1
|
Li Q, Zhou J, Jiang S, Fu Y, Su M. Single-Cell Array Enhanced Cell Damage Recognition Using Artificial Intelligence for Anticancer Drug Discovery. Anal Chem 2025; 97:4202-4208. [PMID: 39928967 DOI: 10.1021/acs.analchem.4c06646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
This work developed a cell damage recognition method based on single-cell arrays using an artificial intelligence tool. The method uses micropatterns (single-cell micropatches and microwells) to isolate each cell in an ordered array to minimize cell overlapping and to maintain cell contours. After exposure to a therapeutic drug (e.g., doxorubicin), a large number of single cells are monitored, and the cell damage levels are determined with both morphology and intensity changes in reactive oxygen species recorded under fluorescence microscopy. The convolutional neural network model is trained by the time-series cancer cell images before and after low and high concentrations of drug exposure. The trained model can identify cancer cell status (live/dead) and classify damage levels (major/moderate/minor) with high accuracy. The single-cell pattern allows cells physically segmented at the single-cell level, which not only eliminates the need for computational cell segmentation but also reduces background noise and neighboring interference, which highly enhances the accuracy of analysis via image recognition. The single-cell array accelerates the computational analysis for toxicity with a trained AI model, which can be used to predict cell damage response for screening potential anticancer drugs.
Collapse
Affiliation(s)
- Qingxuan Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiangshan Zhou
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Songyao Jiang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yun Fu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Chaves SR, Rego A, Santos-Pereira C, Sousa MJ, Côrte-Real M. Current and novel approaches in yeast cell death research. Cell Death Differ 2025; 32:207-218. [PMID: 38714881 PMCID: PMC11802841 DOI: 10.1038/s41418-024-01298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 02/08/2025] Open
Abstract
The study of cell death mechanisms in fungi, particularly yeasts, has gained substantial interest in recent decades driven by the potential for biotechnological advancements and therapeutic interventions. Examples include the development of robust yeast strains for industrial fermentations and high-value compound production, novel food preservation strategies against spoilage yeasts, and the identification of targets for treating fungal infections in the clinic. In this review, we discuss a wide range of methods to characterize cellular alterations associated with yeast cell death, noting the advantages and limitations. We describe assays to monitor reversible events versus those that mark a commitment to cell death (point-of-no-return), as these distinctions are important to decipher the underlying regulatory mechanisms. Several well-known challenges remain, including the varied susceptibilities to death within a cell population and the delineation of detailed cell death mechanisms. The identification and characterization of morphologically distinct subsets of dying yeast cells within dynamic yeast populations provides opportunities to reveal novel vulnerabilities and survival mechanisms. Elucidating the intricacies of yeast regulated cell death (yRCD) will contribute to the advancement of scientific knowledge and foster breakthrough discoveries with broad-ranging implications.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - António Rego
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
3
|
Shi Z, Zhang J, Wang Y, Hao S, Tian L, Ke C, Yang X, Lu Q, Zhao Q, Li H, Liang C. Antibacterial effect and mechanisms of action of forsythoside B, alone and in combination with antibiotics, against Acinetobacter baumannii and Pseudomonas aeruginosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156038. [PMID: 39299093 DOI: 10.1016/j.phymed.2024.156038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Antibiotic resistance complicates infection treatments. Natural products, such as phenylethanoid glycosides, including forsythoside B (FB), are gaining attention in clinical use as alternative treatments, either alone or in combination with antibiotics. PURPOSE To investigate the antibacterial effects and mechanisms of FB alone and in combination with antibiotics against Acinetobacter baumannii and Pseudomonas aeruginosa. METHODS To elucidate the underlying antibacterial mechanism of FB, we assessed intracellular ATP concentration, pH levels, membrane potential, and cell membrane integrity. We also observed bacterial morphology and conducted biofilms eradication assay. FB toxicity was evaluated using the cell counting kit-8 assay. The in vivo pharmacodynamics of FB was explored using a P. aeruginosa systemic infection mouse model. The study also examined the potential synergistic effects of FB with commonly used antibiotics by the checkerboard dilution method and time-kill assay. RESULTS The findings indicate that the mechanism of antibacterial activity of FB is through the disruption of bacterial cell membranes, thereby increasing cell membrane permeability, particularly in gram-negative bacteria. Synergistic effects of FB combined with meropenem were demonstrated against resistant strains. FB demonstrated low toxicity in both in vitro and in vivo models, supporting its safety and efficacy for use alone or as an antibiotic adjuvant. CONCLUSIONS FB expands the antibacterial spectrum and enhances the effectiveness of existing antibiotics against resistant bacterial strains, making it a promising adjuvant for treating gram-negative bacterial infections. This study highlights the potential of FB in combating antibiotic resistance and suggests further research into its mechanisms and drug development applications. It provides a framework for studying the interaction between natural products and microorganisms, revealing new biological mechanisms.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China
| | - Jie Zhang
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Yanzi Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Sichang Hao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Changhua Ke
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Xiuding Yang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Qi Lu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China.
| |
Collapse
|
4
|
Zhang W, Miller CA, Wilson MJ. Assessment of the In Vitro Phosphatidylinositol Glycan Class A (PIG-A) Gene Mutation Assay Using Human TK6 and Mouse Hepa1c1c7 Cell Lines. J Xenobiot 2024; 14:1293-1311. [PMID: 39311152 PMCID: PMC11417843 DOI: 10.3390/jox14030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Gene mutations linked to diseases like cancer may be caused by exposure to environmental chemicals. The X-linked phosphatidylinositol glycan class A (PIG-A) gene, required for glycosylphosphatidylinositol (GPI) anchor biosynthesis, is a key target locus for in vitro genetic toxicity assays. Various organisms and cell lines may respond differently to genotoxic agents. Here, we compared the mutagenic potential of directly genotoxic ethyl methane sulfonate (EMS) to metabolically activated pro-mutagenic polycyclic aromatic hydrocarbons (PAHs). The two classes of mutagens were compared in an in vitro PIG-A gene mutation test using the metabolically active murine hepatoma Hepa1c1c7 cell line and the human TK6 cell line, which has limited metabolic capability. Determination of cell viability is required for quantifying mutagenicity. Two common cell viability tests, the MTT assay and propidium iodide (PI) staining measured by flow cytometry, were evaluated. The MTT assay overestimated cell viability in adherent cells at high benzo[a]pyrene (B[a]P) exposure concentrations, so PI-based cytotoxicity was used in calculations. The spontaneous mutation rates for TK6 and Hepa1c1c7 cells were 1.87 and 1.57 per million cells per cell cycle, respectively. TK6 cells exposed to 600 µM and 800 µM EMS showed significantly higher mutation frequencies (36 and 47 per million cells per cell cycle, respectively). Exposure to the pro-mutagen benzo[a]pyrene (B[a]P, 10 µM) did not increase mutation frequency in TK6 cells. In Hepa1c1c7 cells, mutation frequencies varied across exposure groups (50, 50, 29, and 81 per million cells per cell cycle when exposed to 10 µM B[a]P, 5-methylcholanthrene (5-MC), chrysene, or 16,000 µM EMS, respectively). We demonstrate that the choice of cytotoxicity assay and cell line can determine the outcome of the Pig-A mutagenesis assay when assessing a specific mutagen.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Charles A. Miller
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Mark J. Wilson
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
- Chemical Insights Research Institute of Underwriters Laboratories Research Institutes, Marietta, GA 30067, USA
| |
Collapse
|
5
|
Collins ASP, Kurt H, Duggan C, Cotur Y, Coatsworth P, Naik A, Kaisti M, Bozkurt T, Güder F. Parallel, Continuous Monitoring and Quantification of Programmed Cell Death in Plant Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400225. [PMID: 38531063 PMCID: PMC11187890 DOI: 10.1002/advs.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Accurate quantification of hypersensitive response (HR) programmed cell death is imperative for understanding plant defense mechanisms and developing disease-resistant crop varieties. Here, a phenotyping platform for rapid, continuous-time, and quantitative assessment of HR is demonstrated: Parallel Automated Spectroscopy Tool for Electrolyte Leakage (PASTEL). Compared to traditional HR assays, PASTEL significantly improves temporal resolution and has high sensitivity, facilitating detection of microscopic levels of cell death. Validation is performed by transiently expressing the effector protein AVRblb2 in transgenic Nicotiana benthamiana (expressing the corresponding resistance protein Rpi-blb2) to reliably induce HR. Detection of cell death is achieved at microscopic intensities, where leaf tissue appears healthy to the naked eye one week after infiltration. PASTEL produces large amounts of frequency domain impedance data captured continuously. This data is used to develop supervised machine-learning (ML) models for classification of HR. Input data (inclusive of the entire tested concentration range) is classified as HR-positive or negative with 84.1% mean accuracy (F1 score = 0.75) at 1 h and with 87.8% mean accuracy (F1 score = 0.81) at 22 h. With PASTEL and the ML models produced in this work, it is possible to phenotype disease resistance in plants in hours instead of days to weeks.
Collapse
Affiliation(s)
| | - Hasan Kurt
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Cian Duggan
- Department of Life SciencesRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Yasin Cotur
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Philip Coatsworth
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Atharv Naik
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Matti Kaisti
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
- Department of ComputingUniversity of TurkuVesilinnantie 5Turku20500Finland
| | - Tolga Bozkurt
- Department of Life SciencesRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Firat Güder
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
6
|
McCain J, Martínez SR, Fungo F, Sakaya A, Cosa G. Two-Pronged Dormant Photosensitizer-Antibiotic Bacterial Inactivation: Mechanism, Dosage, and Cellular Evolution Visualized at the Single-Cell Level. J Am Chem Soc 2023; 145:28124-28136. [PMID: 38095965 DOI: 10.1021/jacs.3c10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Innovative therapeutic approaches are required to battle the rise of antibiotic-resistant bacterial strains. Tapping on reactive oxygen species (ROS) generation in bacteria induced by bactericidal antibiotics, here we report a two-pronged strategy for bacterial inactivation relying on the synergistic combination of a bactericidal antibiotic and newly designed dormant photosensitizers (DoPSs) that activate in the presence of ROS. Intramolecular quenching renders DoPS inert in the presence of light. ROS trapping by DoPS aborts the quenching mechanism unmasking, in equal proportions, singlet oxygen (1O2) sensitization and fluorescence emission. Juxtaposed antioxidant-prooxidant activity built within our DoPS enables (i) initial activation of a few molecules by ROS and (ii) subsequent rapid activation of all DoPS in a bacterium via a domino effect mediated by photogenerated 1O2. Bulk colony forming unit studies employing the minimum inhibitory concentration of the antibiotic illustrate rapid and selective inactivation of Escherichia coli and Pseudomonas aeruginosa only in the presence of light, antibiotic, and DoPS. Single-cell, real-time imaging studies on E. coli reveal an autocatalytic progression of DoPS activation from focal points, providing a unique amplification system for sensing. Single-cell analysis further illustrates the impact of DoPS cellular loading on the rate of DoPS activation and cell death times and on the 1O2 dosing necessary for cell death to occur. Our two-pronged therapy discriminates based on cell metabolites and has the potential to result in lower toxicity, pave the way to reduced drug resistance, and provide insightful mechanistic information about bacterial membrane response to 1O2.
Collapse
Affiliation(s)
- Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Sol R Martínez
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Florencia Fungo
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
7
|
El-Borlsy H, Hanafy NAN, El-Kemary MA. Development and application of naturally derived, cost-effective CQDs with cancer targeting potential. Cell Biol Int 2023; 47:808-822. [PMID: 36640423 DOI: 10.1002/cbin.11986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Carbon quantum dots (CQDs) derived from natural sources have obtained potential interest in biomedical imaging and therapy because of their excellent biocompatibility properties, which include water solubility, simple synthesis and low cytotoxicity. Here the cytotoxicity of ethylene-diamine doped carbon quantum dots (N-CQDs) delivered to breast cancer MCF-7 cells was investigated. Folic acid was used to raise folate recognition and increase FA-NCQD accumulation in the cells, then apoptosis was assayed using nuclear fragmentation, acridine orange labeling, fluorescence imaging, flow cytometry, and caspase 3 expression. The data show that functionalization of these CQDs, derived from a natural source, have potential application in eliminating cancer cells, as shown here for the invasive breast cancer cells, MCF-7. This nano-delivery system provides a novel target therapy possibility therapeutic approach for cancer cells.
Collapse
Affiliation(s)
- Hanaa El-Borlsy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
8
|
Morón Á, Martín-González A, Díaz S, Gutiérrez JC, Amaro F. Autophagy and lipid droplets are a defense mechanism against toxic copper oxide nanotubes in the eukaryotic microbial model Tetrahymena thermophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157580. [PMID: 35882336 DOI: 10.1016/j.scitotenv.2022.157580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The widespread use of inorganic nanomaterials of anthropogenic origin has significantly increased in the last decade, being now considered as emerging pollutants. This makes it necessary to carry out studies to further understand their toxicity and interactions with cells. In the present work we analyzed the toxicity of CuO nanotubes (CuONT) in the ciliate Tetrahymena thermophila, a eukaryotic unicellular model with animal biology. CuONT exposure rapidly induced ROS generation in the cell leading to oxidative stress and upregulation of genes encoding antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), metal-chelating metallothioneins and cytochrome P450 monooxygenases. Comet assays and overexpression of genes involved in DNA repair confirmed oxidative DNA damage in CuONT-treated cells. Remarkably, both electron and fluorescent microscopy revealed numerous lipid droplets and autophagosomes containing CuONT aggregates and damaged mitochondria, indicating activation of macroautophagy, which was further confirmed by a dramatic upregulation of ATG (AuTophaGy related) genes. Treatment with autophagy inhibitors significantly increased CuONT toxicity, evidencing the protective role of autophagy towards CuONT-induced damage. Moreover, increased formation of lipid droplets appears as an additional mechanism of CuONT detoxification. Based on these results, we present a hypothetical scenario summarizing how T. thermophila responds to CuONT toxicity. This study corroborates the use of this ciliate as an excellent eukaryotic microbial model for analyzing the cellular response to stress caused by toxic metal nanoparticles.
Collapse
Affiliation(s)
- Álvaro Morón
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Li YH, Zeng J, Wang Z, Wang TY, Wu SY, Zhu XY, Zhang X, Shan BH, Gao CZ, Wang SH, Wu FG. Sulfur-Doped Organosilica Nanodots as a Universal Sensor for Ultrafast Live/Dead Cell Discrimination. BIOSENSORS 2022; 12:1000. [PMID: 36354509 PMCID: PMC9688158 DOI: 10.3390/bios12111000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Rapid and accurate differentiation between live and dead cells is highly desirable for the evaluation of cell viability. Here, we report the application of the orange-emitting sulfur-doped organosilica nanodots (S-OSiNDs) for ultrafast (30 s), ultrasensitive (1 μg/mL), and universal staining of the dead bacterial, fungal, and mammalian cells but not the live ones, which satisfies the requirements of a fluorescent probe that can specifically stain the dead cells. We further verify that the fluorescence distribution range of S-OSiNDs (which are distributed in cytoplasm and nucleus) is much larger than that of the commercial dead/fixed cell/tissue staining dye RedDot2 (which is distributed in the nucleus) in terms of dead mammalian cell staining, indicating that S-OSiNDs possess a better staining effect of dead cells than RedDot2. Overall, S-OSiNDs can be used as a robust fluorescent probe for ultrafast and accurate discrimination between dead and live cells at a single cell level, which may find a variety of applications in the biomedical field.
Collapse
|
10
|
El-brolsy HMEM, Hanafy NAN, El-Kemary MA. Fighting Non-Small Lung Cancer Cells Using Optimal Functionalization of Targeted Carbon Quantum Dots Derived from Natural Sources Might Provide Potential Therapeutic and Cancer Bio Image Strategies. Int J Mol Sci 2022; 23:13283. [PMID: 36362075 PMCID: PMC9658332 DOI: 10.3390/ijms232113283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is an important sub-type of lung cancer associated with poor diagnosis and therapy. Innovative multi-functional systems are urgently needed to overcome the invasiveness of NSCLC. Carbon quantum dots (CQDs) derived from natural sources have received interest for their potential in medical bio-imaging due to their unique properties, which are characterized by their water solubility, biocompatibility, simple synthesis, and low cytotoxicity. In the current study, ethylene-diamine doped CQDs enhanced their cytotoxicity (98 ± 0.4%, 97 ± 0.38%, 95.8 ± 0.15%, 86 ± 0.15%, 12.5 ± 0.14%) compared to CQDs alone (99 ± 0.2%, 98 ± 1.7%, 96 ± 0.8%, 93 ± 0.38%, 91 ± 1.3%) at serial concentrations (0.1, 1, 10, 100, 1000 μg/mL). In order to increase their location in a specific tumor site, folic acid was used to raise their functional folate recognition. The apoptotic feature of A549 lung cells exposed to N-CQDs and FA-NCQDs was characterized by a light orange-red color under fluorescence microscopy. Additionally, much nuclear fragmentation and condensation were seen. Flow cytometry results showed that the percentage of cells in late apoptosis and necrosis increased significantly in treated cells to (19.7 ± 0.03%), (27.6 ± 0.06%) compared to untreated cells (4.6 ± 0.02%), (3.5 ± 0.02%), respectively. Additionally, cell cycle arrest showed a strong reduction in cell numbers in the S phase (14 ± 0.9%) compared to untreated cells (29 ± 0.5%). Caspase-3 levels were increased significantly in A549 exposed to N-CQDs (2.67 ± 0.2 ng/mL) and FA-NCQDs (3.43 ± 0.05 ng/mL) compared to untreated cells (0.34 ± 0.04 ng/mL). The functionalization of CQDs derived from natural sources has proven their potential application to fight off non-small lung cancer.
Collapse
|
11
|
Shave MK, Zhou Y, Kim J, Kim YC, Hutchison J, Bendejacq D, Goulian M, Choi J, Composto RJ, Lee D. Zwitterionic surface chemistry enhances detachment of bacteria under shear. SOFT MATTER 2022; 18:6618-6628. [PMID: 36000279 PMCID: PMC10838016 DOI: 10.1039/d2sm00065b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ubiquitous nature of microorganisms, especially of biofilm-forming bacteria, makes biofouling a prevalent challenge in many settings, including medical and industrial environments immersed in liquid and subjected to shear forces. Recent studies have shown that zwitterionic groups are effective in suppressing bacteria and protein adhesion as well as biofilm growth. However, the effect of zwitterionic groups on the removal of surface-bound bacteria has not been extensively studied. Here we present a microfluidic approach to evaluate the effectiveness in facilitating bacteria detachment by shear of an antifouling surface treatment using (3-(dimethyl;(3-trimethoxysilyl)propyl)ammonia propane-1-sulfonate), a sulfobetaine silane (SBS). Control studies show that SBS-functionalized surfaces greatly increase protein (bovine serum albumin) removal upon rinsing. On the same surfaces, enhanced bacteria (Pseudomonas aeruginosa) removal is observed under shear. To quantify this enhancement a microfluidic shear device is employed to investigate how SBS-functionalized surfaces promote bacteria detachment under shear. By using a microfluidic channel with five shear zones, we compare the removal of bacteria from zwitterionic and glass surfaces under different shear rates. At times of 15 min, 30 min, and 60 min, bacteria adhesion on SBS-functionalized surfaces is reduced relative to the control surface (glass) under quiescent conditions. However, surface-associated bacteria on the SBS-functionalized glass and control show similar percentages of live cells, suggesting minimal intrinsic biocidal effect from the SBS-functionalized surface. Notably, when exposed to shear rates ranging from 104 to 105 s-1, significantly fewer bacteria remain on the SBS-functionalized surfaces. These results demonstrate the potential of zwitterionic sulfobetaine as effective antifouling coatings that facilitate the removal of bacteria under shear.
Collapse
Affiliation(s)
- Molly K Shave
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yitian Zhou
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiwon Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ye Chan Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonghoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Russell J Composto
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Verbascoside: An Efficient and Safe Natural Antibacterial Adjuvant for Preventing Bacterial Contamination of Fresh Meat. Molecules 2022; 27:molecules27154943. [PMID: 35956890 PMCID: PMC9370273 DOI: 10.3390/molecules27154943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Inappropriate and disproportionate antibiotic use contributes immensely to the development of antibiotic resistance in bacterial species associated with food contamination. Therefore, alternative strategies to treat multidrug-resistant (MDR) bacterial infections are urgently needed. In this study, verbascoside was shown to exhibit excellent antibacterial activity and synergistic effects in combination with cell wall synthesis-inhibiting antibiotics, indicating that it can be used as an adjuvant to restore or increase the activity of antibiotics against resistant pathogens. In a mechanistic study, higher concentrations of verbascoside resulted in a longer lag phase and a lower specific exponential-phase growth rate of bacteria. Furthermore, verbascoside exerted its antimicrobial activity through multiple mechanisms, including cell membrane dysfunction, biofilm eradication and changes in cell morphology. The promising antibacterial activity and in vitro safety assessment results suggested that verbascoside can be used as a food additive for fresh meat preservation. Treatment with medium and high doses of verbascoside caused significant bacterial death in meat samples, slowed the spoilage rate, and extended the shelf life. Collectively, verbascoside is expected to be useful as an antibiotic adjuvant to prevent or treat resistant bacteria-related infections and an alternative novel antimicrobial additive in the food industry.
Collapse
|
13
|
Yuste RA, Muenkel M, Axarlis K, Gómez Benito MJ, Reuss A, Blacker G, Tal MC, Kraiczy P, Bastounis EE. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience 2022; 25:104793. [PMID: 35992087 PMCID: PMC9389243 DOI: 10.1016/j.isci.2022.104793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Borrelia burgdorferi (Bb), a vector-borne bacterial pathogen and the causative agent of Lyme disease, can spread to distant tissues in the human host by traveling in and through monolayers of endothelial cells (ECs) lining the vasculature. To examine whether Bb alters the physical forces of ECs to promote its dissemination, we exposed ECs to Bb and observed a sharp and transient increase in EC traction and intercellular forces, followed by a prolonged decrease in EC motility and physical forces. All variables returned to baseline at 24 h after exposure. RNA sequencing analysis revealed an upregulation of innate immune signaling pathways during early but not late Bb exposure. Exposure of ECs to heat-inactivated Bb recapitulated only the early weakening of EC mechanotransduction. The differential responses to live versus heat-inactivated Bb indicate a tight interplay between innate immune signaling and physical forces in host ECs and suggest their active modulation by Bb. Early exposure to Borrelia decreases endothelial cell motility and physical forces Early exposure to Borrelia also upregulates the host’s innate immune signaling pathways Host cell mechanics and signaling return to steady state at late exposure times Exposure to dead bacteria steadily reduces motility and physical forces of host cells
Collapse
|
14
|
Hamidi R, Ataei F, Hosseinkhani S. Inhibition of noncaspase proteases, calpain and proteasome, via ALLN and Bortezomib contributes to cell death through low degradation of pro-/anti-apoptotic proteins and apoptosis induction. Med Oncol 2022; 39:125. [PMID: 35716322 DOI: 10.1007/s12032-022-01716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
Dysfunction at any regulatory point along the apoptotic signaling pathway is closely related to many diseases including cancers. The apoptotic protein expression level is an important cause of cancer-related death, and the correct degradation of apoptotic proteins is involved in tumor development. Therefore, understanding of a regulatory point that underlying cancer-related death may help the development of new strategies to overcome the clinical challenges. Here, proteasome inhibitor Bortezomib and calpain inhibitor ALLN were examined on protein levels of caspase-3, caspase-9, XIAP, and E3-ligase PARC in HEK293T cells overexpressing XIAP and caspase-9. ATP depletion and caspase-3 activation were as a consequence of Bortezomib and ALLN function. Higher numbers of PI-stained cells provided evidence of cell death by both inhibitors. Western blotting analysis showed that both ALLN and Bortezomib equally inhibited degradation of XIAP, but only ALLN was effective at inhibiting caspase proteolytic degradation. Moreover, treatment of cells with both types of inhibitors significantly increased the level of E3-ligase PARC. Our findings showed that inhibition of proteasome and calpains enhanced the level of anti-apoptotic, XIAP and PARC, and pro-apoptotic, caspase-9 and 3 proteins, which totally promote cell death significantly.
Collapse
Affiliation(s)
- Roghaye Hamidi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Density fluctuations, homeostasis, and reproduction effects in bacteria. Commun Biol 2022; 5:397. [PMID: 35484403 PMCID: PMC9050864 DOI: 10.1038/s42003-022-03348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
Single-cells grow by increasing their biomass and size. Here, we report that while mass and size accumulation rates of single Escherichia coli cells are exponential, their density and, thus, the levels of macromolecular crowding fluctuate during growth. As such, the average rates of mass and size accumulation of a single cell are generally not the same, but rather cells differentiate into increasing one rate with respect to the other. This differentiation yields a density homeostasis mechanism that we support mathematically. Further, we observe that density fluctuations can affect the reproduction rates of single cells, suggesting a link between the levels of macromolecular crowding with metabolism and overall population fitness. We detail our experimental approach and the “invisible” microfluidic arrays that enabled increased precision and throughput. Infections and natural communities start from a few cells, thus, emphasizing the significance of density-fluctuations when taking non-genetic variability into consideration. Quantitative imaging, invisible microfluidics, and mathematical models demonstrate how the density of single E. coli cells fluctuates during the cell cycle, unmasking key homeostasis and population fitness effects.
Collapse
|
16
|
Abstract
Assessing the threat posed by bacterial samples is fundamentally important to safeguarding human health. Whole-genome sequence analysis of bacteria provides a route to achieving this goal. However, this approach is fundamentally constrained by the scope, the diversity, and our understanding of the bacterial genome sequences that are available for devising threat assessment schemes. For example, genome-based strategies offer limited utility for assessing the threat associated with pathogens that exploit novel virulence mechanisms or are recently emergent. To address these limitations, we developed PathEngine, a machine learning strategy that features the use of phenotypic hallmarks of pathogenesis to assess pathogenic threat. PathEngine successfully classified potential pathogenic threats with high accuracy and thereby establishes a phenotype-based, sequence-independent pipeline for threat assessment. Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen identification. However, relying solely on genetic information to identify emerging or new pathogens is fundamentally constrained, especially if novel virulence factors exist. In addition, even WGSs with ML pipelines are unable to discern phenotypes associated with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without using any sequence-based analysis. This approach successfully classified potential pathogenetic threat associated with previously machine-observed and unobserved bacteria with 99% and 85% accuracy, respectively. This work establishes a phenotype-based pipeline for potential pathogenic threat assessment, which we term PathEngine, and offers strategies for the identification of bacterial pathogens.
Collapse
|
17
|
Looking at Developmental Neurotoxicity Testing from the Perspective of an Invertebrate Embryo. Int J Mol Sci 2022; 23:ijms23031871. [PMID: 35163796 PMCID: PMC8836978 DOI: 10.3390/ijms23031871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Developmental neurotoxicity (DNT) of chemical compounds disrupts the formation of a normal brain. There is impressive progress in the development of alternative testing methods for DNT potential in chemicals, some of which also incorporate invertebrate animals. This review briefly touches upon studies on the genetically tractable model organisms of Caenorhabditis elegans and Drosophila melanogaster about the action of specific developmental neurotoxicants. The formation of a functional nervous system requires precisely timed axonal pathfinding to the correct cellular targets. To address this complex key event, our lab developed an alternative assay using a serum-free culture of intact locust embryos. The first neural pathways in the leg of embryonic locusts are established by a pair of afferent pioneer neurons which use guidance cues from membrane-bound and diffusible semaphorin proteins. In a systematic approach according to recommendations for alternative testing, the embryo assay quantifies defects in pioneer navigation after exposure to a panel of recognized test compounds for DNT. The outcome indicates a high predictability for test-compound classification. Since the pyramidal neurons of the mammalian cortex also use a semaphorin gradient for neurite guidance, the assay is based on evolutionary conserved cellular mechanisms, supporting its relevance for cortical development.
Collapse
|
18
|
Wang Y, Koopmann B, von Tiedemann A. Methods for Assessment of Viability and Germination of Plasmodiophora brassicae Resting Spores. Front Microbiol 2022; 12:823051. [PMID: 35069518 PMCID: PMC8767001 DOI: 10.3389/fmicb.2021.823051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
Clubroot caused by the obligate biotrophic parasite Plasmodiophora brassicae is a destructive soil borne disease of cruciferous crops. Resting spores of P. brassicae can survive in the soil for a long period without hosts or external stimulants. The viability and germination rate of resting spores are crucial factors of the inoculum potential in the field. The accurate assessment of viability and germination rate is the foundation to evaluate the effect of control methods. In this study, we evaluated several methods for the assessment of viability and germination rate of P. brassicae resting spores. Dual staining with calcofluor white-propidium iodide (CFW-PI) or single stain with Evans blue showed reliable accuracy in estimating viability. CFW-PI was capable of reliably determining the viability within 10 min, while Evans blue required overnight incubation to obtain accurate results. Due to DNA degradation of heat treatments, acetone was selected to evaluate the efficiency of propidium monoazide (PMA)–quantitative PCR (qPCR) used for the quantification of DNA from viable cells. The staining with 4,6-Diamidine-2-phenylindole dihydrochloride (DAPI) and the use of differential interference contrast microscopy were suitable for the determination of resting spore germination rates. The latter method also allowed recording individual germination states of spores. Alternatively, dual staining with CFW-Nile red was successfully used to assess the germination rate of resting spores with a lethal pre-treatment. This study evaluates and confirms the suitability of various microscopic and molecular genetic methods for the determination of viability and germination of P. brassicae resting spores. Such methods are required to study factors in the soil regulating survival, dormancy and germination of P. brassicae resting spores causing clubroot disease in Brassicaceae hosts and therefore are fundamental to develop novel strategies of control.
Collapse
Affiliation(s)
- Yao Wang
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Birger Koopmann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Andreas von Tiedemann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Sun Q, Tang K, Song L, Li Y, Pan W, Li N, Tang B. Covalent organic framework based nanoagent for enhanced mild-temperature photothermal therapy. Biomater Sci 2021; 9:7977-7983. [PMID: 34709242 DOI: 10.1039/d1bm01245b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photothermal therapy effectively ablates tumors by hyperthermia (>50 °C) under laser irradiation. However, the hyperthermia may inevitably diffuse to the surrounding healthy tissues to induce additional damage. Thus, effective cancer therapy by mild photothermal therapy at low temperatures is greatly desirable. In this study, a nanoagent (COF-GA) was designed to inhibit HSP90 for enhanced photothermal therapy against cancer at low temperatures. The nanoscale covalent organic frameworks (COFs) were able to increase the temperature of the tumor tissue under laser irradiation, which can transfer the energy of laser into heat for cancer cell killing. Gambogic acid (GA), as an inhibitor of HSP90, was used to overcome the heat resistance of tumor, achieving efficient mild-temperature photothermal therapy. As an excellent candidate for the photothermal therapy agent, COF-GA can induce the temperature to elevate as the exposure time increased when irradiated with laser. In vivo tests further demonstrated that the tumor growth was able to be significantly suppressed after being treated with COF-GA. The mild-temperature photothermal therapy exhibits an excellent antitumor efficacy at a relatively low temperature and minimizes the nonspecific thermal damage to normal tissues. This COF-GA nanoagent also enriches our understanding towards the various applications of COFs, particularly in the biomedicine field.
Collapse
Affiliation(s)
- Qiaoqiao Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Liqun Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
20
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
21
|
Täuber S, Blöbaum L, Wendisch VF, Grünberger A. Growth Response and Recovery of Corynebacterium glutamicum Colonies on Single-Cell Level Upon Defined pH Stress Pulses. Front Microbiol 2021; 12:711893. [PMID: 34659141 PMCID: PMC8517191 DOI: 10.3389/fmicb.2021.711893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria respond to pH changes in their environment and use pH homeostasis to keep the intracellular pH as constant as possible and within a small range. A change in intracellular pH influences enzyme activity, protein stability, trace element solubilities and proton motive force. Here, the species Corynebacterium glutamicum was chosen as a neutralophilic and moderately alkali-tolerant bacterium capable of maintaining an internal pH of 7.5 ± 0.5 in environments with external pH values ranging between 5.5 and 9. In recent years, the phenotypic response of C. glutamicum to pH changes has been systematically investigated at the bulk population level. A detailed understanding of the C. glutamicum cell response to defined short-term pH perturbations/pulses is missing. In this study, dynamic microfluidic single-cell cultivation (dMSCC) was applied to analyze the physiological growth response of C. glutamicum to precise pH stress pulses at the single-cell level. Analysis by dMSCC of the growth behavior of colonies exposed to single pH stress pulses (pH = 4, 5, 10, 11) revealed a decrease in viability with increasing stress duration w. Colony regrowth was possible for all tested pH values after increasing lag phases for which stress durations w were increased from 5 min to 9 h. Furthermore, single-cell analyses revealed heterogeneous regrowth of cells after pH stress, which can be categorized into three physiological states. Cells in the first physiological state continued to grow without interruption after pH stress pulse. Cells in the second physiological state rested for several hours after pH stress pulse before they started to grow again after this lag phase, and cells in the third physiological state did not divide after the pH stress pulse. This study provides the first insights into single-cell responses to acidic and alkaline pH stress by C. glutamicum.
Collapse
Affiliation(s)
- Sarah Täuber
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Luisa Blöbaum
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F. Wendisch
- CeBiTec, Bielefeld University, Bielefeld, Germany
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
Lenz P, Hilgers F, Burmeister A, Zimmermann L, Volkenborn K, Grünberger A, Kohlheyer D, Drepper T, Jaeger KE, Knapp A. The iSplit GFP assay detects intracellular recombinant proteins in Bacillus subtilis. Microb Cell Fact 2021; 20:174. [PMID: 34488765 PMCID: PMC8419962 DOI: 10.1186/s12934-021-01663-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bacillus subtilis is one of the most important microorganisms for recombinant protein production. It possesses the GRAS (generally recognized as safe) status and a potent protein secretion capacity. Secretory protein production greatly facilitates downstream processing and thus significantly reduces costs. However, not all heterologous proteins are secreted and intracellular production poses difficulties for quantification. To tackle this problem, we have established a so-called intracellular split GFP (iSplit GFP) assay in B. subtilis as a tool for the in vivo protein detection during expression in batch cultures and at a single-cell level. For the iSplit GFP assay, the eleventh β-sheet of sfGFP is fused to a target protein and can complement a detector protein consisting of the respective truncated sfGFP (GFP1-10) to form fluorescent holo-GFP. RESULTS As proof of concept, the GFP11-tag was fused C-terminally to the E. coli β-glucuronidase GUS, resulting in fusion protein GUS11. Variable GUS and GUS11 production levels in B. subtilis were achieved by varying the ribosome binding site via spacers of increasing lengths (4-12 nucleotides) for the GUS-encoding gene. Differences in intracellular enzyme accumulation were determined by measuring the GUS11 enzymatic activity and subsequently by adding the detector protein to respective cell extracts. Moreover, the detector protein was co-produced with the GUS11 using a two-plasmid system, which enabled the in vivo detection and online monitoring of glucuronidase production. Using this system in combination with flow cytometry and microfluidics, we were able to monitor protein production at a single-cell level thus yielding information about intracellular protein distribution and culture heterogeneity. CONCLUSION Our results demonstrate that the iSplit GFP assay is suitable for the detection, quantification and online monitoring of recombinant protein production in B. subtilis during cultivation as well as for analyzing production heterogeneity and intracellular localization at a single-cell level.
Collapse
Affiliation(s)
- Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alina Burmeister
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, 33615, Bielefeld, Germany
| | - Leonie Zimmermann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kristina Volkenborn
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, 33615, Bielefeld, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- RWTH Aachen University, Microscale Bioengineering (AVT.MSB), 52074, Aachen, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Castrol Germany GmbH, 41179, Mönchengladbach, Germany.
| |
Collapse
|
23
|
Upregulation of apoptotic protease activating factor-1 expression correlates with anti-tumor effect of taxane drug. Med Oncol 2021; 38:88. [PMID: 34181104 DOI: 10.1007/s12032-021-01532-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance is a multifactorial process involving a variety of mechanisms and genes. Taxane drug class like Docetaxel is not effective for all types' breast cancers and presents a huge clinical challenge. To improve cancer treatment outcome, it is important to distinguish which proteins can kill the cancer cells and whether the expression levels of these proteins affect treatment. Cancer cells are wildly known to be protected from apoptosis, due to low level of apoptotic protease activating factor-1 (Apaf-1) compared with normal cells. Apaf-1 is an essential protein that defines whether cytochrome c released form mitochondria remains stable or degrades. According to this hypothesis, increasing of Apaf-1 expression in MCF7 breast cancer cells was performed and Docetaxel efficacy examined. The immunoassay techniques were used to investigate Apaf-1 and cytochrome c levels, and different apoptosis assay methods applied to better understand the effect of Apaf-1 expression levels in cellular response to apoptotic stimuli by Docetaxel. Our results determined that cytoplasmic cytochrome c level elevated along with increasing Apaf-1 and MCF7 cells were sensitised to Docetaxel, suggesting that loss of Apaf-1 may cause Docetaxel-resistance in breast cancer cells through less apoptosome formation. ROS level increased in cells transfected with Apaf-1 and induced mitochondrial permeability for cytochrome c release, which subsequently promoted apoptosome formation, intrinsic apoptosis and ATP depletion.
Collapse
|
24
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
25
|
Zhong J, Yang D, Zhou Y, Liang M, Ai Y. Multi-frequency single cell electrical impedance measurement for label-free cell viability analysis. Analyst 2021; 146:1848-1858. [PMID: 33619511 DOI: 10.1039/d0an02476g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell viability is a physiological status connected to cell membrane integrity and cytoplasmic topography, which is profoundly important for fundamental biological research and practical biomedical applications. A conventional method for assessing cell viability is through cell staining analysis. However, cell staining involves laborious and complicated processing procedures and is normally cytotoxic. Intrinsic cellular phenotypes thus provide new avenues for measuring cell viability in a stain-free and non-toxic manner. In this work, we present a label-free non-destructive impedance-based approach for cell viability assessment by simultaneously characterizing multiple electrical cellular phenotypes in a high-throughput manner (>1000 cells per min). A novel concept called the complex opacity spectrum is introduced for improving the discrimination of live and dead cells. The analysis of the complex opacity spectrum leads to the discovery of two frequency ranges that are optimized for characterizing membranous and cytoplasmic electrical phenotypes. The present impedance-based approach has successfully discriminated between living and dead cells in two different experimental scenarios, including mixed living and dead cells in both homogenous and heterogeneous cell samples. This impedance-based single cell phenotyping technique provides highly accurate and consistent cell viability analysis, which has been validated by commercial fluorescence-based flow cytometry (∼1% difference) using heterogeneous cell samples. This label-free high-throughput cell viability analysis strategy will have broad applications in the field of biology and medicine.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | | | | | | | | |
Collapse
|
26
|
Evaluating Alternate Methods of Determining the Antimicrobial Efficacy of Contact Lens Care Products against Acanthamoeba Trophozoites. Pathogens 2021; 10:pathogens10020126. [PMID: 33513702 PMCID: PMC7911817 DOI: 10.3390/pathogens10020126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
Acanthamoeba keratitis (AK) is a serious ocular infection caused by a ubiquitous free-living amoeba, Acanthamoeba. This infection often results in extensive corneal damage and blindness, and is notoriously difficult to cure. While Acanthamoeba is an abundant organism, AK is most associated with contact lens hygiene noncompliance and inadequate contact lens care (CLC) disinfection regimens. Thus, accurate and timely antimicrobial efficacy testing of CLC solutions is paramount. Published methods for antimicrobial efficacy testing of Acanthamoeba trophozoites requires 14 days for results. Presently, alternate and/or rapid methods for evaluating CLC products rarely demonstrate equivalent results compared to commonly-reported methods. Propidium iodide is a cellular stain that can only bind to cells with damaged outer membranes. We evaluated propidium iodide staining as an alternative method for determining the relative antimicrobial efficacy of 11 different CLC products against Acanthamoeba trophozoites. Following exposure to a CLC product, the fluorescence intensity of propidium iodide in an Acanthamoeba population demonstrated a strong correlation to the log reduction determined by established, growth-based Acanthamoeba testing used to evaluate the antimicrobial efficacy of CLC products. Thus, propidium iodide was found to be an effective rapid tool for determining cell death in Acanthamoeba trophozoites following exposure to CLC solutions.
Collapse
|
27
|
Soni A, Choi J, Brightwell G. Plasma-Activated Water (PAW) as a Disinfection Technology for Bacterial Inactivation with a Focus on Fruit and Vegetables. Foods 2021; 10:foods10010166. [PMID: 33467523 PMCID: PMC7830122 DOI: 10.3390/foods10010166] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Plasma-activated water (PAW) is generated by treating water with cold atmospheric plasma (CAP) using controllable parameters, such as plasma-forming voltage, carrier gas, temperature, pulses, or frequency as required. PAW is reported to have lower pH, higher conductivity, and higher oxygen reduction potential when compared with untreated water due to the presence of reactive species. PAW has received significant attention from researchers over the last decade due to its non-thermal and non-toxic mode of action especially for bacterial inactivation. The objective of the current review is to develop a summary of the effect of PAW on bacterial strains in foods as well as model systems such as buffers, with a specific focus on fruit and vegetables. The review elaborated the properties of PAW, the effect of various treatment parameters on its efficiency in bacterial inactivation along with its usage as a standalone technology as well as a hurdle approach with mild thermal treatments. A section highlighting different models that can be employed to generate PAW alongside a direct comparison of the PAW characteristics on the inactivation potential and the existing research gaps are also included. The mechanism of action of PAW on the bacterial cells and any reported effects on the sensory qualities and shelf life of food has been evaluated. Based on the literature, it can be concluded that PAW offers a significant potential as a non-chemical and non-thermal intervention for bacterial inactivation, especially on food. However, the applicability and usage of PAW depend on the effect of environmental and bacterial strain-based conditions and cost-effectiveness.
Collapse
Affiliation(s)
- Aswathi Soni
- Food Assurance, AgResearch, Palmerston North 4442, New Zealand;
- Correspondence: ; Tel.: +64-21-0860-7979
| | - Jonghyun Choi
- The New Zealand Institute for Plant and Food Research Ltd., Private Bag 3230, Waikato Mail Centre, Hamilton 3240, New Zealand;
| | - Gale Brightwell
- Food Assurance, AgResearch, Palmerston North 4442, New Zealand;
- New Zealand Food Safety Science Research Centre, Palmerston North 4474, New Zealand
| |
Collapse
|
28
|
Mao Y, Ma M, Wei P, Zhang P, Liu L, Guan T, Zhang X, Yi T. A sensitive and rapid "off-on" fluorescent probe for the detection of esterase and its application in evaluating cell status and discrimination of living cells and dead cells. Analyst 2020; 145:1408-1413. [PMID: 31894760 DOI: 10.1039/c9an02085c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discrimination of living and dead cells shows great importance in the development of biology, pathology, medicine, and pharmacology research. Herein, we synthesized a simple benzothiazole-based probe, EP, which was characterized via1H NMR (hydrogen nuclear magnetic resonance) spectroscopy, 13C NMR (carbon nuclear magnetic resonance) spectroscopy and HRMS (high-resolution mass spectroscopy). The fluorescence changes in response to esterase were characterized via fluorescence spectroscopy. EP exhibited a 70-fold fluorescence enhancement in the presence of esterase and possessed a very low limit of detection (4.73 × 10-5 U mL-1). EP also showed high selectivity to esterase compared to other biological species. Bright fluorescence appeared in living cells, which was activated by esterase when incubated with EP. In paraformaldehyde or H2O2 pretreated cells, the fluorescence became very weak since esterase became inactive in these cells. In summary, the EP probe can monitor esterase activity both in vitro and in living cells and can be used to evaluate the health status of cells and discriminate living and dead cells effectively.
Collapse
Affiliation(s)
- Yueyuan Mao
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
CTRP3 Activates the AMPK/SIRT1-PGC-1α Pathway to Protect Mitochondrial Biogenesis and Functions in Cerebral Ischemic Stroke. Neurochem Res 2020; 45:3045-3058. [DOI: 10.1007/s11064-020-03152-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
30
|
Martínez SR, Durantini AM, Becerra MC, Cosa G. Real-Time Single-Cell Imaging Reveals Accelerating Lipid Peroxyl Radical Formation in Escherichia coli Triggered by a Fluoroquinolone Antibiotic. ACS Infect Dis 2020; 6:2468-2477. [PMID: 32786297 DOI: 10.1021/acsinfecdis.0c00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of reactive oxygen species (ROS) induced by bactericidal antibiotics has been associated with a common, nonspecific mechanism of cellular death. Herein, we report real-time single-cell fluorescence studies on Escherichia coli stained with a fluorogenic probe for lipid peroxyl radicals showing the generation of this form of ROS when exposed to the minimum inhibitory concentration (MIC) and 10× MIC of the fluoroquinolone antibiotic ciprofloxacin (3 and 30 μM, respectively). Single-cell intensity-time trajectories show an induction period followed by an accelerating phase for cells treated with antibiotic, where initial and maximum intensity achieved following 3.5 h of incubation with antibiotic showed dose-dependent average values. A large fraction of bacteria remains viable after the studies, indicating ROS formation is occurring a priori of cell death. Punctate structures are observed, consistent with membrane blebbing. The addition of a membrane embedding lipid peroxyl radical scavenger, an α-tocopherol analogue, to the media increased the MIC of ciprofloxacin. Lipid peroxyl radical formation precedes E. coli cell death and may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Altogether, our work illustrates that lipid peroxidation is caused by ciprofloxacin in E. coli and suppressed by α-tocopherol analogues. Lipid peroxidation may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Our work provides a methodology to assess antibiotic-induced membrane peroxidation at the single-cell level; this methodology provides opportunities to explore the scope and nature of lipid peroxidation in antibiotic-induced cell lethality.
Collapse
Affiliation(s)
- Sol R. Martínez
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- IMBIV-CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba X5000, Argentina
| | - Andrés M. Durantini
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - María C. Becerra
- IMBIV-CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba X5000, Argentina
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
31
|
Effects of doxorubicin and docetaxel on susceptibility to apoptosis in high expression level of survivin in HEK and HEK-S cell lines as in vitro models. Biochem Biophys Res Commun 2020; 532:139-144. [PMID: 32828533 DOI: 10.1016/j.bbrc.2020.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022]
Abstract
A major problem in the cancer treatment is the inherent resistance to chemotherapy. Identifying proteins that, once introduced in cancer cells, lead to a decreased efficiency of treatment outcome constitutes a major goal for biomedical research and applications. Survivin is a protein of IAPs family which its high expression can be a potential candidate for regulating cell death and survival in cancer therapy. To investigate the association of survivin increment and resistance to drug, survivin-reconstituted HEK (HEK-S) and HEK cells were used as in vitro models for the doxorubicin and docetaxel cellular response. Both morphological observation and survival assay exhibited that survivin reconstitution cells were significantly resistant to apoptotic stimuli by both drugs. It was observed that survivin overexpression has led to a decrease in caspase 3/7 activity and ROS level of cells but an increase in ATP content. Also, survivin-reconstituted cell displayed less red fluorescence compared to control after stimulation by drugs. Moreover, wound healing assay showed the ability of survivin to cause neighbouring cells to increase resistance to induction. These findings demonstrated survivin could be a potential target that can be inhibited the function of different drugs with various mechanisms in chemotherapy.
Collapse
|
32
|
Immobilization of Phosphatidylserine by Ethanol and Lysozyme on the Cell Surface for Evaluation of Apoptosis-Like Decay in Activated-Sludge Bacteria. Appl Environ Microbiol 2020; 86:AEM.00345-20. [PMID: 32414801 DOI: 10.1128/aem.00345-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023] Open
Abstract
Accurate determination of microbial viability can be crucial in microbe-dominated biosystems. However, the identification of metabolic decay in bacterial cells can be elaborate and difficult. We sought to identify apoptosis-like bacterial processes by using annexin V-fluorescein isothiocyanate (FITC) (AVF), a probe typically used to stain phosphatidylserine (PS) on exposed cell membranes. The bacterial cell wall provides a barrier that is responsible for low efficiency of direct PS staining of decayed bacterial cells. This can be overcome by pretreatment of the bacteria with 70% ethanol, which fixates the bacteria and preserves the PS status, combined with lysozyme treatment to hydrolyze the cell wall. That treatment improved the efficiency of AVF staining considerably, as shown for pure strains of an Ochrobactrum sp. and a Micrococcus sp. Using this method, decayed bacterial cells (induced by starvation) were more strongly stained, indicating externalization of PS to a greater extent than seen for cells harvested at logarithmic growth. A multispecies microbial sludge was artificially decayed by heat treatment or alternating anoxic-oxic treatment, which also induced increased AVF staining, again presumably via decay-related PS externalization. The method developed proved to be efficient for identification of bacterial decay and has potential for the evaluation of multispecies bacterial samples from sources like soil matrix, bioaerosol, and activated sludge.IMPORTANCE Since the externalization of phosphatidylserine (PS) is considered a crucial characteristic of apoptosis, we sought to identify apoptosis-like decay in bacterial cells by PS staining using AVF. We show that this is possible, provided the bacteria are pretreated with ethanol plus lysozyme to remove a physical staining barrier and preserve the original, decay-related externalization of PS. Our work suggests that PS externalization occurs in starved bacteria and this can be quantified with AVF staining, providing a measure of bacterial decay. Since PS is the common component of the lipid bilayer in bacterial cell membranes, this approach also has potential for evaluation of cell decay of other bacterial species.
Collapse
|
33
|
Xulu K, Duarte R, Augustine T. Combined Anastrozole and Antiplatelet Therapy Treatment Differentially Promotes Breast Cancer Cell Survival. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:497-508. [PMID: 32241309 DOI: 10.1017/s1431927620001324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thromboembolic disorders are the second leading cause of death in breast cancer. Antiplatelet therapy combined with cancer therapy is a potential treatment strategy against cancer-associated thromboembolic disorders; however, the efficacy of such dual treatment has not been established. This study reports novel findings on the response of hormone-dependent breast cancer cell lines (MCF7/T47D) following 24 h treatment with Anastrozole, combined with Aspirin and Clopidogrel cocktail; and Atopaxar. Neutral red and lactate dehydrogenase assays were conducted to assess viability and cytotoxicity respectively. Flow cytometric Annexin-V/PI assay was used to assess the mode of cell death. Morphological alterations were studied using scanning electron microscopy. Statistical analysis was conducted using Statistica V13. Definitive outcomes were established with flow cytometric detection of phosphatidylserine exposure and propidium iodide staining, complemented with ultrastructural analysis. Results showed that a few cells were undergoing death mainly through secondary necrosis. Morphological features suggesting induced cell motility (pseudopodia/ruffled membranes) were observed in both cell lines; notably, T47D cells presented pronounced features than MCF7 cells. Overall, these findings suggest that such combined treatment may differentially promote cell survival, inducing a more aggressive breast cancer phenotype.
Collapse
Affiliation(s)
- Kutlwano Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193Johannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193Johannesburg, South Africa
| | - Tanya Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193Johannesburg, South Africa
| |
Collapse
|
34
|
Wang W, Liu Y, Niu J, Lin W. Discrimination of live and dead cells with two different sets of signals and unique application in vivo imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118115. [PMID: 32007905 DOI: 10.1016/j.saa.2020.118115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Discriminating living and dead cells is of great significance for the study of apoptosis. In this work, we have developed a unique fluorescent probe (RPIC) for discriminating live and dead cells with duel-channel fluorescence imaging under double excitation and double emission mode. Dead cells treated with RPIC shows weak fluorescence signals in red channel, however, strong fluorescence signals are appeared in red channel in live cells. Weak and strong green fluorescence signals present at live cells and dead cells, respectively. Moreover, RPIC can detect successfully apoptosis of cancer cells. For in-vivo imaging, RPIC can discriminate successfully live and dead zebrafish with the same method. More interestingly, it is found that RPIC possesses the ability of discriminating normal mice and tumor mice.
Collapse
Affiliation(s)
- Weishan Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Yong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Jie Niu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
35
|
Täuber S, von Lieres E, Grünberger A. Dynamic Environmental Control in Microfluidic Single-Cell Cultivations: From Concepts to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906670. [PMID: 32157796 DOI: 10.1002/smll.201906670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Microfluidic single-cell cultivation (MSCC) is an emerging field within fundamental as well as applied biology. During the last years, most MSCCs were performed at constant environmental conditions. Recently, MSCC at oscillating and dynamic environmental conditions has started to gain significant interest in the research community for the investigation of cellular behavior. Herein, an overview of this topic is given and microfluidic concepts that enable oscillating and dynamic control of environmental conditions with a focus on medium conditions are discussed, and their application in single-cell research for the cultivation of both mammalian and microbial cell systems is demonstrated. Furthermore, perspectives for performing MSCC at complex dynamic environmental profiles of single parameters and multiparameters (e.g., pH and O2 ) in amplitude and time are discussed. The technical progress in this field provides completely new experimental approaches and lays the foundation for systematic analysis of cellular metabolism at fluctuating environments.
Collapse
Affiliation(s)
- Sarah Täuber
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
36
|
Briones JC, Espulgar WV, Koyama S, Yoshikawa H, Park J, Naito Y, Kumanogoh A, Tamiya E, Takamatsu H, Saito M. A Microfluidic Platform for Single Cell Fluorometric Granzyme B Profiling. Theranostics 2020; 10:123-132. [PMID: 31903110 PMCID: PMC6929635 DOI: 10.7150/thno.37728] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Granzyme B (GrB) is an essential cytotoxic effector in cancer immunotherapy as it can be a potential biomarker to predict the efficacy of immunotherapies including checkpoint inhibitors. Monitoring the Granzyme B activity in cells would help determine a patient's clinical response to treatment and lead to better treatment strategies by preventing administration of ineffective therapies and avoid adverse events resulting in a delay in subsequent treatment. Methods: A microfluidic device with hydrodynamic traps and pneumatic valving system was fabricated using photo and soft lithography. Single cell Granzyme B (GrB) activity was detected and measured fluorometrically using a commercial assay kit with a peptide substrate containing GrB recognition sequence (Ac-IEPD-AFC) and AFC (7-Amino-4-trifluoromethylcoumarin) label. Fluorescence was observed and measured using a confocal microscope with CSU-W1 scanner unit and CCD camera as well as an inverted microscope with photodetector. Model cells (NK-92, GrB-transduced Jurkat, and THP1 cells) and human PBMCs from healthy donor and lung cancer patients including an anti-PD-1 antibody treated patient were profiled of its GrB activity as proof of concept. Results: GrB expression from the model cells was found to be markedly different. NK-92 cells were found to have higher GrB activity than the GrB-transduced Jurkat cells. THP-1 was found to have relatively no significant activity. A marked increase in GrB expression was also observed in anti-PD-1 treated lung cancer patient sample in comparison to PBMC from a healthy donor. TCR+ Ig-G4+ PBMC cells were found to have high activity which signifies a clear response to PD-1 blockade. Conclusion: As proof of concept, we have shown the capability of a microfluidic platform to measure GrB production through a single cell enzymatic activity assay. Our platform might be a promising tool for evaluating the sensitivity of immunotherapies and identifying specific T cell subset responsible for the anti-tumor response.
Collapse
|
37
|
A General Workflow for Characterization of Nernstian Dyes and Their Effects on Bacterial Physiology. Biophys J 2019; 118:4-14. [PMID: 31810660 PMCID: PMC6950638 DOI: 10.1016/j.bpj.2019.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
The electrical membrane potential (Vm) is one of the components of the electrochemical potential of protons across the biological membrane (proton motive force), which powers many vital cellular processes. Because Vm also plays a role in signal transduction, measuring it is of great interest. Over the years, a variety of techniques have been developed for the purpose. In bacteria, given their small size, Nernstian membrane voltage probes are arguably the favorite strategy, and their cytoplasmic accumulation depends on Vm according to the Nernst equation. However, a careful calibration of Nernstian probes that takes into account the tradeoffs between the ease with which the signal from the dye is observed and the dyes’ interactions with cellular physiology is rarely performed. Here, we use a mathematical model to understand such tradeoffs and apply the results to assess the applicability of the Thioflavin T dye as a Vm sensor in Escherichia coli. We identify the conditions in which the dye turns from a Vm probe into an actuator and, based on the model and experimental results, propose a general workflow for the characterization of Nernstian dye candidates.
Collapse
|
38
|
Telegina DV, Suvorov GK, Kozhevnikova OS, Kolosova NG. Mechanisms of Neuronal Death in the Cerebral Cortex during Aging and Development of Alzheimer's Disease-Like Pathology in Rats. Int J Mol Sci 2019; 20:E5632. [PMID: 31717998 PMCID: PMC6888576 DOI: 10.3390/ijms20225632] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the commonest type of late-life dementia and damages the cerebral cortex, a vulnerable brain region implicated in memory, emotion, cognition, and decision-making behavior. AD is characterized by progressive neuronal loss, but the mechanisms of cell death at different stages of the disease remain unknown. Here, by means of OXYS rats as an appropriate model of the most common (sporadic) AD form, we studied the main pathways of cell death during development of AD-like pathology, including the preclinical stage. We found that apoptosis is activated at the pre-symptomatic stage (age 20 days) correlating with the retardation of brain development in the OXYS strain early in life. Progression of the AD-like pathology was accompanied by activation of apoptosis and necroptosis resulting from a decline of autophagy-mediated proteostasis. Our results are consistent with the idea that the nature of changes in the pathways of apoptosis, autophagy, and necrosis depends on the stage of AD.
Collapse
Affiliation(s)
- Darya V. Telegina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia; (D.V.T.); (G.K.S.); (O.S.K.)
| | - Gleb K. Suvorov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia; (D.V.T.); (G.K.S.); (O.S.K.)
| | - Oyuna S. Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia; (D.V.T.); (G.K.S.); (O.S.K.)
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Pr. Lavrentyeva 10, Novosibirsk 630090, Russia; (D.V.T.); (G.K.S.); (O.S.K.)
- Novosibirsk State University, 1 Pirogova str., Novosibirsk 630090, Russia
| |
Collapse
|
39
|
Leygeber M, Lindemann D, Sachs CC, Kaganovitch E, Wiechert W, Nöh K, Kohlheyer D. Analyzing Microbial Population Heterogeneity—Expanding the Toolbox of Microfluidic Single-Cell Cultivations. J Mol Biol 2019; 431:4569-4588. [DOI: 10.1016/j.jmb.2019.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
|
40
|
Martínez SR, Palacios YB, Heredia DA, Agazzi ML, Durantini AM. Phenotypic Resistance in Photodynamic Inactivation Unravelled at the Single Bacterium Level. ACS Infect Dis 2019; 5:1624-1633. [PMID: 31286765 DOI: 10.1021/acsinfecdis.9b00185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we report a simple fluorescence microscopy methodology that, jointly with four photosensitizers (PSs) and a cell viability marker, allows monitoring of phenotypic bacterial resistance to photodynamic inactivation (PDI) treatments. The PSs, composed of BODIPY dyes, were selected according to their ability to interact with the cell wall and the photoinactivating mechanism involved (type I or type II). In a first approach, the phenotypic heterogeneity allowing bacteria to persist during PDI treatment was evaluated in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli as Gram-positive and Gram-negative models, respectively. By means of propidium iodide (PI), we monitored with spatiotemporal resolution cell viability at the single bacterium level. All the PSs were effective at inactivating pathogens; however, the cationic nonhalogenated PS (compound 1) surpassed the others and was capable of photoinactivating E. coli even under optimal growth conditions. Compound 1 was further tested on two other Gram-negative strains, Pseudomonas aeruginosa and Klebsiella pneumoniae, with outstanding results. All bacterial strains used here are well-known ESKAPE pathogens, which are the leading cause of nosocomial infections worldwide. Thorough data analysis of individual cell survival times revealed clear phenotypic variation expressed in the cell wall that affected PI permeation and thus its intercalation with DNA. For the same bacterial sample, death times may vary from seconds to hours. In addition, the PI incorporation time is also a parameter governed by the phenotypic characteristics of the microbes. Finally, we demonstrate that the results gathered for the bacteria provide direct and unique experimental evidence that supports the time-kill curve profiles.
Collapse
Affiliation(s)
- Sol R. Martínez
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Yohana B. Palacios
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Daniel A. Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Maximiliano L. Agazzi
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Andrés M. Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| |
Collapse
|
41
|
Single identical cell toxicity assay on coordinately ordered patterns. Anal Chim Acta 2019; 1065:56-63. [DOI: 10.1016/j.aca.2019.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
|
42
|
Wang X, Liu Z, Fan F, Hou Y, Yang H, Meng X, Zhang Y, Ren F. Microfluidic chip and its application in autophagy detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Desyatnik I, Krasner M, Frolov L, Ronen M, Guy O, Wasserman D, Tzur A, Avrahami D, Barbiro-Michaely E, Gerber D. An Integrated Microfluidics Approach for Personalized Cancer Drug Sensitivity and Resistance Assay. ACTA ACUST UNITED AC 2019; 3:e1900001. [PMID: 32648689 DOI: 10.1002/adbi.201900001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/04/2019] [Indexed: 12/22/2022]
Abstract
Cancer is the second leading cause of death globally. Matching proper treatment and dosage is crucial for a positive outcome. Any given drug may affect patients with similar tumors differently. Personalized medicine aims to address this issue. Unfortunately, most cancer samples cannot be expanded in culture, limiting conventional cell-based testing. Herein, presented is a microfluidic device that combines a drug microarray with cell microscopy. The device can perform 512 experiments to test chemosensitivity and resistance to a drug array. MCF7 and 293T cells are cultured inside the device and their chemosensitivity and resistance to docetaxel, applied at various concentrations, are determined. Cell mortality is determined as a function of drug concentration and exposure time. It is found that both cell types form cluster morphology within the device, not evident in conventional tissue culture under similar conditions. Cells inside the clusters are less sensitive to drugs than dispersed cells. These findings support a heterogenous response of cancer cells to drugs. Then demonstrated is the principle of drug microarrays by testing cell response to four different drugs at four different concentrations. This approach may enable the personalization of treatment to the particular tumor and patient and may eventually improve final patient outcome.
Collapse
Affiliation(s)
- Inna Desyatnik
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Matan Krasner
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Ludmila Frolov
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Maria Ronen
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Ortal Guy
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Danit Wasserman
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Amit Tzur
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Dorit Avrahami
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Efrat Barbiro-Michaely
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Doron Gerber
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
44
|
Gayen A, Kumar D, Matheshwaran S, Chandra M. Unveiling the Modulating Role of Extracellular pH in Permeation and Accumulation of Small Molecules in Subcellular Compartments of Gram-negative Escherichia coli using Nonlinear Spectroscopy. Anal Chem 2019; 91:7662-7671. [PMID: 30986344 DOI: 10.1021/acs.analchem.9b00574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quantitative evaluation of small molecule permeation and accumulation in Gram-negative bacteria is important for drug development against these bacteria. While these measurements are commonly performed at physiological pH, Escherichia coli and many other Enterobacteriaceae infect human gastrointestinal and urinary tracts, where they encounter different pH conditions. To understand how external pH affects permeation and accumulation of small molecules in E. coli cells, we apply second harmonic generation (SHG) spectroscopy using SHG-active antimicrobial compound malachite green as the probe molecule. Using SHG, we quantify periplasmic and cytoplasmic accumulations separately in live E. coli cells, which was never done before. Compartment-wise measurements reveal accumulation of the probe molecule in cytoplasm at physiological and alkaline pH, while entrapment in periplasm at weakly acidic pH and retention in external solution at highly acidic pH. Behind such disparity in localizations, up to 2 orders of magnitude reduction in permeability across the inner membrane at weakly acidic pH and outer membrane at highly acidic pH are found to play key roles. Our results unequivocally demonstrate the control of external pH over entry and compartment-wise distribution of small molecules in E. coli cells, which is a vital information and should be taken into account in antibiotic screening against E. coli and other Enterobacteriaceae members. In addition, our results demonstrate the ability of malachite green as an excellent SHG-indicator of changes of individual cell membrane and periplasm properties of live E. coli cells in response to external pH change from acidic to alkaline. This finding, too, has great importance, as there is barely any other molecular probe that can provide similar information.
Collapse
|
45
|
Abstract
Advances in microfluidic techniques have prompted researchers to study the inherent heterogeneity of single cells in cell populations.
Collapse
Affiliation(s)
- Qiushi Huang
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Sifeng Mao
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Mashooq Khan
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Jin-Ming Lin
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| |
Collapse
|
46
|
Tian M, Sun J, Tang Y, Dong B, Lin W. Discriminating Live and Dead Cells in Dual-Color Mode with a Two-Photon Fluorescent Probe Based on ESIPT Mechanism. Anal Chem 2017; 90:998-1005. [DOI: 10.1021/acs.analchem.7b04252] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Jie Sun
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| |
Collapse
|
47
|
Sibbitts J, Sellens KA, Jia S, Klasner SA, Culbertson CT. Cellular Analysis Using Microfluidics. Anal Chem 2017; 90:65-85. [DOI: 10.1021/acs.analchem.7b04519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jay Sibbitts
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kathleen A. Sellens
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shu Jia
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Scott A. Klasner
- 12966
South
State Highway 94, Marthasville, Missouri 63357, United States
| | | |
Collapse
|
48
|
El Khoury M, Swain J, Sautrey G, Zimmermann L, Van Der Smissen P, Décout JL, Mingeot-Leclercq MP. Targeting Bacterial Cardiolipin Enriched Microdomains: An Antimicrobial Strategy Used by Amphiphilic Aminoglycoside Antibiotics. Sci Rep 2017; 7:10697. [PMID: 28878347 PMCID: PMC5587548 DOI: 10.1038/s41598-017-10543-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/11/2017] [Indexed: 01/31/2023] Open
Abstract
Some bacterial proteins involved in cell division and oxidative phosphorylation are tightly bound to cardiolipin. Cardiolipin is a non-bilayer anionic phospholipid found in bacterial inner membrane. It forms lipid microdomains located at the cell poles and division plane. Mechanisms by which microdomains are affected by membrane-acting antibiotics and the impact of these alterations on membrane properties and protein functions remain unclear. In this study, we demonstrated cardiolipin relocation and clustering as a result of exposure to a cardiolipin-acting amphiphilic aminoglycoside antibiotic, the 3′,6-dinonyl neamine. Changes in the biophysical properties of the bacterial membrane of P. aeruginosa, including decreased fluidity and increased permeability, were observed. Cardiolipin-interacting proteins and functions regulated by cardiolipin were impacted by the amphiphilic aminoglycoside as we demonstrated an inhibition of respiratory chain and changes in bacterial shape. The latter effect was characterized by the loss of bacterial rod shape through a decrease in length and increase in curvature. It resulted from the effect on MreB, a cardiolipin dependent cytoskeleton protein as well as a direct effect of 3′,6-dinonyl neamine on cardiolipin. These results shed light on how targeting cardiolipin microdomains may be of great interest for developing new antibacterial therapies.
Collapse
Affiliation(s)
- Micheline El Khoury
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium
| | - Jitendriya Swain
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium
| | - Guillaume Sautrey
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium.,Université de Lorraine, UMR CNRS UL 7565, 1 Blvd. Des Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, Nancy, France
| | - Louis Zimmermann
- Université Grenoble Alpes, Joseph Fourier/CNRS, Institut de Pharmacochimie Moléculaire, rue de la Chimie, F-38041, Grenoble, France
| | - Patrick Van Der Smissen
- Université Catholique de Louvain, de Duve Institute, avenue Hippocrate 75, UCL B1.75.05, 1200, Brussels, Belgium
| | - Jean-Luc Décout
- Université Grenoble Alpes, Joseph Fourier/CNRS, Institut de Pharmacochimie Moléculaire, rue de la Chimie, F-38041, Grenoble, France
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium.
| |
Collapse
|
49
|
Armbrecht L, Gabernet G, Kurth F, Hiss JA, Schneider G, Dittrich PS. Characterisation of anticancer peptides at the single-cell level. LAB ON A CHIP 2017; 17:2933-2940. [PMID: 28736788 PMCID: PMC6440648 DOI: 10.1039/c7lc00505a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The development of efficacious anticancer therapeutics is difficult due to the heterogeneity of the cellular response to chemotherapy. Anticancer peptides (ACPs) are promising drug candidates that have been shown to be active against a range of cancer cells. However, few ACP studies focus on tumour single-cell heterogeneities. In order to address this need, we developed a microfluidic device and an imaging procedure that enable the capture, monitoring, and analysis of several hundred single cells for the study of drug response. MCF-7 human breast adenocarcinoma cells were captured in hydrodynamic traps and isolated in individual microchambers of less than 100 pL volume. With pneumatic valves, different sets of microchambers were actuated to expose the cells to various drugs. Here, the effect of three membranolytic ACPs - melittin, aurein 1.2 and aurein 2.2 - was investigated by monitoring the efflux of calcein from single MCF-7 cells. The loss of membrane integrity was observed with two different strategies that allow either focusing on one cell for mechanistic studies or parallel analysis of hundreds of individual cells. In general, the device is applicable to the analysis of the effect of various drugs on a large number of different cell types. The platform will enable us in the future to determine the origin of heterogeneous responses on pharmacological substances like ACPs within cell populations by combining it with other on-chip analytical methods.
Collapse
Affiliation(s)
- L Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|