rachel M. Brewster
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| |
Collapse
|
25
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|
26
|
DeBerge M, Lantz C, Dehn S, Sullivan DP, van der Laan AM, Niessen HW, Flanagan ME, Brat DJ, Feinstein MJ, Kaushal S, Wilsbacher LD, Thorp EB. Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. J Exp Med 2021; 218:e20200667. [PMID: 34325467 PMCID: PMC8329871 DOI: 10.1084/jem.20200667] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are activated in parenchymal cells in response to low oxygen and as such have been proposed as therapeutic targets during hypoxic insult, including myocardial infarction (MI). HIFs are also activated within macrophages, which orchestrate the tissue repair response. Although isoform-specific therapeutics are in development for cardiac ischemic injury, surprisingly, the unique role of myeloid HIFs, and particularly HIF-2α, is unknown. Using a murine model of myocardial infarction and mice with conditional genetic loss and gain of function, we uncovered unique proinflammatory roles for myeloid cell expression of HIF-1α and HIF-2α during MI. We found that HIF-2α suppressed anti-inflammatory macrophage mitochondrial metabolism, while HIF-1α promoted cleavage of cardioprotective MerTK through glycolytic reprogramming of macrophages. Unexpectedly, combinatorial loss of both myeloid HIF-1α and HIF-2α was catastrophic and led to macrophage necroptosis, impaired fibrogenesis, and cardiac rupture. These findings support a strategy for selective inhibition of macrophage HIF isoforms and promotion of anti-inflammatory mitochondrial metabolism during ischemic tissue repair.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Connor Lantz
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shirley Dehn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David P. Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anja M. van der Laan
- Department of Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans W.M. Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Margaret E. Flanagan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Daniel J. Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Matthew J. Feinstein
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| | - Lisa D. Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
- The Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| |
Collapse
|
27
|
David BT, Curtin JJ, Brown JL, Coutts DJC, Boles NC, Hill CE. Treatment with hypoxia-mimetics protects cultured rat Schwann cells against oxidative stress-induced cell death. Glia 2021; 69:2215-2234. [PMID: 34019306 PMCID: PMC11848739 DOI: 10.1002/glia.24019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Schwann cell (SC) grafts promote axon regeneration in the injured spinal cord, but transplant efficacy is diminished by a high death rate in the first 2-3 days postimplantation. Both hypoxic preconditioning and pharmacological induction of the cellular hypoxic response can drive cellular adaptations and improve transplant survival in a number of disease/injury models. Hypoxia-inducible factor 1 alpha (HIF-1α), a regulator of the cellular response to hypoxia, is implicated in preconditioning-associated protection. HIF-1α cellular levels are regulated by the HIF-prolyl hydroxylases (HIF-PHDs). Pharmacological inhibition of the HIF-PHDs mimics hypoxic preconditioning and provides a method to induce adaptive hypoxic responses without direct exposure to hypoxia. In this study, we show that hypoxia-mimetics, deferoxamine (DFO) and adaptaquin (AQ), enhance HIF-1α stability and HIF-1α target gene expression. Expression profiling of hypoxia-related genes demonstrates that HIF-dependent and HIF-independent expression changes occur. Analyses of transcription factor binding sites identify several candidate transcriptional co-regulators that vary in SCs along with HIF-1α. Using an in vitro model system, we show that hypoxia-mimetics are potent blockers of oxidative stress-induced death in SCs. In contrast, traditional hypoxic preconditioning was not protective. The robust protection induced by pharmacological preconditioning, particularly with DFO, indicates that pharmacological induction of hypoxic adaptations could be useful for promoting transplanted SC survival. These agents may also be more broadly useful for protecting SCs, as oxidative stress is a major pathway that drives cellular damage in the context of neurological injury and disease, including demyelinating diseases and peripheral neuropathies.
Collapse
Affiliation(s)
- Brian T. David
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - Jessica J. Curtin
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - Jennifer L. Brown
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - David J. C. Coutts
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | | | - Caitlin E. Hill
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
- Neural Stem Cell Institute, Rensselaer, New York
| |
Collapse
|
28
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
29
|
McDermott MM, Dayanidhi S, Kosmac K, Saini S, Slysz J, Leeuwenburgh C, Hartnell L, Sufit R, Ferrucci L. Walking Exercise Therapy Effects on Lower Extremity Skeletal Muscle in Peripheral Artery Disease. Circ Res 2021; 128:1851-1867. [PMID: 34110902 DOI: 10.1161/circresaha.121.318242] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Walking exercise is the most effective noninvasive therapy that improves walking ability in peripheral artery disease (PAD). Biologic mechanisms by which exercise improves walking in PAD are unclear. This review summarizes evidence regarding effects of walking exercise on lower extremity skeletal muscle in PAD. In older people without PAD, aerobic exercise improves mitochondrial activity, muscle mass, capillary density, and insulin sensitivity in skeletal muscle. However, walking exercise increases lower extremity ischemia in people with PAD, and therefore, mechanisms by which this exercise improves walking may differ between people with and without PAD. Compared with people without PAD, gastrocnemius muscle in people with PAD has greater mitochondrial impairment, increased reactive oxygen species, and increased fibrosis. In multiple small trials, walking exercise therapy did not consistently improve mitochondrial activity in people with PAD. In one 12-week randomized trial of people with PAD randomized to supervised exercise or control, supervised treadmill exercise increased treadmill walking time from 9.3 to 15.1 minutes, but simultaneously increased the proportion of angular muscle fibers, consistent with muscle denervation (from 7.6% to 15.6%), while angular myofibers did not change in the control group (from 9.1% to 9.1%). These findings suggest an adaptive response to exercise in PAD that includes denervation and reinnervation, an adaptive process observed in skeletal muscle of people without PAD during aging. Small studies have not shown significant effects of exercise on increased capillary density in lower extremity skeletal muscle of participants with PAD, and there are no data showing that exercise improves microcirculatory delivery of oxygen and nutrients in patients with PAD. However, the effects of supervised exercise on increased plasma nitrite abundance after a treadmill walking test in people with PAD may be associated with improved lower extremity skeletal muscle perfusion and may contribute to improved walking performance in response to exercise in people with PAD. Randomized trials with serial, comprehensive measures of muscle biology, and physiology are needed to clarify mechanisms by which walking exercise interventions improve mobility in PAD.
Collapse
Affiliation(s)
- Mary M McDermott
- Department of Medicine and Preventive Medicine (M.M.M., J.S.), Northwestern University Feinberg School of Medicine
| | - Sudarshan Dayanidhi
- Shirley Ryan Ability Laboratory (S.D.), Northwestern University Feinberg School of Medicine
| | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky (K.K.)
| | - Sunil Saini
- Jawaharlal Nehru University, School of Biotechnology, New Delhi, India (S.S.)
| | - Joshua Slysz
- Department of Medicine and Preventive Medicine (M.M.M., J.S.), Northwestern University Feinberg School of Medicine
| | | | - Lisa Hartnell
- Division of Intramural Research, National Institute on Aging (L.H., L.F.)
| | - Robert Sufit
- Department of Neurology (R.S.), Northwestern University Feinberg School of Medicine
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging (L.H., L.F.)
| |
Collapse
|
30
|
Semenza GL. Intratumoral Hypoxia and Mechanisms of Immune Evasion Mediated by Hypoxia-Inducible Factors. Physiology (Bethesda) 2021; 36:73-83. [DOI: 10.1152/physiol.00034.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation of the innate and adaptive immune systems represents a promising strategy for defeating cancer. However, during tumor progression, cancer cells battle to shift the balance from immune activation to immunosuppression. Critical sites of this battle are regions of intratumoral hypoxia, and a major driving force for immunosuppression is the activity of hypoxia-inducible factors, which regulate the transcription of large batteries of genes in both cancer and stromal cells that block the infiltration and activity of cytotoxic T lymphocytes and natural killer cells, while stimulating the infiltration and activity of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Targeting hypoxia-inducible factors or their target gene products may restore anticancer immunity and improve the response to immunotherapies.
Collapse
Affiliation(s)
- Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering; and Departments of Genetic Medicine, Pediatrics, Oncology, Radiation Oncology, Medicine, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Soga T, Nakajima S, Kawaguchi M, Parhar IS. Repressor element 1 silencing transcription factor /neuron-restrictive silencing factor (REST/NRSF) in social stress and depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110053. [PMID: 32739332 DOI: 10.1016/j.pnpbp.2020.110053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
Extreme stress is closely linked with symptoms of depression. Chronic social stress can cause structural and functional changes in the brain. These changes are associated with dysfunction of neuroprotective signalling that is necessary for cell survival, growth, and maturation. Reduced neuronal numbers and volume of brain regions have been found in depressed patients, which may be caused by decreased cell survival and increased cell death. Elucidating the mechanism underlying the degeneration of the neuroprotective system in social stress-induced depression is important for developing neuroprotective measures. The Repressor Element 1 Silencing Transcription Factor (REST) also known as Neuron-Restrictive Silencing Factor (NRSF) has been reported as a neuroprotective molecule in certain neurological disorders. Decreased expression levels of REST/NRSF in the nucleus can induce death-related gene expression, leading to neuronal death. Under physiological stress conditions, REST/NRSF over expression is known to activate neuronal survival in the brain. Alterations in REST/NRSF expression in the brain has been reported in stressed animal models and in the post-mortem brain of patients with depression. Here, we highlight the neuroprotective function of REST/NRSF and discuss dysregulation of REST/NRSF and neuronal damage during social stress and depression.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia
| | - Shingo Nakajima
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia
| | - Maiko Kawaguchi
- Laboratory of Animal Behaviour and Environmental Science, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia.
| |
Collapse
|
32
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
33
|
Kang GJ, Xie A, Liu H, Dudley SC. MIR448 antagomir reduces arrhythmic risk after myocardial infarction by upregulating the cardiac sodium channel. JCI Insight 2020; 5:140759. [PMID: 33108349 PMCID: PMC7714400 DOI: 10.1172/jci.insight.140759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac ischemia is associated with arrhythmias; however, effective therapies are currently limited. The cardiac voltage-gated sodium channel α subunit (SCN5A), encoding the Nav1.5 current, plays a key role in the cardiac electrical conduction and arrhythmic risk. Here, we show that hypoxia reduces Nav1.5 through effects on a miR, miR-448. miR-448 expression is increased in ischemic cardiomyopathy. miR-448 has a conserved binding site in 3′-UTR of SCN5A. miR-448 binding to this site suppressed SCN5A expression and sodium currents. Hypoxia-induced HIF-1α and NF-κB were major transcriptional regulators for MIR448. Moreover, hypoxia relieved MIR448 transcriptional suppression by RE1 silencing transcription factor. Therefore, miR-448 inhibition reduced arrhythmic risk after myocardial infarction. Here, we show that ischemia drove miR-448 expression, reduced Nav1.5 current, and increased arrhythmic risk. Arrhythmic risk was improved by preventing Nav1.5 downregulation, suggesting a new approach to antiarrhythmic therapy. Ischemic induction of miR-448 negatively regulates the cardiac sodium channel Nav1.5, and inhibiting miR-448 raises Nav1.5 and reduces arrhythmic risk after myocardial infarction in mice.
Collapse
|
34
|
Islam ABMMK, Khan MAAK. Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy. Sci Rep 2020; 10:19395. [PMID: 33173052 PMCID: PMC7656460 DOI: 10.1038/s41598-020-76404-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
An incomplete understanding of the molecular mechanisms behind impairment of lung pathobiology by COVID-19 complicates its clinical management. In this study, we analyzed the gene expression pattern of cells obtained from biopsies of COVID-19-affected patient and compared to the effects observed in typical SARS-CoV-2 and SARS-CoV-infected cell-lines. We then compared gene expression patterns of COVID-19-affected lung tissues and SARS-CoV-2-infected cell-lines and mapped those to known lung-related molecular networks, including hypoxia induced responses, lung development, respiratory processes, cholesterol biosynthesis and surfactant metabolism; all of which are suspected to be downregulated following SARS-CoV-2 infection based on the observed symptomatic impairments. Network analyses suggest that SARS-CoV-2 infection might lead to acute lung injury in COVID-19 by affecting surfactant proteins and their regulators SPD, SPC, and TTF1 through NSP5 and NSP12; thrombosis regulators PLAT, and EGR1 by ORF8 and NSP12; and mitochondrial NDUFA10, NDUFAF5, and SAMM50 through NSP12. Furthermore, hypoxia response through HIF-1 signaling might also be targeted by SARS-CoV-2 proteins. Drug enrichment analysis of dysregulated genes has allowed us to propose novel therapies, including lung surfactants, respiratory stimulants, sargramostim, and oseltamivir. Our study presents a distinct mechanism of probable virus induced lung damage apart from cytokine storm.
Collapse
|
35
|
Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. Int J Mol Sci 2020; 21:ijms21218131. [PMID: 33143240 PMCID: PMC7662373 DOI: 10.3390/ijms21218131] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Erythropoiesis is a complex process driving the production of red blood cells. During homeostasis, adult erythropoiesis takes place in the bone marrow and is tightly controlled by erythropoietin (EPO), a central hormone mainly produced in renal EPO-producing cells. The expression of EPO is strictly regulated by local changes in oxygen partial pressure (pO2) as under-deprived oxygen (hypoxia); the transcription factor hypoxia-inducible factor-2 induces EPO. However, erythropoiesis regulation extends beyond the well-established hypoxia-inducible factor (HIF)-EPO axis and involves processes modulated by other hypoxia pathway proteins (HPPs), including proteins involved in iron metabolism. The importance of a number of these factors is evident as their altered expression has been associated with various anemia-related disorders, including chronic kidney disease. Eventually, our emerging understanding of HPPs and their regulatory feedback will be instrumental in developing specific therapies for anemic patients and beyond.
Collapse
|
36
|
Terry S, Engelsen AST, Buart S, Elsayed WS, Venkatesh GH, Chouaib S. Hypoxia-driven intratumor heterogeneity and immune evasion. Cancer Lett 2020; 492:1-10. [PMID: 32712233 DOI: 10.1016/j.canlet.2020.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
While it is widely accepted that high intratumoral heterogeneity confers serious challenges in the emerging resistance and the subsequent effective therapeutic targeting of cancer, the underlying biology of intratumoral heterogeneity remains elusive. In particular, it remains to be fully elucidated how microenvironmental factors shape genetic and non-genetic heterogeneity, which in turn determine the course of tumor evolution and clinical progression. In this context, hypoxia, a hallmark of most growing cancers, characterized by decreased O2 partial pressure is a key player of the tumor microenvironment. Despite extensive data indicating that hypoxia promotes cellular metabolic adaptation, immune suppression and various steps of tumor progression via hypoxia regulated gene transcription, much less is known about the role of hypoxia in mediating therapy resistance as a driver of tumor evolution through genetic and non-genetic mechanisms. In this review, we will discuss recent evidence supporting a prominent role of hypoxia as a driver of tumor heterogeneity and highlight the multifaceted manner by which this in turn could impact cancer evolution, reprogramming and immune escape. Finally, we will discuss how detailed knowledge of the hypoxic footprint may open up new therapeutic avenues for the management of cancer.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - Agnete S T Engelsen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.
| | - Walid Shaaban Elsayed
- Department of Oral Biology, College of Dentistry, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France; Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| |
Collapse
|
37
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
38
|
Eberhart T, Schönenberger MJ, Walter KM, Charles KN, Faust PL, Kovacs WJ. Peroxisome-Deficiency and HIF-2α Signaling Are Negative Regulators of Ketohexokinase Expression. Front Cell Dev Biol 2020; 8:566. [PMID: 32733884 PMCID: PMC7360681 DOI: 10.3389/fcell.2020.00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Ketohexokinase (KHK) is the first and rate-limiting enzyme of fructose metabolism. Expression of the two alternatively spliced KHK isoforms, KHK-A and KHK-C, is tissue-specific and KHK-C is predominantly expressed in liver, kidney and intestine and responsible for the fructose-catabolizing function. While KHK isoform choice has been linked to the development of disorders such as obesity, diabetes, cardiovascular disease and cancer, little is known about the regulation of total KHK expression. In the present study, we investigated how hypoxic signaling influences fructose metabolism in the liver. Hypoxia or von Hippel-Lindau (VHL) tumor suppressor loss leads to the stabilization of hypoxia-inducible factors alpha (HIF-1α and HIF-2α) and the activation of their signaling to mediate adaptive responses. By studying liver-specific Vhl, Vhl/Hif1a, and Vhl/Epas1 knockout mice, we found that KHK expression is suppressed by HIF-2α (encoded by Epas1) but not by HIF-1α signaling on mRNA and protein levels. Reduced KHK levels were accompanied by downregulation of aldolase B (ALDOB) in the livers of Vhl and Vhl/Hif1a knockout mice, further indicating inhibited fructose metabolism. HIF-1α and HIF-2α have both overlapping and distinct target genes but are differentially regulated depending on the cell type and physiologic or pathologic conditions. HIF-2α activation augments peroxisome degradation in mammalian cells by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We further demonstrated that fructose metabolism is negatively regulated by peroxisome-deficiency in a Pex2 knockout Zellweger mouse model, which lacks functional peroxisomes and is characterized by widespread metabolic dysfunction. Repression of fructolytic genes in Pex2 knockout mice appeared to be independent of PPARα signaling and nutritional status. Interestingly, our results demonstrate that both HIF-2α and peroxisome-deficiency result in downregulation of Khk independent of splicing as both isoforms, Khka as well as Khkc, are significantly downregulated. Hence, our study offers new and unexpected insights into the general regulation of KHK, and therefore fructolysis. We revealed a novel regulatory function of HIF-2α, suggesting that HIF-1α and HIF-2α have tissue-specific opposing roles in the regulation of Khk expression, isoform choice and fructolysis. In addition, we discovered a previously unknown function of peroxisomes in the regulation of fructose metabolism.
Collapse
Affiliation(s)
- Tanja Eberhart
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | | | | | - Khanichi N. Charles
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Werner J. Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
39
|
Bustelo M, Barkhuizen M, van den Hove DLA, Steinbusch HWM, Bruno MA, Loidl CF, Gavilanes AWD. Clinical Implications of Epigenetic Dysregulation in Perinatal Hypoxic-Ischemic Brain Damage. Front Neurol 2020; 11:483. [PMID: 32582011 PMCID: PMC7296108 DOI: 10.3389/fneur.2020.00483] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Placental and fetal hypoxia caused by perinatal hypoxic-ischemic events are major causes of stillbirth, neonatal morbidity, and long-term neurological sequelae among surviving neonates. Brain hypoxia and associated pathological processes such as excitotoxicity, apoptosis, necrosis, and inflammation, are associated with lasting disruptions in epigenetic control of gene expression contributing to neurological dysfunction. Recent studies have pointed to DNA (de)methylation, histone modifications, and non-coding RNAs as crucial components of hypoxic-ischemic encephalopathy (HIE). The understanding of epigenetic dysregulation in HIE is essential in the development of new clinical interventions for perinatal HIE. Here, we summarize our current understanding of epigenetic mechanisms underlying the molecular pathology of HI brain damage and its clinical implications in terms of new diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Martín Bustelo
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Melinda Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Harry Wilhelm M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Martín A Bruno
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - C Fabián Loidl
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonio W Danilo Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Facultad de Ciencias Médicas, Instituto de Investigación e Innovación de Salud Integral, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| |
Collapse
|
40
|
Abstract
Human survival is dependent upon the continuous delivery of O2 to each cell in the body in sufficient amounts to meet metabolic requirements, primarily for ATP generation by oxidative phosphorylation. Hypoxia-inducible factors (HIFs) regulate the transcription of thousands of genes to balance O2 supply and demand. The HIFs are negatively regulated by O2-dependent hydrox-ylation and ubiquitination by prolyl hydroxylase domain (PHD) proteins and the von Hippel-Lindau (VHL) protein. Germline mutations in the genes encoding VHL, HIF-2α, and PHD2 cause hereditary erythrocytosis, which is characterized by polycythemia and pulmonary hypertension and is caused by increased HIF activity. Evolutionary adaptation to life at high altitude is associated with unique genetic variants in the genes encoding HIF-2α and PHD2 that blunt the erythropoietic and pulmonary vascular responses to hypoxia.
Collapse
Affiliation(s)
- Gregg L Semenza
- Departments of Genetic Medicine, Oncology, Pediatrics, Radiation Oncology, Medicine, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
41
|
Wong TL, Ng KY, Tan KV, Chan LH, Zhou L, Che N, Hoo RLC, Lee TK, Richard S, Lo CM, Man K, Khong PL, Ma S. CRAF Methylation by PRMT6 Regulates Aerobic Glycolysis-Driven Hepatocarcinogenesis via ERK-Dependent PKM2 Nuclear Relocalization and Activation. Hepatology 2020; 71:1279-1296. [PMID: 31469916 DOI: 10.1002/hep.30923] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Most tumor cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and promote tumorigenicity and drug resistance. Intriguingly, the molecular mechanisms underlying this phenomenon are not well understood. In this work, using gain-of-function and loss-of-function in vitro studies in patient-derived organoid and cell cultures as well as in vivo positron emission tomography-magnetic resonance imaging animal models, we showed that protein arginine N-methyltransferase 6 (PRMT6) regulates aerobic glycolysis in human hepatocellular carcinoma (HCC) through nuclear relocalization of pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. APPROACH AND RESULTS We found PRMT6 to methylate CRAF at arginine 100, interfering with its RAS/RAF binding potential, and therefore altering extracellular signal-regulated kinase (ERK)-mediated PKM2 translocation into the nucleus. This altered PRMT6-ERK-PKM2 signaling axis was further confirmed in both a HCC mouse model with endogenous knockout of PRMT6 as well as in HCC clinical samples. We also identified PRMT6 as a target of hypoxia through the transcriptional repressor element 1-silencing transcription factor, linking PRMT6 with hypoxia in driving glycolytic events. Finally, we showed as a proof of concept the therapeutic potential of using 2-deoxyglucose, a glycolysis inhibitor, to reverse tumorigenicity and sorafenib resistance mediated by PRMT6 deficiency in HCC. CONCLUSIONS Our findings indicate that the PRMT6-ERK-PKM2 regulatory axis is an important determinant of the Warburg effect in tumor cells, and provide a mechanistic link among tumorigenicity, sorafenib resistance, and glucose metabolism.
Collapse
Affiliation(s)
- Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kel Vin Tan
- Department of Diagnostic Radiology, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Lok-Hei Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Noélia Che
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ruby L C Hoo
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong.,State Key Laboratory of Chemical Biology and Drug Discovery, the Hong Kong Polytechnic University, Hong Kong
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montréal, Canada
| | - Chung-Mau Lo
- Department of Surgery, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Stephanie Ma
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| |
Collapse
|
42
|
Hoshino T, Matsuzawa SI, Takahashi R. 6-Deoxyjacareubin, a natural compound preventing hypoxia-induced cell death, ameliorates neurodegeneration in a mouse model of familial amyotrophic lateral sclerosis. Neurosci Res 2020; 163:43-51. [PMID: 32145212 DOI: 10.1016/j.neures.2020.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
The central nervous system (CNS) uses a significant amount of oxygen for energy production. Decreased oxygen supply due to impaired blood supply critically damages the CNS. As chronic hypoxic conditions have diverse effects via the excessive production of reactive oxygen species, protection from hypoxic damage is important for cell survival. Recent studies have revealed that various markers of hypoxia are altered in age-related neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), indicating the involvement of hypoxia. However, therapeutic strategies targeting hypoxia-induced pathways in ALS have not been developed yet. We previously screened small-molecule compounds that inhibit hypoxia-induced cell death and identified 6-deoxyjacareubin. We hypothesized that the modulation of hypoxia signaling by 6-deoxyjacareubin might protect motor neurons in ALS. Here, we show that 6-deoxyjacareubin indeed ameliorates neurodegeneration in a mouse model of familial ALS. Administration of 6-deoxyjacareubin to this familial ALS model significantly attenuated disease progression and improved locomotor dysfunction. We also found that 6-deoxyjacareubin reduced motor neuron loss and glial activation. Our results indicate that 6-deoxyjacareubin might serve as a potential therapeutic tool for ALS. Moreover, these results suggest that modulation of hypoxia signaling pathways provides a promising strategy to develop therapies for other types of neurodegenerative diseases also characterized by hypoxia.
Collapse
Affiliation(s)
- Tomonori Hoshino
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
43
|
Larrick JW, Mendelsohn AR. Increased REST to Optimize Life Span? Rejuvenation Res 2019; 22:529-532. [PMID: 31762373 DOI: 10.1089/rej.2019.2287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reduced levels of neural activity are associated with a longer life span in the nematode Caenorhabditis elegans and in mice. Augmented neural activity is associated with a shorter life span. Recent studies show that levels of repressor element 1-silencing transcription factor (REST) increase with normal aging in mice and humans, and reduce neuronal excitation. In C. elegans, increased expression of spr-4, a functional REST homologue, increased the worm life span and is required for classical life span increase mediated by reduced DAF-2/insulin-IGF-1 and increased DAF-16. Preliminary evidence shows that REST and FOXO1, a DAF-16, homologue increase during mammalian aging, and that REST activity is needed for the age-related FOXO1 increase. On the contrary, REST is activated in epilepsy and plays a role in the pathogenesis of Huntington's disease. A simple unifying hypothesis suggests that REST is a "goldilocks-effect factor": too little REST promotes excitotoxic activity, which in turn leads to neurodegenerative diseases such as Alzheimer's. Appropriate increased levels of REST maintain the excitation/inhibition (E-I) balance by reducing potential excitotoxic activity. Increased levels of REST beyond this are toxic as neurons become dysfunctional due to loss of a neuronal phenotype.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnyvale, California.,Regenerative Sciences Institute, Sunnyvale, California
| | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California.,Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
44
|
Now a Nobel gas: oxygen. Pflugers Arch 2019; 471:1343-1358. [PMID: 31754831 DOI: 10.1007/s00424-019-02334-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The recent bestowal of the Nobel Prize 2019 in Physiology or Medicine to Gregg L. Semenza, Sir Peter J. Ratcliffe, and William G. Kaelin Jr. celebrates a series of remarkable discoveries that span from the physiological research question on how oxygen deficiency (hypoxia) induces the red blood cell forming hormone erythropoietin (Epo) to the first clinical application of a novel family of Epo-inducing drugs to treat patients suffering from renal anemia. This review looks back at the most important findings made by the three Nobel laureates, highlights current research trends, and sheds an eye on future perspectives of hypoxia research, including emerging and potential clinical applications.
Collapse
|
45
|
Himanen SV, Sistonen L. New insights into transcriptional reprogramming during cellular stress. J Cell Sci 2019; 132:132/21/jcs238402. [PMID: 31676663 DOI: 10.1242/jcs.238402] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular stress triggers reprogramming of transcription, which is required for the maintenance of homeostasis under adverse growth conditions. Stress-induced changes in transcription include induction of cyto-protective genes and repression of genes related to the regulation of the cell cycle, transcription and metabolism. Induction of transcription is mediated through the activation of stress-responsive transcription factors that facilitate the release of stalled RNA polymerase II and so allow for transcriptional elongation. Repression of transcription, in turn, involves components that retain RNA polymerase II in a paused state on gene promoters. Moreover, transcription during stress is regulated by a massive activation of enhancers and complex changes in chromatin organization. In this Review, we highlight the latest research regarding the molecular mechanisms of transcriptional reprogramming upon stress in the context of specific proteotoxic stress responses, including the heat-shock response, unfolded protein response, oxidative stress response and hypoxia response.
Collapse
Affiliation(s)
- Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| |
Collapse
|
46
|
The Effects of Hypoxia on the Immune-Modulatory Properties of Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:2509606. [PMID: 31687031 PMCID: PMC6800910 DOI: 10.1155/2019/2509606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
The therapeutic repertoire for life-threatening inflammatory conditions like sepsis, graft-versus-host reactions, or colitis is very limited in current clinical practice and, together with chronic ones, like the osteoarthritis, presents growing economic burden in developed countries. This urges the development of more efficient therapeutic modalities like the mesenchymal stem cell-based approaches. Despite the encouraging in vivo data, however, clinical trials delivered ambiguous results. Since one of the typical features of inflamed tissues is decreased oxygenation, the success of cellular therapy in inflammatory pathologies seems to be affected by the impact of oxygen depletion on transplanted cells. Here, we examine our current knowledge on the effect of hypoxia on the physiology of bone marrow-derived mesenchymal stromal cells, one of the most popular tools of practical cellular therapy, in the context of their immune-modulatory capacity.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review summarizes the alterations in the β-cell observed in type 2 diabetes (T2D), focusing on changes in β-cell identity and mass and changes associated with metabolism and intracellular signaling. RECENT FINDINGS In the setting of T2D, β-cells undergo changes in gene expression, reverting to a more immature state and in some cases transdifferentiating into other islet cell types. Alleviation of metabolic stress, ER stress, and maladaptive prostaglandin signaling could improve β-cell function and survival. The β-cell defects leading to T2D likely differ in different individuals and include variations in β-cell mass, development, β-cell expansion, responses to ER and oxidative stress, insulin production and secretion, and intracellular signaling pathways. The recent recognition that some β-cells undergo dedifferentiation without dying in T2D suggests strategies to revive these cells and rejuvenate their functionality.
Collapse
Affiliation(s)
- Ashley A Christensen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Ave, MRB IV 7465, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, 37232, USA.
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
48
|
Richardson TG, Richmond RC, North TL, Hemani G, Davey Smith G, Sharp GC, Relton CL. An integrative approach to detect epigenetic mechanisms that putatively mediate the influence of lifestyle exposures on disease susceptibility. Int J Epidemiol 2019; 48:887-898. [PMID: 31257439 PMCID: PMC6659375 DOI: 10.1093/ije/dyz119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is mounting evidence that our environment and lifestyle has an impact on epigenetic regulatory mechanisms, such as DNA methylation. It has been suggested that these molecular processes may mediate the effect of risk factors on disease susceptibility, although evidence in this regard has been challenging to uncover. Using genetic variants as surrogate variables, we have used two-sample Mendelian randomization (2SMR) to investigate the potential implications of putative changes to DNA methylation levels on disease susceptibility. METHODS To illustrate our approach, we identified 412 CpG sites where DNA methylation was associated with prenatal smoking. We then applied 2SMR to investigate potential downstream effects of these putative changes on 643 complex traits using findings from large-scale genome-wide association studies. To strengthen evidence of mediatory mechanisms, we used multiple-trait colocalization to assess whether DNA methylation, nearby gene expression and complex trait variation were all influenced by the same causal genetic variant. RESULTS We identified 22 associations that survived multiple testing (P < 1.89 × 10-7). In-depth follow-up analyses of particular note suggested that the associations between DNA methylation at the ASPSCR1 and REST/POL2RB gene regions, both linked with reduced lung function, may be mediated by changes in gene expression. We validated associations between DNA methylation and traits using independent samples from different stages across the life course. CONCLUSION Our approach should prove valuable in prioritizing CpG sites that may mediate the effect of causal risk factors on disease. In-depth evaluations of findings are necessary to robustly disentangle causality from alternative explanations such as horizontal pleiotropy.
Collapse
Affiliation(s)
- Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Teri-Louise North
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| |
Collapse
|
49
|
Morris-Blanco KC, Kim T, Bertogliat MJ, Mehta SL, Chokkalla AK, Vemuganti R. Inhibition of the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury. Mol Neurobiol 2019; 56:2542-2550. [PMID: 30039336 PMCID: PMC6344325 DOI: 10.1007/s12035-018-1254-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023]
Abstract
Cerebral ischemia is known to activate the repressor element-1 (RE1)-silencing transcription factor (REST) which silences neural genes via epigenetic remodeling and promotes neurodegeneration. We presently determined if REST inhibition derepresses target genes involved in synaptic plasticity and promotes functional outcome after experimental stroke. Following transient focal ischemia induced by middle cerebral artery occlusion (MCAO) in adult rats, REST expression was upregulated significantly from 12 h to 1 day of reperfusion compared to sham control. At 1 day of reperfusion, REST protein levels were increased and observed in the nuclei of neurons in the peri-infarct cortex. REST knockdown by intracerebral REST siRNA injection significantly reduced the post-ischemic expression of REST and increased the expression of several REST target genes, compared to control siRNA group. REST inhibition also decreased post-ischemic markers of apoptosis, reduced cortical infarct volume, and improved post-ischemic functional recovery on days 5 and 7 of reperfusion compared to the control siRNA group. REST knockdown resulted in a global increase in synaptic plasticity gene expression at 1 day of reperfusion compared to the control siRNA group and significantly increased several synaptic plasticity genes containing RE-1 sequences in their regulatory regions. These results demonstrate that direct inhibition of the epigenetic remodeler REST prevents secondary brain damage in the cortex and improves functional outcome potentially via de-repression of plasticity-related genes after stroke.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA.
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
50
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|