1
|
Patton S, Silva DP, Fuques E, Klinges G, Muller EM, Thurber RLV. Antibiotic type and dose variably affect microbiomes of a disease-resistant Acropora cervicornis genotype. ENVIRONMENTAL MICROBIOME 2025; 20:46. [PMID: 40317056 PMCID: PMC12049008 DOI: 10.1186/s40793-025-00709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND As coral diseases become more prevalent and frequent, the need for new intervention strategies also increases to counteract the rapid spread of disease. Recent advances in coral disease mitigation have resulted in increased use of antibiotics on reefs, as their application may halt disease lesion progression. Although efficacious, consequences of deliberate microbiome manipulation resulting from antibiotic administration are less well-understood- especially in non-diseased corals that appear visually healthy. Therefore, to understand how apparently healthy corals are affected by antibiotics, we investigated how three individual antibiotics, and a mixture of the three, impact the microbiome structure and diversity of a disease-resistant Caribbean staghorn coral (Acropora cervicornis) genotype. Over a 96-hour, aquarium-based antibiotic exposure experiment, we collected and processed coral tissue and water samples for 16S rRNA gene analysis. RESULTS We found that antibiotic type and dose distinctively impact microbiome alpha diversity, beta diversity, and community composition. In experimental controls, microbiome composition was dominated by an unclassified bacterial taxon from the order Campylobacterales, while each antibiotic treatment significantly reduced the relative abundance of this taxon. Those taxa that persisted following antibiotic treatment largely differed by antibiotic type and dose, thereby indicating that antibiotic treatment may result in varying potential for opportunist establishment. CONCLUSION Together, these data suggest that antibiotics induce microbiome dysbiosis- hallmarked by the loss of a dominant bacterium and the increase in taxa associated with coral stress responses. Understanding the off-target consequences of antibiotic administration is critical not only for informed, long-term coral restoration practices, but also for highlighting the importance of responsible antibiotic dissemination into natural environments.
Collapse
Affiliation(s)
- Sunni Patton
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9620, USA.
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
| | - Denise P Silva
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9620, USA
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Eddie Fuques
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9620, USA
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Grace Klinges
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
| | - Erinn M Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
| | - Rebecca L Vega Thurber
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9620, USA
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
2
|
Ranjit B, Chattopadhyay A, Mandal A, Biswas S, Chattopadhyay J. Beyond predation: Fish-coral interactions can tip the scales of coral disease. J Theor Biol 2025; 599:112031. [PMID: 39708959 DOI: 10.1016/j.jtbi.2024.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Coral reefs are critical ecosystems, fostering biodiversity and sustaining the livelihoods of millions globally. Nonetheless, they confront escalating threats, with infectious diseases emerging as primary catalysts for extensive damage, surpassing the impacts of other human-induced stressors. Disease transmission via biotic factors, particularly during fish predation, is a crucial yet often overlooked pathway. While their feeding can spread infectious diseases through spores, it also controls the growth of macroalgae, a major competitor for space on the reef. Given this dual effect, the precise impact of fish on coral disease remains ambiguous and requires additional investigation. In this study, we addressed this gap for the first time by employing a mathematical model. Our analyses unveil intricate interactions between fish predation and coral health, revealing potential benefits and drawbacks for coral reef ecosystems. Coral survival hinges on a delicate balance of fish predation, with extremes (both low and high) offering some protection against disease outbreaks compared to moderate predation, which can cause sudden die-offs. More specifically, as fish predation intensifies, the ecosystem undergoes a tipping point, transitioning from a disease-dominated state to a healthier one. Moreover, the interplay between transmission rate and virulence in coral populations is significantly shaped by fish predation rates. Specifically, the threshold ratio of transmission to virulence, signalling a regime shift from a healthy to a disease-dominated state, exhibits a linear increase with fish predation rate. Overall, our findings emphasize the importance of considering biotic interactions in coral disease ecology and offer insights essential for effective reef conservation strategies.
Collapse
Affiliation(s)
- Buddhadev Ranjit
- Department of Mathematics, Jadavpur University, 188, Raja S.C. Mallik Road, Kolkata, 700032, West Bengal, India
| | - Arnab Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, West Bengal, India.
| | - Arindam Mandal
- Department of Mathematics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | - Santosh Biswas
- Department of Mathematics, Jadavpur University, 188, Raja S.C. Mallik Road, Kolkata, 700032, West Bengal, India
| | - Joydev Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, West Bengal, India
| |
Collapse
|
3
|
Deutsch JM, Demko AM, Jaiyesimi OA, Foster G, Kindler A, Pitts KA, Vekich T, Williams GJ, Walker BK, Paul VJ, Garg N. Metabolomic profiles of stony coral species from the Dry Tortugas National Park display inter- and intraspecies variation. mSystems 2024; 9:e0085624. [PMID: 39560405 DOI: 10.1128/msystems.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience. In this study, we characterize metabolomes of four species of visually healthy stony corals, including Meandrina meandrites, Orbicella faveolata, Colpophyllia natans, and Montastraea cavernosa, collected at least a year before stony coral tissue loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont and host-derived biochemical pathways vary by species. Metabolomes of Meandrina meandrites displayed minimal intraspecies variability and the highest biological activity against coral pathogens when compared to other species in this study. The application of advanced metabolite annotation methods enabled the delineation of several pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin E family compounds, betaine lipids, and host-derived acylcarnitines were among the top predictors of interspecies variability. Since several metabolite features that contributed to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodiniaceae, which could be a major source of these compounds in corals, our data will guide further investigations into these Symbiodiniaceae-derived pathways. IMPORTANCE Previous research profiling gene expression, proteins, and metabolites produced during thermal stress have reported the importance of endosymbiont-derived pathways in coral bleaching resistance. However, our understanding of interspecies variation in these pathways among healthy corals and their role in diseases is limited. We surveyed the metabolomes of four species of healthy corals with differing susceptibilities to the devastating stony coral tissue loss disease and applied advanced annotation approaches in untargeted metabolomics to determine the interspecies variation in host and endosymbiont-derived pathways. Using this approach, we propose the survey of immune markers such as vitamin E family compounds, acylcarnitines, and other metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics datasets are generated for disease-impacted corals, our approach and findings will be valuable in providing insight into the mechanisms of disease resistance.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alyssa M Demko
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Adelaide Kindler
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kelly A Pitts
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Tessa Vekich
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
| | - Brian K Walker
- GIS and Spatial Ecology Laboratory, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, Florida, USA
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Wijers T, Klokman O, Murk AJ, Sijbrandij J, Hylkema A. Low retention of restocked laboratory‐reared long‐spined sea urchins Diadema antillarum due to Spanish hogfish Bodianus rufus predation. Restor Ecol 2024; 32. [DOI: 10.1111/rec.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 01/05/2025]
Abstract
The die‐off of the long‐spined sea urchin Diadema antillarum in the 1980s highlighted its crucial role as a primary grazer in tropical western Atlantic coral reefs. However, natural recovery has been slow, exacerbated by a new die‐off in 2022. Interest in actively restoring D. antillarum populations has grown with the emergence of culture and rearing techniques. Restocking reefs with laboratory‐reared urchins shows potential for enhancing coral reef resilience by reducing algal cover and promoting coral settlement, but success rates vary. Predation and migration contribute to low retention rates, with distinguishing between them is challenging. In this study near Saba, Caribbean Netherlands, we released 200 laboratory‐reared D. antillarum on a reef and monitored for D. antillarum retention and potential D. antillarum predator presence and interaction for 35 days. Only 40% of the urchins were still present on the reef after day one. The Spanish hogfish Bodianus rufus was identified as the primary daytime predator, responsible for nine direct predation events. No nighttime predation was observed, but interaction with a batwing coral crab Carpilius corallinus was noted. These insights can help optimize future restocking attempts and emphasize the importance of assessing predator presence beforehand. Reefs with high abundances of predators such as Spanish hogfish should be avoided for D antillarum restocking. In addition, before being released, lab‐reared animals should be given time to acclimate to conditions in the wild by being placed in protected in situ cages. Here, they could also grow to larger sizes that are less vulnerable to predation.
Collapse
Affiliation(s)
- Tom Wijers
- Marine Animal Ecology Group Wageningen University and Research P.O. Box 338 6700 AH Wageningen Netherlands
- Van Hall Larenstein University of Applied Sciences P.O. Box 1528 8901 BV Leeuwarden Netherlands
| | - Oliver Klokman
- Marine Animal Ecology Group Wageningen University and Research P.O. Box 338 6700 AH Wageningen Netherlands
- Van Hall Larenstein University of Applied Sciences P.O. Box 1528 8901 BV Leeuwarden Netherlands
| | - Albertinka J. Murk
- Marine Animal Ecology Group Wageningen University and Research P.O. Box 338 6700 AH Wageningen Netherlands
| | - Jilles Sijbrandij
- Van Hall Larenstein University of Applied Sciences P.O. Box 1528 8901 BV Leeuwarden Netherlands
| | - Alwin Hylkema
- Marine Animal Ecology Group Wageningen University and Research P.O. Box 338 6700 AH Wageningen Netherlands
- Van Hall Larenstein University of Applied Sciences P.O. Box 1528 8901 BV Leeuwarden Netherlands
| |
Collapse
|
5
|
Ladd MC, Shantz AA, Harrell C, Hayes NK, Gilliam DS, Muller EM, O'Neil KL, Reckenbeil B, Craig Z, Lirman D. Acclimation and size influence predation, growth, and survival of sexually produced Diploria labyrinthiformis used in restoration. Sci Rep 2024; 14:26362. [PMID: 39487186 PMCID: PMC11530667 DOI: 10.1038/s41598-024-73727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/20/2024] [Indexed: 11/04/2024] Open
Abstract
Stony coral tissue loss disease (SCTLD) has swept through Florida reefs and caused mass mortality of numerous coral species. In the wake of these losses, efforts are underway to propagate coral species impacted by SCTLD and promote population recovery. However, numerous knowledge gaps must be addressed to effectively grow, outplant, and restore populations of the slower growing, massive species that were lost. Here, we used sexual recruits of Diploria labyrinthiformis spawned in captivity to understand how conditioning, coral size, and nutritional status at outplanting affect coral survivorship, growth, and susceptibility to predation. We found that ex situ conditioning with supplemental feeding increased coral growth rates, resulting in larger sized corals at the time of outplanting. In turn, these corals had higher growth rates in the field and a lower probability of being removed by predators than outplants that were conditioned in in situ nurseries. Additionally, we found that coral size was an important predictor of survivorship, suggesting that hastening the speed at which young corals grow and outplanting larger juveniles can improve restoration outcomes. Taken together, our results suggest that providing supplemental food to corals at ex situ facilities confers benefits that could help restore populations of massive coral species impacted by SCTLD.
Collapse
Affiliation(s)
- Mark C Ladd
- Population and Ecosystems Monitoring Division, NOAA Southeast Fisheries Science Center, Miami, FL, USA.
| | - Andrew A Shantz
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Florida State University, Tallahassee, FL, USA
| | - Cailin Harrell
- Department of Marine Biology and Ecology, Rosentiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Nicole K Hayes
- Nova Southeastern University Halmos College of Arts and Sciences, Hollywood, FL, USA
| | - David S Gilliam
- Nova Southeastern University Halmos College of Arts and Sciences, Hollywood, FL, USA
| | | | - Keri L O'Neil
- Center for Conservation, The Florida Aquarium, Apollo Beach, FL, USA
| | - Brian Reckenbeil
- Center for Conservation, The Florida Aquarium, Apollo Beach, FL, USA
| | - Zachary Craig
- Mote Marine Laboratory, Summerland Key, FL, USA
- Division of Aquatic Resources, Kailua-Kona, HI, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosentiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Payton TG, Metzger AM, Childress MJ. Marine Debris Harbor Unique, yet Functionally Similar Cryptofauna Communities. Integr Comp Biol 2024; 64:1102-1114. [PMID: 39003247 DOI: 10.1093/icb/icae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024] Open
Abstract
Human-made debris is entering the ocean at alarming rates. These artificial structures are becoming habitats for small marine taxa known as cryptofauna. Cryptofauna are among the most essential reef taxa; however, little is known about these organisms, let alone their fate considering degrading coral reefs and increasing anthropogenic disturbance. The current study explores differences in naturally occurring cryptofauna biodiversity compared to those inhabiting benthic marine debris. To explore this difference, we measured invertebrate diversity from autonomous reef monitoring structures (ARMS) located on patch reefs along the middle Florida Keys reef tract. ARMS were used as a proxy for natural structure to compare to marine debris removed from five reef locations. Plastic debris was the most abundant of all the debris material collected. Wood and concrete were identified as covariates since they are sourced from wooden lobster traps. Taxa diversity varied significantly between ARMS and debris, indicating that each structural unit contained significantly different and diverse communities. The most influential taxa identified included commensal shrimps, hermit crabs, brittle stars, segmented worms, and several families of crabs. Additionally, while functional richness increased with taxa richness for ARMS communities, debris communities showed decreasing functional richness and high functional similarity, suggesting a specialization of debris-specific taxa. Overall, these data assist in better understanding of the marine community ecology surrounding anthropogenic marine debris for future debris removal and management practices for comprehensive reef health.
Collapse
Affiliation(s)
- Tokea G Payton
- Biological Sciences Department, Clemson University, Clemson, SC 29634, USA
- Black in Marine Science, Spokane, WA 99201, USA
| | - Anna M Metzger
- Biological Sciences Department, Clemson University, Clemson, SC 29634, USA
| | - Michael J Childress
- Biological Sciences Department, Clemson University, Clemson, SC 29634, USA
- Forestry and Environment Conservation Department, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Diaz de Villegas SC, Borbee EM, Abdelbaki PY, Fuess LE. Prior heat stress increases pathogen susceptibility in the model cnidarian Exaiptasia diaphana. Commun Biol 2024; 7:1328. [PMID: 39406834 PMCID: PMC11480339 DOI: 10.1038/s42003-024-07005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Anthropogenic climate change has significantly altered terrestrial and marine ecosystems globally, often in the form of climate-related events such as thermal anomalies and disease outbreaks. Although the isolated effects of these stressors have been well documented, a growing body of literature suggests that stressors often interact, resulting in complex effects on ecosystems. This includes coral reefs where sequential associations between heat stress and disease have had profound impacts. Here we used the model cnidarian Exaiptasia diaphana to investigate mechanisms linking prior heat stress to increased disease susceptibility. We examined anemone pathogen susceptibility and physiology (symbiosis, immunity, and energetics) following recovery from heat stress. We observed significantly increased pathogen susceptibility in anemones previously exposed to heat stress. Notably, prior heat stress reduced anemone energetic reserves (carbohydrate concentration), and activity of multiple immune components. Minimal effects of prior heat stress on symbiont density were observed. Together, results suggest changes in energetic availability might have the strongest effect on pathogen susceptibility and immunity following heat stress. The results presented here provide critical insight regarding the interplay between heat stress recovery and pathogen susceptibility in cnidarians and are an important first step towards understanding temporal associations between these stressors.
Collapse
|
8
|
Dobbelaere T, Holstein DM, Gramer LJ, McEachron L, Hanert E. Investigating the link between the Port of Miami dredging and the onset of the stony coral tissue loss disease epidemics. MARINE POLLUTION BULLETIN 2024; 207:116886. [PMID: 39216253 DOI: 10.1016/j.marpolbul.2024.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Since 2014, the stony coral tissue loss disease (SCTLD) has been decimating corals in the Caribbean. Although the trigger of this outbreak remains elusive, evidence suggests waterborne sediment-mediated disease transmission. The outbreak reportedly initiated in September 2014 at a reef site off Virginia Key (VKR), during extensive dredging operations at the Port of Miami. Here we use a high-resolution ocean model to identify the potential driver of the outbreak by simulating the dispersal of dredged sediments, wastewater plumes and disease agents. Our results suggest that VKR could have been impacted by fine sediments produced by dredging operations, especially those involving non-conventional rock-chopping techniques. Wastewater contamination was unlikely. Additionally, our connectivity analysis indicates potential disease transmission from other affected reefs to VKR. Our results therefore suggest that dredging operations might be responsible for the onset of the epidemics. This underscores the need for stricter operational guidelines in future dredging projects.
Collapse
Affiliation(s)
- Thomas Dobbelaere
- Eath and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium.
| | - Daniel M Holstein
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| | - Lewis J Gramer
- Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami, Miami, FL, USA; Atlantic Oceanographic and Meteorological Laboratory (AOML), NOAA, Miami, FL, USA
| | - Lucas McEachron
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Saint Petersburg, FL, USA
| | - Emmanuel Hanert
- Eath and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium; Institute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Denux M, Armenteros M, Weber L, Miller CA, Sántha K, Apprill A. Coral Reef Water Microbial Communities of Jardines de la Reina, Cuba. Microorganisms 2024; 12:1822. [PMID: 39338496 PMCID: PMC11433942 DOI: 10.3390/microorganisms12091822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Globally, coral reef ecosystems are undergoing significant change related to climate change and anthropogenic activities. Yet, the Cuban archipelago of Jardines de la Reina (JR) has experienced fewer stressors due to its geographical remoteness and high level of conservation. This study examines the surface and benthic reef water microbial communities associated with 32 reef sites along the JR archipelago and explores the relationship between the community composition of reef microorganisms examined using bacterial and archaeal small subunit ribosomal RNA gene (16S rRNA gene) sequencing compared to geographic, conservation/protection level, environmental, physicochemical, and reef benthic and pelagic community features. Reef nutrient concentrations were low and microbial communities dominated by picocyanobacteria and SAR11 and SAR86 clade bacteria, characteristic of an oligotrophic system. Reef water microbial community alpha and beta diversity both varied throughout the archipelago and were strongly related to geography. Three sites in the western archipelago showed unique microbial communities, which may be related to the hydrogeography and influences of the channels linking the Ana Maria gulf with the Caribbean Sea. Overall, this work provides the first extensive description of the reef microbial ecology of the Caribbean's 'Crown Jewel' reef system and a framework to evaluate the influence of ongoing stressors on the reef microorganisms.
Collapse
Affiliation(s)
- Manon Denux
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
| | - Maickel Armenteros
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Mexico
| | - Laura Weber
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
| | - Carolyn A. Miller
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
| | - Kinga Sántha
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
- Faculty of Geosciences and Environment, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Amy Apprill
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
| |
Collapse
|
10
|
Selwyn JD, Despard BA, Vollmer MV, Trytten EC, Vollmer SV. Identification of putative coral pathogens in endangered Caribbean staghorn coral using machine learning. Environ Microbiol 2024; 26:e16700. [PMID: 39289821 DOI: 10.1111/1462-2920.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Coral diseases contribute to the rapid decline in coral reefs worldwide, and yet coral bacterial pathogens have proved difficult to identify because 16S rRNA gene surveys typically identify tens to hundreds of disease-associate bacteria as putative pathogens. An example is white band disease (WBD), which has killed up to 95% of the now-endangered Caribbean Acropora corals since 1979, yet the pathogen is still unknown. The 16S rRNA gene surveys have identified hundreds of WBD-associated bacterial amplicon sequencing variants (ASVs) from at least nine bacterial families with little consensus across studies. We conducted a multi-year, multi-site 16S rRNA gene sequencing comparison of 269 healthy and 143 WBD-infected Acropora cervicornis and used machine learning modelling to accurately predict disease outcomes and identify the top ASVs contributing to disease. Our ensemble ML models accurately predicted disease with greater than 97% accuracy and identified 19 disease-associated ASVs and five healthy-associated ASVs that were consistently differentially abundant across sampling periods. Using a tank-based transmission experiment, we tested whether the 19 disease-associated ASVs met the assumption of a pathogen and identified two pathogenic candidate ASVs-ASV25 Cysteiniphilum litorale and ASV8 Vibrio sp. to target for future isolation, cultivation, and confirmation of Henle-Koch's postulate via transmission assays.
Collapse
Affiliation(s)
- Jason D Selwyn
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Brecia A Despard
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Miles V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Emily C Trytten
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Arriaga-Piñón ZP, Aguayo-Leyva JE, Álvarez-Filip L, Banaszak AT, Aguirre-Macedo ML, Paz-García DA, García-Maldonado JQ. Microbiomes of three coral species in the Mexican Caribbean and their shifts associated with the Stony Coral Tissue Loss Disease. PLoS One 2024; 19:e0304925. [PMID: 39186575 PMCID: PMC11346732 DOI: 10.1371/journal.pone.0304925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Stony Coral Tissue Loss Disease (SCTLD) has caused widespread coral mortality in the Caribbean Region. However, how the disease presence alters the microbiome community, their structure, composition, and metabolic functionality is still poorly understood. In this study, we characterized the microbial communities of the tissues of apparently healthy and diseased SCTLD colonies of the species Siderastrea siderea, Orbicella faveolata, and Montastraea cavernosa to explore putative changes related to the presence of SCTLD. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidia were the best represented classes in the healthy tissues of all coral species, and alpha diversity did not show significant differences among the species. The microbial community structure between coral species was significantly different (PERMANOVA: F = 3.46, p = 0.001), and enriched genera were detected for each species: Vibrio and Photobacterium in S. siderea, Spirochaeta2 and Marivivens in O. faveolata and SAR202_clade and Nitrospira in M. cavernosa. Evidence of SCTLD in the microbial communities was more substantial in S. siderea, where differences in alpha diversity, beta diversity, and functional profiles were observed. In O. faveolata, differences were detected only in the community structure, while M. cavernosa samples showed no significant difference. Several microbial groups were found to have enriched abundances in tissue from SCTLD lesions from S. siderea and O. faveolata, but no dominant bacterial group was detected. Our results contribute to understanding microbial diversity associated with three scleractinian coral species and the shifts in their microbiomes associated with SCTLD in the Mexican Caribbean.
Collapse
Affiliation(s)
- Zita P. Arriaga-Piñón
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - J. Eduardo Aguayo-Leyva
- Laboratorio de Genética para la Conservación. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., México
| | - Lorenzo Álvarez-Filip
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ma. Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - David A. Paz-García
- Laboratorio de Genética para la Conservación. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., México
| | - José Q. García-Maldonado
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
12
|
Heinz JM, Lu J, Huebner LK, Salzberg SL, Sommer M, Rosales SM. Novel metagenomics analysis of stony coral tissue loss disease. G3 (BETHESDA, MD.) 2024; 14:jkae137. [PMID: 38900914 PMCID: PMC11304949 DOI: 10.1093/g3journal/jkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from 4 stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared with a prior metagenome analysis of the same dataset.
Collapse
Affiliation(s)
- Jakob M Heinz
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lindsay K Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Markus Sommer
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Stephanie M Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL 33149, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL 33149, USA
| |
Collapse
|
13
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
14
|
Page CE, Anderson E, Ainsworth TD. Building living systematic reviews and reporting standards for comparative microscopic analysis of white diseases in hard corals. Ecol Evol 2024; 14:e11616. [PMID: 38975266 PMCID: PMC11224507 DOI: 10.1002/ece3.11616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Over the last 4 decades, coral disease research has continued to provide reports of diseases, the occurrence and severity of disease outbreaks and associated disease signs. Histology using systematic protocols is a gold standard for the microscopic assessment of diseases in veterinary and medical research, while also providing valuable information on host condition. However, uptake of histological analysis for coral disease remains limited. Increasing disease outbreaks on coral reefs as human impacts intensify highlights a need to understand the use of histology to date in coral disease research. Here, we apply a systematic approach to collating, mapping and reviewing histological methods used to study coral diseases with 'white' signs (i.e., white diseases) in hard coral taxa and map research effort in this field spanning study design, sample processing and analysis in the 33 publications identified between 1984 and 2022. We find that studies to date have not uniformly detailed methodologies, and terminology associated with reporting and disease description is inconsistent between studies. Combined these limitations reduce study repeatability, limiting the capacity for researchers to compare disease reports. A primary outcome of this study is the provision of transparent and repeatable protocols for systematically reviewing literature associated with white diseases of hard coral taxa, and development of recommendations for standardised reporting procedures with the aim of increasing uptake of histology in addition to allowing for ongoing comparative analysis through living systematic reviews for the coral disease field.
Collapse
Affiliation(s)
- C. E. Page
- School of Biological, Earth and Environmental Sciences (BEES)University of New South Wales (UNSW)KensingtonNew South WalesAustralia
| | - E. Anderson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - T. D. Ainsworth
- School of Biological, Earth and Environmental Sciences (BEES)University of New South Wales (UNSW)KensingtonNew South WalesAustralia
| |
Collapse
|
15
|
Serrano XM, Rosales SM, Miller MW, Palacio-Castro AM, Williamson OM, Gomez A, Baker AC. Sediment source and dose influence the larval performance of the threatened coral Orbicella faveolata. PLoS One 2024; 19:e0292474. [PMID: 38923956 PMCID: PMC11207144 DOI: 10.1371/journal.pone.0292474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The effects of turbidity and sedimentation stress on early life stages of corals are poorly understood, particularly in Atlantic species. Dredging operations, beach nourishment, and other coastal construction activities can increase sedimentation and turbidity in nearby coral reef habitats and have the potential to negatively affect coral larval development and metamorphosis, reducing sexual reproduction success. In this study, we investigated the performance of larvae of the threatened Caribbean coral species Orbicella faveolata exposed to suspended sediments collected from a reef site in southeast Florida recently impacted by dredging (Port of Miami), and compared it to the performance of larvae exposed to sediments collected from the offshore, natal reef of the parent colonies. In a laboratory experiment, we tested whether low and high doses of each of these sediment types affected the survival, settlement, and respiration of coral larvae compared to a no-sediment control treatment. In addition, we analyzed the sediments used in the experiments with 16S rRNA gene amplicon sequencing to assess differences in the microbial communities present in the Port versus Reef sediments, and their potential impact on coral performance. Overall, only O. faveolata larvae exposed to the high-dose Port sediment treatment had significantly lower survival rates compared to the control treatment, suggesting an initial tolerance to elevated suspended sediments. However, significantly lower settlement rates were observed in both Port treatments (low- and high-dose) compared to the control treatment one week after exposure, suggesting strong latent effects. Sediments collected near the Port also contained different microbial communities than Reef sediments, and higher relative abundances of the bacteria Desulfobacterales, which has been associated with coral disease. We hypothesize that differences in microbial communities between the two sediments may be a contributing factor in explaining the observed differences in larval performance. Together, these results suggest that the settlement success and survival of O. faveolata larvae are more readily compromised by encountering port inlet sediments compared to reef sediments, with potentially important consequences for the recruitment success of this species in affected areas.
Collapse
Affiliation(s)
- Xaymara M. Serrano
- Cooperative Institute of Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic and Oceanographic Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Stephanie M. Rosales
- Cooperative Institute of Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic and Oceanographic Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | | | - Ana M. Palacio-Castro
- Cooperative Institute of Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic and Oceanographic Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Olivia M. Williamson
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
| | - Andrea Gomez
- National Oceanic and Atmospheric Administration, Greater Atlantic Regional Fisheries Office, Gloucester, Massachusetts, United States of America
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
16
|
Heinz JM, Lu J, Huebner LK, Salzberg SL, Sommer M, Rosales SM. Novel metagenomics analysis of stony coral tissue loss disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573916. [PMID: 38260425 PMCID: PMC10802270 DOI: 10.1101/2024.01.02.573916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from four stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared to a prior metagenome analysis of the same dataset.
Collapse
Affiliation(s)
- Jakob M. Heinz
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Lindsay K. Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission; St. Petersburg, FL 33701, United States
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
- Department of Computer Science, Johns Hopkins University; Baltimore, MD 21218, United States
- Department of Biostatistics, Johns Hopkins University; Baltimore, MD 21205, United States
| | - Markus Sommer
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
| | - Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami; Miami, FL 33149, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL 33149, United States
| |
Collapse
|
17
|
Dobbelaere T, Dekens A, Saint-Amand A, Alaerts L, Holstein DM, Hanert E. Hurricanes enhance coral connectivity but also superspread coral diseases. GLOBAL CHANGE BIOLOGY 2024; 30:e17382. [PMID: 38923652 DOI: 10.1111/gcb.17382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Climate change poses an existential threat to coral reefs. A warmer and more acidic ocean weakens coral ecosystems and increases the intensity of hurricanes. The wind-wave-current interactions during a hurricane deeply change the ocean circulation patterns and hence potentially affect the dispersal of coral larvae and coral disease agents. Here, we modeled the impact of major hurricane Irma (September 2017) on coral larval and stony coral tissue loss disease (SCTLD) connectivity in Florida's Coral Reef. We coupled high-resolution coastal ocean circulation and wave models to simulate the dispersal of virtual coral larvae and disease agents between thousands of reefs. While being a brief event, our results suggest the passage of hurricane Irma strongly increased the probability of long-distance exchanges while reducing larval supply. It created new connections that could promote coral resilience but also probably accelerated the spread of SCTLD by about a month. As they become more intense, hurricanes' double-edged effect will become increasingly pronounced, contributing to increased variability in transport patterns and an accelerated rate of change within coral reef ecosystems.
Collapse
Affiliation(s)
- Thomas Dobbelaere
- Earth and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium
| | | | | | - Lauranne Alaerts
- Earth and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium
| | - Daniel M Holstein
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Emmanuel Hanert
- Earth and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Lima LFO, Alker AT, Morris MM, Edwards RA, de Putron SJ, Dinsdale EA. Pre-Bleaching Coral Microbiome Is Enriched in Beneficial Taxa and Functions. Microorganisms 2024; 12:1005. [PMID: 38792833 PMCID: PMC11123844 DOI: 10.3390/microorganisms12051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated bacteria. However, these microbial services may be impaired in response to environmental changes, such as thermal stress. A perturbed microbiome may lead to coral bleaching and disease outbreaks, which have caused an unprecedented loss in coral cover worldwide, particularly correlated to a warming ocean. The response mechanisms of the coral holobiont under high temperatures are not completely understood, but the associated microbial community is a potential source of acquired heat-tolerance. Here we investigate the effects of increased temperature on the taxonomic and functional profiles of coral surface mucous layer (SML) microbiomes in relationship to coral-algal physiology. We used shotgun metagenomics in an experimental setting to understand the dynamics of microbial taxa and genes in the SML microbiome of the coral Pseudodiploria strigosa under heat treatment. The metagenomes of corals exposed to heat showed high similarity at the level of bacterial genera and functional genes related to nitrogen and sulfur metabolism and stress response. The coral SML microbiome responded to heat with an increase in the relative abundance of taxa with probiotic potential, and functional genes for nitrogen and sulfur acquisition. Coral-algal physiology significantly explained the variation in the microbiome at taxonomic and functional levels. These consistent and specific microbial taxa and gene functions that significantly increased in proportional abundance in corals exposed to heat are potentially beneficial to coral health and thermal resistance.
Collapse
Affiliation(s)
- Laís F. O. Lima
- Marine Biology, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- San Diego State University, San Diego, CA 92182, USA
| | - Amanda T. Alker
- Innovative Genomics Institute, University of California, Berkeley, SA 5045, USA;
| | - Megan M. Morris
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Robert A. Edwards
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| | | | - Elizabeth A. Dinsdale
- Flinders Accelerator Microbiome Exploration, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
19
|
Swaminathan SD, Lafferty KD, Knight NS, Altieri AH. Stony coral tissue loss disease indirectly alters reef communities. SCIENCE ADVANCES 2024; 10:eadk6808. [PMID: 38701216 PMCID: PMC11068009 DOI: 10.1126/sciadv.adk6808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Many Caribbean coral reefs are near collapse due to various threats. An emerging threat, stony coral tissue loss disease (SCTLD), is spreading across the Western Atlantic and Caribbean. Data from the U.S. Virgin Islands reveal how SCTLD spread has reduced the abundance of susceptible coral and crustose coralline algae and increased cyanobacteria, fire coral, and macroalgae. A Caribbean-wide structural equation model demonstrates versatility in reef fish and associations with rugosity independent of live coral. Model projections suggest that some reef fishes will decline due to SCTLD, with the largest changes on reefs that lose the most susceptible corals and rugosity. Mapping these projected declines in space indicates how the indirect effects of SCTLD range from undetectable to devastating.
Collapse
Affiliation(s)
- Sara D. Swaminathan
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kevin D. Lafferty
- Western Ecological Research Center, US Geological Survey, Santa Barbara, CA 93455, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Nicole S. Knight
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Andrew H. Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
- Smithsonian Tropical Research Center, Ancon 0843-03092, Republic of Panama
| |
Collapse
|
20
|
Simantiris N. The impact of climate change on sea turtles: Current knowledge, scientometrics, and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171354. [PMID: 38460688 DOI: 10.1016/j.scitotenv.2024.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Sea turtles are one of the most significant groups of marine species, playing a key role in the sustainability and conservation of marine ecosystems and the food chain. These emblematic species are threatened by several natural and anthropogenic pressures, and climate change is increasingly reported as one of the most important threats to sea turtles, affecting sea turtles at all stages of their life cycle and at both their marine and coastal habitats. The effect of climate change is expressed as global warming, sea-level rise, extreme storms, and alterations in predation and diseases' patterns, posing a potentially negative impact on sea turtles. In this systematic review, the author presented the current knowledge and research outcomes on the impact of climate change on sea turtles. Moreover, this study determined trends and hotspots in keywords, country collaborations, authors, and publications in the field through a scientometric analysis. Finally, this article reviewed proposed mitigation strategies by researchers, marine protected area (MPA) managers, and non-governmental organizations (NGOs) to reduce the impact of climate change on the conservation of sea turtles.
Collapse
Affiliation(s)
- Nikolaos Simantiris
- MEDASSET (Mediterranean Association to Save the Sea Turtles), Likavittou 1C, Athens, 10632, Greece; Ionian University, Department of Informatics, Corfu, 49132, Greece.
| |
Collapse
|
21
|
Work TM, Singhakarn C, Weatherby TM. Cytology in cnidaria using Exaiptasia as a model. DISEASES OF AQUATIC ORGANISMS 2024; 158:37-53. [PMID: 38661136 DOI: 10.3354/dao03781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A need exists for additional methods to examine cnidaria at the cellular level to aid our understanding of health, anatomy, and physiology of this important group of organisms. This need is particularly acute given that disease is emerging as a major factor in declines of ecologically important functional groups such as corals. Here we describe a simple method to process cnidarian cells for microscopic examination using the model organism Exaiptasia. We show that this organism has at least 18 cell types or structures that can be readily distinguished based on defined morphological features. Some of these cells can be related back to anatomic features of the animal both at the light microscope and ultrastructural level. The cnidome of Exaiptasia may be more complex than what is currently understood. Moreover, cnidarian cells, including some types of cnidocytes, phagocytize cells other than endosymbionts. Finally, our findings shed light on morphologic complexity of cell-associated microbial aggregates and their intimate intracellular associations. The tools described here could be useful for other cnidaria.
Collapse
Affiliation(s)
- Thierry M Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50187, Honolulu, HI 96850, USA
| | - Chutimon Singhakarn
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50187, Honolulu, HI 96850, USA
| | - Tina M Weatherby
- University of Hawaii at Manoa, Biological Electron Microscope Facility, Honolulu, HI 96822, USA
| |
Collapse
|
22
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
23
|
Hudson J, Egan S. Marine diseases and the Anthropocene: Understanding microbial pathogenesis in a rapidly changing world. Microb Biotechnol 2024; 17:e14397. [PMID: 38217393 PMCID: PMC10832532 DOI: 10.1111/1751-7915.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
Healthy marine ecosystems are paramount for Earth's biodiversity and are key to sustaining the global economy and human health. The effects of anthropogenic activity represent a pervasive threat to the productivity of marine ecosystems, with intensifying environmental stressors such as climate change and pollution driving the occurrence and severity of microbial diseases that can devastate marine ecosystems and jeopardise food security. Despite the potentially catastrophic outcomes of marine diseases, our understanding of host-pathogen interactions remains an understudied aspect of both microbiology and environmental research, especially when compared to the depth of information available for human and agricultural systems. Here, we identify three avenues of research in which we can advance our understanding of marine disease in the context of global change, and make positive steps towards safeguarding marine communities for future generations.
Collapse
Affiliation(s)
- Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
24
|
Villafranca N, Changsut I, Diaz de Villegas S, Womack H, Fuess LE. Characterization of trade-offs between immunity and reproduction in the coral species Astrangia poculata. PeerJ 2023; 11:e16586. [PMID: 38077420 PMCID: PMC10702360 DOI: 10.7717/peerj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Living organisms face ubiquitous pathogenic threats and have consequently evolved immune systems to protect against potential invaders. However, many components of the immune system are physiologically costly to maintain and engage, often drawing resources away from other organismal processes such as growth and reproduction. Evidence from a diversity of systems has demonstrated that organisms use complex resource allocation mechanisms to manage competing needs and optimize fitness. However, understanding of resource allocation patterns is limited across taxa. Cnidarians, which include ecologically important organisms like hard corals, have been historically understudied in the context of resource allocations. Improving understanding of resource allocation-associated trade-offs in cnidarians is critical for understanding future ecological dynamics in the face of rapid environmental change. Methods Here, we characterize trade-offs between constitutive immunity and reproduction in the facultatively symbiotic coral Astrangia poculata. Male colonies underwent ex situ spawning and sperm density was quantified. We then examined the effects of variable symbiont density and energetic budget on physiological traits, including immune activity and reproductive investment. Furthermore, we tested for potential trade-offs between immune activity and reproductive investment. Results We found limited associations between energetic budget and immune metrics; melanin production was significantly positively associated with carbohydrate concentration. However, we failed to document any associations between immunity and reproductive output which would be indicative of trade-offs, possibly due to experimental limitations. Our results provide a preliminary framework for future studies investigating immune trade-offs in cnidarians.
Collapse
Affiliation(s)
- Natalie Villafranca
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Isabella Changsut
- Department of Biology, Texas State University, San Marcos, TX, United States
| | | | - Haley Womack
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| |
Collapse
|
25
|
Howe-Kerr LI, Knochel AM, Meyer MD, Sims JA, Karrick CE, Grupstra CGB, Veglia AJ, Thurber AR, Vega Thurber RL, Correa AMS. Filamentous virus-like particles are present in coral dinoflagellates across genera and ocean basins. THE ISME JOURNAL 2023; 17:2389-2402. [PMID: 37907732 PMCID: PMC10689786 DOI: 10.1038/s41396-023-01526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
Filamentous viruses are hypothesized to play a role in stony coral tissue loss disease (SCTLD) through infection of the endosymbiotic dinoflagellates (Family Symbiodiniaceae) of corals. To evaluate this hypothesis, it is critical to understand the global distribution of filamentous virus infections across the genetic diversity of Symbiodiniaceae hosts. Using transmission electron microscopy, we demonstrate that filamentous virus-like particles (VLPs) are present in over 60% of Symbiodiniaceae cells (genus Cladocopium) within Pacific corals (Acropora hyacinthus, Porites c.f. lobata); these VLPs are more prevalent in Symbiodiniaceae of in situ colonies experiencing heat stress. Symbiodiniaceae expelled from A. hyacinthus also contain filamentous VLPs, and these cells are more degraded than their in hospite counterparts. Similar to VLPs reported from SCTLD-affected Caribbean reefs, VLPs range from ~150 to 1500 nm in length and 16-37 nm in diameter and appear to constitute various stages in a replication cycle. Finally, we demonstrate that SCTLD-affected corals containing filamentous VLPs are dominated by diverse Symbiodiniaceae lineages from the genera Breviolum, Cladocopium, and Durusdinium. Although this study cannot definitively confirm or refute the role of filamentous VLPs in SCTLD, it demonstrates that filamentous VLPs are not solely observed in SCTLD-affected corals or reef regions, nor are they solely associated with corals dominated by members of a particular Symbiodiniaceae genus. We hypothesize that filamentous viruses are a widespread, common group that infects Symbiodiniaceae. Genomic characterization of these viruses and empirical tests of the impacts of filamentous virus infection on Symbiodiniaceae and coral colonies should be prioritized.
Collapse
Affiliation(s)
| | - Anna M Knochel
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Jordan A Sims
- BioSciences Department, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | | | - Carsten G B Grupstra
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biology, University of Puerto Rico, Mayagüez, PR, USA
| | - Andrew R Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- College of Earth Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Adrienne M S Correa
- BioSciences Department, Rice University, Houston, TX, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
26
|
Zuercher R, Kochan D, Harborne AR. Factors influencing the biomass of large-bodied parrotfish species in the absence of fishing on coral reefs in Florida, USA. JOURNAL OF FISH BIOLOGY 2023; 103:1526-1537. [PMID: 37681994 DOI: 10.1111/jfb.15557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Parrotfishes are a functionally critical component of Caribbean reef fish assemblages, with large-bodied parrotfish species exerting particularly important top-down control on macroalgae. Despite their importance, low biomasses of large-bodied parrotfishes on many reefs hamper our ability to study and understand their ecology. Florida reefs, where most parrotfish fishing has been illegal since 1992, present a unique opportunity to explore covariates of their distribution. Using boosted regression tree models and 23 covariates, this study identified the major predictors of four species of Atlantic large-bodied parrotfishes. Maximum hard substrate relief, the area of the surrounding reef, and the availability of seagrass habitat were each positively related to parrotfish presence. Strong positive relationships between parrotfish presence and biomass and the biomass of other parrotfishes on a reef suggest that all four species responded to a similar subset of environmental conditions. However, relationships between parrotfish presence and biomass and depth, habitat type, coral cover, and the proximity of a reef to deepwater habitats differed among species, highlighting distinct habitat preferences. These results can improve managers' ability to target important biophysical correlates of large-bodied parrotfishes with appropriate management interventions and identify areas for protection.
Collapse
Affiliation(s)
- Rachel Zuercher
- Institute of Environment and Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - David Kochan
- Institute of Environment and Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - Alastair R Harborne
- Institute of Environment and Department of Biological Sciences, Florida International University, Miami, Florida, USA
| |
Collapse
|
27
|
Studivan MS, Eckert RJ, Shilling E, Soderberg N, Enochs IC, Voss JD. Stony coral tissue loss disease intervention with amoxicillin leads to a reversal of disease-modulated gene expression pathways. Mol Ecol 2023; 32:5394-5413. [PMID: 37646698 DOI: 10.1111/mec.17110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Stony coral tissue loss disease (SCTLD) remains an unprecedented disease outbreak due to its high mortality rate and rapid spread throughout Florida's Coral Reef and wider Caribbean. A collaborative effort is underway to evaluate strategies that mitigate the spread of SCTLD across coral colonies and reefs, including restoration of disease-resistant genotypes, genetic rescue, and disease intervention with therapeutics. We conducted an in-situ experiment in Southeast Florida to assess molecular responses among SCTLD-affected Montastraea cavernosa pre- and post-application of the most widely used intervention method, CoreRx Base 2B with amoxicillin. Through Tag-Seq gene expression profiling of apparently healthy, diseased, and treated corals, we identified modulation of metabolomic and immune gene pathways following antibiotic treatment. In a complementary ex-situ disease challenge experiment, we exposed nursery-cultured M. cavernosa and Orbicella faveolata fragments to SCTLD-affected donor corals to compare transcriptomic profiles among clonal individuals from unexposed controls, those exposed and displaying disease signs, and corals exposed and not displaying disease signs. Suppression of metabolic functional groups and activation of stress gene pathways as a result of SCTLD exposure were apparent in both species. Amoxicillin treatment led to a 'reversal' of the majority of gene pathways implicated in disease response, suggesting potential recovery of corals following antibiotic application. In addition to increasing our understanding of molecular responses to SCTLD, we provide resource managers with transcriptomic evidence that disease intervention with antibiotics appears to be successful and may help to modulate coral immune responses to SCTLD. These results contribute to feasibility assessments of intervention efforts following disease outbreaks and improved predictions of coral reef health across the wider Caribbean.
Collapse
Affiliation(s)
- Michael S Studivan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Ryan J Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Erin Shilling
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Nash Soderberg
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Ian C Enochs
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Joshua D Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| |
Collapse
|
28
|
Vollmer SV, Selwyn JD, Despard BA, Roesel CL. Genomic signatures of disease resistance in endangered staghorn corals. Science 2023; 381:1451-1454. [PMID: 37769073 DOI: 10.1126/science.adi3601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
White band disease (WBD) has caused unprecedented declines in the Caribbean Acropora corals, which are now listed as critically endangered species. Highly disease-resistant Acropora cervicornis genotypes exist, but the genetic underpinnings of disease resistance are not understood. Using transmission experiments, a newly assembled genome, and whole-genome resequencing of 76 A. cervicornis genotypes from Florida and Panama, we identified 10 genomic regions and 73 single-nucleotide polymorphisms that are associated with disease resistance and that include functional protein-coding changes in four genes involved in coral immunity and pathogen detection. Polygenic scores calculated from 10 genomic loci indicate that genetic screens can detect disease resistance in wild and nursery stocks of A. cervicornis across the Caribbean.
Collapse
Affiliation(s)
- Steven V Vollmer
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Jason D Selwyn
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Brecia A Despard
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Charles L Roesel
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| |
Collapse
|
29
|
Hawthorn A, Berzins IK, Dennis MM, Kiupel M, Newton AL, Peters EC, Reyes VA, Work TM. An introduction to lesions and histology of scleractinian corals. Vet Pathol 2023; 60:529-546. [PMID: 37519147 DOI: 10.1177/03009858231189289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Stony corals (Scleractinia) are in the Phylum Cnidaria (cnidae referring to various types of stinging cells). They may be solitary or colonial, but all secrete an external, supporting aragonite skeleton. Large, colonial members of this phylum are responsible for the accretion of coral reefs in tropical and subtropical waters that form the foundations of the most biodiverse marine ecosystems. Coral reefs worldwide, but particularly in the Caribbean, are experiencing unprecedented levels of disease, resulting in reef degradation. Most coral diseases remain poorly described and lack clear case definitions, while the etiologies and pathogenesis are even more elusive. This introductory guide is focused on reef-building corals and describes basic gross and microscopic lesions in these corals in order to serve as an invitation to other veterinary pathologists to play a critical role in defining and advancing the field of coral pathology.
Collapse
Affiliation(s)
- Aine Hawthorn
- University of Wisconsin-Madison, Madison, WI
- U.S. Geological Survey, Seattle, WA
| | - Ilze K Berzins
- University of Florida, Gainesville, FL
- One Water, One Health, LLC, Golden Valley, MN
| | | | | | - Alisa L Newton
- ZooQuatic Laboratory, LLC, Baltimore, MD
- OCEARCH, Park City, UT
| | | | | | | |
Collapse
|
30
|
Becker CC, Weber L, Zgliczynski B, Sullivan C, Sandin S, Muller E, Clark AS, Kido Soule MC, Longnecker K, Kujawinski EB, Apprill A. Microorganisms and dissolved metabolites distinguish Florida's Coral Reef habitats. PNAS NEXUS 2023; 2:pgad287. [PMID: 37719750 PMCID: PMC10504872 DOI: 10.1093/pnasnexus/pgad287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023]
Abstract
As coral reef ecosystems experience unprecedented change, effective monitoring of reef features supports management, conservation, and intervention efforts. Omic techniques show promise in quantifying key components of reef ecosystems including dissolved metabolites and microorganisms that may serve as invisible sensors for reef ecosystem dynamics. Dissolved metabolites are released by reef organisms and transferred among microorganisms, acting as chemical currencies and contributing to nutrient cycling and signaling on reefs. Here, we applied four omic techniques (taxonomic microbiome via amplicon sequencing, functional microbiome via shotgun metagenomics, targeted metabolomics, and untargeted metabolomics) to waters overlying Florida's Coral Reef, as well as microbiome profiling on individual coral colonies from these reefs to understand how microbes and dissolved metabolites reflect biogeographical, benthic, and nutrient properties of this 500-km barrier reef. We show that the microbial and metabolite omic approaches each differentiated reef habitats based on geographic zone. Further, seawater microbiome profiling and targeted metabolomics were significantly related to more reef habitat characteristics, such as amount of hard and soft coral, compared to metagenomic sequencing and untargeted metabolomics. Across five coral species, microbiomes were also significantly related to reef zone, followed by species and disease status, suggesting that the geographic water circulation patterns in Florida also impact the microbiomes of reef builders. A combination of differential abundance and indicator species analyses revealed metabolite and microbial signatures of specific reef zones, which demonstrates the utility of these techniques to provide new insights into reef microbial and metabolite features that reflect broader ecosystem processes.
Collapse
Affiliation(s)
- Cynthia C Becker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Biological Oceanography, Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering,Cambridge, MA 02139, USA
| | - Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Brian Zgliczynski
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Chris Sullivan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Stuart Sandin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Erinn Muller
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL 33042, USA
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Abigail S Clark
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL 33042, USA
- Marine Science and Technology Department, The College of the Florida Keys, Key West, FL 33040, USA
| | - Melissa C Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
31
|
Mudge L, Bruno JF. Disturbance intensification is altering the trait composition of Caribbean reefs, locking them into a low functioning state. Sci Rep 2023; 13:14022. [PMID: 37640770 PMCID: PMC10462730 DOI: 10.1038/s41598-023-40672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Anthropogenic climate change is intensifying natural disturbance regimes, which negatively affects some species, while benefiting others. This could alter the trait composition of ecological communities and influence resilience to disturbance. We investigated how the frequency and intensification of the regional storm regime (and likely other disturbances) is altering coral species composition and in turn resistance and recovery. We developed regional databases of coral cover and composition (3144 reef locations from 1970 to 2017) and of the path and strength of cyclonic storms in the region (including 10,058 unique storm-reef intersections). We found that total living coral cover declined steadily through 2017 (the median annual loss rate was ~ 0.25% per year). Our results also indicate that despite the observed increase in the intensity of Atlantic cyclonic storms, their effect on coral cover has decreased markedly. This could be due in part to selection for disturbance-resistant taxa in response to the intensifying disturbance regime. We found that storms accelerated the loss of threatened acroporid corals but had no measurable effect on the cover of more resilient "weedy" corals, thereby increasing their relative cover. Although resistance to disturbance has increased, recovery rates have slowed due to the dominance of small, slow-growing species. This feedback loop is locking coral communities into a low-functioning state dominated by weedy species with limited ecological or societal value.
Collapse
Affiliation(s)
- Laura Mudge
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Barefoot Ocean, LLC., Houston, Texas, USA.
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Evans JS, Paul VJ, Ushijima B, Pitts KA, Kellogg CA. Investigating microbial size classes associated with the transmission of stony coral tissue loss disease (SCTLD). PeerJ 2023; 11:e15836. [PMID: 37637172 PMCID: PMC10460154 DOI: 10.7717/peerj.15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Effective treatment and prevention of any disease necessitates knowledge of the causative agent, yet the causative agents of most coral diseases remain unknown, in part due to the difficulty of distinguishing the pathogenic microbe(s) among the complex microbial backdrop of coral hosts. Stony coral tissue loss disease (SCTLD) is a particularly destructive disease of unknown etiology, capable of transmitting through the water column and killing entire colonies within a matter of weeks. Here we used a previously described method to (i) isolate diseased and apparently healthy coral colonies within individual mesocosms containing filtered seawater with low microbial background levels; (ii) incubate for several days to enrich the water with coral-shed microbes; (iii) use tangential-flow filtration to concentrate the microbial community in the mesocosm water; and then (iv) filter the resulting concentrate through a sequential series of different pore-sized filters. To investigate the size class of microorganism(s) associated with SCTLD transmission, we used 0.8 µm pore size filters to capture microeukaryotes and expelled zooxanthellae, 0.22 µm pore size filters to capture bacteria and large viruses, and 0.025 µm pore size filters to capture smaller viruses. In an attempt to further refine which size fraction(s) contained the transmissible element of SCTLD, we then applied these filters to healthy "receiver" coral fragments and monitored them for the onset of SCTLD signs over three separate experimental runs. However, several factors outside of our control confounded the transmission results, rendering them inconclusive. As the bulk of prior studies of SCTLD in coral tissues have primarily investigated the associated bacterial community, we chose to characterize the prokaryotic community associated with all mesocosm 0.22 µm pore size filters using Illumina sequencing of the V4 region of the 16S rRNA gene. We identified overlaps with prior SCTLD studies, including the presence of numerous previously identified SCTLD bioindicators within our mesocosms. The identification in our mesocosms of specific bacterial amplicon sequence variants that also appear across prior studies spanning different collection years, geographic regions, source material, and coral species, suggests that bacteria may play some role in the disease.
Collapse
Affiliation(s)
- James S. Evans
- St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, Florida, United States of America
| | - Valerie J. Paul
- Smithsonian Marine Station, Ft. Pierce, Florida, United States of America
| | - Blake Ushijima
- Smithsonian Marine Station, Ft. Pierce, Florida, United States of America
- Department of Biology & Marine Biology, University of North Carolina at Wilmington, Wilmington, North Carolina, United States of America
| | - Kelly A. Pitts
- Smithsonian Marine Station, Ft. Pierce, Florida, United States of America
| | - Christina A. Kellogg
- St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, Florida, United States of America
| |
Collapse
|
33
|
Mendoza Quiroz S, Tecalco Renteria R, Ramírez Tapia GG, Miller MW, Grosso-Becerra MV, Banaszak AT. Coral affected by stony coral tissue loss disease can produce viable offspring. PeerJ 2023; 11:e15519. [PMID: 37465157 PMCID: PMC10351504 DOI: 10.7717/peerj.15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/16/2023] [Indexed: 07/20/2023] Open
Abstract
Stony coral tissue loss disease (SCTLD) has caused high mortality of at least 25 coral species across the Caribbean, with Pseudodiploria strigosa being the second most affected species in the Mexican Caribbean. The resulting decreased abundance and colony density reduces the fertilization potential of SCTLD-susceptible species. Therefore, larval-based restoration could be of great benefit, though precautionary concerns about disease transmission may foster reluctance to implement this approach with SCTLD-susceptible species. We evaluated the performance of offspring obtained by crossing gametes of a healthy P. strigosa colony (100% apparently healthy tissue) with that of a colony affected by SCTLD (>50% tissue loss) and compared these with prior crosses between healthy parents. Fertilization and settlement were as high as prior crosses among healthy parents, and post-settlement survivorship over a year in outdoor tanks was 7.8%. After thirteen months, the diseased-parent recruits were outplanted to a degraded reef. Their survivorship was ∼44% and their growth rate was 0.365 mm ± 1.29 SD per month. This study shows that even diseased parent colonies can be effective in assisted sexual reproduction for the restoration of species affected by SCTLD.
Collapse
Affiliation(s)
- Sandra Mendoza Quiroz
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Raúl Tecalco Renteria
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Gandhi Germán Ramírez Tapia
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | - Maria Victoria Grosso-Becerra
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
34
|
Lima LFO, Alker AT, Papudeshi B, Morris MM, Edwards RA, de Putron SJ, Dinsdale EA. Coral and Seawater Metagenomes Reveal Key Microbial Functions to Coral Health and Ecosystem Functioning Shaped at Reef Scale. MICROBIAL ECOLOGY 2023; 86:392-407. [PMID: 35965269 PMCID: PMC10293411 DOI: 10.1007/s00248-022-02094-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The coral holobiont is comprised of a highly diverse microbial community that provides key services to corals such as protection against pathogens and nutrient cycling. The coral surface mucus layer (SML) microbiome is very sensitive to external changes, as it constitutes the direct interface between the coral host and the environment. Here, we investigate whether the bacterial taxonomic and functional profiles in the coral SML are shaped by the local reef zone and explore their role in coral health and ecosystem functioning. The analysis was conducted using metagenomes and metagenome-assembled genomes (MAGs) associated with the coral Pseudodiploria strigosa and the water column from two naturally distinct reef environments in Bermuda: inner patch reefs exposed to a fluctuating thermal regime and the more stable outer reefs. The microbial community structure in the coral SML varied according to the local environment, both at taxonomic and functional levels. The coral SML microbiome from inner reefs provides more gene functions that are involved in nutrient cycling (e.g., photosynthesis, phosphorus metabolism, sulfur assimilation) and those that are related to higher levels of microbial activity, competition, and stress response. In contrast, the coral SML microbiome from outer reefs contained genes indicative of a carbohydrate-rich mucus composition found in corals exposed to less stressful temperatures and showed high proportions of microbial gene functions that play a potential role in coral disease, such as degradation of lignin-derived compounds and sulfur oxidation. The fluctuating environment in the inner patch reefs of Bermuda could be driving a more beneficial coral SML microbiome, potentially increasing holobiont resilience to environmental changes and disease.
Collapse
Affiliation(s)
- Laís F. O. Lima
- Department of Biology, San Diego State University, San Diego, CA USA
- College of Biological Sciences, University of California Davis, Davis, CA USA
| | - Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Bhavya Papudeshi
- College of Science and Engineering, Flinders University, Adelaide, South Australia Australia
| | | | - Robert A. Edwards
- Department of Biology, San Diego State University, San Diego, CA USA
- College of Science and Engineering, Flinders University, Adelaide, South Australia Australia
| | | | - Elizabeth A. Dinsdale
- Department of Biology, San Diego State University, San Diego, CA USA
- College of Science and Engineering, Flinders University, Adelaide, South Australia Australia
| |
Collapse
|
35
|
Robertson EP, Walsh DP, Martin J, Work TM, Kellogg CA, Evans JS, Barker V, Hawthorn A, Aeby G, Paul VJ, Walker BK, Kiryu Y, Woodley CM, Meyer JL, Rosales SM, Studivan M, Moore JF, Brandt ME, Bruckner A. Rapid prototyping for quantifying belief weights of competing hypotheses about emergent diseases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117668. [PMID: 36958278 DOI: 10.1016/j.jenvman.2023.117668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Emerging diseases can have devastating consequences for wildlife and require a rapid response. A critical first step towards developing appropriate management is identifying the etiology of the disease, which can be difficult to determine, particularly early in emergence. Gathering and synthesizing existing information about potential disease causes, by leveraging expert knowledge or relevant existing studies, provides a principled approach to quickly inform decision-making and management efforts. Additionally, updating the current state of knowledge as more information becomes available over time can reduce scientific uncertainty and lead to substantial improvement in the decision-making process and the application of management actions that incorporate and adapt to newly acquired scientific understanding. Here we present a rapid prototyping method for quantifying belief weights for competing hypotheses about the etiology of disease using a combination of formal expert elicitation and Bayesian hierarchical modeling. We illustrate the application of this approach for investigating the etiology of stony coral tissue loss disease (SCTLD) and discuss the opportunities and challenges of this approach for addressing emergent diseases. Lastly, we detail how our work may apply to other pressing management or conservation problems that require quick responses. We found the rapid prototyping methods to be an efficient and rapid means to narrow down the number of potential hypotheses, synthesize current understanding, and help prioritize future studies and experiments. This approach is rapid by providing a snapshot assessment of the current state of knowledge. It can also be updated periodically (e.g., annually) to assess changes in belief weights over time as scientific understanding increases. Synthesis and applications: The rapid prototyping approaches demonstrated here can be used to combine knowledge from multiple experts and/or studies to help with fast decision-making needed for urgent conservation issues including emerging diseases and other management problems that require rapid responses. These approaches can also be used to adjust belief weights over time as studies and expert knowledge accumulate and can be a helpful tool for adapting management decisions.
Collapse
Affiliation(s)
- Ellen P Robertson
- Contract Quantitative Ecologist, US Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, USA.
| | - Daniel P Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA.
| | - Julien Martin
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA.
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - Christina A Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - James S Evans
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | | | - Aine Hawthorn
- U.S. Geological Survey National Wildlife Health Center, Western Fisheries Research Center, Seattle, WA, USA
| | - Greta Aeby
- Smithsonian Marine Station, Fort Pierce, FL, USA
| | | | - Brian K Walker
- Nova Southeastern University, Halmos College of Arts and Sciences, Dania Beach, FL, USA
| | - Yasunari Kiryu
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, USA
| | - Cheryl M Woodley
- Hollings Marine Laboratory, Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration's National Ocean Service, Charleston, SC, USA
| | - Julie L Meyer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, USA
| | - Stephanie M Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA; Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Michael Studivan
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA; Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Jennifer F Moore
- Moore Ecological Analysis and Management, LLC, Gainesville, FL, USA
| | - Marilyn E Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | - Andrew Bruckner
- Florida Keys National Marine Sanctuary, NOAA, Key Largo, FL, USA
| |
Collapse
|
36
|
Young BD, Rosales SM, Enochs IC, Kolodziej G, Formel N, Moura A, D'Alonso GL, Traylor-Knowles N. Different disease inoculations cause common responses of the host immune system and prokaryotic component of the microbiome in Acropora palmata. PLoS One 2023; 18:e0286293. [PMID: 37228141 DOI: 10.1371/journal.pone.0286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Reef-building corals contain a complex consortium of organisms, a holobiont, which responds dynamically to disease, making pathogen identification difficult. While coral transcriptomics and microbiome communities have previously been characterized, similarities and differences in their responses to different pathogenic sources has not yet been assessed. In this study, we inoculated four genets of the Caribbean branching coral Acropora palmata with a known coral pathogen (Serratia marcescens) and white band disease. We then characterized the coral's transcriptomic and prokaryotic microbiomes' (prokaryiome) responses to the disease inoculations, as well as how these responses were affected by a short-term heat stress prior to disease inoculation. We found strong commonality in both the transcriptomic and prokaryiomes responses, regardless of disease inoculation. Differences, however, were observed between inoculated corals that either remained healthy or developed active disease signs. Transcriptomic co-expression analysis identified that corals inoculated with disease increased gene expression of immune, wound healing, and fatty acid metabolic processes. Co-abundance analysis of the prokaryiome identified sets of both healthy-and-disease-state bacteria, while co-expression analysis of the prokaryiomes' inferred metagenomic function revealed infected corals' prokaryiomes shifted from free-living to biofilm states, as well as increasing metabolic processes. The short-term heat stress did not increase disease susceptibility for any of the four genets with any of the disease inoculations, and there was only a weak effect captured in the coral hosts' transcriptomic and prokaryiomes response. Genet identity, however, was a major driver of the transcriptomic variance, primarily due to differences in baseline immune gene expression. Despite genotypic differences in baseline gene expression, we have identified a common response for components of the coral holobiont to different disease inoculations. This work has identified genes and prokaryiome members that can be focused on for future coral disease work, specifically, putative disease diagnostic tools.
Collapse
Affiliation(s)
- Benjamin D Young
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, Florida, United States of America
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Stephanie M Rosales
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Ian C Enochs
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Graham Kolodziej
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Nathan Formel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Amelia Moura
- Coral Restoration Foundation, Tavernier, Florida, United States of America
| | | | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
37
|
Enochs IC, Studivan MS, Kolodziej G, Foord C, Basden I, Boyd A, Formel N, Kirkland A, Rubin E, Jankulak M, Smith I, Kelble CR, Manzello DP. Coral persistence despite marginal conditions in the Port of Miami. Sci Rep 2023; 13:6759. [PMID: 37185619 PMCID: PMC10130011 DOI: 10.1038/s41598-023-33467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Coral cover has declined worldwide due to anthropogenic stressors that manifest on both global and local scales. Coral communities that exist in extreme conditions can provide information on how these stressors influence ecosystem structure, with implications for their persistence under future conditions. The Port of Miami is located within an urbanized environment, with active coastal development, as well as commercial shipping and recreational boating activity. Monitoring of sites throughout the Port since 2018 has revealed periodic extremes in temperature, seawater pH, and salinity, far in excess of what have been measured in most coral reef environments. Despite conditions that would kill many reef species, we have documented diverse coral communities growing on artificial substrates at these sites-reflecting remarkable tolerance to environmental stressors. Furthermore, many of the more prevalent species within these communities are now conspicuously absent or in low abundance on nearby reefs, owing to their susceptibility and exposure to stony coral tissue loss disease. Natural reef frameworks, however, are largely absent at the urban sites and while diverse fish communities are documented, it is unlikely that these communities provide the same goods and services as natural reef habitats. Regardless, the existence of these communities indicates unlikely persistence and highlights the potential for coexistence of threatened species in anthropogenic environments, provided that suitable stewardship strategies are in place.
Collapse
Affiliation(s)
- Ian C Enochs
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA.
| | - Michael S Studivan
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Graham Kolodziej
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | | | - Isabelle Basden
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Albert Boyd
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Nathan Formel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Amanda Kirkland
- Biological Sciences Department, University of New Orleans, New Orleans, LA, 70148, USA
| | - Ewelina Rubin
- Soil and Water Sciences Department, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Mike Jankulak
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Ian Smith
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Christopher R Kelble
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
| | - Derek P Manzello
- Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, U.S. National Oceanic and Atmospheric Administration, College Park, MD, USA
| |
Collapse
|
38
|
Ushijima B, Gunasekera SP, Meyer JL, Tittl J, Pitts KA, Thompson S, Sneed JM, Ding Y, Chen M, Jay Houk L, Aeby GS, Häse CC, Paul VJ. Chemical and genomic characterization of a potential probiotic treatment for stony coral tissue loss disease. Commun Biol 2023; 6:248. [PMID: 37024599 PMCID: PMC10079959 DOI: 10.1038/s42003-023-04590-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023] Open
Abstract
Considered one of the most devastating coral disease outbreaks in history, stony coral tissue loss disease (SCTLD) is currently spreading throughout Florida's coral reefs and the greater Caribbean. SCTLD affects at least two dozen different coral species and has been implicated in extensive losses of coral cover. Here we show Pseudoalteromonas sp. strain McH1-7 has broad-spectrum antibacterial activity against SCTLD-associated bacterial isolates. Chemical analyses indicated McH1-7 produces at least two potential antibacterials, korormicin and tetrabromopyrrole, while genomic analysis identified the genes potentially encoding an L-amino acid oxidase and multiple antibacterial metalloproteases (pseudoalterins). During laboratory trials, McH1-7 arrested or slowed disease progression on 68.2% of diseased Montastraea cavernosa fragments treated (n = 22), and it prevented disease transmission by 100% (n = 12). McH1-7 is the most chemically characterized coral probiotic that is an effective prophylactic and direct treatment for the destructive SCTLD as well as a potential alternative to antibiotic use.
Collapse
Affiliation(s)
- Blake Ushijima
- Department of Biology & Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA.
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA.
| | | | - Julie L Meyer
- Department of Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jessica Tittl
- Department of Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Kelly A Pitts
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Sharon Thompson
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer M Sneed
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - L Jay Houk
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Greta S Aeby
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA.
| |
Collapse
|
39
|
Page CE, Leggat W, Egan S, Ainsworth TD. A coral disease outbreak highlights vulnerability of remote high-latitude lagoons to global and local stressors. iScience 2023; 26:106205. [PMID: 36915696 PMCID: PMC10006636 DOI: 10.1016/j.isci.2023.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/17/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Outbreaks of coral disease are often associated with global and local stressors like changes in temperature and poor water quality. A severe coral disease outbreak was recorded in the primary reef-building taxa Montipora spp. in a high-latitude lagoon at Norfolk Island following heat stress and pollution events in 2020. Disease signs suggest the occurrence of a Montiporid White Syndrome with four distinct phases and maximum measured tissue loss of 329 mm-2 day-1. In December 2020 and April 2021, 60% of the Montipora community were impacted and disease severity increased by 54% over this period. Spatial patterns in prevalence indicate the disease is associated with exposure to poor water quality in addition to size class of coral colonies. High prevalence levels make this event comparable to some of the most severe coral disease outbreaks recorded to date demonstrating the vulnerability of this system to combined impacts of warming and pollution.
Collapse
Affiliation(s)
- Charlotte E Page
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - William Leggat
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, NSW 2308, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - Tracy D Ainsworth
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| |
Collapse
|
40
|
Rosales SM, Huebner LK, Evans JS, Apprill A, Baker AC, Becker CC, Bellantuono AJ, Brandt ME, Clark AS, Del Campo J, Dennison CE, Eaton KR, Huntley NE, Kellogg CA, Medina M, Meyer JL, Muller EM, Rodriguez-Lanetty M, Salerno JL, Schill WB, Shilling EN, Stewart JM, Voss JD. A meta-analysis of the stony coral tissue loss disease microbiome finds key bacteria in unaffected and lesion tissue in diseased colonies. ISME COMMUNICATIONS 2023; 3:19. [PMID: 36894742 PMCID: PMC9998881 DOI: 10.1038/s43705-023-00220-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.
Collapse
Affiliation(s)
- Stephanie M Rosales
- The University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, FL, USA.
- National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA.
| | - Lindsay K Huebner
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | - James S Evans
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - Amy Apprill
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, USA
| | - Andrew C Baker
- The University of Miami, Rosenstiel School of Marine, Atmospheric, and Earth Science, Department of Marine Biology and Ecology, Miami, FL, USA
| | - Cynthia C Becker
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, USA
| | | | - Marilyn E Brandt
- The University of the Virgin Islands, Center for Marine and Environmental Studies, St. Thomas, VI, USA
| | - Abigail S Clark
- The College of the Florida Keys, Marine Science and Technology, Key West, FL, USA
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, USA
| | - Javier Del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra)-Barcelona, Barcelona, Spain
| | - Caroline E Dennison
- The University of Miami, Rosenstiel School of Marine, Atmospheric, and Earth Science, Department of Marine Biology and Ecology, Miami, FL, USA
| | - Katherine R Eaton
- The University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, FL, USA
- National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
- Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA
| | - Naomi E Huntley
- The Pennsylvania State University, Biology Department, University Park, PA, USA
| | - Christina A Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - Mónica Medina
- The Pennsylvania State University, Biology Department, University Park, PA, USA
| | - Julie L Meyer
- University of Florida, Soil, Water, and Ecosystem Sciences Department, Gainesville, FL, USA
| | - Erinn M Muller
- Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA
| | | | - Jennifer L Salerno
- George Mason University, Potomac Environmental Research and Education Center, Department of Environmental Science and Policy, Woodbridge, VA, USA
| | - William B Schill
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown, WV, USA
| | - Erin N Shilling
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Julia Marie Stewart
- The Pennsylvania State University, Biology Department, University Park, PA, USA
| | - Joshua D Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| |
Collapse
|
41
|
Bharath MS, Chandran R, Aeby GS, Senthilkumaran R, Ramkumaran K, Thanappan VP, Chaudhury NR, Satyanarayana C. First report of yellow-banded tissue loss disease on coral reefs outside the Arabian/Persian Gulf. DISEASES OF AQUATIC ORGANISMS 2023; 153:1-8. [PMID: 36655769 DOI: 10.3354/dao03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coral disease is a major cause of coral reef degradation, yet many diseases remain understudied. Yellow-banded tissue loss disease (YBTLD) has a distinct gross lesion morphology and to date has only been reported from the Arabian/Persian Gulf; little else is known about the ecology of the disease. We report on the first occurrence of YBTLD outside of the Arabian/Persian Gulf at 2 sites (Laku Point, Narara Reef) within the Gulf of Kachchh (GoK) located on the northwest coast of India. At Narara Reef, YBTLD was observed at 12 out of 24 transects with an average prevalence of 4.7 ± 1.3%. At Laku Point, YBTLD was observed at 19 out of 24 transects with an average prevalence of 5.4 ± 1%. Four out of 15 coral genera within transects had signs of YBTLD and included Goniopora, Dipsastraea, Lobophyllia, and Turbinaria. Lobophyllia and Turbinaria had the highest susceptibility to the disease, with prevalence significantly higher than expected based on their abundance on the reefs. The distribution and prevalence of YBTLD in the GoK was higher than in coral reefs in the Arabian/Persian Gulf. The GoK is an extreme environment for coral reefs with both natural stressors (high salinities, strong, seasonal storm activities, and extreme tides) and anthropogenic pollutants from industrial, mining, agricultural, and domestic activities. These poor environmental conditions may help explain the high occurrence of YBTLD on GoK reefs.
Collapse
Affiliation(s)
- Murugan Selva Bharath
- Zoological Survey of India - Jamnagar Field Station, Forest Colony, Jamnagar-Gujarat 361001, India
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Brown AL, Anastasiou DE, Schul M, MacVittie S, Spiers LJ, Meyer JL, Manfrino C, Frazer TK. Mixtures of genotypes increase disease resistance in a coral nursery. Sci Rep 2022; 12:19286. [PMID: 36369337 PMCID: PMC9652365 DOI: 10.1038/s41598-022-23457-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Marine infectious diseases are a leading cause of population declines globally due, in large part, to challenges in diagnosis and limited treatment options. Mitigating disease spread is particularly important for species targeted for conservation. In some systems, strategic arrangement of organisms in space can constrain disease outbreaks, however, this approach has not been used in marine restoration. Reef building corals have been particularly devastated by disease and continue to experience catastrophic population declines. We show that mixtures of genotypes (i.e., diversity) increased disease resistance in the critically endangered Acropora cervicornis, a species that is frequently targeted for restoration of degraded reefs in the broader Caribbean region. This finding suggests a more generalized relationship between diversity and disease and offers a viable strategy for mitigating the spread of infectious diseases in corals that likely applies to other foundation species targeted for restoration.
Collapse
Affiliation(s)
- Anya L. Brown
- grid.15276.370000 0004 1936 8091School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611 USA ,grid.27860.3b0000 0004 1936 9684Present Address: Department of Evolution and Ecology & Bodega Marine Lab, University of California, Davis, Bodega Bay, CA 94923 USA
| | - Dagny-Elise Anastasiou
- Central Caribbean Marine Institute, N Coast Road E, Box 37, Little Cayman, KY3-2501 Cayman Islands
| | - Monica Schul
- grid.15276.370000 0004 1936 8091Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Sophia MacVittie
- Central Caribbean Marine Institute, N Coast Road E, Box 37, Little Cayman, KY3-2501 Cayman Islands ,grid.266096.d0000 0001 0049 1282Department of Molecular Cell Biology, University of California, Merced, Merced, CA USA
| | - Lindsay J. Spiers
- grid.15276.370000 0004 1936 8091Department of Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32611 USA ,grid.427218.a0000 0001 0556 4516Florida Fish & Wildlife Conservation Commission, Fish & Wildlife Research Institute, Marathon, FL USA
| | - Julie L. Meyer
- grid.15276.370000 0004 1936 8091Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Carrie Manfrino
- Central Caribbean Marine Institute, N Coast Road E, Box 37, Little Cayman, KY3-2501 Cayman Islands
| | - Thomas K. Frazer
- grid.170693.a0000 0001 2353 285XCollege of Marine Science, University of South Florida, St. Petersburg, FL 33701 USA
| |
Collapse
|
43
|
Studivan MS, Baptist M, Molina V, Riley S, First M, Soderberg N, Rubin E, Rossin A, Holstein DM, Enochs IC. Transmission of stony coral tissue loss disease (SCTLD) in simulated ballast water confirms the potential for ship-born spread. Sci Rep 2022; 12:19248. [PMID: 36357458 PMCID: PMC9649619 DOI: 10.1038/s41598-022-21868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Stony coral tissue loss disease (SCTLD) remains an unprecedented epizootic disease, representing a substantial threat to the persistence and health of coral reef ecosystems in the Tropical Western Atlantic since its first observation near Miami, Florida in 2014. In addition to transport between adjacent reefs indicative of waterborne pathogen(s) dispersing on ocean currents, it has spread throughout the Caribbean to geographically- and oceanographically-isolated reefs, in a manner suggestive of ship and ballast water transmission. Here we evaluate the potential for waterborne transmission of SCTLD including via simulated ballast water, and test the efficacy of commonly-used UV radiation treatment of ballast water. Two species of reef-building corals (Orbicella faveolata and Pseudodiploria strigosa) were subjected to (1) disease-exposed or UV-treated disease-exposed water, and (2) a ballast hold time series of disease-exposed water in two carefully-controlled experiments to evaluate transmission. Our experiments demonstrated transmission of SCTLD through water, rather than direct contact between diseased and healthy corals. While UV treatment of disease-exposed water led to a 50% reduction in the number of corals exhibiting disease signs in both species, the statistical risk of transmission and volume of water needed to elicit SCTLD lesions remained similar to untreated disease-exposed water. The ballast hold time (24 h vs. 120 h) did not have a significant effect on the onset of visible disease signs for either species, though there appeared to be some evidence of a concentration effect for P. strigosa as lesions were only observed after the 120 h ballast hold time. Results from both experiments suggest that the SCTLD pathogens can persist in both untreated and UV-treated ballast water and remain pathogenic. Ballast water may indeed pose a threat to the continued spread and persistence of SCTLD, warranting further investigation of additional ballast water treatments and pathogen detection methods.
Collapse
Affiliation(s)
- Michael S Studivan
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA.
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA.
| | - Michelle Baptist
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Vanessa Molina
- Excet, Inc., 6225 Brandon Ave #360, Springfield, VA, 22150, USA
| | - Scott Riley
- Excet, Inc., 6225 Brandon Ave #360, Springfield, VA, 22150, USA
| | - Matthew First
- U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Nash Soderberg
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Ewelina Rubin
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
- University of Florida, 2033 Mowry Rd, Gainesville, FL, 32611, USA
| | - Ashley Rossin
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Daniel M Holstein
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ian C Enochs
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
| |
Collapse
|
44
|
A highly effective therapeutic ointment for treating corals with black band disease. PLoS One 2022; 17:e0276902. [PMID: 36288339 PMCID: PMC9605335 DOI: 10.1371/journal.pone.0276902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious disease outbreaks are a primary contributor to coral reef decline worldwide. A particularly lethal disease, black band disease (BBD), was one of the first coral diseases reported and has since been documented on reefs worldwide. BBD is described as a microbial consortium of photosynthetic cyanobacteria, sulfate-reducing and sulfide-oxidizing bacteria, and heterotrophic bacteria and archaea. The disease is visually identified by a characteristic dark band that moves across apparently healthy coral tissue leaving behind bare skeleton. Despite its virulence, attempts to effectively treat corals with BBD in the field have been limited. Here, we developed and tested several different therapeutic agents on Pseudodiploria spp. corals with signs of active BBD at Buck Island Reef National Monument in St. Croix, USVI. A variety of therapies were tested, including hydrogen peroxide-based treatments, ointment containing antibiotics, and antiviral/antimicrobial-based ointments (referred to as CoralCure). The CoralCure ointments, created by Ocean Alchemists LLC, focused on the dosing regimen and delivery mechanisms of the different active ingredients. Active ingredients included carbamide peroxide, Lugol's iodine solution, along with several proprietary essential oil and natural product blends. Additionally, the active ingredients had different release times based on treatment: CoralCure A-C had a release time of 24 hours, CoralCure D-F had a release time of 72 hours. The ointments were applied directly to the BBD lesion. Also, jute rope was saturated with a subset of these CoralCure ointment formulations to assist with adhesion. These ropes were then applied to the leading edge of the BBD lesion for one week to ensure sufficient exposure. Corals were revisited approximately three to five months after treatment application to assess disease progression rates and the presence/absence of lesions-the metrics used to quantify the efficacy of each treatment. Although most of the treatments were unsuccessful, two CoralCure rope formulations-CoralCure D rope and CoralCure E rope, eliminated the appearance of BBD in 100% of the corals treated. As such, these treatments significantly reduced the likelihood of BBD occurrence compared to the untreated controls. Additionally, lesions treated with these formulations lost significantly less tissue compared with controls. These results provide the mechanisms for an easily employable method to effectively treat a worldwide coral disease.
Collapse
|
45
|
Harman TE, Barshis DJ, Hauff Salas B, Hamsher SE, Strychar KB. Indications of symbiotic state influencing melanin-synthesis immune response in the facultative coral Astrangia poculata. DISEASES OF AQUATIC ORGANISMS 2022; 151:63-74. [PMID: 36173117 DOI: 10.3354/dao03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased ocean warming is causing detrimental impacts to tropical corals worldwide. Compounding the effects of heat stress, incidences of tropical coral disease have risen concurrently. While tropical coral responses to these impacts are well studied, temperate coral responses remain largely unknown. The present study focused on the immune response of the temperate coral Astrangia poculata to increased temperature and disease. Symbiotic and aposymbiotic A. poculata were collected from Narragansett Bay, Rhode Island (USA) in summer and winter seasons and exposed to control (18°C) versus elevated temperatures (26°C) in the presence of an immune stimulant (i.e. lipopolysaccharide) for a 12 h period. Prophenoloxidase (PPO) and melanin concentrations from the melanin-synthesis pathway were assessed via spectrophotometry to examine immune responses. While PPO measurements were higher on average in symbiotic corals compared with aposymbiotic corals, temperature and season did not significantly affect this metric. Melanin was significantly higher in symbiotic compared to aposymbiotic corals, implying that symbiotic state may be important for melanin-synthesis response. Conversely, melanin as an immune response may be of less importance in aposymbiotic A. poculata due to the potential capacity of other immune responses in this species. In addition, differences in resource allocation to immune investment as a result of symbiosis is plausible given melanin production observed within the present study. However, thermal stressors may reduce the overall influence of symbiosis on melanin production. Future studies should build upon these results to further understand the entirety of innate immunity responses in temperate coral species.
Collapse
Affiliation(s)
- Tyler E Harman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | | | | | | | | |
Collapse
|
46
|
Toth LT, Courtney TA, Colella MA, Kupfner Johnson SA, Ruzicka RR. The past, present, and future of coral reef growth in the Florida Keys. GLOBAL CHANGE BIOLOGY 2022; 28:5294-5309. [PMID: 35789026 PMCID: PMC9542952 DOI: 10.1111/gcb.16295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 05/06/2023]
Abstract
Coral-reef degradation is driving global-scale reductions in reef-building capacity and the ecological, geological, and socioeconomic functions it supports. The persistence of those essential functions will depend on whether coral-reef management is able to rebalance the competing processes of reef accretion and erosion. Here, we reconstructed census-based carbonate budgets of 46 reefs throughout the Florida Keys from 1996 to 2019. We evaluated the environmental and ecological drivers of changing budget states and compared historical trends in reef-accretion potential to millennial-scale baselines of accretion from reef cores and future projections with coral restoration. We found that historically, most reefs had positive carbonate budgets, and many had reef-accretion potential comparable to the ~3 mm year-1 average accretion rate during the peak of regional reef building ~7000 years ago; however, declines in reef-building Acropora palmata and Orbicella spp. corals following a series of thermal stress events and coral disease outbreaks resulted in a shift from positive to negative budgets for most reefs in the region. By 2019, only ~15% of reefs had positive net carbonate production. Most of those reefs were in inshore, Lower Keys patch-reef habitats with low water clarity, supporting the hypothesis that environments with naturally low irradiance may provide a refugia from thermal stress. We caution that our estimated carbonate budgets are likely overly optimistic; comparison of reef-accretion potential to measured accretion from reef cores suggests that, by not accounting for the role of nonbiological physical and chemical erosion, census-based carbonate budgets may underestimate total erosion by ~1 mm year-1 (-1.15 kg CaCO3 m-2 year-1 ). Although the present state of Florida's reefs is dire, we demonstrate that the restoration of reef-building corals has the potential to help mitigate declines in reef accretion in some locations, which could allow some key ecosystem functions to be maintained until the threat of global climate change is addressed.
Collapse
Affiliation(s)
- Lauren T. Toth
- U.S. Geological SurveySt. Petersburg Coastal and Marine Science CenterSt. PetersburgFloridaUSA
| | - Travis A. Courtney
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Marine SciencesUniversity of Puerto Rico MayagüezMayagüezPuerto Rico
| | - Michael A. Colella
- Fish & Wildlife Research Institute, Florida Fish & Wildlife Conservation CommissionSt. PetersburgFloridaUSA
| | | | - Robert R. Ruzicka
- Fish & Wildlife Research Institute, Florida Fish & Wildlife Conservation CommissionSt. PetersburgFloridaUSA
| |
Collapse
|
47
|
Schul M, Mason A, Ushijima B, Sneed JM. Microbiome and Metabolome Contributions to Coral Health and Disease. THE BIOLOGICAL BULLETIN 2022; 243:76-83. [PMID: 36108037 DOI: 10.1086/720971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractCoral populations are declining worldwide as a result of increased environmental stressors, including disease. Coral health is greatly dependent on complex interactions between the host animal and its associated microbial symbionts. While relatively understudied, there is growing evidence that the coral microbiome contributes to the health and resilience of corals in a variety of ways, similar to more well-studied systems, such as the human microbiome. Many of these interactions are dependent upon the production and exchange of natural products, including antibacterial compounds, quorum-sensing molecules, internal signaling molecules, nutrients, and so on. While advances in sequencing, culturing, and metabolomic techniques have aided in moving forward the understanding of coral microbiome interactions, current sequence and metabolite databases are lacking, hindering detailed descriptions of the microbes and metabolites involved. This review focuses on the roles of coral microbiomes in health and disease processes of coral hosts, with special attention to the coral metabolome. We discuss what is currently known about the relationship between the coral microbiome and disease, of beneficial microbial products or services, and how the manipulation of the coral microbiome may chemically benefit the coral host against disease. Understanding coral microbiome-metabolome interactions is critical to assisting management, conservation, and restoration strategies.
Collapse
|
48
|
Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández A, Estrada-Saldívar N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun Biol 2022; 5:440. [PMID: 35681037 PMCID: PMC9184636 DOI: 10.1038/s42003-022-03398-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican Reef by summer 2018, where it spread across the ~450-km reef system in only a few months. Rapid spread was generalized across all sites and mortality rates ranged from 94% to <10% among the 21 afflicted coral species. Most species of the family Meandrinadae (maze corals) and subfamily Faviinae (brain corals) sustained losses >50%. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids, an apparently unaffected genus that underwent severe population declines decades ago and retained low population levels, will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.
Collapse
Affiliation(s)
- Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México.
| | - F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ana Molina-Hernández
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
49
|
Feeding Behavior of Coralliophila sp. on Corals Affected by Caribbean Ciliate Infection (CCI): A New Possible Vector? DIVERSITY 2022. [DOI: 10.3390/d14050363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Coral reefs in the Caribbean are known to be affected by many coral diseases, yet the ecology and etiology of most diseases remain understudied. The Caribbean ciliate infection (CCI) caused by ciliates belonging to the genus Halofolliculina is a common disease on Caribbean reefs, with direct contact considered the most likely way through which the ciliates can be transmitted between infected and healthy colonies. Here we report an observation regarding a Coralliophila sp. snail feeding in proximity to a cluster of ciliates forming the typical disease band of CCI. The result of this observation is twofold. The feeding behavior of the snail may allow the passive attachment of ciliates on the body or shell of the snail resulting in indirect transport of the ciliates among colonies, which makes it eligible as a possible disease vector. Alternatively, the lesions created from snail feeding may enhance the progression of the ciliates already present on the coral as well as promoting additional infections allowing pathogens to enter through the feeding scar.
Collapse
|
50
|
Sarmet M. Neuroanatomical Subaquatic Pearl: The Beauty of Neuropalliative Care Revisited. J Palliat Med 2022; 25:838-839. [PMID: 35499377 DOI: 10.1089/jpm.2022.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Max Sarmet
- Graduate Department of Health Science and Technology, University of Brasília, Brasília, Brazil.,Department of Palliative Care, Hospital de Apoio de Brasília, Brasília, Brazil.,Tertiary Referral Center of Neuromuscular Diseases, Hospital de Apoio de Brasília, Brasília, Brazil
| |
Collapse
|