1
|
Zhang G, Lu Y, Wang Z, Ma R, Jin H, Zhang J, Liu F, Ding Y. Causal relationship between gut microbiota and ageing: A multi-omics Mendelian randomization study. Arch Gerontol Geriatr 2025; 131:105765. [PMID: 39988416 DOI: 10.1016/j.archger.2025.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Observational studies and clinical trials have suggested a connection between gut microbiota and aging. However, the causal relationship between them remains undetermined. OBJECTIVES This study aimed to use bidirectional two-sample Mendelian randomization (TSMR) analysis to explore the causal relationship between gut microbiota and aging. METHODS Summary statistics from genome-wide association studies (GWAS) on gut microbiota and seven aging-related phenotypes were employed for TSMR analysis. Reverse Mendelian randomization (MR) analysis was performed to assess the potential for reverse causality. Additionally, the relationship between Akkermansia muciniphila and inflammation-related proteins and metabolites was further investigated. The effects of Akkermansia muciniphila on aging were also examined in Caenorhabditis elegans by measuring both lifespan and healthspan. RESULTS MR analysis of 207 microbial taxa and seven aging phenotypes revealed 44 causal relationships between the gut microbiota and aging. Akkermansia muciniphila was found to be causally linked to several aging-related traits, including mvAge, appendicular lean mass, and grip strength (P < 0.05). Reverse MR analysis identified 23 causal relationships, but no bidirectional causality was observed. Moreover, Akkermansia muciniphila is causally related to ST1A1, taurine bile acid, and mannose (P < 0.05). In Caenorhabditis elegans, treatment with Akkermansia muciniphila significantly extended lifespan (P < 0.05) and improved mobility in aging nematodes. CONCLUSION TSMR analysis uncovers multiple potential causal links between gut microbiota and aging, particularly Akkermansia muciniphila. Experimental results support its role in alleviating aging. This study provides a strong foundation for future research on gut microbiota's role in aging.
Collapse
Affiliation(s)
- Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuqing Lu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhen Wang
- Department of General Surgery, The First Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ruicong Ma
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongjin Jin
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingsi Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fengyi Liu
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanchun Ding
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
2
|
Goyache I, Valdés-Varela L, Virto R, López-Yoldi M, López-Giral N, Sánchez-Vicente A, Milagro FI, Aranaz P. Anti-Obesity Properties of a Novel Probiotic Strain of Latilactobacillus sakei CNTA 173 in Caenorhabditis elegans. Int J Mol Sci 2025; 26:3286. [PMID: 40244138 PMCID: PMC11989871 DOI: 10.3390/ijms26073286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Probiotic strains with health-promoting activities have emerged as a promising strategy to prevent or treat different metabolic syndrome-related disturbances, including obesity or type 2 diabetes. In this work, we characterize the probiotic properties of a novel strain of Latilactobacillus sakei (L. sakei) CNTA 173, and we demonstrate its anti-obesity properties using the in vivo model Caenorhabditis elegans (C. elegans). This new strain exhibited sensitivity to the entire spectrum of antibiotics analysed, gastric and intestinal in vitro resistance, β-galactosidase activity, and the ability to form biofilm and to produce acetic acid in vitro. Cell culture analyses demonstrated that L. sakei CNTA 173 was able to reduce the adhesion to Caco-2 cells of the pathogenic E. coli O157:H7 and to exert immunomodulatory capacity in RAW 264.7 and HT-29 in vitro models. Furthermore, supplementation with L. sakei CNTA 173 counteracted the deleterious effects of glucose in C. elegans by significantly reducing fat accumulation, enhancing the oxidative stress response, and extending lifespan by directly regulating the carbohydrate and lipid metabolism-related genes acox-1, maoc-1, and daf-16. Our results unveil new strain-specific mechanisms of action by which L. sakei CNTA 173 exerts beneficial effects in vitro and in C. elegans, and suggest potential application of this novel probiotic strain in the prevention and treatment of metabolic syndrome-related disturbances.
Collapse
Affiliation(s)
- Ignacio Goyache
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (I.G.); (F.I.M.)
- Center for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain;
| | - Lorena Valdés-Varela
- Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Ctra. NA-134 Km.53, 31570 San Adrián, Spain; (L.V.-V.); (R.V.); (N.L.-G.); (A.S.-V.)
| | - Raquel Virto
- Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Ctra. NA-134 Km.53, 31570 San Adrián, Spain; (L.V.-V.); (R.V.); (N.L.-G.); (A.S.-V.)
| | - Miguel López-Yoldi
- Center for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain;
| | - Noelia López-Giral
- Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Ctra. NA-134 Km.53, 31570 San Adrián, Spain; (L.V.-V.); (R.V.); (N.L.-G.); (A.S.-V.)
| | - Ana Sánchez-Vicente
- Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Ctra. NA-134 Km.53, 31570 San Adrián, Spain; (L.V.-V.); (R.V.); (N.L.-G.); (A.S.-V.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (I.G.); (F.I.M.)
- Center for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
3
|
Yin FQ, Xiao FH, Kong QP. Factors involved in human healthy aging: insights from longevity individuals. Front Med 2025; 19:226-249. [PMID: 40119024 DOI: 10.1007/s11684-024-1120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/04/2024] [Indexed: 03/24/2025]
Abstract
The quest to decipher the determinants of human longevity has intensified with the rise in global life expectancy. Long-lived individuals (LLIs), who exceed the average life expectancy while delaying age-related diseases, serve as a unique model for studying human healthy aging and longevity. Longevity is a complex phenotype influenced by both genetic and non-genetic factors. This review paper delves into the genetic, epigenetic, metabolic, immune, and environmental factors underpinning the phenomenon of human longevity, with a particular focus on LLIs, such as centenarians. By integrating findings from human longevity studies, this review highlights a diverse array of factors influencing longevity, ranging from genetic polymorphisms and epigenetic modifications to the impacts of diet and physical activity. As life expectancy grows, understanding these factors is crucial for developing strategies that promote a healthier and longer life.
Collapse
Affiliation(s)
- Fan-Qian Yin
- State Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Wu Z, Li K, Hou A, Wang Y, Li Z. The Positive Effect of Akkermansia muciniphila postbiotics on the Glycolipid Metabolism of Caenorhabditis elegans Induced by High-Glucose Diet. Nutrients 2025; 17:976. [PMID: 40290025 PMCID: PMC11945073 DOI: 10.3390/nu17060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Glycolipid metabolism is essential for maintaining metabolic homeostasis. As a new postbiotic, pasteurized Akkermansia muciniphila (P-AKK) is important for the regulation of immunity and metabolism. OBJECTIVES This study aimed to evaluate the effects of P-AKK on glycolipid metabolism in Caenorhabditis elegans fed a high glucose diet. RESULTS We discovered that feeding nematodes P-AKK improved their healthy lifespan when fed a high-glucose diet. Furthermore, P-AKK contributes to reducing the accumulation of glucose, advanced glycation end products, and lipids and maintains a better physiological state. In addition, P-AKK improved the composition of free fatty acids and decreased the total free fatty acid content of C. elegans. Transcriptome sequencing analysis revealed that P-AKK induced significant enrichment of carbohydrate, oxidative phosphorylation, and fatty acid metabolism pathways. These significantly enriched biological processes were closely related to glucose and lipid metabolism. Among them, P-AKK activated the β-oxidation of fatty acids while inhibiting the de novo synthesis of fatty acids to regulate fatty acid metabolism. CONCLUSIONS The administration of P-AKK positively affected the body phenotypes of C. elegans under high glucose conditions. P-AKK mitigated the fat accumulation induced by a high-glucose diet by regulating key metabolic enzymes, including acyl-CoA synthetase and stearoyl-CoA desaturase.
Collapse
Affiliation(s)
- Zhongqin Wu
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- School of Pharmaceutical and Bioengineering, Hunan Chemical Vocational Technology College, Zhuzhou 412000, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Ke Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Aixing Hou
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Yuanliang Wang
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Zongjun Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (Y.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| |
Collapse
|
5
|
Zhang X, Meng X, Liu Y, Yang X, Chen J, Liu T, Liao Z, Fang X, Wang J. Roles of oolong tea extracts in the protection against Staphylococcus aureus infection in Caenorhabditis elegans. J Food Sci 2025; 90:e17651. [PMID: 39801228 DOI: 10.1111/1750-3841.17651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 05/02/2025]
Abstract
Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo. Pretreatment with OTE (0.6% and 1.2%) and co-treatment with OTE and S. aureus extended the lifespan by 11.16%-30.37%, increased the body bends by 36.49%-101.39%, inhibited the lipid accumulation by 11.71%-35.21% and S. aureus colonization in the intestine by 5.02%-30.68%, and enhanced the mitochondrial transmembrane potential by 51.92%-74.83%, compared with the control groups where worms were fed with S. aureus. Moreover, pretreatment with OTE and co-treatment with OTE and S. aureus suppressed the production of reactive oxygen species, increased the production of glutathione and superoxide dismutases (SODs), and altered the transcripts of genes encoding SODs, glutathione-S-transferases, and antimicrobial proteins and peptides in different ways. Furthermore, pretreatment with OTE failed to extend the lifespan of the nematode mutants defective in age-1, akt-2, skn-1, or hsf-1, and co-treatment with OTE and S. aureus could not extend the lifespan of the nematode mutants defective in age-1, akt-2, sek-1, pmk-1, mpk-1, or skn-1. These findings indicated that OTE exhibited the preventive and protective effects on S. aureus infection by increasing the antioxidant properties and expression of antimicrobial proteins and peptides via insulin/IGF-1 and/or p38/ERK mitogen-activated protein kinase (MAPK) pathway and transcription factor SKN-1 and/or HSF-1, which implied OTE could be used as a potential food additive to prevent S. aureus infection. PRACTICAL APPLICATION: Staphylococcus aureus is harmful to animal and human health, such as leading to immune system disorders. This study demonstrated that oolong tea extracts could be a potential additive used in food and feeds to protect animal and human from S. aureus infection by increasing the antioxidant properties and the expression of antimicrobial proteins and peptides.
Collapse
Affiliation(s)
- Xiao Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaolin Meng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuju Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ximiao Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianwen Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tong Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Thiers I, Lissens M, Langie H, Lories B, Steenackers H. Salmonella biofilm formation diminishes bacterial proliferation in the C. elegans intestine. Biofilm 2024; 8:100225. [PMID: 39469492 PMCID: PMC11513601 DOI: 10.1016/j.bioflm.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Non-typhoidal Salmonella serovars are a significant global cause of foodborne infections, owing their transmission success to the formation of biofilms. While the role of these biofilms in Salmonella's persistence outside the host is well understood, their significance during infection remains elusive. In this study, we investigated the impact of Salmonella biofilm formation on host colonization and virulence using the nematode model Caenorhabditis elegans. This infection model enables us to isolate the effect of biofilm formation on gut colonization and proliferation, as no gut microbiome is present and Salmonella cannot invade the intestinal tissue of the nematode. We show that a biofilm-deficient ΔcsgD mutant enhances gut proliferation compared to the wild-type strain, while the pathogen's virulence, the host's immune signaling pathways, and host survival remain unaffected. Hence, our work suggests that biofilm formation does not significantly contribute to Salmonella infection in C. elegans. However, complementary assays in higher-order in vivo models are required to further characterize the role of biofilm formation during infection and to take into account the impact of biofilm formation on competition with gut microbiome and epithelial invasion.
Collapse
Affiliation(s)
- Ines Thiers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | - Maries Lissens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | - Hanne Langie
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Kasteelpark Arenberg 20, 3001, Belgium
| | | | | |
Collapse
|
7
|
Martinović A, Mantovani M, Trpchevska N, Novak E, Milev NB, Bode L, Ewald CY, Bischof E, Reichmuth T, Lapides R, Navarini A, Saravi B, Roider E. Climbing the longevity pyramid: overview of evidence-driven healthcare prevention strategies for human longevity. FRONTIERS IN AGING 2024; 5:1495029. [PMID: 39659760 PMCID: PMC11628525 DOI: 10.3389/fragi.2024.1495029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Longevity medicine is an emerging and iterative healthcare discipline focusing on early detection, preventive measures, and personalized approaches that aim to extend healthy lifespan and promote healthy aging. This comprehensive review introduces the innovative concept of the "Longevity Pyramid." This conceptual framework delineates progressive intervention levels, providing a structured approach to understanding the diverse strategies available in longevity medicine. At the base of the Longevity Pyramid lies the level of prevention, emphasizing early detection strategies and advanced diagnostics or timely identification of potential health issues. Moving upwards, the next step involves lifestyle modifications, health-promoting behaviors, and proactive measures to delay the onset of age-related conditions. The Longevity Pyramid further explores the vast range of personalized interventions, highlighting the importance of tailoring medical approaches based on genetic predispositions, lifestyle factors, and unique health profiles, thereby optimizing interventions for maximal efficacy. These interventions aim to extend lifespan and reduce the impact and severity of age-related conditions, ensuring that additional years are characterized by vitality and wellbeing. By outlining these progressive levels of intervention, this review offers valuable insights into the evolving field of longevity medicine. This structured framework guides researchers and practitioners toward a nuanced strategic approach to advancing the science and practice of healthy aging.
Collapse
Affiliation(s)
- Anđela Martinović
- Maximon AG, Zug, Switzerland
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | | | | | | | | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Evelyne Bischof
- Shanghai University of Medicine and Health Sciences, Shanghai, China
- Sheba Longevity Center, Sheba Medical Center Tel Aviv, Ramat Gan, Israel
| | | | - Rebecca Lapides
- The Robert Larner, M.D., College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Alexander Navarini
- Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Babak Saravi
- Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elisabeth Roider
- Maximon AG, Zug, Switzerland
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
8
|
Tamayo M, Olivares M, Ruas-Madiedo P, Margolles A, Espín JC, Medina I, Moreno-Arribas MV, Canals S, Mirasso CR, Ortín S, Beltrán-Sanchez H, Palloni A, Tomás-Barberán FA, Sanz Y. How Diet and Lifestyle Can Fine-Tune Gut Microbiomes for Healthy Aging. Annu Rev Food Sci Technol 2024; 15:283-305. [PMID: 38941492 DOI: 10.1146/annurev-food-072023-034458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Many physical, social, and psychological changes occur during aging that raise the risk of developing chronic diseases, frailty, and dependency. These changes adversely affect the gut microbiota, a phenomenon known as microbe-aging. Those microbiota alterations are, in turn, associated with the development of age-related diseases. The gut microbiota is highly responsive to lifestyle and dietary changes, displaying a flexibility that also provides anactionable tool by which healthy aging can be promoted. This review covers, firstly, the main lifestyle and socioeconomic factors that modify the gut microbiota composition and function during healthy or unhealthy aging and, secondly, the advances being made in defining and promoting healthy aging, including microbiome-informed artificial intelligence tools, personalized dietary patterns, and food probiotic systems.
Collapse
Affiliation(s)
- M Tamayo
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
- Faculty of Medicine, Autonomous University of Madrid (UAM), Spain
| | - M Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
| | | | - A Margolles
- Health Research Institute (ISPA), Asturias, Spain
| | - J C Espín
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - I Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | | | - S Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - C R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - S Ortín
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - H Beltrán-Sanchez
- Department of Community Health Sciences, Fielding School of Public Health and California Center for Population Research, University of California, Los Angeles, California, USA
| | - A Palloni
- Department of Sociology, University of Wisconsin, Madison, Wisconsin, USA
| | - F A Tomás-Barberán
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Y Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
| |
Collapse
|
9
|
Bouasker S, Nodland S, Millette M. The Probiotic Strain Lactobacillus acidophilus CL1285 Reduces Fat Deposition and Oxidative Stress and Increases Lifespan in Caenorhabditis elegans. Microorganisms 2024; 12:1036. [PMID: 38930418 PMCID: PMC11205358 DOI: 10.3390/microorganisms12061036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Caenorhabditis elegans was recently shown to be a powerful model for studying and identifying probiotics with specific functions. Lactobacillus acidophilus CL1285, Lacticaseibacillus casei LBC80R, and Lacticaseibacillus rhamnosus CLR2, which are three bacteria that were marketed by Bio-K+, were evaluated using the nematode C. elegans to study fat accumulation, lifespan, and resistance to oxidative stress. Although the general effects of probiotics in terms of protection against oxidative stress were highlighted, the CL1285 strain had an interesting and specific feature, namely its ability to prevent fat accumulation in nematodes; this effect was verified by both the Oil Red and Nile Red methods. This observed phenotype requires daf-16 and is affected by glucose levels. In addition, in a daf-16- and glucose-dependent manner, CL1285 extended the lifespan of C. elegans; this effect was unique to CL1285 and not found in the other L. acidophilus subtypes in this study. Our findings indicate that L. acidophilus CL1285 impacts fat/glucose metabolism in C. elegans and provides a basis to further study this probiotic, which could have potential health benefits in humans and/or in mammals.
Collapse
Affiliation(s)
- Samir Bouasker
- Bio-K+, a Kerry Company, 495 Boulevard Armand-Frappier, Laval, QC H7V 4B3, Canada;
| | | | - Mathieu Millette
- Bio-K+, a Kerry Company, 495 Boulevard Armand-Frappier, Laval, QC H7V 4B3, Canada;
| |
Collapse
|
10
|
Kishimoto S, Nono M, Makizaki Y, Tanaka Y, Ohno H, Nishida E, Uno M. Lactobacillus paracasei subsp. paracasei 2004 improves health and lifespan in Caenorhabditis elegans. Sci Rep 2024; 14:10453. [PMID: 38714725 PMCID: PMC11076489 DOI: 10.1038/s41598-024-60580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Recent research has highlighted the importance of the gut microbiome in regulating aging, and probiotics are interventions that can promote gut health. In this study, we surveyed several novel lactic acid bacteria to examine their beneficial effect on organismal health and lifespan in C. elegans. We found that animals fed some lactic acid bacteria, including L. acidophilus 1244 and L. paracasei subsp. paracasei 2004, grew healthy. Supplementation with the lactic acid bacterial strains L. acidophilus 1244 or L. paracasei subsp. paracasei 2004 significantly improved health, including food consumption, motility, and resistance to oxidative stressor, hydrogen peroxide. Our RNA-seq analysis showed that supplementation with L. paracasei subsp. paracasei 2004 significantly increased the expression of daf-16, a C. elegans FoxO homolog, as well as genes related to the stress response. Furthermore, daf-16 deletion inhibited the longevity effect of L. paracasei subsp. paracasei 2004 supplementation. Our results suggest that L. paracasei subsp. paracasei 2004 improves health and lifespan in a DAF-16-dependent manner.
Collapse
Affiliation(s)
- Saya Kishimoto
- RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650-0047, Japan
| | - Masanori Nono
- RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650-0047, Japan
| | - Yutaka Makizaki
- R&D Center, Biofermin Pharmaceutical Co. Ltd., 7-3-4 Ibukidai-Higashimachi, Nishi-Ku, Kobe, 651-2242, Japan
| | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co. Ltd., 7-3-4 Ibukidai-Higashimachi, Nishi-Ku, Kobe, 651-2242, Japan
| | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co. Ltd., 7-3-4 Ibukidai-Higashimachi, Nishi-Ku, Kobe, 651-2242, Japan
| | - Eisuke Nishida
- RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650-0047, Japan.
| | - Masaharu Uno
- RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, 650-0047, Japan.
| |
Collapse
|
11
|
Miller BC, Mathai M, Yadav H, Jain S. Geroprotective potential of microbiome modulators in the Caenorhabditis elegans model. GeroScience 2024; 46:129-151. [PMID: 37561384 PMCID: PMC10828408 DOI: 10.1007/s11357-023-00901-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Aging is associated with cellular and physiological changes, which significantly reduce the quality of life and increase the risk for disease. Geroprotectors improve lifespan and slow the progression of detrimental aging-related changes such as immune system senescence, mitochondrial dysfunction, and dysregulated nutrient sensing and metabolism. Emerging evidence suggests that gut microbiota dysbiosis is a hallmark of aging-related diseases and microbiome modulators, such as probiotics (live bacteria) or postbiotics (non-viable bacteria/bacterial byproducts) may be promising geroprotectors. However, because they are strain-specific, the geroprotective effects of probiotics and postbiotics remain poorly understood and understudied. Drosophila melanogaster, Caenorhabditis elegans, and rodents are well-validated preclinical models for studying lifespan and the role of probiotics and/or postbiotics, but each have their limitations, including cost and their translation to human aging biology. C. elegans is an excellent model for large-scale screening to determine the geroprotective potential of drugs or probiotics/postbiotics due to its short lifecycle, easy maintenance, low cost, and homology to humans. The purpose of this article is to review the geroprotective effects of microbiome modulators and their future scope, using C. elegans as a model. The proposed geroprotective mechanisms of these probiotics and postbiotics include delaying immune system senescence, preventing or reducing mitochondrial dysfunction, and regulating food intake (dietary restriction) and metabolism. More studies are warranted to understand the geroprotective potential of probiotics and postbiotics, as well as other microbiome modulators, like prebiotics and fermented foods, and use them to develop effective therapeutics to extend lifespan and reduce the risk of debilitating aging-related diseases.
Collapse
Affiliation(s)
- Brandi C Miller
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Megha Mathai
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
12
|
Goyache I, Yavorov-Dayliev D, Milagro FI, Aranaz P. Caenorhabditis elegans as a Screening Model for Probiotics with Properties against Metabolic Syndrome. Int J Mol Sci 2024; 25:1321. [PMID: 38279322 PMCID: PMC10816037 DOI: 10.3390/ijms25021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
There is a growing need to develop new approaches to prevent and treat diseases related to metabolic syndromes, including obesity or type 2 diabetes, that focus on the different factors involved in the pathogenesis of these diseases. Due to the role of gut microbiota in the regulation of glucose and insulin homeostasis, probiotics with beneficial properties have emerged as an alternative therapeutic tool to ameliorate metabolic diseases-related disturbances, including fat excess or inflammation. In the last few years, different strains of bacteria, mainly lactic acid bacteria (LAB) and species from the genus Bifidobacterium, have emerged as potential probiotics due to their anti-obesogenic and/or anti-diabetic properties. However, in vivo studies are needed to demonstrate the mechanisms involved in these probiotic features. In this context, Caenorhabditis elegans has emerged as a very powerful simple in vivo model to study the physiological and molecular effects of probiotics with potential applications regarding the different pathologies of metabolic syndrome. This review aims to summarize the main studies describing anti-obesogenic, anti-diabetic, or anti-inflammatory properties of probiotics using C. elegans as an in vivo research model, as well as providing a description of the molecular mechanisms involved in these activities.
Collapse
Affiliation(s)
- Ignacio Goyache
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain (P.A.)
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Deyan Yavorov-Dayliev
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain (P.A.)
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Genbioma Aplicaciones SL, Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain
| | - Fermín I. Milagro
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain (P.A.)
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - Paula Aranaz
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain (P.A.)
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
13
|
Kumaree KK, Prasanth MI, Sivamaruthi BS, Kesika P, Tencomnao T, Chaiyasut C, Prasansuklab A. Lactobacillus paracasei HII01 enhances lifespan and promotes neuroprotection in Caenorhabditis elegans. Sci Rep 2023; 13:16707. [PMID: 37794096 PMCID: PMC10550917 DOI: 10.1038/s41598-023-43846-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Achieving healthy aging and providing protection from aging-related diseases is a major global concern. Probiotics, are a safer and more natural alternative. Moreover, identifying novel probiotics can help develop a new therapeutic approach and may help in personalized probiotic-formulations for individual's unique gut microbiome. In this study, we evaluated the benefits of our novel probiotic strains in promoting healthy aging and whether they protect against Amyloid β toxicity of Alzheimer's disease. Henceforth, we analyzed the impact of four different probiotics (Lactobacillus paracasei HII01, L. rhamnosus, L. reuteri, L. salivarius) on the lifespan extension of Caenorhabditis elegans model. Our results determine that L. paracasei HII01 provided the most positive effect on longevity and antiaging effects on C. elegans. The qPCR data and mutant-based studies indicated that L. paracasei HII01-mediated lifespan extension could be modulated by DAF-16 mediated pathway. The probiotic strains also protected the worms from the toxicity induced by β-Amyloid-expressing (Aβ) transgenic C. elegans strains, and L. paracasei HII01 provided the most significant protection. Overall, identifying novel probiotics is an important area of research that can improve health outcomes. Our study showed that L. paracasei HII01 could be considered a dietary supplement for providing healthy aging and preventing aging-related diseases.
Collapse
Affiliation(s)
- Kishoree K Kumaree
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
15
|
Muthubharathi BC, Ravichandiran V, Balamurugan K. Distinct global metabolomic profiles of the model organism Caenorhabditis elegans during interactions with Staphylococcus aureus and Salmonella enterica Serovar Typhi. Mol Omics 2023; 19:574-584. [PMID: 37272185 DOI: 10.1039/d3mo00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interactive network of hosts with pathogenic microbes is still questionable. It has been hypothesized and reported that the host shows altered regulatory mechanisms for different pathogens. Several studies using transcriptomics and proteomics revealed the altered pathways and sequential regulations displayed by the host during bacterial interactions. Still, there is a gap in understanding the triggering molecule at transcriptomic and proteomic levels due to the lack of the knowledge of the interactive metabolites produced during their interactions. In this study, the global metabolomic approach was performed in the nematode model organism Caenorhabditis elegans upon exposure to a Gram-negative bacteria, Salmonella enterica Serovar Typhi, and a Gram-positive bacteria, Staphylococcus aureus, and the whole metabolome was categorized as endo-metabolome (internally produced) and exo-metabolome (externally releasing). The extracted metabolites were subjected to liquid chromatography mass spectrometry (ESI-LC/qToF-MS/MS). In total 5578, 4554 and 4046 endo-metabolites and 4451, 3625 and 1281 exo-metabolites were identified in C. elegans when exposed to E. coli OP50, S. Typhi and S. aureus, respectively. Both the multivariate and univariate analyses were performed. The variation in endo- and exo-metabolome during candidate bacterial interactions was observed. The results indicated that, during S. aureus interaction, the exclusively enriched metabolites were significantly involved in alpha-linoleic acid metabolism. Similarly, the exclusively enriched metabolites during the interaction of S. Typhi were significantly involved in the phosphatidylinositol signalling system. The whole metabolomic profile presented here will build the scope to understand the role of metabolites and the respective pathways in host response during the early period of bacterial infections.
Collapse
|
16
|
Coronas R, Zara G, Gallo A, Rocchetti G, Lapris M, Petretto GL, Zara S, Fancello F, Mannazzu I. Propionibacteria as promising tools for the production of pro-bioactive scotta: a proof-of-concept study. Front Microbiol 2023; 14:1223741. [PMID: 37588883 PMCID: PMC10425813 DOI: 10.3389/fmicb.2023.1223741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Dairy propionibacteria are Gram positive Actinomycetota, routinely utilized as starters in Swiss type cheese making and highly appreciated for their probiotic properties and health promoting effects. In this work, within the frame of a circular economy approach, 47 Propionibacterium and Acidipropionibacterium spp. were isolated from goat cheese and milk, and ewe rumen liquor, and characterized in view of their possible utilization for the production of novel pro-bioactive food and feed on scotta, a lactose rich substrate and one of the main by-products of the dairy industry. The evaluation of the Minimum Inhibitory Concentration (MIC) of 13 among the most common antibiotics in clinical practice revealed a general susceptibility to ampicillin, gentamycin, streptomycin, vancomycin, chloramphenicol, and clindamycin while confirming a lower susceptibility to aminoglycosides and ciprofloxacin. Twenty-five isolates, that proved capable of lactose utilization as the sole carbon source, were then characterized for functional and biotechnological properties. Four of them, ascribed to Propionibacterium freudenreichii species, and harboring resistance to bile salts (growth at 0.7-1.56 mM of unconjugated bile salts), acid stress (>80% survival after 1 h at pH 2), osmostress (growth at up to 6.5% NaCl) and lyophilization (survival rate > 80%), were selected and inoculated in scotta. On this substrate the four isolates reached cell densities ranging from 8.11 ± 0.14 to 9.45 ± 0.06 Log CFU mL-1 and proved capable of producing different vitamin B9 vitamers after 72 h incubation at 30°C. In addition, the semi-quantitative analysis following the metabolomics profiling revealed a total production of cobalamin derivatives (vitamin B12) in the range 0.49-1.31 mg L-1, thus suggesting a full activity of the corresponding biosynthetic pathways, likely involving a complex interplay between folate cycle and methylation cycle required in vitamin B12 biosynthesis. These isolates appear interesting candidates for further ad-hoc investigation regarding the production of pro-bioactive scotta.
Collapse
Affiliation(s)
- Roberta Coronas
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Lapris
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
17
|
Aprea G, Del Matto I, Tucci P, Marino L, Scattolini S, Rossi F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023; 11:1787. [PMID: 37512959 PMCID: PMC10385490 DOI: 10.3390/microorganisms11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
18
|
Mergan L, Driesschaert B, Temmerman L. Endocytic coelomocytes are required for lifespan extension by axenic dietary restriction. PLoS One 2023; 18:e0287933. [PMID: 37368903 DOI: 10.1371/journal.pone.0287933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A rather peculiar but very potent means of achieving longevity is through axenic dietary restriction (ADR), where animals feed on (semi-)defined culture medium in absence of any other lifeform. The little knowledge we already have on ADR is mainly derived from studies using the model organism Caenorhabditis elegans, where ADR more than doubles organismal lifespan. What is underlying this extreme longevity so far remains enigmatic, as ADR seems distinct from other forms of DR and bypasses well-known longevity factors. We here focus first on CUP-4, a protein present in the coelomocytes, which are endocytic cells with a presumed immune function. Our results show that loss of cup-4 or of the coelomocytes affects ADR-mediated longevity to a similar extent. As the coelomocytes have been suggested to have an immune function, we then investigated different central players of innate immune signalling, but could prove no causal links with axenic lifespan extension. We propose that future research focuses further on the role of the coelomocytes in endocytosis and recycling in the context of longevity.
Collapse
Affiliation(s)
- Lucas Mergan
- Department of Biology, Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Brecht Driesschaert
- Department of Biology, Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Department of Biology, Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
19
|
Pasteurized Akkermansia muciniphila Reduces Fat Accumulation via nhr-49-Mediated Nuclear Hormone Signaling Pathway in Caenorhabditis elegans. Molecules 2022; 27:molecules27196159. [PMID: 36234692 PMCID: PMC9572206 DOI: 10.3390/molecules27196159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid β-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid β-oxidation and synthesis.
Collapse
|
20
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
21
|
Yan H, Qin Q, Yan S, Chen J, Yang Y, Li T, Gao X, Ding S. Comparison Of The Gut Microbiota In Different Age Groups In China. Front Cell Infect Microbiol 2022; 12:877914. [PMID: 35959379 PMCID: PMC9359670 DOI: 10.3389/fcimb.2022.877914] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Aging is now the most profound risk factor for almost all non-communicable diseases. Studies have shown that probiotics play a specific role in fighting aging. We used metagenomic sequencing to study the changes in gut microbes in different age groups and found that aging had the most significant effect on subjects' gut microbe structure. Our study divided the subjects (n=614) into two groups by using 50 years as the age cut-off point for the grouping. Compared with the younger group, several species with altered abundance and specific functional pathways were found in the older group. At the species level, the abundance of Bacteroides fragilis, Bifidobacterium longum, Clostridium bolteae, Escherichia coli, Klebsiella pneumoniae, and Parabacteroides merdae were increased in older individuals. They were positively correlated to the pathways responsible for lipopolysaccharide (LPS) biosynthesis and the degradation of short-chain fatty acids (SCFAs). On the contrary, the levels of Barnesiella intestinihominis, Megamonas funiformis, and Subdoligranulum unclassified were decreased in the older group, which negatively correlated with the above pathways (p-value<0.05). Functional prediction revealed 92 metabolic pathways enriched in the older group significantly higher than those in the younger group (p-value<0.05), especially pathways related to LPS biosynthesis and the degradation of SCFAs. Additionally, we established a simple non-invasive model of aging, nine species (Bacteroides fragilis, Barnesiella intestinihominis, Bifidobacterium longum, Clostridium bolteae, Escherichia coli, Klebsiella pneumoniae, Megamonas funiformis, Parabacteroides merdae, and Subdoligranulum unclassified) were selected to construct the model. The area under the receiver operating curve (AUC) of the model implied that supplemented probiotics might influence aging. We discuss the features of the aging microbiota that make it more amenable to pre-and probiotic interventions. We speculate these metabolic pathways of gut microbiota can be associated with the immune status and inflammation of older adults. Health interventions that promote a diverse microbiome could influence the health of older adults.
Collapse
Affiliation(s)
- Hang Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Qin
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiantian Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Gao
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Oligosaccharides from agar extends lifespan through activation of unfolded protein response via SIR-2.1 in Caenorhabditis elegans. Eur J Nutr 2022; 61:4179-4190. [PMID: 35864340 DOI: 10.1007/s00394-022-02957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Agaro-oligosaccharides (AGO), hydrolysis products of agarose, is known to have antioxidant and anti-inflammatory properties. Speculating that AGO is effective for preventing aging, we investigated the longevity-supporting effects of AGO and their mechanisms using Caenorhabditis elegans. METHODS Caenorhabditis elegans were fed AGO from young adulthood. The lifespan, locomotory activity, lipofuscin accumulation, and heat stress resistance of the worms were examined. To elucidate mechanisms of AGO-mediated longevity, we conducted comprehensive expression analysis using microarrays. Moreover, we used quantitative real-time PCR (qRT-PCR) to verify the genes showing differential expression levels. Furthermore, we measured the lifespan of loss-of-function mutants to determine the genes related to AGO-mediated longevity. RESULTS AGO extended the lifespan of C. elegans, reduced lipofuscin accumulation, and maintained vigorous locomotion. The microarray analysis revealed that the endoplasmic reticulum-unfolded protein response (ER-UPR) and insulin/insulin-like growth factor-1-mediated signaling (IIS) pathway were activated in AGO-fed worms. The qRT-PCR analysis showed that AGO treatment suppressed sir-2.1 expression, which is a negative regulator of ER-UPR. In loss-of-function mutant of sir-2.1, AGO-induced longevity and heat stress resistance were decreased or cancelled completely. Furthermore, the pro-longevity effect of AGO was decreased in loss-of-function mutants of abnormal Dauer formation (daf) -2 and daf-16, which are IIS pathway-related genes. CONCLUSION AGO delays the C. elegans aging process and extends their lifespan through the activations of ER-UPR and the IIS pathway.
Collapse
|
23
|
Kumar S, Praneet NS, Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway. Free Radic Res 2022; 56:555-571. [PMID: 36480684 DOI: 10.1080/10715762.2022.2155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Redox imbalance plays a crucial role in the development of age-related diseases, and resistance to oxidative stress is crucial for optimum longevity and healthy aging. Using the wild-type, mutant and transgenic strains, this study explored the antioxidative potential and lifespan extension benefits of different Lactobacillus strains in Caenorhabditis elegans (C. elegans). We observed that Lactobacillus brevis MTCC 1750 could enhance the resistance of C. elegans against juglone induced oxidative stress by reducing its intracellular reactive oxygen species (ROS) accumulation. Also, live L. brevis MTCC 1750 could prolong the worm's lifespan. These effects are dependent on transcription factor DAF-16 evident with significant upregulation of its target gene sod-3. This also explained the significant improvements in different age-associated changes in physiological and mechanical parameters of the worm by L. brevis MTCC 1750. Further investigations revealed that DAF-16 activation and, its enhanced translocation in the nucleus is independent of DAF-2 or JNK pathway. These findings highlighted L. brevis MTCC 1750 as a potent anti-oxidant source for complementing current antioxidant therapeutic strategies. Nonetheless, the findings showed how different signaling events are regulated based on an organism's diet component, and their consequences on the aging process in multiple species.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Nalla Sai Praneet
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
24
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
25
|
Li S, Li N, Wang C, Zhao Y, Cao J, Li X, Zhang Z, Li Y, Yang X, Wang X, Che C, Zhao Y, Wang L, Zhao L, Shen J. Gut Microbiota and Immune Modulatory Properties of Human Breast Milk Streptococcus salivarius and S. parasanguinis Strains. Front Nutr 2022; 9:798403. [PMID: 35273986 PMCID: PMC8901577 DOI: 10.3389/fnut.2022.798403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
Human breast milk Streptococcus spp. are transferred to infant guts via breast feeding, but their effects on the gut microbiota and immunity remain unclear. In this study, we characterized gut microbiota and immune modulatory properties of human breast milk S. salivarius F286 and S. parasanguinis F278 that had been shown to be able to colonize gut. The two Streptococcus strains were orally administered to mouse pups individually at 1 × 107 cells/day from postnatal Days 1 to 21. At postnatal week 3 (the weaning period), S. salivarius F286 reduced the colonic microbiota α-diversity, increased 21 amplicon sequence variants (ASVs), including bacteria from Akkermansia, Intestinimonas, and Lachnospiraceae, and decreased 52 ASVs, including bacteria from Eubacterium, Bifidobacterium, Escherichia-Shigella, and Turicibacter; however, S. parasanguinis F278 didn't change the colonic microbiota. Both Streptococcus strains reduced the ileal mRNA expression of cytokine/transcription factor representatives of T helper (Th) cells, including IFN-γ (Th1), Gata3 (Th2), and TGF-β (Treg) in 2-week-old suckling mice, and promoted the ileal expression of Foxp3 and TGF-β, which are representatives of anti-inflammatory Treg cells, in 3-week-old weaning mice. The two Streptococcus strains exhibited anti-inflammatory potential when incubated in vitro with human peripheral blood mononuclear cells and TNF-α-treated gut epithelial HT29 cells. In C. elegans, both strains activated immune response genes, which was associated with their lifespan-prolonging effects. Our results suggest that S. salivarius F286 and S. parasanguinis F278 may exert regulatory (anti-inflammatory) roles in gut immunity and S. salivarius F286 can modulate gut microbiota, and highlight the probiotic potential of milk S. salivarius and S. parasanguinis strains.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Na Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenwei Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Cao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejing Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxin Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyan Che
- Department of Animal Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Yufeng Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Aranaz P. Pediococcus acidilactici CECT9879 (pA1c) Counteracts the Effect of a High-Glucose Exposure in C. elegans by Affecting the Insulin Signaling Pathway (IIS). Int J Mol Sci 2022; 23:ijms23052689. [PMID: 35269839 PMCID: PMC8910957 DOI: 10.3390/ijms23052689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The increasing prevalence of metabolic syndrome-related diseases, including type-2 diabetes and obesity, makes it urgent to develop new alternative therapies, such as probiotics. In this study, we have used Caenorhabditis elegans under a high-glucose condition as a model to examine the potential probiotic activities of Pediococcusacidilactici CECT9879 (pA1c). The supplementation with pA1c reduced C. elegans fat accumulation in a nematode growth medium (NGM) and in a high-glucose (10 mM) NGM medium. Moreover, treatment with pA1c counteracted the effect of the high glucose by reducing reactive oxygen species by 20%, retarding the aging process and extending the nematode median survival (>2 days in comparison with untreated control worms). Gene expression analyses demonstrated that the probiotic metabolic syndrome-alleviating activities were mediated by modulation of the insulin/IGF-1 signaling pathway (IIS) through the reversion of the glucose-nuclear-localization of daf-16 and the overexpression of ins-6 and daf-16 mediators, increased expression of fatty acid (FA) peroxisomal β-oxidation genes, and downregulation of FA biosynthesis key genes. Taken together, our data suggest that pA1c could be considered a potential probiotic strain for the prevention of the metabolic syndrome-related disturbances and highlight the use of C. elegans as an appropriate in vivo model for the study of the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - Fermín I. Milagro
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-425600 (ext. 806553)
| | - Josune Ayo
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
| | - María Oneca
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
| | - Paula Aranaz
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
27
|
Kumar A, Joishy T, Das S, Kalita MC, Mukherjee AK, Khan MR. A Potential Probiotic Lactobacillus plantarum JBC5 Improves Longevity and Healthy Aging by Modulating Antioxidative, Innate Immunity and Serotonin-Signaling Pathways in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:268. [PMID: 35204151 PMCID: PMC8868178 DOI: 10.3390/antiox11020268] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Since the hypothesis of Dr. Elie Metchnikoff on lactobacilli-mediated healthy aging, several microbes have been reported to extend the lifespan with different features of healthy aging. However, a microbe affecting diverse features of healthy aging is of choice for broader acceptance and marketability as a next-generation probiotic. We employed Caenorhabditis elegans as a model to understand the potential of Lactobacillus plantarum JBC5 (LPJBC5), isolated from fermented food sample on longevity and healthy aging as well as their underlying mechanisms. Firstly, LPJBC5 enhanced the mean lifespan of C. elegans by 27.81% compared with control (untreated). LPBC5-induced longevity was accompanied with better aging-associated biomarkers, such as physical functions, fat, and lipofuscin accumulation. Lifespan assay on mutant worms and gene expression studies indicated that LPJBC5-mediated longevity was due to upregulation of the skinhead-1 (skn-1) gene activated through p38 MAPK signaling cascade. Secondly, the activated transcription factor SKN-1 upregulated the expression of antioxidative, thermo-tolerant, and anti-pathogenic genes. In support, LPJBC5 conferred resistance against abiotic and biotic stresses such as oxidative, heat, and pathogen. LPJBC5 upregulated the expression of intestinal tight junction protein ZOO-1 and improved gut integrity. Thirdly, LPJBC5 improved the learning and memory of worms trained on LPJBC5 compared with naive worms. The results showed upregulation of genes involved in serotonin signaling (ser-1, mod-1, and tph-1) in LPJBC5-fed worms compared with control, suggesting that serotonin-signaling was essential for LPJBC5-mediated improved cognitive function. Fourthly, LPJBC5 decreased the fat accumulation in worms by reducing the expression of genes encoding key substrates and enzymes of fat metabolism (i.e., fat-5 and fat-7). Lastly, LPJBC5 reduced the production of reactive oxygen species and improved mitochondrial function, thereby reducing apoptosis in worms. The capability of a single bacterium on pro-longevity and the features of healthy aging, including enhancement of gut integrity and cognitive functions, makes it an ideal candidate for promotion as a next-generation probiotic.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Tulsi Joishy
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Santanu Das
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Mohan C. Kalita
- Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Ashis K. Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Mojibur R. Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| |
Collapse
|
28
|
Desaka N, Ota C, Nishikawa H, Yasuda K, Ishii N, Bito T, Kishinaga Y, Naito Y, Higashimura Y. Streptococcus thermophilus extends lifespan through activation of DAF-16-mediated antioxidant pathway in Caenorhabditis elegans. J Clin Biochem Nutr 2022; 70:7-13. [PMID: 35068675 PMCID: PMC8764109 DOI: 10.3164/jcbn.21-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Natsumi Desaka
- Department of Food Science, Ishikawa Prefectural University
| | - Chinatsu Ota
- United Graduate School of Agricultural Sciences, Tottori University
| | | | - Kayo Yasuda
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Naoaki Ishii
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Tomohiro Bito
- United Graduate School of Agricultural Sciences, Tottori University
| | - Yukio Kishinaga
- Research and Development Group, Mill Souhonsha Company Limited
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine
| | | |
Collapse
|
29
|
Leuconostoc mesenteroides Strains Isolated from Carrots Show Probiotic Features. Microorganisms 2021; 9:microorganisms9112290. [PMID: 34835416 PMCID: PMC8618143 DOI: 10.3390/microorganisms9112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Lactic acid bacteria (LAB) share several beneficial effects on human organisms, such as bioactive metabolites’ release, pathogens’ competition and immune stimulation. This study aimed at determining the probiotic potential of autochthonous lactic acid bacteria isolated from carrots. In particular, the work reported the characterization at the species level of four LAB strains deriving from carrots harvested in Fucino highland, Abruzzo (Italy). Ribosomal 16S DNA analysis allowed identification of three strains belonging to Leuconostoc mesenteroides and a Weissella soli strain. In vitro and in vivo assays were performed to investigate the probiotic potential of the different isolates. Among them, L. mesenteroides C2 and L. mesenteroides C7 showed high survival percentages under in vitro simulated gastro-intestinal conditions, antibiotic susceptibly and the ability to inhibit in vitro growth against Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus pathogens. In parallel, the simple model Caenorhabditis elegans was used for in vivo screenings. L. mesenteroides C2 and L. mesenteroides C7 strains significantly induced pro-longevity effects, protection from pathogens’ infection and innate immunity stimulation. Overall, these results showed that some autochthonous LAB from vegetables such as carrots have functional features to be considered as novel probiotic candidates.
Collapse
|
30
|
de Sousa Figueiredo MB, Pradel E, George F, Mahieux S, Houcke I, Pottier M, Fradin C, Neut C, Daniel C, Bongiovanni A, Foligné B, Titécat M. Adherent-Invasive and Non-Invasive Escherichia coli Isolates Differ in Their Effects on Caenorhabditis elegans' Lifespan. Microorganisms 2021; 9:microorganisms9091823. [PMID: 34576719 PMCID: PMC8465672 DOI: 10.3390/microorganisms9091823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023] Open
Abstract
The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn’s disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain’s clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains’ ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC’s virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans’ lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.
Collapse
Affiliation(s)
- Maria Beatriz de Sousa Figueiredo
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Elizabeth Pradel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Séverine Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Isabelle Houcke
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Muriel Pottier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Chantal Fradin
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE, F-59000 Lille, France;
| | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France;
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| |
Collapse
|
31
|
Wang Z, Zhao Y, Jiang Y, Chu W. Prebiotic, Antioxidant, and Immunomodulatory Properties of Acidic Exopolysaccharide From Marine Rhodotorula RY1801. Front Nutr 2021; 8:710668. [PMID: 34497821 PMCID: PMC8419279 DOI: 10.3389/fnut.2021.710668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, an extracellular acidic polysaccharide (EAPS) from marine Rhodotorula sp. RY1801 was extracted, and its biological properties were investigated. EAPS is mainly composed of monosaccharides, including mannose, rhamnose, glucose, galactose, and fucose, had an average molecular weight of 5.902 × 107 Da. The results indicated that EAPS can promote the growth of Lactobacillus acidophilus and L. acidophilus plantarum. EAPS is capable of scavenging both superoxide anion and hydroxyl radicals in vitro. The highest scavenging rate of superoxide anion and hydroxyl radicals is 29 and 84%, respectively. Using in vivo model, we found that the EAPS can expand the lifespan and increase the disease resistance of Caenorhabditis elegans against Klebsiella pneumoniae infection via the DAF-2/DAF-16 pathway. These results suggested that EAPS from marine Rhodotorula sp. RY1801 could promote the growth of beneficial bacteria and can be used as an antioxidant and immunomodulator, which had considerable potential in the food and health industry.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanchen Zhao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs, Nanjing, China
| | - Weihua Chu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Aitzhanova A, Oleinikova Y, Mounier J, Hymery N, Leyva Salas M, Amangeldi A, Saubenova M, Alimzhanova M, Ashimuly K, Sadanov A. Dairy associations for the targeted control of opportunistic Candida. World J Microbiol Biotechnol 2021; 37:143. [PMID: 34328568 DOI: 10.1007/s11274-021-03096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023]
Abstract
Antifungal and antibacterial activities of twenty-six combinations of lactic acid bacteria, propionibacteria, acetic acid bacteria and dairy yeasts inoculated in whey and milk were investigated. Associations including acetic acid bacteria were shown to suppress growth of the opportunistic yeast Candida albicans in well-diffusion assays. The protective effect of milk fermented with the two most promising consortia was confirmed in Caco-2 cell culture infected with C. albicans. Indeed, these fermented milks, after heat-treatment or not, suppressed lactate dehydrogenase release after 48 h while significant increase in LDH release was observed in the positive control (C. albicans alone) and with fermented milk obtained using commercial yogurt starter cultures. The analysis of volatile compounds in the cell-free supernatant using solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) showed accumulation of significant amount of acetic acid by the consortium composed of Lactobacillus delbrueckii 5, Lactobacillus gallinarum 1, Lentilactobacillus parabuchneri 3, Lacticaseibacillus paracasei 33-4, Acetobacter syzygii 2 and Kluyveromyces marxianus 19, which corresponded to the zone of partial inhibition of C. albicans growth during well-diffusion assays. Interestingly, another part of anti-Candida activity, yielding small and transparent inhibition zones, was linked with the consortium cell fraction. This study showed a correlation between anti-Candida activity and the presence of acetic acid bacteria in dairy associations as well as a significant effect of two dairy associations against C. albicans in a Caco-2 cell model. These two associations may be promising consortia for developing functional dairy products with antagonistic action against candidiasis agents.
Collapse
Affiliation(s)
- Aida Aitzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Yelena Oleinikova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Marcia Leyva Salas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Alma Amangeldi
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Margarita Saubenova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Mereke Alimzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Kazhybek Ashimuly
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Amankeldy Sadanov
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| |
Collapse
|
33
|
Kang M, Choi HJ, Yun B, Lee J, Yoo J, Yang HJ, Jeong DY, Kim Y, Oh S. Bacillus amyloliquefaciens SCGB1 Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice Through Immune Regulation. J Med Food 2021; 24:709-719. [PMID: 34280033 DOI: 10.1089/jmf.2021.k.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Probiotics, as living microorganisms, exert health benefits to the host by alleviating excess inflammation through modulating the immune system and establishing intestinal homeostasis. In this study, we evaluated the probiotic characteristics and inflammation alleviatory effects of Bacillus amyloliquefaciens isolated from traditional Korean fermented foods. The strains withstood the acidic environment of the digestive process, extended the lifespan of Caenorhabditis elegans, and enhanced pmk-1 expression. However, only B. amyloliquefaciens SCGB1 could attach to C. elegans in the intestines, which enhanced their survival upon exposure to Escherichia coli O157:H7. We also investigated the anti-inflammatory effect of SCGB1 using the RAW264.7 macrophage stimulated with lipopolysaccharide. The strain treatment enhanced anti-inflammatory cytokine interleukin (IL)-10 secretion and downregulated proinflammatory cytokine IL-6 expression in vitro. Next, we used a dextran sulfate sodium (DSS)-induced colitis mouse model to investigate whether SCGB1 can ameliorate gut inflammation in vivo. Compared to those in the DSS-induced mice, histological damage and IL-6 cytokine levels were significantly reduced in SCGB1-fed mice. These results suggest that B. amyloliquefaciens SCGB1 as potential probiotics may have health-promoting effects by reduction of inflammatory responses.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Bohyun Yun
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Juyeon Lee
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Jiseon Yoo
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| |
Collapse
|
34
|
Wang W, Li S, Heng X, Chu W. Weissella confusa CGMCC 19,308 Strain Protects Against Oxidative Stress, Increases Lifespan, and Bacterial Disease Resistance in Caenorhabditis elegans. Probiotics Antimicrob Proteins 2021; 14:121-129. [PMID: 34037943 DOI: 10.1007/s12602-021-09799-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the antioxidant activity of Weissella confusa CGMCC 19,308 and its influence on longevity and host defense against Salmonella Typhimurium of Caenorhabditis elegans. The CFCS (cell-free culture supernatant) of W. confusa CGMCC 19,308 possessed DPPH radicals, hydroxyl radicals, and superoxide anion scavenging activity. The lifespan of the C. elegans fed W. confusa CGMCC 19,308 was significantly (p < 0.001) longer than that of worms fed Escherichia coli OP50. Moreover, worms fed W. confusa CGMCC 19,308 were more resistant to oxidative stress induced by hydrogen peroxide and S. Typhimurium infection. RNA-seq analysis showed that the most significantly differentially expressed genes (DEGs) in C. elegans fed with W. confusa CGMCC 19,308 were mainly col genes (col-43, col-2, col-40, col-155, col-37), glutathione-S-transferase (GST)-related genes (gst-44, gst-9, gst-17, gst-18, gstk-2), cnc-9 (immune-related gene), and sod-5 (superoxide dismutase). These results indicated that cuticle collagen synthesis, immunity, and antioxidant defense (AOD) system of C. elegans were affected after being fed with W. confusa CGMCC 19,308 instead of E. coli OP50. Our study suggested W. confusa CGMCC 19,308 had the antioxidant activity and could prolong lifespan and enhance the host defense against S. Typhimurium of C. elegans. This study provided new evidences for the W. confusa CGMCC 19,308 as a potential probiotic candidate for anti-aging and anti-bacterial infection.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shipo Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Heng
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
35
|
Yeom J, Ma S, Lim YH. Probiotic Propionibacterium freudenreichii MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL Ratio. Microorganisms 2021; 9:673. [PMID: 33805153 PMCID: PMC8064112 DOI: 10.3390/microorganisms9040673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoblast differentiation is important for the development of bone and the maintenance of bone density. Propionibacterium freudenreichii is a probiotic with an anti-inflammatory property. The aim of this study was to investigate the enhancement effect of P. freudenreichii MJ2 (MJ2) isolated from raw milk on osteoblast differentiation, mineralization, and its signaling pathway. For in vitro and in vivo experiments, human fetal osteoblastic cell line hFOB 1.19 and an ovariectomized rat model were used, respectively. Expression levels of genes and proteins related to osteoblast differentiation and mineralization were measured by real-time polymerase chain reaction (qPCR) and Western blotting, respectively. Alizarin red S staining was performed to measure osteoblast mineralization. Heat-killed MJ2 (hkMJ2)-treated cells showed significantly increased osteoblast differentiation via an increase in the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) ratio and significantly increased osteoblast mineralization by stimulating the expression of bone morphogenetic protein 2 and runt-related transcription factor 2. Additionally, oral administration of live or heat-killed MJ2 to ovariectomized rats inhibited osteoporosis-induced bone loss. Specifically, surface proteins isolated from MJ2 promoted osteoblast differentiation and mineralization. In conclusion, MJ2 enhanced osteoblast differentiation and mineralization through the OPG/RANKL signaling pathway and the effective component of MJ2 might be its surface proteins.
Collapse
Affiliation(s)
- Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (S.M.)
| | - Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (S.M.)
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (S.M.)
- School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
36
|
Choi HJ, Shin D, Shin M, Yun B, Kang M, Yang HJ, Jeong DY, Kim Y, Oh S. Comparative Genomic and Functional Evaluations of Bacillus subtilis Newly Isolated from Korean Traditional Fermented Foods. Foods 2020; 9:E1805. [PMID: 33291832 PMCID: PMC7762004 DOI: 10.3390/foods9121805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 01/28/2023] Open
Abstract
Many fermented foods are known to have beneficial effects on human and animal health, offering anti-aging and immunomodulatory benefits to host. Microorganisms contained in the fermented foods are known to provide metabolic products possibly improving host health. However, despite of a number of studies on the functional effects of the fermented foods, isolation and identification of the effective bacterial strains in the products are still in progress. The objective of this study was to isolate candidate functional strains in various Korean traditional fermented foods, including ganjang, gochujang, doenjang, and jeotgal, and evaluate their beneficial effects on the host, using Caenorhabditis elegans as a surrogate animal model. Among the 30 strains isolated, five Bacillus spp. were selected that increased the expression level of pmk-1, an innate immune gene of C. elegans. These strains extended the nematode lifespan and showed intestinal adhesion to the host. Based on the bioinformatic analyses of whole genome sequences and pangenomes, the five strains of Bacillus subtilis were genetically different from the strains found in East Asian countries and previously reported strains isolated from Korean fermented foods. Our findings suggest that the newly isolated B. subtilis strains can be a good candidate for probiotic with further in-depth investigation on health benefits and safety.
Collapse
Affiliation(s)
- Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - Minhye Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Bohyun Yun
- Department of Animal Science and Institute of Milk Genomics, Jeonbuk National University, Jeonju 54896, Korea;
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea;
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk 56048, Korea; (H.-J.Y.); (D.-Y.J.)
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk 56048, Korea; (H.-J.Y.); (D.-Y.J.)
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea;
| |
Collapse
|
37
|
Guan L, Zhan Z, Yang Y, Miao Y, Huang X, Ding M. Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons. PLoS Genet 2020; 16:e1008704. [PMID: 32986702 PMCID: PMC7544145 DOI: 10.1371/journal.pgen.1008704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/08/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
ER stress occurs in many physiological and pathological conditions. However, how chronic ER stress is alleviated in specific cells in an intact organism is an outstanding question. Here, overexpressing the gap junction protein UNC-9 (Uncoordinated) in C. elegans neurons triggers the Ire1-Xbp1-mediated stress response in an age-dependent and cell-autonomous manner. The p38 MAPK PMK-3 regulates the chronic stress through IRE-1 phosphorylation. Overexpressing gap junction protein also activates autophagy. The insulin pathway functions through autophagy, but not the transcription of genes encoding ER chaperones, to counteract the p38-Ire1-Xbp1-mediated stress response. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in a subset of cells in multicellular organism. The accumulation of unfolded proteins triggers the ER stress response (UPR), which allows cells to fight against fluctuations in protein expression under both physiological and pathological conditions. Severe acute ER stress responses can be induced by drug treatment. However, such intense ER stress rarely occurs ubiquitously in every cell type in vivo. Here, we designed a genetic system in the nematode C. elegans, which allows us to induce ER stress in specific cells, without drug treatment or any other external stimuli, and then to monitor the stress response. The p38 MAPK directly acts on the phosphorylation of IRE-1 to promote the stress response. Meanwhile, the insulin receptor function through autophagy activation to counteract the p38-IRE-1-XBP-1 pathway. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in multicellular organism.
Collapse
Affiliation(s)
- Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LG); (MD)
| | - Zhigao Zhan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (LG); (MD)
| |
Collapse
|
38
|
Kavita S, Pooranachithra M, Singh N, Prasanth MI, Balamurugan K, Goel G. Lactobacillus gastricus BTM 7 prevents intestinal colonization by biofilm forming Cronobacter sakazakii in Caenorhabditis elegans model host. Antonie van Leeuwenhoek 2020; 113:1587-1600. [PMID: 32918643 DOI: 10.1007/s10482-020-01466-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
The study reports protective role of potential probiotic cultures against infection by biofilm forming Cronobacter sakazakii in Caenorhabditis elegans model system. Among the fifteen indigenous potential probiotics, the cell free supernatant of Lactobacillus gastricus BTM7 possessed highest antimicrobial action and biofilm inhibition against C. sakazakii. The competitive exclusion assays revealed that preconditioning with probiotics resulted in increased mean life span of the nematode to 12-13 days as compared to 5-6 days when the pathogen was administered alone. Enhanced expression of the marker genes (pmk-1, daf-16 and skn-1) was observed during the administration of probiotic cultures. The highest expression of pmk-1 (2.5 folds) was observed with administration of L. gastricus BTM7. The principal component analysis on selected variables revealed that L. gastricus BTM7 has the potential to limit the infection of C. sakazakii in C. elegans and enhance the expression of key genes involved in extending life span of the worm.
Collapse
Affiliation(s)
- Sharma Kavita
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, India
| | | | - Niharika Singh
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, 209217, India
| | - Mani Iyer Prasanth
- Department of Biotechnology, Alagappa University, Karaikudi, 630004, India.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Gunjan Goel
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, India. .,Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
39
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
40
|
Caenorhabditis elegans saposin-like spp-9 is involved in specific innate immune responses. Genes Immun 2020; 21:301-310. [PMID: 32770079 DOI: 10.1038/s41435-020-0108-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022]
Abstract
Animals counter specific environmental challenges with a combination of broad and tailored host responses. One protein family enlisted in the innate immune response includes the saposin-like antimicrobial proteins. We investigated the expression of a Caenorhabditis elegans saposin-like gene, spp-9, in response to different stresses. spp-9 expression was detected in the intestine and six amphid neurons, including AWB and AWC. spp-9 expression is increased in response to starvation stress. In addition, we discovered pathogen-specific regulation of spp-9 that was not clearly demarcated by Gram nature of the bacterial challenge. Multiple molecular innate immune response pathways, including DBL-1/TGF-β-like, insulin-like, and p38/MAPK, regulate expression of spp-9. Our results suggest spp-9 is involved in targeted responses to a variety of abiotic and bacterial challenges that are coordinated by multiple signaling pathways.
Collapse
|
41
|
Viri V, Cornaglia M, Atakan HB, Lehnert T, Gijs MAM. An in vivo microfluidic study of bacterial transit in C. elegans nematodes. LAB ON A CHIP 2020; 20:2696-2708. [PMID: 32633746 DOI: 10.1039/d0lc00064g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Caenorhabditis elegans (C. elegans) constitutes an important model organism for use in nutrition and aging studies. We report a novel method for studying the dynamics of Escherichia coli (E. coli) bacterial transit through the worms' intestine. A microfluidic chip was designed for alternating C. elegans on-chip culture and immobilization, thereby enabling periodic high-resolution time-lapse imaging at single-worm resolution over several days. Immobilization was achieved in a reversible way using arrays of tapered channels suitable for assay parallelization. Dedicated C. elegans feeding protocols were applied. Two E. coli bacterial strains, HT115 and OP50, respectively labeled with green fluorescent protein (GFP) and red fluorescent protein (RFP), were used as food source and imaged with fluorescence microscopy techniques to measure relevant parameters of the bacterial transit process. Feeding behavior and E. coli transit dynamics in the whole intestinal tract of the worms were characterized in an automated way over the first 3 days of adulthood, revealing both fast transit phenomena and variations in microbial accumulation. In particular, we studied the bacterial food transit periodicity in wild-type and eat-2 (ad465) mutant C. elegans strains in both trapped and free-swimming conditions. In order to further demonstrate the versatility of our microfluidic platform, we also studied drug-induced modifications of the bacterial transit by measuring the response of the worms' intestine to exposure to the neurotransmitter serotonin.
Collapse
Affiliation(s)
- Vittorio Viri
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
42
|
Wu T, Liang X, He K, Liu X, Li Y, Wang Y, Kong L, Tang M. The NLRP3-Mediated Neuroinflammatory Responses to CdTe Quantum Dots and the Protection of ZnS Shell. Int J Nanomedicine 2020; 15:3217-3233. [PMID: 32440120 PMCID: PMC7212783 DOI: 10.2147/ijn.s246578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Since CdTe quantum dots (QDs) are still widely considered as advanced fluorescent probes because of their far superior optical performance and fluorescence efficiency over non-cadmium QDs, it is important to find ways to control their toxicity. Methods In this study, the adverse effects of two cadmium-containing QDs, ie, CdTe QDs and CdTe@ZnS QDs, on the nervous system of nematode C. elegans, the hippocampus of mice, and cultured microglia were measured in order to evaluate the neuroinflammation caused by cadmium-containing QDs and the potential mechanisms. Results Firstly, we observed that cadmium-containing QD exposure-induced immune responses and neurobehavioral deficit in nematode C. elegans. In the mice treated with QDs, neuroinflammatory responses to QDs in the hippocampus, including microglial activation and IL-1ß release, occurred as well. When investigating the mechanisms of cadmium-containing QDs causing IL-1ß-mediated inflammation, the findings suggested that cadmium-containing QDs activated the NLRP3 inflammasome by causing excessive ROS generation, and resulted in IL-1ß release. Discussion Even though the milder immune responses and neurotoxicity of CdTe@ZnS QDs compared with CdTe QDs indicated the protective role of ZnS coating, the inhibitions of NLRP3 expression and ROS production completely reduced the IL-1ß-mediated inflammation. This provided valuable information that inhibiting target molecules is an effective and efficient way to alleviate the toxicity of cadmium-containing QDs, so it is important to evaluate QDs through a mechanism-based risk assessment.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Keyu He
- Blood Transfusion Department, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Xi Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yimeng Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yutong Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
43
|
Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster. Appl Environ Microbiol 2020; 86:AEM.00305-20. [PMID: 32144104 DOI: 10.1128/aem.00305-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
To better understand how associated microorganisms ("microbiota") influence organismal aging, we focused on the model organism Drosophila melanogaster We conducted a metagenome-wide association (MGWA) as a screen to identify bacterial genes associated with variation in the D. melanogaster life span. The results of the MGWA predicted that bacterial cysteine and methionine metabolism genes influence fruit fly longevity. A mutant analysis, in which flies were inoculated with Escherichia coli strains bearing mutations in various methionine cycle genes, confirmed a role for some methionine cycle genes in extending or shortening fruit fly life span. Initially, we predicted these genes might influence longevity by mimicking or opposing methionine restriction, an established mechanism for life span extension in fruit flies. However, follow-up transcriptome sequencing (RNA-seq) and metabolomic experiments were generally inconsistent with this conclusion and instead implicated glucose and vitamin B6 metabolism in these influences. We then tested if bacteria could influence life span through methionine restriction using a different set of bacterial strains. Flies reared with a bacterial strain that ectopically expressed bacterial transsulfuration genes and lowered the methionine content of the fly diet also extended female D. melanogaster life span. Taken together, the microbial influences shown here overlap with established host genetic mechanisms for aging and therefore suggest overlapping roles for host and microbial metabolism genes in organismal aging.IMPORTANCE Associated microorganisms ("microbiota") are intimately connected to the behavior and physiology of their animal hosts, and defining the mechanisms of these interactions is an urgent imperative. This study focuses on how microorganisms influence the life span of a model host, the fruit fly Drosophila melanogaster First, we performed a screen that suggested a strong influence of bacterial methionine metabolism on host life span. Follow-up analyses of gene expression and metabolite abundance identified stronger roles for vitamin B6 and glucose than methionine metabolism among the tested mutants, possibly suggesting a more limited role for bacterial methionine metabolism genes in host life span effects. In a parallel set of experiments, we created a distinct bacterial strain that expressed life span-extending methionine metabolism genes and showed that this strain can extend fly life span. Therefore, this work identifies specific bacterial genes that influence host life span, including in ways that are consistent with the expectations of methionine restriction.
Collapse
|
44
|
Kumar A, Baruah A, Tomioka M, Iino Y, Kalita MC, Khan M. Caenorhabditis elegans: a model to understand host-microbe interactions. Cell Mol Life Sci 2020; 77:1229-1249. [PMID: 31584128 PMCID: PMC11104810 DOI: 10.1007/s00018-019-03319-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Host-microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host-microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India
| | - Aiswarya Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India.
| |
Collapse
|
45
|
Bianchi L, Laghi L, Correani V, Schifano E, Landi C, Uccelletti D, Mattei B. A Combined Proteomics, Metabolomics and In Vivo Analysis Approach for the Characterization of Probiotics in Large-Scale Production. Biomolecules 2020; 10:biom10010157. [PMID: 31963736 PMCID: PMC7022454 DOI: 10.3390/biom10010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022] Open
Abstract
The manufacturing processes of commercial probiotic strains may be affected in different ways in the attempt to optimize yield, costs, functionality, or stability, influencing gene expression, protein patterns, or metabolic output. Aim of this work is to compare different samples of a high concentration (450 billion bacteria) multispecies (8 strains) formulation produced at two different manufacturing sites, United States of America (US) and Italy (IT), by applying a combination of functional proteomics, metabolomics, and in vivo analyses. Several protein-profile differences were detected between IT- and US-made products, with Lactobacillus paracasei, Streptococcus thermophilus, and Bifidobacteria being the main affected probiotics/microorganisms. Performing proton nuclear magnetic spectroscopy (1H-NMR), some discrepancies in amino acid, lactate, betaine and sucrose concentrations were also reported between the two products. Finally, we investigated the health-promoting and antiaging effects of both products in the model organism Caenorhabditis elegans. The integration of omics platforms with in vivo analysis has emerged as a powerful tool to assess manufacturing procedures.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (C.L.)
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 40126 Cesena, Italy;
| | - Virginia Correani
- Department of Biochemical Sciences, Sapienza University, 00185 Roma, Italy;
| | - Emily Schifano
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, 00185 Rome, Italy;
| | - Claudia Landi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (C.L.)
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, 00185 Rome, Italy;
- Correspondence:
| | | |
Collapse
|
46
|
Caenorhabditis Elegans and Probiotics Interactions from a Prolongevity Perspective. Int J Mol Sci 2019; 20:ijms20205020. [PMID: 31658751 PMCID: PMC6834311 DOI: 10.3390/ijms20205020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023] Open
Abstract
Probiotics exert beneficial effects on host health through different mechanisms of action, such as production of antimicrobial substances, competition with pathogens, enhancement of host mucosal barrier integrity and immunomodulation. In the context of ageing, which is characterized by several physiological alterations leading to a low grade inflammatory status called inflammageing, evidences suggest a potential prolongevity role of probiotics. Unraveling the mechanisms underlying anti-ageing effects requires the use of simple model systems. To this respect, the nematode Caenorhabditis elegans represents a suitable model organism for the study of both host-microbe interactions and for ageing studies, because of conserved signaling pathways and host defense mechanisms involved in the regulation of its lifespan. Therefore, this review analyses the impact of probiotics on C. elegans age-related parameters, with particular emphasis on oxidative stress, immunity, inflammation and protection from pathogen infections. The picture emerging from our analysis highlights that several probiotic strains are able to exert anti-ageing effects in nematodes by acting on common molecular pathways, such as insulin/insulin-like growth factor-1 (IIS) and p38 mitogen-activated protein kinase (p38 MAPK). In this perspective, C. elegans appears to be advantageous for shedding light on key mechanisms involved in host prolongevity in response to probiotics supplementation.
Collapse
|
47
|
Agamennone V, Le NG, van Straalen NM, Brouwer A, Roelofs D. Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida. Sci Rep 2019; 9:7308. [PMID: 31086216 PMCID: PMC6513849 DOI: 10.1038/s41598-019-43828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
The microbiome associated with an animal's gut and other organs is considered an integral part of its ecological functions and adaptive capacity. To better understand how microbial communities influence activities and capacities of the host, we need more information on the functions that are encoded in a microbiome. Until now, the information about soil invertebrate microbiomes is mostly based on taxonomic characterization, achieved through culturing and amplicon sequencing. Using shotgun sequencing and various bioinformatics approaches we explored functions in the bacterial metagenome associated with the soil invertebrate Folsomia candida, an established model organism in soil ecology with a fully sequenced, high-quality genome assembly. Our metagenome analysis revealed a remarkable diversity of genes associated with antimicrobial activity and carbohydrate metabolism. The microbiome also contains several homologs to F. candida genes that were previously identified as candidates for horizontal gene transfer (HGT). We suggest that the carbohydrate- and antimicrobial-related functions encoded by Folsomia's metagenome play a role in the digestion of recalcitrant soil-born polysaccharides and the defense against pathogens, thereby significantly contributing to the adaptation of these animals to life in the soil. Furthermore, the transfer of genes from the microbiome may constitute an important source of new functions for the springtail.
Collapse
Affiliation(s)
- Valeria Agamennone
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Microbiology and Systems Biology, TNO, Zeist, The Netherlands.
| | - Ngoc Giang Le
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nico M van Straalen
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Dick Roelofs
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Komanduri M, Gondalia S, Scholey A, Stough C. The microbiome and cognitive aging: a review of mechanisms. Psychopharmacology (Berl) 2019; 236:1559-1571. [PMID: 31055629 DOI: 10.1007/s00213-019-05231-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022]
Abstract
Gut microbiota plays an intrinsic role in communication between the gut and the brain and is capable of influencing the host brain by producing neurotransmitters and neurotrophins, the modulation of inflammatory processes amongst other key mechanisms. Increased age is also associated with changes in these key biological processes and impairments in a range of cognitive processes. We hypothesise several mechanisms in which gut microbiota may modulate changes in cognitive function with age. In this review, we discuss issues related to the measurement of cognition in the elderly and in particular outline a standardised model of cognition that could be utilised to better understand cognitive outcomes in future studies examining the relationship between gut microbiota and cognition in the elderly. We then review biological processes such as oxidative stress and inflammation which are related to cognitive changes with age and which are also influenced by our gut microbiota. Finally, we outline other potential mechanisms by which the gut microbiota may influence cognition.
Collapse
Affiliation(s)
- Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Rai N, Sjöberg V, Forsberg G, Karlsson S, Olsson PE, Jass J. Metal contaminated soil leachates from an art glass factory elicit stress response, alter fatty acid metabolism and reduce lifespan in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2218-2227. [PMID: 30326454 DOI: 10.1016/j.scitotenv.2018.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
The present study evaluated the toxicity of metal contamination in soils from an art glass factory in Småland Sweden using a Caenorhabditis elegans nematode model. The aim of the study was to chemically analyze the soil samples and study the biological effects of water-soluble leachates on the nematodes using different physiological endpoints. The total metal content showed that As, Cd and Pb were at levels above the guideline values for soils in areas around the factory. Less than 10% of the total metal content in the soil was found in the water-soluble leachates, however, Al, As, Fe and Pb remained higher than the guideline values for safe drinking water. Exposure of C. elegans to the water-soluble leachates, at both post-hatching larvae stage (L1-young adult) for 48 h and at the young adult stage (L4) for 6 h, showed significant gene alteration. Although the nematodes did not exhibit acute lethality, lifespan was significantly reduced upon exposure. C. elegans also showed altered gene expression associated with stress response and fat metabolism, as well as enhanced accumulation of body fat. The study highlighted the significance of assessing environmental samples using a combination of gene expression analysis, fatty acid metabolism and lifespan for providing valuable insight into the negative impact of metals. The altered fat metabolism and reduced lifespan on exposure to soil leachates motivates further studies to explore the mechanism of the toxicity associated with the metals present in the environment.
Collapse
Affiliation(s)
- Neha Rai
- The Life Science Centre - Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Viktor Sjöberg
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | | | - Stefan Karlsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Centre - Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Jana Jass
- The Life Science Centre - Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden.
| |
Collapse
|
50
|
The Foodborne Strain Lactobacillus fermentum MBC2 Triggers pept-1-Dependent Pro-Longevity Effects in Caenorhabditis elegans. Microorganisms 2019; 7:microorganisms7020045. [PMID: 30736484 PMCID: PMC6406943 DOI: 10.3390/microorganisms7020045] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) are involved in several food fermentations and many of them provide strain-specific health benefits. Herein, the probiotic potential of the foodborne strain Lactobacillus fermentum MBC2 was investigated through in vitro and in vivo approaches. Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity and anti-aging effects. L. fermentum MBC2 showed a high gut colonization capability compared to E. coli OP50 (OP50) or L.rhamnosus GG (LGG). Moreover, analysis of pumping rate, lipofuscin accumulation, and body bending showed anti-aging effects in L. fermentum MBC2-fed worms. Studies on PEPT-1 mutants demonstrated that pept-1 gene was involved in the anti-aging processes mediated by this bacterial strain through DAF-16, whereas the oxidative stress protection was PEPT-1 independent. Moreover, analysis of acid tolerance, bile tolerance, and antibiotic susceptibility were evaluated. L. fermentum MBC2 exerted beneficial effects on nematode lifespan, influencing energy metabolism and oxidative stress resistance, resulted in being tolerant to acidic pH and able to adhere to Caco-2 cells. Overall, these findings provide new insight for application of this strain in the food industry as a newly isolated functional starter. Furthermore, these results will also shed light on C. elegans molecular players involved in host-microbe interactions.
Collapse
|