1
|
Villanea FA, Peede D, Kaufman EJ, Añorve-Garibay V, Chevy ET, Villa-Islas V, Witt KE, Zeloni R, Marnetto D, Moorjani P, Jay F, Valdmanis PN, Ávila-Arcos MC, Huerta-Sánchez E. The MUC19 gene in Denisovans, Neanderthals, and Modern Humans: An Evolutionary History of Recurrent Introgression and Natural Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559202. [PMID: 37808839 PMCID: PMC10557577 DOI: 10.1101/2023.09.25.559202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
We study the gene MUC19, for which modern humans carry a Denisovan-like haplotype. MUC19 is a mucin, a glycoprotein that forms gels with various biological functions. We find the diagnostic variants for the Denisovan-like MUC19 haplotype at high frequencies in admixed Latin American individuals among global populations, and at highest frequency in 23 ancient Indigenous American individuals, all predating population admixture with Europeans and Africans. We find that the Denisovan-like MUC19 haplotype carries a higher copy number of a 30 base-pair variable number tandem repeat, and that copy numbers of this repeat are exceedingly high in American populations and are under positive selection. This study provides the first example of positive selection acting on archaic alleles at coding sites and VNTRs. Finally, we find that some Neanderthals carry the Denisovan-like MUC19 haplotype, and that it was likely introgressed into human populations through Neanderthal introgression rather than Denisovan introgression.
Collapse
Affiliation(s)
| | - David Peede
- Department of Ecology, Evolution, and Organismal Biology, Brown University
- Center for Computational Molecular Biology, Brown University
- Institute at Brown for Environment and Society, Brown University
| | - Eli J Kaufman
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine
| | - Valeria Añorve-Garibay
- Center for Computational Molecular Biology, Brown University
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México
| | | | - Viridiana Villa-Islas
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México
| | - Kelsey E Witt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University
| | - Roberta Zeloni
- Department of Neurosciences "Rita Levi Montalcini", University of Turin
| | - Davide Marnetto
- Department of Neurosciences "Rita Levi Montalcini", University of Turin
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley
- Center for Computational Biology, University of California, Berkeley
| | - Flora Jay
- Université Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay, France
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México
| | - Emilia Huerta-Sánchez
- Department of Ecology, Evolution, and Organismal Biology, Brown University
- Center for Computational Molecular Biology, Brown University
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Thobor BM, Tilstra A, Mueller B, Haas A, Hehemann JH, Wild C. Mucus carbohydrate composition correlates with scleractinian coral phylogeny. Sci Rep 2024; 14:14019. [PMID: 38890484 PMCID: PMC11189453 DOI: 10.1038/s41598-024-64828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The mucus surface layer serves vital functions for scleractinian corals and consists mainly of carbohydrates. Its carbohydrate composition has been suggested to be influenced by environmental conditions (e.g., temperature, nutrients) and microbial pressures (e.g., microbial degradation, microbial coral symbionts), yet to what extend the coral mucus composition is determined by phylogeny remains to be tested. To investigate the variation of mucus carbohydrate compositions among coral species, we analyzed the composition of mucosal carbohydrate building blocks (i.e., monosaccharides) for five species of scleractinian corals, supplemented with previously reported data, to discern overall patterns using cluster analysis. Monosaccharide composition from a total of 23 species (belonging to 14 genera and 11 families) revealed significant differences between two phylogenetic clades that diverged early in the evolutionary history of scleractinian corals (i.e., complex and robust; p = 0.001, R2 = 0.20), mainly driven by the absence of arabinose in the robust clade. Despite considerable differences in environmental conditions and sample analysis protocols applied, coral phylogeny significantly correlated with monosaccharide composition (Mantel test: p < 0.001, R2 = 0.70). These results suggest that coral mucus carbohydrates display phylogenetic dependence and support their essential role in the functioning of corals.
Collapse
Affiliation(s)
- Bianca M Thobor
- Department of Marine Ecology, University of Bremen, Bremen, Germany.
| | - Arjen Tilstra
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Benjamin Mueller
- Department of Marine Ecology, University of Bremen, Bremen, Germany
- Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands
- CARMABI Foundation, Willemstad, Curaçao
| | - Andreas Haas
- Department of Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Jan-Hendrik Hehemann
- Department of Marine Glycobiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Christian Wild
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Pajic P, Landau L, Gokcumen O, Ruhl S. Emergence of saliva protein genes in the secretory calcium-binding phosphoprotein (SCPP) locus and accelerated evolution in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580359. [PMID: 38405690 PMCID: PMC10888740 DOI: 10.1101/2024.02.14.580359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Genes within the secretory calcium-binding phosphoprotein (SCPP) family evolved in conjunction with major evolutionary milestones: the formation of a calcified skeleton in vertebrates, the emergence of tooth enamel in fish, and the introduction of lactation in mammals. The SCPP gene family also contains genes expressed primarily and abundantly in human saliva. Here, we explored the evolution of the saliva-related SCPP genes by harnessing currently available genomic and transcriptomic resources. Our findings provide insights into the expansion and diversification of SCPP genes, notably identifying previously undocumented convergent gene duplications. In primate genomes, we found additional duplication and diversification events that affected genes coding for proteins secreted in saliva. These saliva-related SCPP genes exhibit signatures of positive selection in the primate lineage while the other genes in the same locus remain conserved. We found that regulatory shifts and gene turnover events facilitated the accelerated gain of salivary expression. Collectively, our results position the SCPP gene family as a hotbed of evolutionary innovation, suggesting the potential role of dietary and pathogenic pressures in the adaptive diversification of the saliva composition in primates, including humans.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Luane Landau
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY 14214, USA
| |
Collapse
|
4
|
Di Pietro L, Boroumand M, Lattanzi W, Manconi B, Salvati M, Cabras T, Olianas A, Flore L, Serrao S, Calò CM, Francalacci P, Parolini O, Castagnola M. A Catalog of Coding Sequence Variations in Salivary Proteins' Genes Occurring during Recent Human Evolution. Int J Mol Sci 2023; 24:15010. [PMID: 37834461 PMCID: PMC10573131 DOI: 10.3390/ijms241915010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Saliva houses over 2000 proteins and peptides with poorly clarified functions, including proline-rich proteins, statherin, P-B peptides, histatins, cystatins, and amylases. Their genes are poorly conserved across related species, reflecting an evolutionary adaptation. We searched the nucleotide substitutions fixed in these salivary proteins' gene loci in modern humans compared with ancient hominins. We mapped 3472 sequence variants/nucleotide substitutions in coding, noncoding, and 5'-3' untranslated regions. Despite most of the detected variations being within noncoding regions, the frequency of coding variations was far higher than the general rate found throughout the genome. Among the various missense substitutions, specific substitutions detected in PRB1 and PRB2 genes were responsible for the introduction/abrogation of consensus sequences recognized by convertase enzymes that cleave the protein precursors. Overall, these changes that occurred during the recent human evolution might have generated novel functional features and/or different expression ratios among the various components of the salivary proteome. This may have influenced the homeostasis of the oral cavity environment, possibly conditioning the eating habits of modern humans. However, fixed nucleotide changes in modern humans represented only 7.3% of all the substitutions reported in this study, and no signs of evolutionary pressure or adaptative introgression from archaic hominins were found on the tested genes.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Laura Flore
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Carla M. Calò
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
5
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Verbiest M, Maksimov M, Jin Y, Anisimova M, Gymrek M, Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol 2023; 36:321-336. [PMID: 36289560 PMCID: PMC9990875 DOI: 10.1111/jeb.14106] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 02/03/2023]
Abstract
Short tandem repeats (STRs) are units of 1-6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.
Collapse
Affiliation(s)
- Max Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mikhail Maksimov
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ye Jin
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Melissa Gymrek
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Tugce Bilgin Sonay
- Institute of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
7
|
Pajic P, Shen S, Qu J, May AJ, Knox S, Ruhl S, Gokcumen O. A mechanism of gene evolution generating mucin function. SCIENCE ADVANCES 2022; 8:eabm8757. [PMID: 36026444 PMCID: PMC9417175 DOI: 10.1126/sciadv.abm8757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/12/2022] [Indexed: 05/12/2023]
Abstract
How novel gene functions evolve is a fundamental question in biology. Mucin proteins, a functionally but not evolutionarily defined group of proteins, allow the study of convergent evolution of gene function. By analyzing the genomic variation of mucins across a wide range of mammalian genomes, we propose that exonic repeats and their copy number variation contribute substantially to the de novo evolution of new gene functions. By integrating bioinformatic, phylogenetic, proteomic, and immunohistochemical approaches, we identified 15 undescribed instances of evolutionary convergence, where novel mucins originated by gaining densely O-glycosylated exonic repeat domains. Our results suggest that secreted proteins rich in proline are natural precursors for acquiring mucin function. Our findings have broad implications for understanding the role of exonic repeats in the parallel evolution of new gene functions, especially those involving protein glycosylation.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Center of Excellence in Bioinformatics and Life Science, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Center of Excellence in Bioinformatics and Life Science, Buffalo, NY 14203, USA
| | - Alison J. May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Chahal G, Quintana-Hayashi MP, Gaytán MO, Benktander J, Padra M, King SJ, Linden SK. Streptococcus oralis Employs Multiple Mechanisms of Salivary Mucin Binding That Differ Between Strains. Front Cell Infect Microbiol 2022; 12:889711. [PMID: 35782137 PMCID: PMC9247193 DOI: 10.3389/fcimb.2022.889711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus oralis is an oral commensal and opportunistic pathogen that can enter the bloodstream and cause bacteremia and infective endocarditis. Here, we investigated the mechanisms of S. oralis binding to oral mucins using clinical isolates, isogenic mutants and glycoconjugates. S. oralis bound to both MUC5B and MUC7, with a higher level of binding to MUC7. Mass spectrometry identified 128 glycans on MUC5B, MUC7 and the salivary agglutinin (SAG). MUC7/SAG contained a higher relative abundance of Lewis type structures, including Lewis b/y, sialyl-Lewis a/x and α2,3-linked sialic acid, compared to MUC5B. S. oralis subsp. oralis binding to MUC5B and MUC7/SAG was inhibited by Lewis b and Lacto-N-tetraose glycoconjugates. In addition, S. oralis binding to MUC7/SAG was inhibited by sialyl Lewis x. Binding was not inhibited by Lacto-N-fucopentaose, H type 2 and Lewis x conjugates. These data suggest that three distinct carbohydrate binding specificities are involved in S. oralis subsp. oralis binding to oral mucins and that the mechanisms of binding MUC5B and MUC7 differ. Efficient binding of S. oralis subsp. oralis to MUC5B and MUC7 required the gene encoding sortase A, suggesting that the adhesin(s) are LPXTG-containing surface protein(s). Further investigation demonstrated that one of these adhesins is the sialic acid binding protein AsaA.
Collapse
Affiliation(s)
- Gurdeep Chahal
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Medea Padra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| | - Sara K. Linden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| |
Collapse
|
10
|
Leurs N, Martinand-Mari C, Marcellini S, Debiais-Thibaud M. Parallel evolution of ameloblastic scpp genes in bony and cartilaginous vertebrates. Mol Biol Evol 2022; 39:6582990. [PMID: 35535508 PMCID: PMC9122587 DOI: 10.1093/molbev/msac099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In bony vertebrates, skeletal mineralization relies on the secretory calcium-binding phosphoproteins (Scpp) family whose members are acidic extracellular proteins posttranslationally regulated by the Fam20°C kinase. As scpp genes are absent from the elephant shark genome, they are currently thought to be specific to bony fishes (osteichthyans). Here, we report a scpp gene present in elasmobranchs (sharks and rays) that evolved from local tandem duplication of sparc-L 5′ exons and show that both genes experienced recent gene conversion in sharks. The elasmobranch scpp is remarkably similar to the osteichthyan scpp members as they share syntenic and gene structure features, code for a conserved signal peptide, tyrosine-rich and aspartate/glutamate-rich regions, and harbor putative Fam20°C phosphorylation sites. In addition, the catshark scpp is coexpressed with sparc-L and fam20°C in tooth and scale ameloblasts, similarly to some osteichthyan scpp genes. Despite these strong similarities, molecular clock and phylogenetic data demonstrate that the elasmobranch scpp gene originated independently from the osteichthyan scpp gene family. Our study reveals convergent events at the sparc-L locus in the two sister clades of jawed vertebrates, leading to parallel diversification of the skeletal biomineralization toolkit. The molecular evolution of sparc-L and its coexpression with fam20°C in catshark ameloblasts provides a unifying genetic basis that suggests that all convergent scpp duplicates inherited similar features from their sparc-L precursor. This conclusion supports a single origin for the hypermineralized outer odontode layer as produced by an ancestral developmental process performed by Sparc-L, implying the homology of the enamel and enameloid tissues in all vertebrates.
Collapse
Affiliation(s)
- Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
11
|
Haridi A. Identification, diversity and domain structure analysis of mucin and mucin-like genes in sea anemone Actinia tenebrosa. PeerJ 2022; 10:e13292. [PMID: 35539013 PMCID: PMC9080433 DOI: 10.7717/peerj.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background Mucins are part of the glycoprotein family and the main proteinaceous component of mucus. The sea anemone species, Actinia tenebrosa (Phylum Cnidaria) produce large amounts of mucus, which have not been studied in detail. Furthermore, there has only been limited investigation of mucin genes in phylum Cnidaria. Therefore, the aim of current study was to identify and analyse the repertoire mucin genes present in A. tenebrosa and range of other sea anemone species to document their diversity in this group. Methods To achieve this aim, we undertook transcriptome sequencing, assembly, and annotation to identify mucin genes in A. tenebrosa. Results The results from this study demonstrated a diverse repertoire of mucin proteins, including mucin1-like, mucin4-like, and a range of mucin-like genes in the range of sea anemone species examined. The domain structure of the identified mucin genes was found to be consistent with the conserved domains found in the homologous proteins of vertebrate species. The discovery of a diverse range of mucin genes in sea anemone species provided a basic reference for future mucin studies in cnidarians and could lead to research into their application in the pharmacological, clinical, and cosmetic industries.
Collapse
|
12
|
HaileMariam M, Yu Y, Singh H, Teklu T, Wondale B, Worku A, Zewude A, Mounaud S, Tsitrin T, Legesse M, Gobena A, Pieper R. Protein and Microbial Biomarkers in Sputum Discern Acute and Latent Tuberculosis in Investigation of Pastoral Ethiopian Cohort. Front Cell Infect Microbiol 2021; 11:595554. [PMID: 34150670 PMCID: PMC8212885 DOI: 10.3389/fcimb.2021.595554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
Differential diagnosis of tuberculosis (TB) and latent TB infection (LTBI) remains a public health priority in high TB burden countries. Pulmonary TB is diagnosed by sputum smear microscopy, chest X-rays, and PCR tests for distinct Mycobacterium tuberculosis (Mtb) genes. Clinical tests to diagnose LTBI rely on immune cell stimulation in blood plasma with TB-specific antigens followed by measurements of interferon-γ concentrations. The latter is an important cytokine for cellular immune responses against Mtb in infected lung tissues. Sputum smear microscopy and chest X-rays are not sufficiently sensitive while both PCR and interferon-γ release assays are expensive. Alternative biomarkers for the development of diagnostic tests to discern TB disease states are desirable. This study's objective was to discover sputum diagnostic biomarker candidates from the analysis of samples from 161 human subjects including TB patients, individuals with LTBI, negative community controls (NCC) from the province South Omo, a pastoral region in Ethiopia. We analyzed 16S rRNA gene-based bacterial taxonomies and proteomic profiles. The sputum microbiota did not reveal statistically significant differences in α-diversity comparing the cohorts. The genus Mycobacterium, representing Mtb, was only identified for the TB group which also featured reduced abundance of the genus Rothia in comparison with the LTBI and NCC groups. Rothia is a respiratory tract commensal and may be sensitive to the inflammatory milieu generated by infection with Mtb. Proteomic data supported innate immune responses against the pathogen in subjects with pulmonary TB. Ferritin, an iron storage protein released by damaged host cells, was markedly increased in abundance in TB sputum compared to the LTBI and NCC groups, along with the α-1-acid glycoproteins ORM1 and ORM2. These proteins are acute phase reactants and inhibit excessive neutrophil activation. Proteomic data highlight the effector roles of neutrophils in the anti-Mtb response which was not observed for LTBI cases. Less abundant in the sputum of the LTBI group, compared to the NCC group, were two immunomodulatory proteins, mitochondrial TSPO and the extracellular ribonuclease T2. If validated, these proteins are of interest as new biomarkers for diagnosis of LTBI.
Collapse
Affiliation(s)
- Milkessa HaileMariam
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yanbao Yu
- J. Craig Venter Institute, Rockville, MD, United States
| | - Harinder Singh
- J. Craig Venter Institute, Rockville, MD, United States
| | - Takele Teklu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia
| | - Biniam Wondale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Adane Worku
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Tamara Tsitrin
- J. Craig Venter Institute, Rockville, MD, United States
| | - Mengistu Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ameni Gobena
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, MD, United States
| |
Collapse
|
13
|
The Relationship between Mucins and Ulcerative Colitis: A Systematic Review. J Clin Med 2021; 10:jcm10091935. [PMID: 33946184 PMCID: PMC8125602 DOI: 10.3390/jcm10091935] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Mucins are a family of glycosylated proteins which are the primary constituents of mucus and play a dynamic role in the regulation of the protective mucosal barriers throughout the human body. Ulcerative colitis (UC) is an Inflammatory Bowel Disease (IBD) characterised by continuous inflammation of the inner layer of the large intestine, and in this systematic review we analyse currently available data to determine whether alterations exist in mucin activity in the colonic mucosa of UC patients. Database searches were conducted to identify studies published between 1990 and 2020 that assess the role of mucins in cohorts of UC patients, where biopsy specimens were resected for analysis and control groups were included for comparison. 5497 articles were initially identified and of these 14 studies were systematically selected for analysis, a further 2 articles were identified through citation chaining. Therefore, 16 studies were critically reviewed. 13 of these studies assessed the role of MUC2 in UC and the majority of articles indicated that alterations in MUC2 structure or synthesis had an impact on the colonic mucosa, although conflicting results were presented regarding MUC2 expression. This review highlights the importance of further research to enhance our understanding of mucin regulation in UC and summarises data that may inform future studies.
Collapse
|
14
|
Ratan C, Cicily K D D, Nair B, Nath LR. MUC Glycoproteins: Potential Biomarkers and Molecular Targets for Cancer Therapy. Curr Cancer Drug Targets 2021; 21:132-152. [PMID: 33200711 DOI: 10.2174/1568009620666201116113334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/02/2020] [Accepted: 10/04/2020] [Indexed: 02/08/2023]
Abstract
MUC proteins have great significance as prognostic and diagnostic markers as well as a potential target for therapeutic interventions in most cancers of glandular epithelial origin. These are high molecular weight glycosylated proteins located in the epithelial lining of several tissues and ducts. Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted or membrane-bound. Glycosylation, a post-translational modification affects the biophysical, functional and biochemical properties and provides structural complexity for these proteins. Aberrant expression and glycosylation of mucins contribute to tumour survival and proliferation in many cancers, which in turn activates numerous signalling pathways such as NF-kB, ERα, HIF, MAPK, p53, c-Src, Wnt and JAK-STAT, etc. This subsequently induces cancer cell growth, proliferation and metastasis. The present review mainly demonstrates the functional aspects of MUC glycoproteins along with its unique signalling mechanism and role of aberrant glycosylation in cancer progression and therapeutics. The importance of MUC proteins and its subtypes in a wide spectrum of cancers including but not limited to breast cancer, colorectal cancer, endometrial and cervical cancer, lung cancer, primary liver cancer, pancreatic cancer, prostate cancer and ovarian cancer has been exemplified with significance in targeting the same. Several patents associated with the MUC proteins in the field of cancer therapy are also emphasized in the current review.
Collapse
Affiliation(s)
- Chameli Ratan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Dalia Cicily K D
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| |
Collapse
|
15
|
Saitou M, Gaylord EA, Xu E, May AJ, Neznanova L, Nathan S, Grawe A, Chang J, Ryan W, Ruhl S, Knox SM, Gokcumen O. Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. Cell Rep 2020; 33:108402. [PMID: 33207190 PMCID: PMC7703872 DOI: 10.1016/j.celrep.2020.108402] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Salivary proteins are essential for maintaining health in the oral cavity and proximal digestive tract, and they serve as potential diagnostic markers for monitoring human health and disease. However, their precise organ origins remain unclear. Through transcriptomic analysis of major adult and fetal salivary glands and integration with the saliva proteome, the blood plasma proteome, and transcriptomes of 28+ organs, we link human saliva proteins to their source, identify salivary-gland-specific genes, and uncover fetal- and adult-specific gene repertoires. Our results also provide insights into the degree of gene retention during gland maturation and suggest that functional diversity among adult gland types is driven by specific dosage combinations of hundreds of transcriptional regulators rather than by a few gland-specific factors. Finally, we demonstrate the heterogeneity of the human acinar cell lineage. Our results pave the way for future investigations into glandular biology and pathology, as well as saliva's use as a diagnostic fluid.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, U.S.A; Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Viken, Norway
| | - Eliza A Gaylord
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Erica Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A
| | - Alison J May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Lubov Neznanova
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A
| | - Sara Nathan
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Anissa Grawe
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A
| | - Jolie Chang
- Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A
| | - William Ryan
- Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A.
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A.
| |
Collapse
|
16
|
Thamadilok S, Choi KS, Ruhl L, Schulte F, Kazim AL, Hardt M, Gokcumen O, Ruhl S. Human and Nonhuman Primate Lineage-Specific Footprints in the Salivary Proteome. Mol Biol Evol 2020; 37:395-405. [PMID: 31614365 PMCID: PMC6993864 DOI: 10.1093/molbev/msz223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteins in saliva are needed for preprocessing food in the mouth, maintenance of tooth mineralization, and protection from microbial pathogens. Novel insights into human lineage-specific functions of salivary proteins and clues to their involvement in human disease can be gained through evolutionary studies, as recently shown for salivary amylase AMY1 and salivary agglutinin DMBT1/gp340. However, the entirety of proteins in saliva, the salivary proteome, has not yet been investigated from an evolutionary perspective. Here, we compared the proteomes of human saliva and the saliva of our closest extant evolutionary relatives, chimpanzees and gorillas, using macaques as an outgroup, with the aim to uncover features in saliva protein composition that are unique to each species. We found that humans produce a waterier saliva, containing less than half total protein than great apes and Old World monkeys. For all major salivary proteins in humans, we could identify counterparts in chimpanzee and gorilla saliva. However, we discovered unique protein profiles in saliva of humans that were distinct from those of nonhuman primates. These findings open up the possibility that dietary differences and pathogenic pressures may have shaped a distinct salivary proteome in the human lineage.
Collapse
Affiliation(s)
- Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| | - Kyoung-Soo Choi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Lorenz Ruhl
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Fabian Schulte
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - A Latif Kazim
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Markus Hardt
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - Omer Gokcumen
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, NY
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| |
Collapse
|
17
|
Pinzón Martín S, Seeberger PH, Varón Silva D. Mucins and Pathogenic Mucin-Like Molecules Are Immunomodulators During Infection and Targets for Diagnostics and Vaccines. Front Chem 2019; 7:710. [PMID: 31696111 PMCID: PMC6817596 DOI: 10.3389/fchem.2019.00710] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Mucins and mucin-like molecules are highly O-glycosylated proteins present on the cell surface of mammals and other organisms. These glycoproteins are highly diverse in the apoprotein and glycan cores and play a central role in many biological processes and diseases. Mucins are the most abundant macromolecules in mucus and are responsible for its biochemical and biophysical properties. Mucin-like molecules cover various protozoan parasites, fungi and viruses. In humans, modifications in mucin glycosylation are associated with tumors in epithelial tissue. These modifications allow the distinction between normal and abnormal cell conditions and represent important targets for vaccine development against some cancers. Mucins and mucin-like molecules derived from pathogens are potential diagnostic markers and targets for therapeutic agents. In this review, we summarize the distribution, structure, role as immunomodulators, and the correlation of human mucins with diseases and perform a comparative analysis of mucins with mucin-like molecules present in human pathogens. Furthermore, we review the methods to produce pathogenic and human mucins using chemical synthesis and expression systems. Finally, we present applications of mucin-like molecules in diagnosis and prevention of relevant human diseases.
Collapse
Affiliation(s)
- Sandra Pinzón Martín
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health. J Mol Evol 2019; 88:104-119. [PMID: 31522275 DOI: 10.1007/s00239-019-09911-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Copy number variants (CNVs), deletions and duplications of segments of DNA, account for at least five times more variable base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure, among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders. These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events, breaking the linkage disequilibrium involving CNVs. Similar methodological challenges also prevent routine genome-wide association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories and unexpected functional consequences of CNVs. We hope that this review will encourage further work on CNVs by both evolutionary and medical geneticists.
Collapse
|
19
|
Wu Q, Cao R, Chen J, Xie X. Screening and identification of biomarkers associated with clinicopathological parameters and prognosis in oral squamous cell carcinoma. Exp Ther Med 2019; 18:3579-3587. [PMID: 31608128 PMCID: PMC6778814 DOI: 10.3892/etm.2019.7998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major type of malignant tumor of the oral cavity. Despite marked advances in the management and diagnosis of OSCC, the associated overall survival ratio has only exhibited a modest increase in recent years. The present study aimed to identify potential crucial genes associated with clinical features and prognosis for OSCC, and to provide a basis for further investigation. RNA-sequencing data and corresponding clinical information were downloaded from The Cancer Genome Atlas database and differentially expressed mRNAs (DEmRNAs) were identified using the edgeR package. Bioinformatics analysis was performed to identify differentially expressed clinical features-associated mRNAs (CFmRNAs) and enhance the current knowledge of the function of them. Functional enrichment analysis and protein-protein interplay (PPI) network analysis were then performed to better understand CFmRNAs. Survival-associated genes were analyzed with Kaplan-Meier survival curves and the log-rank test. A total of 2,013 DEmRNAs between OSCC samples and normal tissues were identified, 180 of which were associated with clinical features. A total of 17 GO terms and 4 KEGG pathways were significantly enriched in functional enrichment analysis. A total of 4 hub genes (albumin, statherin, neurotensin and mucin 7) were identified in the PPI network analysis. A total of 6 genes (DDB1 and CUL4 associated factor 4 like 2, opiorphin prepropeptide, R3H domain containing like, transmembrane phosphatase with tensin homology, actin like 8 and protocadherin α 11) were observed to have an influence on survival. The DEmRNAs identified may have a crucial role in the genesis and development of OSCC and may be further developed for diagnostic, therapeutic and prognostic applications for OSCC in the future.
Collapse
Affiliation(s)
- Qiqi Wu
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Juan Chen
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Xiaoli Xie
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
20
|
Abstract
Context: Africa's role in the narrative of human evolution is indisputably emphasised in the emergence of Homo sapiens. However, once humans dispersed beyond Africa, the history of those who stayed remains vastly under-studied, lacking the proper attention the birthplace of both modern and archaic humans deserves. The sequencing of Neanderthal and Denisovan genomes has elucidated evidence of admixture between archaic and modern humans outside of Africa, but has not aided efforts in answering whether archaic admixture happened within Africa. Objectives: This article reviews the state of research for archaic introgression in African populations and discusses recent insights into this topic. Methods: Gathering published sources and recently released preprints, this review reports on the different methods developed for detecting archaic introgression. Particularly it discusses how relevant these are when implemented on African populations and what findings these studies have shown so far. Results: Methods for detecting archaic introgression have been predominantly developed and implemented on non-African populations. Recent preprints present new methods considering African populations. While a number of studies using these methods suggest archaic introgression in Africa, without an African archaic genome to validate these results, such findings remain as putative archaic introgression. Conclusion: In light of the caveats with implementing current archaic introgression detection methods in Africa, we recommend future studies to concentrate on unravelling the complicated demographic history of Africa through means of ancient DNA where possible and through more focused efforts to sequence modern DNA from more representative populations across the African continent.
Collapse
Affiliation(s)
- Cindy Santander
- a Department of Zoology , University of Oxford , Oxford , UK
| | - Francesco Montinaro
- a Department of Zoology , University of Oxford , Oxford , UK.,b Estonian Biocentre , University of Tartu , Tartu , Estonia
| | | |
Collapse
|
21
|
Spooner W, McLaren W, Slidel T, Finch DK, Butler R, Campbell J, Eghobamien L, Rider D, Kiefer CM, Robinson MJ, Hardman C, Cunningham F, Vaughan T, Flicek P, Huntington CC. Haplosaurus computes protein haplotypes for use in precision drug design. Nat Commun 2018; 9:4128. [PMID: 30297836 PMCID: PMC6175845 DOI: 10.1038/s41467-018-06542-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 09/07/2018] [Indexed: 01/08/2023] Open
Abstract
Selecting the most appropriate protein sequences is critical for precision drug design. Here we describe Haplosaurus, a bioinformatic tool for computation of protein haplotypes. Haplosaurus computes protein haplotypes from pre-existing chromosomally-phased genomic variation data. Integration into the Ensembl resource provides rapid and detailed protein haplotypes retrieval. Using Haplosaurus, we build a database of unique protein haplotypes from the 1000 Genomes dataset reflecting real-world protein sequence variability and their prevalence. For one in seven genes, their most common protein haplotype differs from the reference sequence and a similar number differs on their most common haplotype between human populations. Three case studies show how knowledge of the range of commonly encountered protein forms predicted in populations leads to insights into therapeutic efficacy. Haplosaurus and its associated database is expected to find broad applications in many disciplines using protein sequences and particularly impactful for therapeutics design.
Collapse
Affiliation(s)
- William Spooner
- Eagle Genomics Ltd., Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, CB10 3DR UK
- Genomics England, QMUL Dawson Hall, London, EC1M 6BQ UK
| | - William McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | | | | | - Robin Butler
- MedImmune Ltd., Granta Park, Cambridge, CB21 4QR UK
| | | | | | - David Rider
- MedImmune Ltd., Granta Park, Cambridge, CB21 4QR UK
| | | | | | | | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | | | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | | |
Collapse
|
22
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
23
|
Xu D, Pavlidis P, Taskent RO, Alachiotis N, Flanagan C, DeGiorgio M, Blekhman R, Ruhl S, Gokcumen O. Archaic Hominin Introgression in Africa Contributes to Functional Salivary MUC7 Genetic Variation. Mol Biol Evol 2017; 34:2704-2715. [PMID: 28957509 PMCID: PMC5850612 DOI: 10.1093/molbev/msx206] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the most abundant proteins in human saliva, mucin-7, is encoded by the MUC7 gene, which harbors copy number variable subexonic repeats (PTS-repeats) that affect the size and glycosylation potential of this protein. We recently documented the adaptive evolution of MUC7 subexonic copy number variation among primates. Yet, the evolution of MUC7 genetic variation in humans remained unexplored. Here, we found that PTS-repeat copy number variation has evolved recurrently in the human lineage, thereby generating multiple haplotypic backgrounds carrying five or six PTS-repeat copy number alleles. Contrary to previous studies, we found no associations between the copy number of PTS-repeats and protection against asthma. Instead, we revealed a significant association of MUC7 haplotypic variation with the composition of the oral microbiome. Furthermore, based on in-depth simulations, we conclude that a divergent MUC7 haplotype likely originated in an unknown African hominin population and introgressed into ancestors of modern Africans.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Pavlos Pavlidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Recep Ozgur Taskent
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Nikolaos Alachiotis
- Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Colin Flanagan
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Michael DeGiorgio
- Department of Biology and the Institute for CyberScience, Pennsylvania State University, University Park, PA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, MN
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
24
|
Xu D, Jaber Y, Pavlidis P, Gokcumen O. VCFtoTree: a user-friendly tool to construct locus-specific alignments and phylogenies from thousands of anthropologically relevant genome sequences. BMC Bioinformatics 2017; 18:426. [PMID: 28950836 PMCID: PMC5615795 DOI: 10.1186/s12859-017-1844-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. RESULTS Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. CONCLUSION VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .
Collapse
Affiliation(s)
- Duo Xu
- Department of Biological Sciences, State University of New York at Buffalo, New York, 14260, USA
| | - Yousef Jaber
- Department of Biological Sciences, State University of New York at Buffalo, New York, 14260, USA
| | - Pavlos Pavlidis
- Institute of Molecular Biology and biotechnology (IMBB), Foundation of Research and Technology--Hellas, Heraklion, Crete, Greece
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, New York, 14260, USA.
| |
Collapse
|
25
|
Luis Villanueva-Cañas J, Ruiz-Orera J, Agea MI, Gallo M, Andreu D, Albà MM. New Genes and Functional Innovation in Mammals. Genome Biol Evol 2017; 9:1886-1900. [PMID: 28854603 PMCID: PMC5554394 DOI: 10.1093/gbe/evx136] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 12/22/2022] Open
Abstract
The birth of genes that encode new protein sequences is a major source of evolutionary innovation. However, we still understand relatively little about how these genes come into being and which functions they are selected for. To address these questions, we have obtained a large collection of mammalian-specific gene families that lack homologues in other eukaryotic groups. We have combined gene annotations and de novo transcript assemblies from 30 different mammalian species, obtaining ∼6,000 gene families. In general, the proteins in mammalian-specific gene families tend to be short and depleted in aromatic and negatively charged residues. Proteins which arose early in mammalian evolution include milk and skin polypeptides, immune response components, and proteins involved in reproduction. In contrast, the functions of proteins which have a more recent origin remain largely unknown, despite the fact that these proteins also have extensive proteomics support. We identify several previously described cases of genes originated de novo from noncoding genomic regions, supporting the idea that this mechanism frequently underlies the evolution of new protein-coding genes in mammals. Finally, we show that most young mammalian genes are preferentially expressed in testis, suggesting that sexual selection plays an important role in the emergence of new functional genes.
Collapse
Affiliation(s)
- José Luis Villanueva-Cañas
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Jorge Ruiz-Orera
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - M. Isabel Agea
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Maria Gallo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M. Mar Albà
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|