1
|
Tao X, Tian H, Wang G, Sun Y, Zhao L. Exosomes from Tregs mitigate lung damage caused by smoking via inhibiting inflammation and altering T lymphocyte subsets in COPD rats. BMC Pulm Med 2025; 25:181. [PMID: 40229730 PMCID: PMC11998300 DOI: 10.1186/s12890-025-03632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common disease with respiratory symptoms and limited airflow. Exosomes derived from Tregs (Treg-exo) could regulate immune function and prevent autoimmune disease. This study assessed Treg-exo effects on COPD. METHODS In vivo, rats were divided into three groups including control, COPD and exosomes groups. COPD models were established by passive smoking combined with lipopolysaccharide. Phosphate buffered saline or Treg-exo were administered via tail vein. Lung function, Hematoxylin and Eosin staining, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate lung function, histopathology and inflammation. Flow cytometry was used for peripheral blood T cell separation and counting. In vitro, COPD cluster of differentiation (CD) 4+ T-cells were isolated from spleen and co-cultured with Treg-exo alone or in combination with Colivelin (a signal transducer and activator of transcription 3/STAT3 activator). Flow cytometry, ELISA, and Western blot were used to count T helper cell 17 (Th17) and detected cytokines and STAT3 proteins expression. RESULTS In vivo, pulmonary function tests and HE staining showed Treg-exo treatment enhanced lung function and alleviated lung damage; flow cytometry showed Treg-exo treatment decreased CD8+, CD4+ CD25- cells and Th17; ELISA assay found Treg-exo treatment increased transforming growth factor-β and interleukin (IL)-10 and decreased tumor necrosis factor-α and IL-8 in serum, broncho alveolar lavage fluid, and lung tissue. In vitro, Treg-exo treatment inhibited Th17 differentiation and suppressed the content of IL-6, IL-17, and IL-23 and STAT3 phosphorylation. CONCLUSIONS Treg-exo suppressed inflammation and CD4+ T-cell differentiation to Th17, possibly by inhibiting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Xuefang Tao
- Department of Respiratory Medicine, The Affiliated Hospital of ShaoXing University, No. 999, Zhongxing South Road, Yuecheng District, Shaoxing, 312000, Zhejiang, China
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Guowen Wang
- Department of Respiratory Medicine, The Affiliated Hospital of ShaoXing University, No. 999, Zhongxing South Road, Yuecheng District, Shaoxing, 312000, Zhejiang, China
| | - Yongzhen Sun
- Department of Respiratory Medicine, The Affiliated Hospital of ShaoXing University, No. 999, Zhongxing South Road, Yuecheng District, Shaoxing, 312000, Zhejiang, China
| | - Liangyan Zhao
- Department of Respiratory Medicine, The Affiliated Hospital of ShaoXing University, No. 999, Zhongxing South Road, Yuecheng District, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
2
|
Zhang D, Sun T, Bao J, Fu J. Implications of DNA damage in chronic lung disease. Front Cell Dev Biol 2024; 12:1436767. [PMID: 39544366 PMCID: PMC11560874 DOI: 10.3389/fcell.2024.1436767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
DNA plays an indispensable role in ensuring the perpetuation of life and safeguarding the genetic stability of living organisms. The emergence of diseases linked to a wide spectrum of responses to DNA damage has garnered increasing attention within the scientific community. There is growing evidence that patterns of DNA damage response in the lungs are associated with the onset, progression, and treatment of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and bronchopulmonary dysplasia (BPD). Currently, some studies have analyzed the mechanisms by which environmental factors induce lung DNA damage. In this article, we summarize inducible factors of lung DNA damage, current indicators, and methods for diagnosing DNA damage in chronic lung diseases and explore repair mechanisms after DNA damage including nonhomologous end-joining and homology-directed repair end joining pathways. Additionally, drug treatments that may reduce DNA damage or promote repair after it occurs in the lungs are briefly described. In general, more accurate assessment of the degree of lung DNA damage caused by various factors is needed to further elucidate the mechanism of lung DNA damage and repair after damage, so as to search for potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Kraik K, Tota M, Laska J, Łacwik J, Paździerz Ł, Sędek Ł, Gomułka K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024; 13:1271. [PMID: 39120302 PMCID: PMC11311642 DOI: 10.3390/cells13151271] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) represent chronic inflammatory respiratory disorders that, despite having distinct pathophysiological underpinnings, both feature airflow obstruction and respiratory symptoms. A critical component in the pathogenesis of each condition is the transforming growth factor-β (TGF-β), a multifunctional cytokine that exerts varying influences across these diseases. In asthma, TGF-β is significantly involved in airway remodeling, a key aspect marked by subepithelial fibrosis, hypertrophy of the smooth muscle, enhanced mucus production, and suppression of emphysema development. The cytokine facilitates collagen deposition and the proliferation of fibroblasts, which are crucial in the structural modifications within the airways. In contrast, the role of TGF-β in COPD is more ambiguous. It initially acts as a protective agent, fostering tissue repair and curbing inflammation. However, prolonged exposure to environmental factors such as cigarette smoke causes TGF-β signaling malfunction. Such dysregulation leads to abnormal tissue remodeling, marked by excessive collagen deposition, enlargement of airspaces, and, thus, accelerated development of emphysema. Additionally, TGF-β facilitates the epithelial-to-mesenchymal transition (EMT), a process contributing to the phenotypic alterations observed in COPD. A thorough comprehension of the multifaceted role of TGF-β in asthma and COPD is imperative for elaborating precise therapeutic interventions. We review several promising approaches that alter TGF-β signaling. Nevertheless, additional studies are essential to delineate further the specific mechanisms of TGF-β dysregulation and its potential therapeutic impacts in these chronic respiratory diseases.
Collapse
Affiliation(s)
- Krzysztof Kraik
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Maciej Tota
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Paździerz
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
4
|
Shi P, Tan A, Ma Y, Que L, Li C, Shao Y, Sun H, Li Y, Li J. MicroRNA-19a-3p augments TGF-β1-induced cardiac fibroblast activation via targeting BAMBI. J Biomed Res 2024; 39:1-14. [PMID: 38807415 PMCID: PMC11982684 DOI: 10.7555/jbr.37.20230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The main pathogenic factor leading to cardiac remodeling and heart failure is myocardial fibrosis. Recent research indicates that microRNAs are essential for the progress of cardiac fibrosis. Myocardial fibrosis is considered to be alleviated through the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), which does this by blocking the transforming growth factor β1 (TGF-β1) signaling pathway. Here, this study sought to elucidate the post-transcriptional regulation of miR-19a-3p on BAMBI and its role in TGF-β1-induced cardiac fibroblast activation. Transverse aortic constriction (TAC) caused both myocardial interstitial and perivascular collagen deposition. RT-PCR showed that miR-19a-3p was upregulated in the myocardial tissue of cardiac fibrosis, and TGF-β1 induced an increase of miR-19a-3p expression in cardiac fibroblasts. The dual-luciferase reporter test and qRT-PCR confirmed that miR-19a-3p directly combined with BAMBI mRNA 3'UTR, thus reduced BAMBI expression, which diminished the capability of BAMBI to inhibit TGF-β1. Furthermore, miR-19a-3p mimic increased the activation of TGF-β1/SMAD2/3 pathway signaling, which supported cardiac fibroblast activation, which blocked by overexpression of BAMBI. These findings imply that miR-19a-3p enhances the activation of TGF-β1/SMAD2/3 by inhibiting BAMBI, further boosting the activation of cardiac fibroblasts, and may thus offer a novel strategy to tackling myocardial fibrosis.
Collapse
Affiliation(s)
- Pengxi Shi
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ao Tan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuanyuan Ma
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614-0575, USA
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haoliang Sun
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
5
|
Zhang X, Li X, Ma W, Liu F, Huang P, Wei L, Li L, Qian Y. Astragaloside IV restores Th17/Treg balance via inhibiting CXCR4 to improve chronic obstructive pulmonary disease. Immunopharmacol Immunotoxicol 2023; 45:682-691. [PMID: 37417915 DOI: 10.1080/08923973.2023.2228479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has a high fatality rate and poses a great threat to human health. Astragaloside IV (AS-IV) is proven to attenuate cigarette smoke (CS)-induced pulmonary inflammation, based on which this research focuses on the mechanism of AS-IV in COPD. METHODS To evaluate the effects of AS-IV, CD4+ T cells received different concentrations of AS-IV. CD4+ T cell viability, T helper 17 (Th17)/regulatory T (Treg) markers and CXCR4 expressions in CD4+ T cells or spleen/lung tissues were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, quantitative real-time polymerase chain reaction and Western blot. The proportions of Treg and Th17 cells were assessed by flow cytometry. Enzyme-linked immune sorbent assay was employed to determine cytokine contents in serum and lung tissues. RESULTS AS-IV with concentration exceeding 40 µM inhibited CD4+ T cell viability. In vitro, AS-IV suppressed the expressions of CXCR4, retinoid-related orphan receptor γt (RORγt), and interleukin (IL)-17A as well as Th17 cells but promoted the expressions of forkhead box p3 (Foxp3) and IL-10 as well as Treg cells, while CXCR4 overexpression reversed the effects of AS-IV. In vivo, AS-IV alleviated COPD, and CS-induced Th17/Treg imbalance in mice and reduced CS-induced down-regulation of IL-10 in serum and lung tissues and Foxp3 and up-regulation of IL-1β, tumor necrosis factor alpha (TNF-α), IL-6, and IL-17A in serum and lung tissues and RORγt. AS-IV mitigated CS-induced CXCR4 up-regulation. Above effects of AS-IV on mice were offset by CXCR4 overexpression. CONCLUSIONS AS-IV restores Th17/Treg balance via impeding CXCR4 to ameliorate COPD.
Collapse
Affiliation(s)
- Xiulian Zhang
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueliang Li
- Department of Internal Medicine of Traditional Chinese Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Ma
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangying Liu
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pinxian Huang
- School of Basic Medical, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wei
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yechang Qian
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhong S, Chen C, Yang L, Jin M, Zeng Y, Zou GM, Zhang Q, Wang Y. Identification of circRNA-associated ceRNA networks in peripheral blood mononuclear cells as potential biomarkers for chronic obstructive pulmonary disease. Biosci Rep 2023; 43:BSR20230005. [PMID: 37650285 PMCID: PMC10619198 DOI: 10.1042/bsr20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which is a common respiratory disorder with high morbidity and mortality globally, has a complex pathogenesis that is not fully understood. Some circular RNAs (circRNAs) have been recognized to serve as miRNA sponges for regulating target RNA transcripts during the processes of human diseases. In the present study, we aimed to investigate novel circRNA-associated biomarkers for COPD, 245 differentially expressed circRNAs were identified, including 111 up-regulated and 134 down-regulated circRNAs. These candidate circRNAs were enriched in inflammation-associated pathways (such as mTOR, B-cell receptor, and NF-κB signaling pathways) via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. A combination of two circRNAs (up-regulated hsa_circ_0067209 and down-regulated hsa_circ_0000673) demonstrated good diagnostic value (area under the receiver operating characteristic curve [AUC] = 0.866) for COPD by receiver operating characteristic curve (ROC) analysis and qRT-PCR validation. Subsequently, hsa-miR-8082 and hsa-miR-1248 were identified as targets for hsa_circ_0067209 and hsa_circ_0000673, respectively, via bioinformatics analysis and a dual-luciferase reporter assay, and the combination of these two miRNAs displayed better diagnosis potential for COPD (AUC = 0.967) than each other. Evaluation of COPD-related mRNA profiles revealed that the up-regulated genes ABR and TRPM6 were predicted downstream targets for hsa_circ_0067209/hsa-miR-8082, whereas the down-regulated gene RORC was a predicted downstream target for hsa_circ_0000673/hsa-miR-1248. In summary, hsa_circ_0067209 and hsa_circ_0000673 have potential as novel diagnostic biomarkers of COPD. In addition, competing endogenous RNA networks of hsa_circ_0067209/hsa-miR-8082/ABR/TRPM6 and hsa_circ_0000673/hsa-miR-1248/RORC may play critical regulation roles for COPD pathogenesis.
Collapse
Affiliation(s)
- Shan Zhong
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, PR China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Chengshui Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Li Yang
- Department of Respiratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Meiling Jin
- Department of Respiratory Medicine, Zhongshan Affiliated Hospital of Fudan University, Shanghai 200030, PR China
| | - Yiming Zeng
- Department of Respiratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Gang-Ming Zou
- School of Nursing and Dental Health. University of Hawaii at Manoa, 2528 McCarthy Mall, Webster Hall. Honolulu, HI 96822, USA
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Yun Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
7
|
Yan Z, Chen Q, Xia Y. Oxidative Stress Contributes to Inflammatory and Cellular Damage in Systemic Lupus Erythematosus: Cellular Markers and Molecular Mechanism. J Inflamm Res 2023; 16:453-465. [PMID: 36761905 PMCID: PMC9907008 DOI: 10.2147/jir.s399284] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with complex pathogenesis, the treatment of which relies exclusively on the use of immunosuppressants. Increased oxidative stress is involved in causing inflammatory and cellular defects in the pathogenesis of SLE. Various inflammatory and cellular markers including oxidative modifications of proteins, lipids, and DNA contribute to immune system dysregulation and trigger an aggressive autoimmune attack through molecular mechanisms like enhanced NETosis, mTOR pathway activation, and imbalanced T-cell differentiation. Accordingly, the detection of inflammatory and cellular markers is important for providing an accurate assessment of the extent of oxidative stress. Oxidative stress also reduces DNA methylation, thus allowing the increased expression of affected genes. As a result, pharmacological approaches targeting oxidative stress yield promising results in treating patients with SLE. The purpose of this review is to examine the involvement of oxidative stress in the pathogenesis and management of SLE.
Collapse
Affiliation(s)
- Zhu Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qin Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China,Correspondence: Yumin Xia, Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, 710004, People’s Republic of China, Tel/Fax +86-29-87679969, Email
| |
Collapse
|
8
|
Hardin LT, Xiao N. miRNAs: The Key Regulator of COVID-19 Disease. Int J Cell Biol 2022; 2022:1645366. [PMID: 36345541 PMCID: PMC9637033 DOI: 10.1155/2022/1645366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2024] Open
Abstract
As many parts of the world continue to fight the innumerable waves of COVID-19 infection, SARS-CoV-2 continues to sculpt its antigenic determinants to enhance its virulence and evolvability. Several vaccines were developed and used around the world, and oral antiviral medications are being developed against SARS-CoV-2. However, studies showed that the virus is mutating in line with the antibody's neutralization escape; thus, new therapeutic alternatives are solicited. We hereby review the key role that miRNAs can play as epigenetic mediators of the cross-talk between SARS-CoV-2 and the host cells. The limitations resulting from the "virus intelligence" to escape and antagonize the host miRNAs as well as the possible mechanisms that could be used in the viral evasion strategies are discussed. Lastly, we suggest new therapeutic approaches based on viral miRNAs.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| | - Nan Xiao
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| |
Collapse
|
9
|
Hoang NTD, Hassan G, Suehiro T, Mine Y, Matsuki T, Fujii M. BMP and activin membrane-bound inhibitor regulate connective tissue growth factor controlling mesothelioma cell proliferation. BMC Cancer 2022; 22:984. [PMID: 36109807 PMCID: PMC9479400 DOI: 10.1186/s12885-022-10080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Malignant mesothelioma (MM) is an aggressive mesothelial cell cancer type linked mainly to asbestos inhalation. MM characterizes by rapid progression and resistance to standard therapeutic modalities such as surgery, chemotherapy, and radiotherapy. Our previous studies have suggested that tumor cell-derived connective tissue growth factor (CTGF) regulates the proliferation of MM cells as well as the tumor growth in mouse xenograft models. Methods In this study, we knock downed the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) and CTGF in MM cells and investigated the relationship between both and their impact on the cell cycle and cell proliferation. Results The knockdown of CTGF or BAMBI reduced MM cell proliferation. In contrast to CTGF knockdown which decreased BAMBI, knockdown of BAMBI increased CTGF levels. Knockdown of either BAMBI or CTGF reduced expression of the cell cycle regulators; cyclin D3, cyclin-dependent kinase (CDK)2, and CDK4. Further, in silico analysis revealed that higher BAMBI expression was associated with shorter overall survival rates among MM patients. Conclusions Our findings suggest that BAMBI is regulated by CTGF promoting mesothelioma growth by driving cell cycle progression. Therefore, the crosstalk between BAMBI and CTGF may be an effective therapeutic target for MM treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10080-x.
Collapse
|
10
|
The role of Th17 cells: explanation of relationship between periodontitis and COPD? Inflamm Res 2022; 71:1011-1024. [PMID: 35781342 DOI: 10.1007/s00011-022-01602-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontitis and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases with common risk factors, such as long-term smoking, age, and social deprivation. Many observational studies have shown that periodontitis and COPD are correlated. Moreover, they share a common pathophysiological process involving local accumulation of inflammatory cells and cytokines and damage of soft tissues. The T helper 17 (Th17) cells and the related cytokines, interleukin (IL)-17, IL-22, IL-1β, IL-6, IL-23, and transforming growth factor (TGF)-β, play a crucial regulatory role during the pathophysiological process. This paper reviewed the essential roles of Th17 lineage in the occurrence of periodontitis and COPD. The gaps in the study of their common pathological mechanism were also evaluated to explore future research directions. Therefore, this review can provide study direction for the association between periodontitis and COPD and new ideas for the clinical diagnosis and treatment of the two diseases.
Collapse
|
11
|
Ghosh AJ, Hobbs BD, Yun JH, Saferali A, Moll M, Xu Z, Chase RP, Morrow J, Ziniti J, Sciurba F, Barwick L, Limper AH, Flaherty K, Criner G, Brown KK, Wise R, Martinez FJ, McGoldrick D, Cho MH, DeMeo DL, Silverman EK, Castaldi PJ, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium CrapoJames D.SilvermanEdwin K.123MakeBarry J.ReganElizabeth A.BeatyTerriBegumFerdouseCastaldiPeter J.13ChoMichael123DeMeoDawn L.123BoueizAdel R.ForemanMarilyn G.Halper-StrombergEitanHaydenLystra P.HershCraig P.123HetmanskiJacquelineHobbsBrian D.123HokansonJohn E.LairdNanLangeChristophLutzSharon M.McDonaldMerry-LynnParkerMargaret M.ProkopenkoDmitryQiaoDandiSakornsakolpatPhuwanatWanEmily S.WonSunghoCentenoJuan PabloCharbonnierJean-PaulCoxsonHarvey O.GalbanCraig J.HanMeiLan K.HoffmanEric A.HumphriesStephenJacobsonFrancine L.JudyPhilip F.KazerooniElla A.KluiberAlexLynchDavid A.NardelliPietroNewell JrJohn D.NotaryAleenaOhAndreaRossJames C.EsteparRaul San JoseSchroederJoyceSierenJeredStoelBerend C.TschirrenJuergVan BeekEdwinvan GinnekenBramRikxoortEva vanSanchez-FerreroGonzalo VegasVeitelLucasWashkoGeorge R.WilsonCarla G.JensenRobertEverettDouglasCrooksJimPratteKatherineStrandMattKinneyGregoryYoungKendra A.BhattSurya P.BonJessica4DiazAlejandro A.MurraySusanSolerXavierBowlerRussell P.KechrisKaterinaBanaei-KashaniFarnoushCurtisJeffrey L.PernicanoPerry G.HananiaNicolaAtikMustafaBoriekAladinGuntupalliKalpathaGuyElizabethParulekarAmitGraham BarrR.AustinJohnD’SouzaBelindaThomashowByronMacIntyreNeilJrPage McAdamsH.WashingtonLaceyFlenaughEricTerpenningSilanthMcEvoyCharleneTashjianJosephWiseRobert10BrownRobertHanselNadia N.HortonKarenLambertAllisonPutchaNirupamaCasaburiRichardAdamiAlessandraBudoffMatthewFischerHansPorszaszJanosRossiterHarryStringerWilliamSharafkhanehAmirLanCharlieWendtChristineBellBrianKunisakiKen M.RosielloRichardPaceDavidCrinerGerard8CiccolellaDavidCordovaFrancisDassChandraD’AlonzoGilbertDesaiParagJacobsMichaelKelsenStevenKimVictorJames MamaryA.MarchettiNathanielSattiAditiShenoyKartikSteinerRobert M.SwiftAlexSwiftIreneVega-SanchezMaria ElenaDransfieldMarkBaileyWilliamIyerAnandNathHrudayaMichael WellsJ.ConradDouglasYenAndrewComellasAlejandro P.HothKarin F.ThompsonBradLabakiWassimVummidiDharshanBillingsJoanneBegnaudAbbieAllenTadashiSciurbaFrank4ChandraDivay4FuhrmanCarl4WeissfeldJoel4AnzuetoAntonioAdamsSandraMaselli-CaceresDiegoRuizMario E.SingHarjinder, Hersh CP. Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Respir Res 2022; 23:97. [PMID: 35449067 PMCID: PMC9026726 DOI: 10.1186/s12931-022-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are characterized by shared exposures and clinical features, but distinct genetic and pathologic features exist. These features have not been well-studied using large-scale gene expression datasets. We hypothesized that there are divergent gene, pathway, and cellular signatures between COPD and IPF. METHODS We performed RNA-sequencing on lung tissues from individuals with IPF (n = 231) and COPD (n = 377) compared to control (n = 267), defined as individuals with normal spirometry. We grouped the overlapping differential expression gene sets based on direction of expression and examined the resultant sets for genes of interest, pathway enrichment, and cell composition. Using gene set variation analysis, we validated the overlap group gene sets in independent COPD and IPF data sets. RESULTS We found 5010 genes differentially expressed between COPD and control, and 11,454 genes differentially expressed between IPF and control (1% false discovery rate). 3846 genes overlapped between IPF and COPD. Several pathways were enriched for genes upregulated in COPD and downregulated in IPF; however, no pathways were enriched for genes downregulated in COPD and upregulated in IPF. There were many myeloid cell genes with increased expression in COPD but decreased in IPF. We found that the genes upregulated in COPD but downregulated in IPF were associated with lower lung function in the independent validation cohorts. CONCLUSIONS We identified a divergent gene expression signature between COPD and IPF, with increased expression in COPD and decreased in IPF. This signature is associated with worse lung function in both COPD and IPF.
Collapse
Affiliation(s)
- Auyon J. Ghosh
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Brian D. Hobbs
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Jeong H. Yun
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Aabida Saferali
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Matthew Moll
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Zhonghui Xu
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Robert P. Chase
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Jarrett Morrow
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - John Ziniti
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Frank Sciurba
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Lucas Barwick
- grid.280434.90000 0004 0459 5494The Emmes Company, Rockville, MD USA
| | - Andrew H. Limper
- grid.66875.3a0000 0004 0459 167XDivision of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Kevin Flaherty
- grid.214458.e0000000086837370Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Healthy System, Ann Arbor, MI USA
| | - Gerard Criner
- grid.264727.20000 0001 2248 3398Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA USA
| | - Kevin K. Brown
- grid.240341.00000 0004 0396 0728Department of Medicine, National Jewish Health, Denver, CO USA
| | - Robert Wise
- grid.21107.350000 0001 2171 9311Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Fernando J. Martinez
- grid.5386.8000000041936877XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY USA
| | - Daniel McGoldrick
- grid.34477.330000000122986657Northwest Genomics Center, University of Washington, Seattle, WA USA
| | - Michael H. Cho
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Dawn L. DeMeo
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Edwin K. Silverman
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Peter J. Castaldi
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | | | - Craig P. Hersh
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| |
Collapse
|
12
|
AhR promotes phosphorylation of ARNT isoform 1 in human T cell malignancies as a switch for optimal AhR activity. Proc Natl Acad Sci U S A 2022; 119:e2114336119. [PMID: 35290121 PMCID: PMC8944900 DOI: 10.1073/pnas.2114336119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor present in immune cells as a long and short isoform, referred to as isoforms 1 and 3, respectively. However, investigation into potential ARNT isoform–specific immune functions is lacking despite the well-established heterodimerization requirement of ARNT with, and for the activity of, the aryl hydrocarbon receptor (AhR), a critical mediator of immune homeostasis. Here, using global and targeted transcriptomics analyses, we show that the relative ARNT isoform 1:3 ratio in human T cell lymphoma cells dictates the amplitude and direction of AhR target gene regulation. Specifically, shifting the ARNT isoform 1:3 ratio lower by suppressing isoform 1 enhances, or higher by suppressing isoform 3 abrogates, AhR responsiveness to ligand activation through preprograming a cellular genetic background that directs explicit gene expression patterns. Moreover, the fluctuations in gene expression patterns that accompany a decrease or increase in the ARNT isoform 1:3 ratio are associated with inflammation or immunosuppression, respectively. Molecular studies identified the unique casein kinase 2 (CK2) phosphorylation site within isoform 1 as an essential parameter to the mechanism of ARNT isoform–specific regulation of AhR signaling. Notably, CK2-mediated phosphorylation of ARNT isoform 1 is dependent on ligand-induced AhR nuclear translocation and is required for optimal AhR target gene regulation. These observations reveal ARNT as a central modulator of AhR activity predicated on the status of the ARNT isoform ratio and suggest that ARNT-based therapies are a viable option for tuning the immune system to target immune disorders.
Collapse
|
13
|
Liu SR, Ren D, Wu HT, Yao SQ, Song ZH, Geng LD, Wang PC. Reparative effects of chronic intermittent hypobaric hypoxia pre‑treatment on intervertebral disc degeneration in rats. Mol Med Rep 2022; 25:173. [PMID: 35315494 PMCID: PMC8971903 DOI: 10.3892/mmr.2022.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have indicated that chronic intermittent hypobaric hypoxia (CIHH) preconditioning can inhibit TNF-α and other related inflammatory cytokines and exerts protective effect on intervertebral disc degeneration disease (IDD) in rats; however, the mechanism is still unclear. The present study aimed to explore the repair mechanisms of CIHH on IDD in rats. In the experiment, 48 adult Sprague-Dawley rats were selected and randomly divided into an experimental group (CIHH-IDD), a degenerative group (IDD) and a control group (CON). The CIHH-IDD group of rats (n=16) were treated with CIHH (simulated 3000 m altitude, 5 h per day, 28 days; PO2=108.8 mmHg) before disc degeneration surgery. The IDD group of rats (n=16) underwent tail-vertebral intervertebral disc surgery to establish a model of intervertebral disc degeneration. The CON group of rats (n=16) did not receive any treatments. After surgery, the disc height index was calculated using X-ray analysis of rat tail vertebrae, the degeneration process was observed and repair was evaluated by chemically staining degenerative intervertebral disc tissue slices. The expression levels of basic fibroblast growth factor (bFGF), TGFβ1, Collagen I and Collagen II were measured in the intervertebral disc tissue using western blotting; while the expression levels of bFGF, TGFβ1 and hypoxia-inducible factor 1-α (HIF-1α) were measured in rat serum using ELISA. The results demonstrated that: i) The degree of intervertebral disc height degeneration in CIHH-IDD rats was significantly lower compared with that in IDD rats (P<0.05); ii) the expression levels of bFGF, TGFβ1 and HIF-1α were higher in CIHH-IDD rat serum compared with those in IDD rat serum (P<0.05); iii) optical microscopy revealed that the degree of disc degeneration was relatively mild in CIHH-IDD rats; and iv) the protein expression levels of bFGF, TGFβ1 and collagen II were increased in CIHH-IDD rat intervertebral disc tissues compared with those of IDD rats, while the overexpression of collagen I protein was inhibited. Overall, after CIHH pre-treatment, the expression levels of bFGF and TGFβ1 were up-regulated, which play notable roles in repairing degenerative intervertebral discs in rats.
Collapse
Affiliation(s)
- Shu-Ren Liu
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Dong Ren
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Hao-Tan Wu
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Shuang-Quan Yao
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Zhao-Hui Song
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Lin-Dan Geng
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Peng-Cheng Wang
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| |
Collapse
|
14
|
Khalil AM, Al-Qaoud KM, Alemam IF, Okour MA. Mobile phone radiation might alter gene expression in the oral squamous epithelial cells. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Accumulating evidence has shown that radiofrequency radiation (RFR) emitted by mobile phones is a potential factor for DNA damage. Whether RFR affects the gene expression of human genes still requires further research. This may help in understanding the mechanisms of action of this radiation. On the assumption that expression of BAMBI and Survivin in the oral squamous epithelial cells might be modified in response to RF electromagnetic field (RF-EMF) exposure, the current study was conducted on a group of young university student volunteers.
Results
Statistical analysis of the RT-PCR data indicated that no significant association (P value ˃ 0.05) exists between the expression of either gene, and neither the length of history nor the frequency of the phone use.
Conclusions
Although no clear RF-EMF signature on gene expression could be detected in this in this preliminary study, it is one of the few studies indicating that molecular-level changes might take place in humans in response to chronic mobile phone EMR exposure. Further investigations in this field are warranted.
Collapse
|
15
|
The functions of CD4 T-helper lymphocytes in chronic obstructive pulmonary disease. Acta Biochim Biophys Sin (Shanghai) 2021; 54:173-178. [PMID: 35130627 PMCID: PMC9827934 DOI: 10.3724/abbs.2021009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has been increasingly accounted for global morbidity and mortality worldwide. Although it is partially reversible, the obstructive ventilatory schema of COPD often causes chronic inflammation that primarily affects peripheral airways, pulmonary parenchyma, and the development of lung lymphoid follicles. Among various T-helper (Th) cell types associated with COPD, Th1, Th2 and Th17 cell numbers are increased in COPD patients, whereas Treg cell number is reduced. Here, we reviewed recent advance in understanding the roles of Th1/Th2 and Th17/Treg in the pathogenesis of COPD and discussed the potential underlying mechanism.
Collapse
|
16
|
Wang C, Wang H, Dai L, Zhang J, Fang L, Liu L, Fu W, Tang D. T-Helper 17 Cell/Regulatory T-Cell Imbalance in COPD Combined with T2DM Patients. Int J Chron Obstruct Pulmon Dis 2021; 16:1425-1435. [PMID: 34079246 PMCID: PMC8166331 DOI: 10.2147/copd.s306406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is often combined with type 2 diabetes mellitus (T2DM) in clinical, and with poor prognosis. In recent years, research shows that inflammation is a common characteristic of COPD and T2DM. T-helper 17 cell (Th17)/regulatory T-cell (Treg) balance controls inflammation and may be important in the pathogenesis of COPD combined with T2DM patients. This study investigated the characteristics of Th17, Treg and related inflammatory factors in COPD combined with T2DM patients and the potential mechanism. Methods Application of flow cytometry technology, real-time fluorescent quantitative PCR and ELISA to detect the changes in peripheral blood of Th17 and Treg number and the expression of key transcription factors and related cytokines in COPD combined T2DM patients were performed. Results Patients with COPD combined with T2DM revealed significant increase in peripheral Th17, Th17 related cytokines (IL-17A, IL-17F, IL-21, IL-23, IL-6) and transcription factor (RORγt) levels and significant decrease in Treg, Treg-related cytokines (IL-10, TGFβ1) and transcription factor (Foxp3) as compared with patients with COPD, T2DM and healthy controls. Conclusion Th17/Treg functional imbalance exists in patients with COPD combined with T2DM, indicating a potential role of Th17/Treg imbalance in the formation and progression of COPD combined with T2DM.
Collapse
Affiliation(s)
- Cheng Wang
- Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Hong Wang
- Department of Burns Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Luming Dai
- Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Jianqing Zhang
- Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Lizhou Fang
- Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Ling Liu
- Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Weiping Fu
- Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Dang Tang
- First Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| |
Collapse
|
17
|
The Utility of Resolving Asthma Molecular Signatures Using Tissue-Specific Transcriptome Data. G3-GENES GENOMES GENETICS 2020; 10:4049-4062. [PMID: 32900903 PMCID: PMC7642926 DOI: 10.1534/g3.120.401718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An integrative analysis focused on multi-tissue transcriptomics has not been done for asthma. Tissue-specific DEGs remain undetected in many multi-tissue analyses, which influences identification of disease-relevant pathways and potential drug candidates. Transcriptome data from 609 cases and 196 controls, generated using airway epithelium, bronchial, nasal, airway macrophages, distal lung fibroblasts, proximal lung fibroblasts, CD4+ lymphocytes, CD8+ lymphocytes from whole blood and induced sputum samples, were retrieved from Gene Expression Omnibus (GEO). Differentially regulated asthma-relevant genes identified from each sample type were used to identify (a) tissue-specific and tissue-shared asthma pathways, (b) their connection to GWAS-identified disease genes to identify candidate tissue for functional studies, (c) to select surrogate sample for invasive tissues, and finally (d) to identify potential drug candidates via connectivity map analysis. We found that inter-tissue similarity in gene expression was more pronounced at pathway/functional level than at gene level with highest similarity between bronchial epithelial cells and lung fibroblasts, and lowest between airway epithelium and whole blood samples. Although public-domain gene expression data are limited by inadequately annotated per-sample demographic and clinical information which limited the analysis, our tissue-resolved analysis clearly demonstrated relative importance of unique and shared asthma pathways, At the pathway level, IL-1b signaling and ERK signaling were significant in many tissue types, while Insulin-like growth factor and TGF-beta signaling were relevant in only airway epithelial tissue. IL-12 (in macrophages) and Immunoglobulin signaling (in lymphocytes) and chemokines (in nasal epithelium) were the highest expressed pathways. Overall, the IL-1 signaling genes (inflammatory) were relevant in the airway compartment, while pro-Th2 genes including IL-13 and STAT6 were more relevant in fibroblasts, lymphocytes, macrophages and bronchial biopsies. These genes were also associated with asthma in the GWAS catalog. Support Vector Machine showed that DEGs based on macrophages and epithelial cells have the highest and lowest discriminatory accuracy, respectively. Drug (entinostat, BMS-345541) and genetic perturbagens (KLF6, BCL10, INFB1 and BAMBI) negatively connected to disease at multi-tissue level could potentially repurposed for treating asthma. Collectively, our study indicates that the DEGs, perturbagens and disease are connected differentially depending on tissue/cell types. While most of the existing literature describes asthma transcriptome data from individual sample types, the present work demonstrates the utility of multi-tissue transcriptome data. Future studies should focus on collecting transcriptomic data from multiple tissues, age and race groups, genetic background, disease subtypes and on the availability of better-annotated data in the public domain.
Collapse
|
18
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020; 5:248. [PMID: 33110061 PMCID: PMC7588592 DOI: 10.1038/s41392-020-00345-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is emphysema and/or chronic bronchitis characterised by long-term breathing problems and poor airflow. The prevalence of COPD has increased over the last decade and the drugs most commonly used to treat it, such as glucocorticoids and bronchodilators, have significant therapeutic effects; however, they also cause side effects, including infection and immunosuppression. Here we reviewed the pathogenesis and progression of COPD and elaborated on the effects and mechanisms of newly developed molecular targeted COPD therapeutic drugs. Among these new drugs, we focussed on thioredoxin (Trx). Trx effectively prevents the progression of COPD by regulating redox status and protease/anti-protease balance, blocking the NF-κB and MAPK signalling pathways, suppressing the activation and migration of inflammatory cells and the production of cytokines, inhibiting the synthesis and the activation of adhesion factors and growth factors, and controlling the cAMP-PKA and PI3K/Akt signalling pathways. The mechanism by which Trx affects COPD is different from glucocorticoid-based mechanisms which regulate the inflammatory reaction in association with suppressing immune responses. In addition, Trx also improves the insensitivity of COPD to steroids by inhibiting the production and internalisation of macrophage migration inhibitory factor (MIF). Taken together, these findings suggest that Trx may be the ideal drug for treating COPD.
Collapse
Affiliation(s)
- Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China.
- Jiaozhimei Biotechnology (Shaoxing) Co, Ltd, Shaoxing, 312000, China.
| |
Collapse
|
19
|
Silva LEF, Lourenço JD, Silva KR, Santana FPR, Kohler JB, Moreira AR, Velosa APP, Prado CM, Vieira RP, Aun MV, Tibério IFLC, Ito JT, Lopes FDTQS. Th17/Treg imbalance in COPD development: suppressors of cytokine signaling and signal transducers and activators of transcription proteins. Sci Rep 2020; 10:15287. [PMID: 32943702 PMCID: PMC7499180 DOI: 10.1038/s41598-020-72305-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Th17/Treg imbalance contributes to chronic obstructive pulmonary disease (COPD) development and progression. However, intracellular signaling by suppressor of cytokine signaling (SOCS) 1 and SOCS3 and the proteins signal transducer and activator of transcription (STAT) 3 and STAT5 that orchestrate these imbalances are currently poorly understood. Thus, these proteins were investigated in C57BL/6 mice after exposure to cigarette smoke (CS) for 3 and 6 months. The expression of interleukin was measured by ELISA and the density of positive cells in peribronchovascular areas was quantified by immunohistochemistry. We showed that exposure to CS in the 3rd month first induced decreases in the numbers of STAT5+ and pSTAT5+ cells and the expression levels of TGF-β and IL-10. The increases in the numbers of STAT3+ and pSTAT3+ cells and IL-17 expression occurred later (6th month). These findings corroborate the increases in the number of SOCS1+ cells in both the 3rd and 6th months, with concomitant decreases in SOCS3+ cells at the same time points. Our results demonstrated that beginning with the initiation of COPD development, there was a downregulation of the anti-inflammatory response mediated by SOCS and STAT proteins. These results highlight the importance of intracellular signaling in Th17/Treg imbalance and the identification of possible targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Larissa E F Silva
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Juliana D Lourenço
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Kaique R Silva
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda Paula R Santana
- Laboratory of Studies in Pulmonary Inflammation, Department of Bioscience, Federal University of Sao Paulo, Diadema, SP, Brazil
| | - Júlia B Kohler
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alyne R Moreira
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Paula P Velosa
- Laboratory of Extracelular Matrix, Department of Clinical Medicine, School of Medicine of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla M Prado
- Laboratory of Studies in Pulmonary Inflammation, Department of Bioscience, Federal University of Sao Paulo, Santos, SP, Brazil
| | - Rodolfo P Vieira
- Post-Graduation Program in Bioengineering, Universidade Brasil, Sao Paulo, SP, Brazil
| | - Marcelo V Aun
- Host & Defense Unit, Faculdade Israelita de Ciências da Saúde Albert Einstein, Sao Paulo, SP, Brazil
| | - Iolanda Fátima L C Tibério
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Juliana T Ito
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda D T Q S Lopes
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil.
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Av. Dr. Arnaldo 455 - room 1220, Sao Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
20
|
Chawla AS, Khalsa JK, Dhar A, Gupta S, Umar D, Arimbasseri GA, Bal V, George A, Rath S. A role for cell-autocrine interleukin-2 in regulatory T-cell homeostasis. Immunology 2020; 160:295-309. [PMID: 32187647 DOI: 10.1111/imm.13194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Activated T-cells make both interleukin-2 (IL2) and its high-affinity receptor component CD25. Regulatory CD4 T-cells (Treg cells) do not make IL2, and the IL2-CD25 circuit is considered a paracrine circuit crucial in their generation and maintenance. Yet, all T-cells are capable of making IL2 at some stage during differentiation, making a cell-intrinsic autocrine circuit additionally possible. When we re-visited experiments with mixed bone marrow chimeras using a wide range of ratios of wild-type (WT) and IL2-/- genotype progenitors, we found that, as expected, thymic Treg cells were almost equivalent between WT and IL2-/- genotypes at ratios with WT prominence. However, at WT-limiting ratios, the IL2-/- genotype showed lower thymic Treg frequencies, indicating a role for cell-intrinsic autocrine IL2 in thymic Treg generation under IL2-limiting conditions. Further, peripheral IL2-/- naive CD4 T-cells showed poor conversion to inducible Tregs (pTregs) both in vivo and in vitro, again indicating a significant role for cell-intrinsic autocrine IL2 in their generation. Peripherally, the IL2-/- genotype was less prominent at all WT:IL2-/- ratios among both thymic Tregs (tTregs) and pTregs, adoptively transferred IL2-/- Tregs showed poorer survival than WT Tregs did, and RNA-seq analysis of WT and IL2-/- Tregs showed interesting differences in the T-cell receptor and transforming growth factor-beta-bone morphogenetic protein-JNK pathways between them, suggesting a non-titrating role for cell-intrinsic autocrine IL2 in Treg programming. These data indicate that cell-intrinsic autocrine IL2 plays significant roles in Treg generation and maintenance.
Collapse
Affiliation(s)
| | | | - Atika Dhar
- National Institute of Immunology, New Delhi, India
| | - Suman Gupta
- National Institute of Immunology, New Delhi, India
| | - Danish Umar
- National Institute of Immunology, New Delhi, India
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | - Anna George
- National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
21
|
Kazakevych J, Denizot J, Liebert A, Portovedo M, Mosavie M, Jain P, Stellato C, Fraser C, Corrêa RO, Célestine M, Mattiuz R, Okkenhaug H, Miller JR, Vinolo MAR, Veldhoen M, Varga-Weisz P. Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium. Genome Biol 2020; 21:64. [PMID: 32160911 PMCID: PMC7065452 DOI: 10.1186/s13059-020-01976-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND How intestinal epithelial cells interact with the microbiota and how this is regulated at the gene expression level are critical questions. Smarcad1 is a conserved chromatin remodeling factor with a poorly understood tissue function. As this factor is highly expressed in the stem and proliferative zones of the intestinal epithelium, we explore its role in this tissue. RESULTS Specific deletion of Smarcad1 in the mouse intestinal epithelium leads to colitis resistance and substantial changes in gene expression, including a striking increase of expression of several genes linked to innate immunity. Absence of Smarcad1 leads to changes in chromatin accessibility and significant changes in histone H3K9me3 over many sites, including genes that are differentially regulated upon Smarcad1 deletion. We identify candidate members of the gut microbiome that elicit a Smarcad1-dependent colitis response, including members of the poorly understood TM7 phylum. CONCLUSIONS Our study sheds light onto the role of the chromatin remodeling machinery in intestinal epithelial cells in the colitis response and shows how a highly conserved chromatin remodeling factor has a distinct role in anti-microbial defense. This work highlights the importance of the intestinal epithelium in the colitis response and the potential of microbial species as pharmacological and probiotic targets in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Juri Kazakevych
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Jérémy Denizot
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: Université Clermont Auvergne, Inserm U1071, INRA USC2018, M2iSH, F-63000, Clermont-Ferrand, France
| | - Anke Liebert
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariana Portovedo
- Laboratory of Immunoinflammation, Institute of Biology, UNICAMP, Campinas, 13083-862, Brazil
| | - Mia Mosavie
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Payal Jain
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Claire Fraser
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Institute of Biology, UNICAMP, Campinas, 13083-862, Brazil
| | | | - Raphaël Mattiuz
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - J Ross Miller
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Marc Veldhoen
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: Instituto de Medicina Molecular
- Joâo Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Patrick Varga-Weisz
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK. .,School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
22
|
Huang K, Shi X, Wang J, Yao Y, Peng Y, Chen X, Li X, Yang G. Upregulated microRNA-106a Promotes Porcine Preadipocyte Proliferation and Differentiation by Targeting Different Genes. Genes (Basel) 2019; 10:genes10100805. [PMID: 31615047 PMCID: PMC6826363 DOI: 10.3390/genes10100805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is one of the main organs for the energy storage and supply of organisms. Adipose deposition and metabolism are controlled by a cascade of transcription factors and epigenetic regulatory mechanisms. Previous studies have also shown that miR-106a plays a considerable role in the development of organisms. The regulatory mechanism of miR-106a on porcine preadipocytes is still not clear. In this study, preadipocytes were isolated from the neck subcutaneous deposits of 3–5-day old Chinese native Guanzhong black pigs using 5-ethynyl-20-deoxyuridine (EdU) staining and a CCK-8 assay to detect the number of proliferous cells and real-time qPCR (RT-qPCR) and western blot analysis to detect gene expression, as well as Oil Red O and BODIPY staining dye lipid droplets and flow cytometry (FCM) to detect cell cycles. We also used the double luciferase method to detect the relative luciferase activities. Upregulated miR-106a increased the number of proliferous cells and enhanced the expression of cell proliferation-related genes in porcine adipocytes. The double luciferase reporter vector confirmed that p21 was a target gene of miR-106a in the cell proliferation phase. miR-106a upregulation increased the number of lipid droplets and the expression of lipogenic genes and directly targeted BMP and activin membrane-bound inhibitor (BAMBI) in the process of differentiation. Our results indicated that miR-106a promotes porcine preadipocyte proliferation and differentiation by targeting p21 and BAMBI.
Collapse
Affiliation(s)
- Kuilong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Jie Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Ying Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Ying Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Xiaochang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shanxi, China.
| |
Collapse
|
23
|
Xia X, Peng Y, Lei D, Chen W. Hypercapnia downregulates hypoxia‐induced lysyl oxidase expression in pulmonary artery smooth muscle cells via inhibiting transforming growth factor β1signalling. Cell Biochem Funct 2019; 37:193-202. [PMID: 30917408 DOI: 10.1002/cbf.3390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao‐dong Xia
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Yan‐ping Peng
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Dan Lei
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Wei‐qian Chen
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
24
|
Abstract
INTRODUCTION Flask-shaped plasma membrane (PM) invaginations called caveolae and their constitutive caveolin and cavin proteins regulate cellular function via plasma membrane and intracellular signal transduction pathways. Caveolae are present in a variety of cells in the lung including airway smooth muscle (ASM) where they interact with other proteins, receptors, and ion channels and thereby have the potential to affect both normal and disease processes such as inflammation, contractility, and fibrosis. Given their involvement in cell signaling, caveolae may play important roles in mediating and modulating aging processes, and contribute to lung diseases of aging. Areas covered: This review provides a broad overview of the current state of knowledge regarding caveolae and their constituent proteins in lung diseases in the elderly and identifies potential mechanisms that can be targeted for future therapies. Expert Commentary: Caveolin-1 may play a protective role in lung disease. What is less clear is whether altered caveolin-1 with aging is a natural process, or a biomarker of disease progression in the elderly.
Collapse
Affiliation(s)
- Sarah A Wicher
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA
| | - Y S Prakash
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,b Department of Anesthesiology& Perioperative Medicine , Mayo Clinic , Rochester , MN , USA
| | - Christina M Pabelick
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,b Department of Anesthesiology& Perioperative Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
25
|
Sun SW, Chen L, Zhou M, Wu JH, Meng ZJ, Han HL, Miao SY, Zhu CC, Xiong XZ. BAMBI regulates macrophages inducing the differentiation of Treg through the TGF-β pathway in chronic obstructive pulmonary disease. Respir Res 2019; 20:26. [PMID: 30728014 PMCID: PMC6364453 DOI: 10.1186/s12931-019-0988-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by continuous flow limitation and the immune system including macrophages and regulatory T lymphocytes (Tregs) is involved in COPD pathogenesis. In our previous study, we investigated that TGF-β/BAMBI pathway was associated with COPD by regulating the balance of Th17/Treg. However, the role of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a pseudoreceptor of TGF-β signalling pathway, in regulating the immune system of COPD patients has not been fully studied. Hence, we speculate that the pseudoreceptor BAMBI may play roles in the regulation of M2 macrophages to induce the differentiation of CD4+ naïve T cells into Tregs and influence the immune response in COPD. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from healthy nonsmokers (n = 12), healthy smokers (n = 10) and COPD patients (n = 20). Naïve CD4+ T cells and monocytes-induced macrophages were used for coculture assays. The phenotypic characteristics of macrophages and Tregs were determined by flow cytometry. The expression levels of BAMBI and the TGF-β/Smad pathway members in M2 macrophages were measured by a Western blot analysis. The monocyte-derived macrophages were stimulated with cigarette smoke extract (CSE, concentration of 0.02%) to simulate the smoking process in humans. pCMV-BAMBI was transfected into monocyte-derived M2 macrophages for subsequent co-culture assays and signalling pathway analysis. RESULTS Our results showed that M2 macrophages could induce the differentiation of Tregs through the TGF-β/Smad signalling pathway. In addition, monocyte-derived macrophages from COPD patients highly expressed BAMBI, and had a low capacity to induce Tregs differentiation. The expression of BAMBI and the forced expiratory volume in 1 second (FEV1%) were negatively correlated in COPD. Furthermore, overexpression of BAMBI promoted the conversion of M2 macrophages to M1 macrophages via the TGF-β/Smad pathway. CONCLUSIONS We demonstrated that BAMBI could promote the polarization process of M2 macrophages to M1 macrophages via the TGF-β/Smad signalling pathway and that overexpression of BAMBI could decrease the ability of M2 macrophages to induce Treg differentiation. These findings may provide a potential mechanism by which blocking BAMBI could improve immune function to regulate COPD inflammatory conditions.
Collapse
Affiliation(s)
- Sheng-Wen Sun
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Long Chen
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Mei Zhou
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Jiang-Hua Wu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Zhao-Ji Meng
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Hong-Li Han
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Shuai-Ying Miao
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Chen-Chen Zhu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Xian-Zhi Xiong
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| |
Collapse
|
26
|
Feng F, Du J, Meng Y, Guo F, Feng C. Louqin Zhisou Decoction Inhibits Mucus Hypersecretion for Acute Exacerbation of Chronic Obstructive Pulmonary Disease Rats by Suppressing EGFR-PI3K-AKT Signaling Pathway and Restoring Th17/Treg Balance. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6471815. [PMID: 30800170 PMCID: PMC6360623 DOI: 10.1155/2019/6471815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/23/2018] [Indexed: 01/05/2023]
Abstract
Airway mucus hypersecretion is the main pathogenic factor in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and the control of mucus secretion is closely associated with survival. Louqin Zhisou decoction (LQZS) has been found to improve lung function and reduce sputum in AECOPD patients, but the mechanism remains unclear. This study aimed to explore the mechanism of LQZS against mucus hypersecretion in lung tissues of rat AECOPD model. Wistar rats were used to establish AECOPD model by intratracheal instillation of LPS in combination with the continuous cigarette smoking. Rats were administrated LQZS/clarithromycin (CAM)/distilled water via gavage every day and all rats were sacrificed after 30 days. BALF and lung tissues were obtained. Lung morphology, cytokines levels, MUC5AC mRNA transcription and protein expression, phosphorylation of the EGFR-PI3K-AKT signaling pathway, and molecules involved in Th17/Treg balance were evaluated. The results demonstrated that LQZS protected rats from decline in pulmonary function and ameliorated lung injury. LQZS treatment decreased the number of goblet cells in airway and suppressed MUC5AC mRNA and protein expression of lung tissues. Furthermore, LQZS attenuated the level of phospho-EGFR, phospho-PI3K and phospho-AKT in AECOPD rats. In addition, LQZS could inhibit the production of proinflammatory cytokines in BALF, including IL-6 and IL-17A and downregulate the secretion of NE and MCP-1, indicating that LQZS could limit inflammatory responses in AECOPD. Moreover, LQZS reversed RORγt and Foxp3 expression, the key transcription factors of Th17 and Treg, respectively. In conclusion, this research demonstrated the inhibitory effects of LQZS against mucus hypersecretion in AECOPD via suppressing EGFR-PI3K-AKT signaling pathway and restoring Th17/Treg balance.
Collapse
Affiliation(s)
- Feng Feng
- Beijing University of Chinese Medicine, Beijing 100029, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Peking University People's Hospital, Beijing 100044, China
| | - Jianchao Du
- Beijing Hospital of Traditional Chinese Medicine Shunyi Branch, Beijing 101300, China
| | - Yufeng Meng
- Peking University People's Hospital, Beijing 100044, China
| | - Fang Guo
- Peking University People's Hospital, Beijing 100044, China
| | - Cuiling Feng
- Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
27
|
Liu HJ, Chen G, Chen L, Zhou M, Xiong XZ, Meng ZJ, Sun SW, Tao XN. Cytokine-induced alterations of BAMBI mediate the reciprocal regulation of human Th17/Treg cells in response to cigarette smoke extract. Int J Mol Med 2018; 42:3404-3414. [PMID: 30320351 PMCID: PMC6202106 DOI: 10.3892/ijmm.2018.3919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/01/2018] [Indexed: 11/06/2022] Open
Abstract
In CD4+ T helper (Th) cells, transforming growth factor β (TGF‑β) is indispensable for the induction of both regulatory T (Treg) and interleukin‑17‑producing effector T helper (Th17) cells. Although BMP and activin membrane‑bound inhibitor (BAMBI) is part of a rheostat‑like mechanism for the regulation of TGF‑β signalling and autoimmune arthritis in mouse models, the underlying activity of BAMBI on the human Th17/Treg cell axis, particularly during exposure to cigarette smoke, remains to be elucidated. The present study aimed to further characterize BAMBI expression in human CD4+ cells, as well as immune imbalance during activation and cigarette smoke exposure. Results from the present study indicated that exposure to cigarette smoke extract partially suppressed Treg differentiation and promoted Th17 cell generation under stimulation by anti‑CD3/28 antibodies and TGF‑β1. Additionally, exposure to cigarette smoke induced an inhibition of phosphorylated‑Smad2/Smad3, which may have arisen from a concomitant enhancement of BAMBI expression. In conclusion, human BAMBI may function as a molecular switch to control TGF‑β signalling strength and the Th17/Treg cell balance, which may be used not only as a biomarker but also as a target of new treatment strategies for maintaining immune tolerance and for the treatment of smoking‑induced immune disorders.
Collapse
Affiliation(s)
- Hong-Ju Liu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gang Chen
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Long Chen
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Mei Zhou
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xian-Zhi Xiong
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhao-Ji Meng
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Sheng-Wen Sun
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Nan Tao
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
28
|
Ni L, Dong C. Roles of Myeloid and Lymphoid Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Front Immunol 2018; 9:1431. [PMID: 29977245 PMCID: PMC6021485 DOI: 10.3389/fimmu.2018.01431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the third largest cause of human mortality in the world after stroke and heart disease. COPD is characterized by sustained inflammation of the airways, leading to destruction of lung tissue and declining pulmonary function. The main risk factor is known to be cigarette smoke currently. However, the strategies for prevention and treatment have not altered significantly for many years. A growing body of evidences indicates that the immune system plays a pivotal role in the pathogenesis of COPD. The repeated and progressive activation of immune cells is at least in part the source of this chronic inflammation. In this review paper, we have conducted an extensive literature search of the studies of immune cells in COPD patients. The objective is to assess the contributions of different immune cell types, the imbalance of pro/anti-inflammatory immune cells, such as M1/M2 macrophages, Tc1/Tc10, and Th17/Treg, and their mediators in the peripheral blood as well as in the lung to the pathogenesis of COPD. Therefore, understanding their roles in COPD development will help us find the potential target to modify this disease. This review focuses predominantly on data derived from human studies but will refer to animal studies where they help understand the disease in humans.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Raykhel I, Moafi F, Myllymäki SM, Greciano PG, Matlin KS, Moyano JV, Manninen A, Myllyharju J. BAMBI is a novel HIF1-dependent modulator of TGFβ-mediated disruption of cell polarity during hypoxia. J Cell Sci 2018; 131:jcs.210906. [PMID: 29685894 DOI: 10.1242/jcs.210906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and loss of cell polarity are common features of malignant carcinomas. Hypoxia-inducible factor 1 (HIF1) is the major regulator of cellular hypoxia response and mediates the activation of ∼300 genes. Increased HIF1 signaling is known to be associated with epithelial-mesenchymal transformation. Here, we report that hypoxia disrupts polarized epithelial morphogenesis of MDCK cells in a HIF1α-dependent manner by modulating the transforming growth factor-β (TGFβ) signaling pathway. Analysis of potential HIF1 targets in the TGFβ pathway identified the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a transmembrane glycoprotein related to the type I receptors of the TGFβ family, whose expression was essentially lost in HIF1-depleted cells. Similar to what was observed in HIF1-deficient cells, BAMBI-depleted cells failed to efficiently activate TGFβ signaling and retained epithelial polarity during hypoxia. Taken together, we show that hypoxic conditions promote TGFβ signaling in a HIF1-dependent manner and BAMBI is identified in this pathway as a novel HIF1-regulated gene that contributes to hypoxia-induced loss of epithelial polarity.
Collapse
Affiliation(s)
- Irina Raykhel
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Fazeh Moafi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Satu M Myllymäki
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Patricia G Greciano
- Department of Surgery (Section of Research), University of Chicago, Chicago, IL 60637-1470, USA
| | - Karl S Matlin
- Department of Surgery (Section of Research), University of Chicago, Chicago, IL 60637-1470, USA
| | - Jose V Moyano
- Department of Surgery (Section of Research), University of Chicago, Chicago, IL 60637-1470, USA
| | - Aki Manninen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
30
|
Zhao P, Li J, Tian Y, Mao J, Liu X, Feng S, Li J, Bian Q, Ji H, Zhang L. Restoring Th17/Treg balance via modulation of STAT3 and STAT5 activation contributes to the amelioration of chronic obstructive pulmonary disease by Bufei Yishen formula. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:152-162. [PMID: 29454913 DOI: 10.1016/j.jep.2018.02.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Bufei Yishen formula (BYF), a Traditional Chinese Medicine (TCM), has been extensively applied in clinical treatment of chronic obstructive pulmonary disease (COPD) and provides an effective treatment strategy for the syndrome of lung-kidney qi deficiency in COPD patients. Here, we investigated its anti-COPD mechanism in COPD rats in relation to the balance between T helper (Th) 17 cells and regulatory T (Treg) cells. METHODS Rat model of cigarette smoke- and bacterial infection-induced COPD was established, and orally treated with BYF for 12 consecutive weeks. Then, the rats were sacrificed, their lung tissues were removed for histological analysis, and spleens and mesenteric lymph nodes (MLNs) were collected to evaluate the Th17 and Treg cells. RESULTS Oral treatment of BYF markedly suppressed the disease progression and alleviated the pathological changes of COPD. It also decreased the bronchoalveolar lavage fluid (BALF) levels of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α and Th17-related IL-17A, and induced a significant increase in Treg-related IL-10. Furthermore, BYF treatment obviously decreased the proportion of CD4+RORγt+ T (Th17) cell and increased the proportion of CD4+CD25+Foxp3+ T (Treg) cell, leading to restore the Th17/Treg balance. BYF treated groups also decreased RORγt and increased Foxp3 expression in the spleens and MLNs. BYF further inhibited the phosphorylation of signal transducer and activator of transcription-3 (STAT3) and boosted the phosphorylation of STAT5, that were critical transcription factors for TH17 and Treg differentiation. CONCLUSION these results demonstrated that BYF exerted its anti-COPD efficacy by restoring Th17/Treg balance via reciprocally modulating the activities of STAT3 and STAT5 in COPD rats, which may help to elucidate the underlying immunomodulatory mode of BYF on COPD treatment.
Collapse
MESH Headings
- Animals
- Cigarette Smoking/adverse effects
- Cytokines/metabolism
- Disease Models, Animal
- Disease Progression
- Drugs, Chinese Herbal/pharmacology
- Female
- Immunologic Factors/pharmacology
- Inflammation Mediators/metabolism
- Klebsiella pneumoniae/pathogenicity
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Male
- Phenotype
- Phosphorylation
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/prevention & control
- Rats, Sprague-Dawley
- STAT3 Transcription Factor/metabolism
- STAT5 Transcription Factor/metabolism
- Signal Transduction/drug effects
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Jing Mao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Suxiang Feng
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Junzi Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Qingqing Bian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Huige Ji
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Lanxi Zhang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
31
|
The Role of Regulatory T Cell in Nontypeable Haemophilus influenzae-Induced Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2018; 2018:8387150. [PMID: 29725272 PMCID: PMC5872612 DOI: 10.1155/2018/8387150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with irreversible persistent airflow limitation and enhanced inflammation. The episodes of acute exacerbation (AECOPD) largely depend on the colonized pathogens such as nontypeable Haemophilus influenzae (NTHi), one of the most commonly isolated bacteria. Regulatory T cells (Tregs) are critical in controlling inflammatory immune responses and maintaining tolerance; however, their role in AECOPD is poorly understood. In this study, we hypothesized a regulatory role of Tregs, as NTHi participated in the progress of COPD. Immunological pathogenesis was investigated in a murine COPD model induced by cigarette smoke (CS). NTHi was administrated through intratracheal instillation for an acute exacerbation. Weight loss and lung function decline were observed in smoke-exposed mice. Mice in experimental groups exhibited serious inflammatory responses via histological and cytokine assessment. Expression levels of Tregs and Th17 cells with specific cytokines TGF-β1 and IL-17 were detected to assess the balance of pro-/anti-inflammatory influence partially. Our findings suggested an anti-inflammatory activity of Tregs in CS-induced model. But this activity was suppressed after NTHi administration. Collectively, these data suggested that NTHi might play a necessary role in downregulating Foxp3 to impair the function of Tregs, helping development into AECOPD.
Collapse
|
32
|
Whole-genome methylation profiling of peripheral blood mononuclear cell for acute exacerbations of chronic obstructive pulmonary disease treated with corticosteroid. Pharmacogenet Genomics 2018; 28:78-85. [DOI: 10.1097/fpc.0000000000000325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Di Stefano A, Sangiorgi C, Gnemmi I, Casolari P, Brun P, Ricciardolo FLM, Contoli M, Papi A, Maniscalco P, Ruggeri P, Girbino G, Cappello F, Pavlides S, Guo Y, Chung KF, Barnes PJ, Adcock IM, Balbi B, Caramori G. TGF-β Signaling Pathways in Different Compartments of the Lower Airways of Patients With Stable COPD. Chest 2017; 153:851-862. [PMID: 29289685 PMCID: PMC5883327 DOI: 10.1016/j.chest.2017.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The expression and localization of transforming growth factor-β (TGF-β) pathway proteins in different compartments of the lower airways of patients with stable COPD is unclear. We aimed to determine TGF-β pathway protein expression in patients with stable COPD. METHODS The expression and localization of TGF-β pathway components was measured in the bronchial mucosa and peripheral lungs of patients with stable COPD (n = 44), control smokers with normal lung function (n = 24), and control nonsmoking subjects (n = 11) using immunohistochemical analysis. RESULTS TGF-β1, TGF-β3, and connective tissue growth factor expression were significantly decreased in the bronchiolar epithelium, with TGF-β1 also decreased in alveolar macrophages, in patients with stable COPD compared with control smokers with normal lung function. TGF-β3 expression was increased in the bronchial lamina propria of both control smokers with normal lung function and smokers with mild/moderate stable COPD compared with control nonsmokers and correlated significantly with pack-years of smoking. However, TGF-β3+ cells decreased in patients with severe/very severe COPD compared with control smokers. Latent TGF-β binding protein 1 expression was increased in the bronchial lamina propria in subjects with stable COPD of all severities compared with control smokers with normal lung function. Bone morphogenetic protein and activin membrane-bound inhibitor expression (BAMBI) in the bronchial mucosa was significantly increased in patients with stable COPD of all severities compared with control subjects. No other significant differences were observed between groups for all the other molecules studied in the bronchial mucosa and peripheral lung. CONCLUSIONS Expression of TGF-βs and their regulatory proteins is distinct within different lower airway compartments in stable COPD. Selective reduction in TGF-β1 and enhanced BAMBI expression may be associated with the increase in autoimmunity in COPD.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno (NO), Italy.
| | - Claudia Sangiorgi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno (NO), Italy
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno (NO), Italy
| | - Paolo Casolari
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | - Paola Brun
- Dipartimento di Medicina Molecolare, Università di Padova, Padova, Italy
| | - Fabio L M Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, AOU, Ospedale San Luigi, Orbassano, Università di Torino, Torino, Italy
| | - Marco Contoli
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | - Alberto Papi
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | - Pio Maniscalco
- Modulo di Chirurgia Toracica, Azienda Ospedaliera Universitaria S. Anna, Ferrara, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Giuseppe Girbino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Anatomia Umana, Università di Palermo, and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stelios Pavlides
- Department of Computing and Data Science Institute, Imperial College London, England
| | - Yike Guo
- Department of Computing and Data Science Institute, Imperial College London, England
| | - Kian Fan Chung
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, England
| | - Peter J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, England
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, England; Priority Research Centre for Lung Health, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno (NO), Italy
| | - Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy; Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
34
|
Siemens N, Oehmcke-Hecht S, Mettenleiter TC, Kreikemeyer B, Valentin-Weigand P, Hammerschmidt S. Port d'Entrée for Respiratory Infections - Does the Influenza A Virus Pave the Way for Bacteria? Front Microbiol 2017; 8:2602. [PMID: 29312268 PMCID: PMC5742597 DOI: 10.3389/fmicb.2017.02602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial and viral co-infections of the respiratory tract are life-threatening and present a global burden to the global community. Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes are frequent colonizers of the upper respiratory tract. Imbalances through acquisition of seasonal viruses, e.g., Influenza A virus, can lead to bacterial dissemination to the lower respiratory tract, which in turn can result in severe pneumonia. In this review, we summarize the current knowledge about bacterial and viral co-infections of the respiratory tract and focus on potential experimental models suitable for mimicking this disease. Transmission of IAV and pneumonia is mainly modeled by mouse infection. Few studies utilizing ferrets, rats, guinea pigs, rabbits, and non-human primates are also available. The knowledge gained from these studies led to important discoveries and advances in understanding these infectious diseases. Nevertheless, mouse and other infection models have limitations, especially in translation of the discoveries to humans. Here, we suggest the use of human engineered lung tissue, human ex vivo lung tissue, and porcine models to study respiratory co-infections, which might contribute to a greater translation of the results to humans and improve both, animal and human health.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Peter Valentin-Weigand
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Le Rouzic O, Pichavant M, Frealle E, Guillon A, Si-Tahar M, Gosset P. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J 2017; 50:1602434. [PMID: 29025886 DOI: 10.1183/13993003.02434-2016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways caused mainly by cigarette smoke exposure. COPD progression is marked by exacerbations of the disease, often associated with infections. Recent data show the involvement in COPD pathophysiology of interleukin (IL)-17 and IL-22, two cytokines that are important in the control of lung inflammation and infection. During the initiation and progression of the disease, increased IL-17 secretion causes neutrophil recruitment, leading to chronic inflammation, airways obstruction and emphysema. In the established phase of COPD, a defective IL-22 response facilitates pathogen-associated infections and disease exacerbations. Altered production of these cytokines involves a complex network of immune cells and dysfunction of antigen-presenting cells. In this review, we describe current knowledge on the involvement of IL-17 and IL-22 in COPD pathophysiology at steady state and during exacerbations, and discuss implications for COPD management and future therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Le Rouzic
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Service de Pneumologie Immunologie et Allergologie, CHU Lille, Lille, France
| | - Muriel Pichavant
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Frealle
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire de Parasitologie et Mycologie Médicale, CHU Lille, Lille, France
| | - Antoine Guillon
- Service de Réanimation Polyvalente, CHRU de Tours, Tours, France
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Philippe Gosset
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
36
|
Hocke AC, Suttorp N, Hippenstiel S. Human lung ex vivo infection models. Cell Tissue Res 2016; 367:511-524. [PMID: 27999962 PMCID: PMC7087833 DOI: 10.1007/s00441-016-2546-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022]
Abstract
Pneumonia is counted among the leading causes of death worldwide. Viruses, bacteria and pathogen-related molecules interact with cells present in the human alveolus by numerous, yet poorly understood ways. Traditional cell culture models little reflect the cellular composition, matrix complexity and three-dimensional architecture of the human lung. Integrative animal models suffer from species differences, which are of particular importance for the investigation of zoonotic lung diseases. The use of cultured ex vivo infected human lung tissue may overcome some of these limitations and complement traditional models. The present review gives an overview of common bacterial lung infections, such as pneumococcal infection and of widely neglected pathogens modeled in ex vivo infected lung tissue. The role of ex vivo infected lung tissue for the investigation of emerging viral zoonosis including influenza A virus and Middle East respiratory syndrome coronavirus is discussed. Finally, further directions for the elaboration of such models are revealed. Overall, the introduced models represent meaningful and robust methods to investigate principles of pathogen-host interaction in original human lung tissue.
Collapse
Affiliation(s)
- Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
37
|
Ren J, Li B. The Functional Stability of FOXP3 and RORγt in Treg and Th17 and Their Therapeutic Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:155-189. [PMID: 28215223 DOI: 10.1016/bs.apcsb.2016.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The balance of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and effector T cells plays a key role in maintaining immune homeostasis, while the imbalance of them is related to many inflammatory diseases in both human and mice. Here we discuss about the plasticity of Tregs and Th17 cells, and the related human diseases resulted from the imbalance of them. Further, we will focus on the mechanisms regulating the plasticity between Tregs and Th17 cells and the potential therapeutic strategies by targeting regulators of the expression and activity of FOXP3 and RORγt or regulators of Treg/Th17 balance in autoimmune diseases, allergy, infection, and cancer.
Collapse
Affiliation(s)
- J Ren
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China
| | - B Li
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
| |
Collapse
|