1
|
Lamrous A, Repetto E, Depp T, Jimenez C, Chua AC, Kanapathipillai R, Jensen TO. C-reactive protein and procalcitonin use in adults in low- and middle-income countries: a narrative review. JAC Antimicrob Resist 2023; 5:dlad057. [PMID: 37206308 PMCID: PMC10190046 DOI: 10.1093/jacamr/dlad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Objectives C-reactive protein (CRP) and procalcitonin (PCT) are widely used biomarkers in high-income countries. However, evidence for their use in low- and middle-income countries (LMICs) is scant. Because many factors, including rates of endemic disease, comorbidities and genetics, may influence biomarkers' behaviour, we aimed to review available evidence generated in LMICs. Methods We searched the PubMed database for relevant studies within the last 20 years that originated in regions of interest (Africa, Latin America, Middle East, South Asia or South East Asia), and full-text articles involving diagnosis, prognostication and evaluation of therapeutic response with CRP and/or PCT in adults (n = 88) were reviewed and categorized in 12 predefined focus areas. Results Overall, results were highly heterogeneous, at times conflicting, and often lacking clinically useful cut-off values. However, most studies demonstrated higher levels of CRP/PCT in patients with bacterial versus other infections. HIV and TB patients had consistently higher levels of CRP/PCT versus controls. In addition, higher CRP/PCT levels at baseline and follow-up in HIV, TB, sepsis and respiratory tract infections were associated with poorer prognosis. Conclusions Evidence generated from LMIC cohorts suggests that CRP and PCT may have potential to become effective clinical guiding tools particularly in respiratory tract infections, sepsis and HIV/TB. However, more studies are needed to define potential scenarios for use and cost-effectiveness. Consensus across stakeholders regarding target conditions, laboratory standards and cut-off values would support the quality and applicability of future evidence.
Collapse
Affiliation(s)
- Amin Lamrous
- Médecins Sans Frontières, Operational Center Barcelona, Barcelona, Spain
| | - Ernestina Repetto
- Médecins Sans Frontières, Operational Center Geneva, Geneva, Switzerland
- Infectious Diseases Department, Université Libre de Bruxelles (ULB), CHU Saint-Pierre, Brussels, Belgium
| | - Tim Depp
- Emergency Medicine, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Carolina Jimenez
- Médecins Sans Frontières, Operational Center Paris, Paris, France
| | - Arlene C Chua
- Medical Department, Médecins Sans Frontières—International, Geneva, Switzerland
| | | | | |
Collapse
|
2
|
D’Agnillo F, Walters KA, Xiao Y, Sheng ZM, Scherler K, Park J, Gygli S, Rosas LA, Sadtler K, Kalish H, Blatti CA, Zhu R, Gatzke L, Bushell C, Memoli MJ, O’Day SJ, Fischer TD, Hammond TC, Lee RC, Cash JC, Powers ME, O’Keefe GE, Butnor KJ, Rapkiewicz AV, Travis WD, Layne SP, Kash JC, Taubenberger JK. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci Transl Med 2021; 13:eabj7790. [PMID: 34648357 PMCID: PMC11000440 DOI: 10.1126/scitranslmed.abj7790] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by respiratory distress, multiorgan dysfunction, and, in some cases, death. The pathological mechanisms underlying COVID-19 respiratory distress and the interplay with aggravating risk factors have not been fully defined. Lung autopsy samples from 18 patients with fatal COVID-19, with symptom onset-to-death times ranging from 3 to 47 days, and antemortem plasma samples from 6 of these cases were evaluated using deep sequencing of SARS-CoV-2 RNA, multiplex plasma protein measurements, and pulmonary gene expression and imaging analyses. Prominent histopathological features in this case series included progressive diffuse alveolar damage with excessive thrombosis and late-onset pulmonary tissue and vascular remodeling. Acute damage at the alveolar-capillary barrier was characterized by the loss of surfactant protein expression with injury to alveolar epithelial cells, endothelial cells, respiratory epithelial basal cells, and defective tissue repair processes. Other key findings included impaired clot fibrinolysis with increased concentrations of plasma and lung plasminogen activator inhibitor-1 and modulation of cellular senescence markers, including p21 and sirtuin-1, in both lung epithelial and endothelial cells. Together, these findings further define the molecular pathological features underlying the pulmonary response to SARS-CoV-2 infection and provide important insights into signaling pathways that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jaekeun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Gygli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn Sadtler
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kalish
- Bioengineering and Physical Sciences Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Charles A. Blatti
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruoqing Zhu
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lisa Gatzke
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Colleen Bushell
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Raymond C. Lee
- Division of Cardiothoracic Surgery, USC Keck School of Medicine, Los Angeles, CA, USA
| | - J. Christian Cash
- Division of Cardiothoracic Surgery, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Matthew E. Powers
- Division of Cardiothoracic Surgery, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Grant E. O’Keefe
- Department of Surgery, University of Washington, Harborview Medical Center, Seattle, WA, USA
| | - Kelly J. Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Amy V. Rapkiewicz
- Department of Pathology, New York University Long Island School of Medicine, Mineola, NY, USA
| | - William D. Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - John C. Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Amaral EP, Vinhaes CL, Oliveira-de-Souza D, Nogueira B, Akrami KM, Andrade BB. The Interplay Between Systemic Inflammation, Oxidative Stress, and Tissue Remodeling in Tuberculosis. Antioxid Redox Signal 2021; 34:471-485. [PMID: 32559410 PMCID: PMC8020551 DOI: 10.1089/ars.2020.8124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Excessive and prolonged proinflammatory responses are associated with oxidative stress, which is commonly observed during chronic tuberculosis (TB). Such condition favors tissue destruction and consequently bacterial spread. A tissue remodeling program is also triggered in chronically inflamed sites, facilitating a wide spectrum of clinical manifestations. Recent Advances: Since persistent and exacerbated oxidative stress responses have been associated with severe pathology, a number of studies have suggested that the inhibition of this augmented stress response by improving host antioxidant status may represent a reasonable strategy to ameliorate tissue damage in TB. Critical Issues: This review summarizes the interplay between oxidative stress, systemic inflammation and tissue remodeling, and its consequences in promoting TB disease. We emphasize the most important mechanisms associated with stress responses that contribute to the progression of TB. We also point out important host immune components that may influence the exacerbation of cellular stress and the subsequent tissue injury. Future Directions: Further research should reveal valuable targets for host-directed therapy of TB, preventing development of severe immunopathology and disease progression. Antioxid. Redox Signal. 34, 471-485.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caian L Vinhaes
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Deivide Oliveira-de-Souza
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Betania Nogueira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Kevan M Akrami
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil.,Division of Infectious Diseases and Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, California, USA
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
4
|
Interaction of TLR4 and TLR8 in the Innate Immune Response against Mycobacterium Tuberculosis. Int J Mol Sci 2021; 22:ijms22041560. [PMID: 33557133 PMCID: PMC7913854 DOI: 10.3390/ijms22041560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
The interaction and crosstalk of Toll-like receptors (TLRs) is an established pathway in which the innate immune system recognises and fights pathogens. In a single nucleotide polymorphisms (SNP) analysis of an Indian cohort, we found evidence for both TLR4-399T and TRL8-1A conveying increased susceptibility towards tuberculosis (TB) in an interdependent manner, even though there is no established TLR4 ligand present in Mycobacterium tuberculosis (Mtb), which is the causative pathogen of TB. Docking studies revealed that TLR4 and TLR8 can build a heterodimer, allowing interaction with TLR8 ligands. The conformational change of TLR4-399T might impair this interaction. With immunoprecipitation and mass spectrometry, we precipitated TLR4 with TLR8-targeted antibodies, indicating heterodimerisation. Confocal microscopy confirmed a high co-localisation frequency of TLR4 and TLR8 that further increased upon TLR8 stimulation. The heterodimerisation of TLR4 and TLR8 led to an induction of IL12p40, NF-κB, and IRF3. TLR4-399T in interaction with TLR8 induced an increased NF-κB response as compared to TLR4-399C, which was potentially caused by an alteration of subsequent immunological pathways involving type I IFNs. In summary, we present evidence that the heterodimerisation of TLR4 and TLR8 at the endosome is involved in Mtb recognition via TLR8 ligands, such as microbial RNA, which induces a Th1 response. These findings may lead to novel targets for therapeutic interventions and vaccine development regarding TB.
Collapse
|
5
|
van Hooij A, Tió-Coma M, Verhard EM, Khatun M, Alam K, Tjon Kon Fat E, de Jong D, Sufian Chowdhury A, Corstjens P, Richardus JH, Geluk A. Household Contacts of Leprosy Patients in Endemic Areas Display a Specific Innate Immunity Profile. Front Immunol 2020; 11:1811. [PMID: 32849645 PMCID: PMC7431626 DOI: 10.3389/fimmu.2020.01811] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022] Open
Abstract
Leprosy is a chronic infectious disease, caused by Mycobacterium leprae, that can lead to severe life-long disabilities. The transmission of M. leprae is continuously ongoing as witnessed by the stable new case detection rate. The majority of exposed individuals does, however, not develop leprosy and is protected from infection by innate immune mechanisms. In this study the relation between innate immune markers and M. leprae infection as well as the occurrence of leprosy was studied in household contacts (HCs) of leprosy patients with high bacillary loads. Serum proteins associated with innate immunity (ApoA1, CCL4, CRP, IL-1Ra, IL-6, IP-10, and S100A12) were determined by lateral flow assays (LFAs) in conjunction with the presence of M. leprae DNA in nasal swabs (NS) and/or slit-skin smears (SSS). The HCs displayed ApoA1 and S100A12 levels similar to paucibacillary patients and could be differentiated from endemic controls based on the levels of these markers. In the 31 households included the number (percentage) of HCs that were concomitantly diagnosed with leprosy, or tested positive for M. leprae DNA in NS and SSS, was not equally divided. Specifically, households where M. leprae infection and leprosy disease was not observed amongst members of the household were characterized by higher S100A12 and lower CCL4 levels in whole blood assays of HCs in response to M. leprae. Lateral flow assays provide a convenient diagnostic tool to quantitatively measure markers of the innate immune response and thereby detect individuals which are likely infected with M. leprae and at risk of developing disease or transmitting bacteria. Low complexity diagnostic tests measuring innate immunity markers can therefore be applied to help identify who should be targeted for prophylactic treatment.
Collapse
Affiliation(s)
- Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Tió-Coma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Els M Verhard
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Marufa Khatun
- Rural Health Program, The Leprosy Mission International Bangladesh, Dhaka, Bangladesh
| | - Khorshed Alam
- Rural Health Program, The Leprosy Mission International Bangladesh, Dhaka, Bangladesh
| | - Elisa Tjon Kon Fat
- Department Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Danielle de Jong
- Department Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Abu Sufian Chowdhury
- Rural Health Program, The Leprosy Mission International Bangladesh, Dhaka, Bangladesh
| | - Paul Corstjens
- Department Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Hissar S, Kornfeld H, Babu S. Systemic RAGE ligands are upregulated in tuberculosis individuals with diabetes co-morbidity and modulated by anti-tuberculosis treatment and metformin therapy. BMC Infect Dis 2019; 19:1039. [PMID: 31818258 PMCID: PMC6902343 DOI: 10.1186/s12879-019-4648-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Ligands of the receptor for advanced glycation end products (RAGE) are key signalling molecules in the innate immune system but their role in tuberculosis-diabetes comorbidity (TB-DM) has not been investigated. Methods We examined the systemic levels of soluble RAGE (sRAGE), advanced glycation end products (AGE), S100A12 and high mobility group box 1 (HMGB1) in participants with either TB-DM, TB, DM or healthy controls (HC). Results Systemic levels of AGE, sRAGE and S100A12 were significantly elevated in TB-DM and DM in comparison to TB and HC. During follow up, AGE, sRAGE and S100A12 remained significantly elevated in TB-DM compared to TB at 2nd month and 6th month of anti-TB treatment (ATT). RAGE ligands were increased in TB-DM individuals with bilateral and cavitary disease. sRAGE and S100A12 correlated with glycated hemoglobin levels. Within the TB-DM group, those with known diabetes (KDM) revealed significantly increased levels of AGE and sRAGE compared to newly diagnosed DM (NDM). KDM participants on metformin treatment exhibited significantly diminished levels of AGE and sRAGE in comparison to those on non-metformin regimens. Conclusions Our data demonstrate that RAGE ligand levels reflect disease severity and extent in TB-DM, distinguish KDM from NDM and are modulated by metformin therapy.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health-NIRT- International Center for Excellence in Research, No. 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India.
| | - Kadar Moideen
- National Institutes of Health-NIRT- International Center for Excellence in Research, No. 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India
| | - Arul Nancy
- National Institutes of Health-NIRT- International Center for Excellence in Research, No. 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India.,Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | | | | | | | - Syed Hissar
- National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Subash Babu
- National Institutes of Health-NIRT- International Center for Excellence in Research, No. 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India.,LPD, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Jeon YL, Lee WI, Kang SY, Kim MH. Neutrophil-to-Monocyte-Plus-Lymphocyte Ratio as a Potential Marker for Discriminating Pulmonary Tuberculosis from Nontuberculosis Infectious Lung Diseases. Lab Med 2019; 50:286-291. [PMID: 30753566 DOI: 10.1093/labmed/lmy083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/13/2018] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To determine whether NMLR has more statistical strength than NLR in discriminating TB from non-TB infectious lung diseases. METHODS Among patients who underwent 3 or more TB culture tests with molecular study between January 2016 and December 2017, 110 patients with TB, and 159 patients diagnosed with non-TB infectious lung diseases were enrolled. The original complete blood count (CBC) parameters and modified CBC indices, including NLR and NMLR, were analyzed. RESULTS The NLR and NMLR were significantly lower in TB patients than in patients with other infectious lung diseases. However, the area under the curve (AUC) for NMLR (0.90; 95% confidence interval [CI], 0.86-0.93) was significantly greater than that for NLR (0.88 [0.84-0.92]). CONCLUSIONS The neutrophil-to-monocyte-plus-lymphocyte ratio (NMLR) can be used as a new index that is more powerful than neutrophil-to-lymphocyte ratio (NLR) in discriminating tuberculosis (TB) from non-TB infectious lung diseases.NMLR had more statistical strength than NLR in discriminating TB from non-TB infectious lung diseases.
Collapse
Affiliation(s)
- You La Jeon
- Department of Laboratory Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Woo-In Lee
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul, South Korea.,Department of Laboratory Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - So Young Kang
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul, South Korea.,Department of Laboratory Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Myeong Hee Kim
- Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul, South Korea.,Department of Laboratory Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| |
Collapse
|
8
|
Yang LX, Yang LK, Zhu J, Chen JH, Wang YH, Xiong K. Expression signatures of long non-coding RNA and mRNA in human traumatic brain injury. Neural Regen Res 2019; 14:632-641. [PMID: 30632503 PMCID: PMC6352599 DOI: 10.4103/1673-5374.247467] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/20/2018] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a key role in craniocerebral disease, although their expression profiles in human traumatic brain injury are still unclear. In this regard, in this study, we examined brain injury tissue from three patients of the 101st Hospital of the People's Liberation Army, China (specifically, a 36-year-old male, a 52-year-old female, and a 49-year-old female), who were diagnosed with traumatic brain injury and underwent brain contusion removal surgery. Tissue surrounding the brain contusion in the three patients was used as control tissue to observe expression characteristics of lncRNAs and mRNAs in human traumatic brain injury tissue. Volcano plot filtering identified 99 lncRNAs and 63 mRNAs differentially expressed in frontotemporal tissue of the two groups (P < 0.05, fold change > 1.2). Microarray analysis showed that 43 lncRNAs were up-regulated and 56 lncRNAs were down-regulated. Meanwhile, 59 mRNAs were up-regulated and 4 mRNAs were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed 27 signaling pathways associated with target genes and, in particular, legionellosis and influenza A signaling pathways. Subsequently, a lncRNA-gene network was generated, which showed an absolute correlation coefficient value > 0.99 for 12 lncRNA-mRNA pairs. Finally, quantitative real-time polymerase chain reaction confirmed different expression of the five most up-regulated mRNAs within the two groups, which was consistent with the microarray results. In summary, our results show that expression profiles of mRNAs and lncRNAs are significantly different between human traumatic brain injury tissue and surrounding tissue, providing novel insight regarding lncRNAs' involvement in human traumatic brain injury. All participants provided informed consent. This research was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-TCC-13004002) and the protocol version number is 1.0.
Collapse
Affiliation(s)
- Li-Xiang Yang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Li-Kun Yang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Jun-Hui Chen
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Yu-Hai Wang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
9
|
da Silva LF, Skupien EC, Lazzari TK, Holler SR, de Almeida EGC, Zampieri LR, Coutinho SE, Andrades M, Silva DR. Advanced glycation end products (AGE) and receptor for AGE (RAGE) in patients with active tuberculosis, and their relationship between food intake and nutritional status. PLoS One 2019; 14:e0213991. [PMID: 30870511 PMCID: PMC6417785 DOI: 10.1371/journal.pone.0213991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/05/2019] [Indexed: 01/15/2023] Open
Abstract
Introduction The receptor for advanced glycation end products (RAGE) is expressed in normal lungs and is upregulated during infection. AGEs and RAGE cause oxidative stress and apoptosis in lung cells. The objective of this study is to evaluate levels of AGEs and its soluble receptor (sRAGE), and to investigate their relationship with food intake and nutritional status, in a university-affiliated hospital in Brazil. Methods Case-control study, from June 2017 to June 2018. AGE (carboxymethyl lysine, CML) and sRAGE were measured from blood samples by Elisa. Nutritional assessment was performed by body mass index, triceps skin-fold thickness, mid-arm circumference, mid-arm muscle circumference, bioelectrical impedance analysis, and food frequency questionnaire. Results We included in the study 35 tuberculosis (TB) patients and 35 controls. The mean sRAGE levels were higher in TB patients than in controls (68.5 ± 28.1 vs 57.5 ± 24.0 pg/mL; p = 0.046). Among cases that were current smokers, lower sRAGE levels were associated with mortality, evaluated at the end of hospitalization (p = 0.006), and with weight loss (p = 0.034). There was no statistically significant difference in CML levels and diet CML content between cases and controls. Malnutrition was more frequent in cases, but there was no correlation between nutritional parameters and CML or sRAGE levels. Conclusions TB patients had higher sRAGE levels than controls, although it is not clear that this difference is clinically relevant. Also, sRAGE was associated with weight loss and mortality.
Collapse
Affiliation(s)
- Lívia Fontes da Silva
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Erika Cavalheiro Skupien
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tássia Kirchmann Lazzari
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sizuane Rieger Holler
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Sandra Eugênia Coutinho
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Denise Rossato Silva
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- * E-mail:
| |
Collapse
|
10
|
Hu Q, Gong W, Gu J, Geng G, Li T, Tian R, Yang Z, Zhang H, Shao L, Liu T, Wan L, Jia J, Yang C, Shi Y, Shi H. Plasma microRNA Profiles as a Potential Biomarker in Differentiating Adult-Onset Still's Disease From Sepsis. Front Immunol 2019; 9:3099. [PMID: 30687316 PMCID: PMC6338094 DOI: 10.3389/fimmu.2018.03099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by cytokine storm. However, a diagnostic test for AOSD in clinical use is yet to be validated. The aim of our study was to identify non-invasive biomarkers with high specificity and sensitivity to diagnosis of AOSD. MicroRNA (miRNA) profiles in PBMC from new-onset AOSD patients without any treatment and healthy controls (HCs) were analyzed by miRNA deep sequencing. Plasma samples from 100 AOSD patients and 60 HCs were used to validated the expression levels of miRNA by qRT-PCR. The correlations between expression levels of miRNAs and clinical manifestations were analyzed using advanced statistical models. We found that plasma samples from AOSD patients showed a distinct miRNA expression profile. Five miRNAs (miR-142-5p, miR-101-3p, miR-29a-3p, miR-29c-3p, and miR-141-3p) were significantly upregulated in plasma of AOSD patients compared with HCs both in training and validation sets. We discovered a panel including 3 miRNAs (miR-142-5p, miR-101-3p, and miR-29a-3p) that can predict the probability of AOSD with an area under the receiver operating characteristic (ROC) curve of 0.8250 in training and validation sets. Moreover, the expression levels of 5 miRNAs were significantly higher in active AOSD patients compared with those in inactive patients. In addition, elevated level of miR-101-3p was found in AOSD patients with fever, sore throat and arthralgia symptoms; the miR-101-3p was also positively correlated with the levels of IL-6 and TNF-α in serum. Furthermore, five miRNAs (miR-142-5p, miR-101-3p, miR-29c-3p, miR-29a-3p, and miR-141-3p) expressed in plasma were significantly higher in AOSD patients than in sepsis patients (P < 0.05). The AUC value of 4-miRNA panel (miR-142-5p, miR-101-3p, miR-29c-3p, and miR-141-3p) for AOSD diagnosis from sepsis was 0.8448, revealing the potentially diagnostic value to distinguish AOSD patients from sepsis patients. Our results have identified a specific plasma miRNA signature that may serve as a potential non-invasive biomarker for diagnosis of AOSD and monitoring disease activity.
Collapse
Affiliation(s)
- Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Gong
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology and Immunology, The First People's Hospital of Yancheng Affiliated with Nantong University, Yancheng, China
| | - Jieyu Gu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guannan Geng
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyan Wan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G. The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Front Microbiol 2018; 9:2603. [PMID: 30425706 PMCID: PMC6218626 DOI: 10.3389/fmicb.2018.02603] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022] Open
Abstract
Impaired lung function is common in people with a history of tuberculosis. Host-directed therapy added to tuberculosis treatment may reduce lung damage and result in improved lung function. An understanding of the pathogenesis of pulmonary damage in TB is fundamental to successfully predicting which interventions could be beneficial. In this review, we describe the different features of TB immunopathology that lead to impaired lung function, namely cavities, bronchiectasis, and fibrosis. We discuss the immunological processes that cause lung damage, focusing on studies performed in humans, and using chest radiograph abnormalities as a marker for pulmonary damage. We highlight the roles of matrix metalloproteinases, neutrophils, eicosanoids and cytokines, like tumor necrosis factor-α and interleukin 1β, as well as the role of HIV co-infection. Finally, we focus on various existing drugs that affect one or more of the immunological mediators of lung damage and could therefore play a role as host-directed therapy.
Collapse
Affiliation(s)
- Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| | - Lutgarde Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Klassert TE, Goyal S, Stock M, Driesch D, Hussain A, Berrocal-Almanza LC, Myakala R, Sumanlatha G, Valluri V, Ahmed N, Schumann RR, Flores C, Slevogt H. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population. Front Immunol 2018. [PMID: 29515573 PMCID: PMC5826192 DOI: 10.3389/fimmu.2018.00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro. In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance.
Collapse
Affiliation(s)
| | - Surabhi Goyal
- Institute of Microbiology and Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Abid Hussain
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | | | | | | | | | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Ralf R Schumann
- Institute of Microbiology and Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
13
|
Serum S100A12 and 30-day mortality after acute intracerebral hemorrhage. Clin Chim Acta 2018; 477:1-6. [DOI: 10.1016/j.cca.2017.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022]
|
14
|
S100A12: Friend or foe in pulmonary tuberculosis? Cytokine 2017; 92:80-82. [PMID: 28110121 DOI: 10.1016/j.cyto.2017.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/23/2022]
Abstract
In humans, S100A12 (also named Calgranulin C and EN-RAGE) is mainly expressed and secreted by neutrophil granulocytes. Extracellular S100A12 is involved in innate immune responses against microorganisms and parasites. S100A12 is a ligand for the receptor for advanced glycation end products (RAGE), which is a cell surface receptor on macrophages, endothelium, and lymphocytes. In a recent study, Realegeno et al. showed that S100A12 exerts antimicrobial activity against Mycobacterium leprae in infected human macrophages. Recently, some interesting data on the antimicrobial activity of S100A12 have been reported. Proinflammatory role of S100A12 is supported by another newly found receptor, Toll-like receptor 4 (TLR4). These observations emphasize the importance of S100A12 for the development of potential therapeutic approaches to increase protective immunity or reduce immunopathogenesis.
Collapse
|