1
|
Bulcaen M, Kortleven P, Liu RB, Maule G, Dreano E, Kelly M, Ensinck MM, Thierie S, Smits M, Ciciani M, Hatton A, Chevalier B, Ramalho AS, Casadevall I Solvas X, Debyser Z, Vermeulen F, Gijsbers R, Sermet-Gaudelus I, Cereseto A, Carlon MS. Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells. Cell Rep Med 2024; 5:101544. [PMID: 38697102 PMCID: PMC11148721 DOI: 10.1016/j.xcrm.2024.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Prime editing is a recent, CRISPR-derived genome editing technology capable of introducing precise nucleotide substitutions, insertions, and deletions. Here, we present prime editing approaches to correct L227R- and N1303K-CFTR, two mutations that cause cystic fibrosis and are not eligible for current market-approved modulator therapies. We show that, upon DNA correction of the CFTR gene, the complex glycosylation, localization, and, most importantly, function of the CFTR protein are restored in HEK293T and 16HBE cell lines. These findings were subsequently validated in patient-derived rectal organoids and human nasal epithelial cells. Through analysis of predicted and experimentally identified candidate off-target sites in primary stem cells, we confirm previous reports on the high prime editor (PE) specificity and its potential for a curative CF gene editing therapy. To facilitate future screening of genetic strategies in a translational CF model, a machine learning algorithm was developed for dynamic quantification of CFTR function in organoids (DETECTOR: "detection of targeted editing of CFTR in organoids").
Collapse
Affiliation(s)
- Mattijs Bulcaen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium.
| | - Phéline Kortleven
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Ronald B Liu
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; School of Engineering, University of Edinburgh, EH9 3JL Edinburgh, UK
| | - Giulia Maule
- Department of CIBIO, University of Trento, 38123 Povo-Trento, Italy
| | - Elise Dreano
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France
| | - Mairead Kelly
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France
| | - Marjolein M Ensinck
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Sam Thierie
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Maxime Smits
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Matteo Ciciani
- Department of CIBIO, University of Trento, 38123 Povo-Trento, Italy
| | - Aurelie Hatton
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France
| | - Benoit Chevalier
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France
| | - Anabela S Ramalho
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | | | - Zeger Debyser
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - François Vermeulen
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Department of Pediatrics, UZ Leuven, 3000 Leuven, Belgium
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France; Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France; European Reference Network, ERN-Lung CF, 60596 Frankfurt am Mein, Germany
| | - Anna Cereseto
- Department of CIBIO, University of Trento, 38123 Povo-Trento, Italy
| | - Marianne S Carlon
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Walker AJ, Graham C, Greenwood M, Woodall M, Maeshima R, O’Hara-Wright M, Sanz DJ, Guerrini I, Aldossary AM, O’Callaghan C, Baines DL, Harrison PT, Hart SL. Molecular and functional correction of a deep intronic splicing mutation in CFTR by CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2023; 31:101140. [PMID: 38027060 PMCID: PMC10661860 DOI: 10.1016/j.omtm.2023.101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. The 10th most common mutation, c.3178-2477C>T (3849+10kb C>T), involves a cryptic, intronic splice site. This mutation was corrected in CF primary cells homozygous for this mutation by delivering pairs of guide RNAs (gRNAs) with Cas9 protein in ribonucleoprotein (RNP) complexes that introduce double-strand breaks to flanking sites to excise the 3849+10kb C>T mutation, followed by DNA repair by the non-homologous end-joining pathway, which functions in all cells of the airway epithelium. RNP complexes were delivered to CF basal epithelial cell by a non-viral, receptor-targeted nanocomplex comprising a formulation of targeting peptides and lipids. Canonical CFTR mRNA splicing was, thus, restored leading to the restoration of CFTR protein expression with concomitant restoration of electrophysiological function in airway epithelial air-liquid interface cultures. Off-target editing was not detected by Sanger sequencing of in silico-selected genomic sites with the highest sequence similarities to the gRNAs, although more sensitive unbiased whole genome sequencing methods would be required for possible translational developments. This approach could potentially be used to correct aberrant splicing signals in several other CF mutations and other genetic disorders where deep-intronic mutations are pathogenic.
Collapse
Affiliation(s)
- Amy J. Walker
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Miriam Greenwood
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maximillian Woodall
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michelle O’Hara-Wright
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David J. Sanz
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Ileana Guerrini
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ahmad M. Aldossary
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christopher O’Callaghan
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Deborah L. Baines
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Patrick T. Harrison
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
3
|
Amistadi S, Maule G, Ciciani M, Ensinck MM, De Keersmaecker L, Ramalho AS, Guidone D, Buccirossi M, Galietta LJV, Carlon MS, Cereseto A. Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. Mol Ther 2023; 31:1647-1660. [PMID: 36895161 PMCID: PMC10277887 DOI: 10.1016/j.ymthe.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The 2789+5G>A CFTR mutation is a quite frequent defect causing an aberrant splicing and a non-functional CFTR protein. Here we used a CRISPR adenine base editing (ABE) approach to correct the mutation in the absence of DNA double-strand breaks (DSB). To select the strategy, we developed a minigene cellular model reproducing the 2789+5G>A splicing defect. We obtained up to 70% editing in the minigene model by adapting the ABE to the PAM sequence optimal for targeting 2789+5G>A with a SpCas9-NG (NG-ABE). Nonetheless, the on-target base correction was accompanied by secondary (bystander) A-to-G conversions in nearby nucleotides, which affected the wild-type CFTR splicing. To decrease the bystander edits, we used a specific ABE (NG-ABEmax), which was delivered as mRNA. The NG-ABEmax RNA approach was validated in patient-derived rectal organoids and bronchial epithelial cells showing sufficient gene correction to recover the CFTR function. Finally, in-depth sequencing revealed high editing precision genome-wide and allele-specific correction. Here we report the development of a base editing strategy to precisely repair the 2789+5G>A mutation resulting in restoration of the CFTR function, while reducing bystander and off-target activities.
Collapse
Affiliation(s)
- Simone Amistadi
- University of Trento, Department of Computational, Cellular and Integrative Biology, Laboratory of Molecular Virology, 38123 Trento, Italy
| | - Giulia Maule
- University of Trento, Department of Computational, Cellular and Integrative Biology, Laboratory of Molecular Virology, 38123 Trento, Italy.
| | - Matteo Ciciani
- University of Trento, Department of Computational, Cellular and Integrative Biology, Laboratory of Molecular Virology, 38123 Trento, Italy
| | - Marjolein M Ensinck
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, 3000 Leuven, Belgium
| | - Liesbeth De Keersmaecker
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, 3000 Leuven, Belgium
| | - Anabela S Ramalho
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | | | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Department of Translational Medical Sciences, University of Napoli "Federico II," 80138 Napoli, Italy
| | - Marianne S Carlon
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, 3000 Leuven, Belgium; KU Leuven, Department of Chronic Diseases and Metabolism, BREATHE Laboratory, 3000 Leuven, Belgium
| | - Anna Cereseto
- University of Trento, Department of Computational, Cellular and Integrative Biology, Laboratory of Molecular Virology, 38123 Trento, Italy.
| |
Collapse
|
4
|
Abstract
The rapid development of CRISPR-Cas genome editing tools has greatly changed the way to conduct research and holds tremendous promise for clinical applications. During genome editing, CRISPR-Cas enzymes induce DNA breaks at the target sites and subsequently the DNA repair pathways are recruited to generate diverse editing outcomes. Besides off-target cleavage, unwanted editing outcomes including chromosomal structural variations and exogenous DNA integrations have recently raised concerns for clinical safety. To eliminate these unwanted editing byproducts, we need to explore the underlying mechanisms for the formation of diverse editing outcomes from the perspective of DNA repair. Here, we describe the involved DNA repair pathways in sealing Cas enzyme-induced DNA double-stranded breaks and discuss the origins and effects of unwanted editing byproducts on genome stability. Furthermore, we propose the potential risk of inhibiting DNA repair pathways to enhance gene editing. The recent combined studies of DNA repair and CRISPR-Cas editing provide a framework for further optimizing genome editing to enhance editing safety.
Collapse
|
5
|
Krishnamurthy S, Traore S, Cooney AL, Brommel CM, Kulhankova K, Sinn P, Newby G, Liu D, McCray P. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res 2021; 49:10558-10572. [PMID: 34520545 PMCID: PMC8501978 DOI: 10.1093/nar/gkab788] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations in the CFTR gene that lead to premature stop codons or splicing defects cause cystic fibrosis (CF) and are not amenable to treatment by small-molecule modulators. Here, we investigate the use of adenine base editor (ABE) ribonucleoproteins (RNPs) that convert A•T to G•C base pairs as a therapeutic strategy for three CF-causing mutations. Using ABE RNPs, we corrected in human airway epithelial cells premature stop codon mutations (R553X and W1282X) and a splice-site mutation (3849 + 10 kb C > T). Following ABE delivery, DNA sequencing revealed correction of these pathogenic mutations at efficiencies that reached 38-82% with minimal bystander edits or indels. This range of editing was sufficient to attain functional correction of CFTR-dependent anion channel activity in primary epithelial cells from CF patients and in a CF patient-derived cell line. These results demonstrate the utility of base editor RNPs to repair CFTR mutations that are not currently treatable with approved therapeutics.
Collapse
Affiliation(s)
| | - Soumba Traore
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Ashley L Cooney
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Christian M Brommel
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Molecular Medicine Graduate Program, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | | | - Patrick L Sinn
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Molecular Medicine Graduate Program, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Molecular Medicine Graduate Program, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Dutta RK, Chinnapaiyan S, Santiago MJ, Rahman I, Unwalla HJ. Gene-specific MicroRNA antagonism protects against HIV Tat and TGF-β-mediated suppression of CFTR mRNA and function. Biomed Pharmacother 2021; 142:112090. [PMID: 34463266 PMCID: PMC9100877 DOI: 10.1016/j.biopha.2021.112090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND MicroRNAs play an important role in health and disease. TGF-β signaling, upregulated by HIV Tat, and in chronic airway diseases and smokers upregulates miR-145-5p to suppress cystic fibrosis transmembrane conductance regulator (CFTR). CFTR suppression in chronic airway diseases like Cystic Fibrosis, COPD and smokers has been associated with suppressed MCC and recurrent lung infections and inflammation. This can explain the emergence of recurrent lung infections and inflammation in people living with HIV. METHODS Tat-induced aberrant microRNAome was identified by miRNA expression analysis. microRNA mimics and antagomirs were used to validate the identified miRNAs involved in Tat mediated CFTR mRNA suppression. CRISPR-based editing of the miRNA target sites in CFTR 3'UTR was used to determine rescue of CFTR mRNA and function in airway epithelial cell lines and in primary human bronchial epithelial cells exposed to TGF-β and Tat. FINDINGS HIV Tat upregulates miR-145-5p and miR-509-3p. The two miRNAs demonstrate co-operative effects in suppressing CFTR. CRISPR-based editing of the miRNA target site preserves CFTR mRNA and function in airway epithelial cells INTERPRETATION: Given the important roles of TGF-β signaling and the multitude of genes regulated by miRNAs, we demonstrate that CRISPR-based gene-specific microRNA antagonism approach can preserve CFTR mRNA and function in the context of HIV Tat and TGF-β signaling without suppressing expression of other genes regulated by miR-145-5p.
Collapse
Affiliation(s)
- R K Dutta
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - S Chinnapaiyan
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - M J Santiago
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - I Rahman
- University of Rochester Medical Center, Departments of Environmental Medicine and Pulmonary Medicine, Rochester, NY 14642, USA
| | - H J Unwalla
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
7
|
Ensinck M, Mottais A, Detry C, Leal T, Carlon MS. On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Front Pharmacol 2021; 12:662110. [PMID: 33986686 PMCID: PMC8111007 DOI: 10.3389/fphar.2021.662110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and in vivo disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Alternatively, with these tools more relevant disease models can be generated, which in turn will be invaluable to evaluate novel gene editing-based therapies for CF. This critical review offers a comprehensive description of currently available tools for genome editing, and the cell and animal models which are available to evaluate them. Next, we will give an extensive overview of proof-of-concept applications of gene editing in the field of CF. Finally, we will touch upon the challenges that need to be addressed before these proof-of-concept studies can be translated towards a therapy for people with CF.
Collapse
Affiliation(s)
- Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Angélique Mottais
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claire Detry
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
CRISPR Deletion of a SVA Retrotransposon Demonstrates Function as a cis-Regulatory Element at the TRPV1/TRPV3 Intergenic Region. Int J Mol Sci 2021; 22:ijms22041911. [PMID: 33671852 PMCID: PMC7917899 DOI: 10.3390/ijms22041911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons are a subclass of transposable elements (TEs) that exist only in primate genomes. TE insertions can be co-opted as cis-regulatory elements (CREs); however, the regulatory potential of SVAs has predominantly been demonstrated using bioinformatic approaches and reporter gene assays. The objective of this study was to demonstrate SVA cis-regulatory activity by CRISPR (clustered regularly interspaced short palindromic repeats) deletion and subsequent measurement of direct effects on local gene expression. We identified a region on chromosome 17 that was enriched with human-specific SVAs. Comparative gene expression analysis at this region revealed co-expression of TRPV1 and TRPV3 in multiple human tissues, which was not observed in mouse, highlighting key regulatory differences between the two species. Furthermore, the intergenic region between TRPV1 and TRPV3 coding sequences contained a human specific SVA insertion located upstream of the TRPV3 promoter and downstream of the 3′ end of TRPV1, highlighting this SVA as a candidate to study its potential cis-regulatory activity on both genes. Firstly, we generated SVA reporter gene constructs and demonstrated their transcriptional regulatory activity in HEK293 cells. We then devised a dual-targeting CRISPR strategy to facilitate the deletion of this entire SVA sequence and generated edited HEK293 clonal cell lines containing homozygous and heterozygous SVA deletions. In edited homozygous ∆SVA clones, we observed a significant decrease in both TRPV1 and TRPV3 mRNA expression, compared to unedited HEK293. In addition, we also observed an increase in the variability of mRNA expression levels in heterozygous ∆SVA clones. Overall, in edited HEK293 with SVA deletions, we observed a disruption to the co-expression of TRPV1 and TRPV3. Here we provide an example of a human specific SVA with cis-regulatory activity in situ, supporting the role of SVA retrotransposons as contributors to species-specific gene expression.
Collapse
|
9
|
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-limiting genetic disorder affecting approximately 70,000 people worldwide. Current burden of treatment is high. While the latest pharmaceutical innovation has benefitted many, patients with certain genotypes remain excluded. Gene editing has the potential to correct the underlying cause of disease for all patients, representing a permanent cure.Areas covered: Various DNA editing-based strategies for treatment are currently being developed. Different strategies are called for based upon location of mutations (intronic vs. exonic), delivery mechanism of editing machinery, and cell type being targeted. Furthermore, the unique physiology of the CF lung presents a variety of barriers to delivery of CRISPR-Cas9 machinery.Expert opinion: The most significant obstacle to the use of CRISPR-Cas9 in vivo is the fact that the most clinically relevant and accessible CF tissue, the airway epithelium, is made up of non-dividing cells where precise editing via homology-directed repair (HDR) does not occur; rather, potentially deleterious imprecise editing via non-homologous end joining (NHEJ) dominates. Future research should focus on the development of either more precise NHEJ-based approaches, access to airway basal cells, editing approaches that do not involve introducing genomic double-strand breaks, and strategies with ex vivo edited cells.
Collapse
Affiliation(s)
- Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stephen Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
10
|
Maule G, Ensinck M, Bulcaen M, Carlon MS. Rewriting CFTR to cure cystic fibrosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:185-224. [PMID: 34175042 DOI: 10.1016/bs.pmbts.2020.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive monogenic disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Although F508del is the most frequent mutation, there are in total 360 confirmed disease-causing CFTR mutations, impairing CFTR production, function and stability. Currently, the only causal treatments available are CFTR correctors and potentiators that directly target the mutant protein. While these pharmacological advances and better symptomatic care have improved life expectancy of people with CF, none of these treatments provides a cure. The discovery and development of programmable nucleases, in particular CRISPR nucleases and derived systems, rekindled the field of CF gene therapy, offering the possibility of a permanent correction of the CFTR gene. In this review we will discuss different strategies to restore CFTR function via gene editing correction of CFTR mutations or enhanced CFTR expression, and address how best to deliver these treatments to target cells.
Collapse
Affiliation(s)
- Giulia Maule
- Department CIBIO, University of Trento, Trento, Italy; Institute of Biophysics, National Research Council, Trento, Italy
| | - Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Mattijs Bulcaen
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Marianne S Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium.
| |
Collapse
|
11
|
Smirnikhina SA, Kondrateva EV, Adilgereeva EP, Anuchina AA, Zaynitdinova MI, Slesarenko YS, Ershova AS, Ustinov KD, Yasinovsky MI, Amelina EL, Voronina ES, Yakushina VD, Tabakov VY, Lavrov AV. P.F508del editing in cells from cystic fibrosis patients. PLoS One 2020; 15:e0242094. [PMID: 33175893 PMCID: PMC7657551 DOI: 10.1371/journal.pone.0242094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Development of genome editing methods created new opportunities for the development of etiology-based therapies of hereditary diseases. Here, we demonstrate that CRISPR/Cas9 can correct p.F508del mutation in the CFTR gene in the CFTE29o- cells and induced pluripotent stem cells (iPSCs) derived from patients with cystic fibrosis (CF). We used several combinations of Cas9, sgRNA and ssODN and measured editing efficiency in the endogenous CFTR gene and in the co-transfected plasmid containing the CFTR locus with the p.F508del mutation. The non-homologous end joining (NHEJ) frequency in the CFTR gene in the CFTE29o- cells varied from 1.25% to 2.54% of alleles. The best homology-directed repair (HDR) frequency in the endogenous CFTR locus was 1.42% of alleles. In iPSCs, the NHEJ frequency in the CFTR gene varied from 5.5% to 12.13% of alleles. The best HDR efficacy was 2.38% of alleles. Our results show that p.F508del mutation editing using CRISPR/Cas9 in CF patient-derived iPSCs is a relatively rare event and subsequent cell selection and cultivation should be carried out.
Collapse
Affiliation(s)
- Svetlana A. Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
- * E-mail:
| | - Ekaterina V. Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Elmira P. Adilgereeva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Arina A. Anuchina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Yana S. Slesarenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Angelina S. Ershova
- Nazarbayev University, School of Science and Technology, Nur-Sultan, Republic of Kazakhstan
| | - Kirill D. Ustinov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Matvei I. Yasinovsky
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Elena L. Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, Moscow, Russian Federation
| | - Ekaterina S. Voronina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Valentina D. Yakushina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Vyacheslav Yu. Tabakov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexander V. Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| |
Collapse
|
12
|
Vu A, McCray PB. New Directions in Pulmonary Gene Therapy. Hum Gene Ther 2020; 31:921-939. [PMID: 32814451 PMCID: PMC7495918 DOI: 10.1089/hum.2020.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
The lung has long been a target for gene therapy, yet efficient delivery and phenotypic disease correction has remained challenging. Although there have been significant advancements in gene therapies of other organs, including the development of several ex vivo therapies, in vivo therapeutics of the lung have been slower to transition to the clinic. Within the past few years, the field has witnessed an explosion in the development of new gene addition and gene editing strategies for the treatment of monogenic disorders. In this review, we will summarize current developments in gene therapy for cystic fibrosis, alpha-1 antitrypsin deficiency, and surfactant protein deficiencies. We will explore the different gene addition and gene editing strategies under investigation and review the challenges of delivery to the lung.
Collapse
Affiliation(s)
- Amber Vu
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Maule G, Arosio D, Cereseto A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. Int J Mol Sci 2020; 21:E3903. [PMID: 32486152 PMCID: PMC7313467 DOI: 10.3390/ijms21113903] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Since the early days of its conceptualization and application, human gene transfer held the promise of a permanent solution to genetic diseases including cystic fibrosis (CF). This field went through alternated periods of enthusiasm and distrust. The development of refined technologies allowing site specific modification with programmable nucleases highly revived the gene therapy field. CRISPR nucleases and derived technologies tremendously facilitate genome manipulation offering diversified strategies to reverse mutations. Here we discuss the advancement of gene therapy, from therapeutic nucleic acids to genome editing techniques, designed to reverse genetic defects in CF. We provide a roadmap through technologies and strategies tailored to correct different types of mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, and their applications for the development of experimental models valuable for the advancement of CF therapies.
Collapse
Affiliation(s)
- Giulia Maule
- Department of Cellular Computational Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
- National Council of Research, CNR, 38123 Trento, Italy;
| | | | - Anna Cereseto
- Department of Cellular Computational Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| |
Collapse
|
14
|
Pinzon-Arteaga C, Snyder MD, Lazzarotto CR, Moreno NF, Juras R, Raudsepp T, Golding MC, Varner DD, Long CR. Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9. Sci Rep 2020; 10:7411. [PMID: 32366884 PMCID: PMC7198616 DOI: 10.1038/s41598-020-62723-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Phenotypic selection during animal domestication has resulted in unwanted incorporation of deleterious mutations. In horses, the autosomal recessive condition known as Glycogen Branching Enzyme Deficiency (GBED) is the result of one of these deleterious mutations (102C > A), in the first exon of the GBE1 gene (GBE1102C>A). With recent advances in genome editing, this type of genetic mutation can be precisely repaired. In this study, we used the RNA-guided nuclease CRISPR-Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR-associated protein 9) to correct the GBE1102C>A mutation in a primary fibroblast cell line derived from a high genetic merit heterozygous stallion. To correct this mutation by homologous recombination (HR), we designed a series of single guide RNAs (sgRNAs) flanking the mutation and provided different single-stranded donor DNA templates. The distance between the Cas9-mediated double-stranded break (DSB) to the mutation site, rather than DSB efficiency, was the primary determinant for successful HR. This framework can be used for targeting other harmful diseases in animal populations.
Collapse
Affiliation(s)
- Carlos Pinzon-Arteaga
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew D Snyder
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | | | - Nicolas F Moreno
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
15
|
Cabrini G. Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Mol Diagn Ther 2019; 23:263-279. [PMID: 30478715 DOI: 10.1007/s40291-018-0372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF), a life-threatening multiorgan genetic disease, is facing a new era of research and development using innovative gene-directed personalized therapies. The priority organ to cure is the lung, which suffers recurrent and chronic bacterial infection and inflammation since infancy, representing the main cause of morbidity and precocious mortality of these individuals. After the disappointing failure of gene-replacement approaches using gene therapy vectors, no single drug is presently available to repair all the CF gene defects. The impressive number of different CF gene mutations is now tackled with different chemical and biotechnological tools tailored to the specific molecular derangements, thanks to the extensive knowledge acquired over many years on the mechanisms of CF cell and organ pathology. This review provides an overview and recalls both the successes and limitations of the different experimental approaches, such as high-throughput screening on chemical libraries to discover CF gene correctors and potentiators, dual-acting compounds, read-through molecules, splicing defect repairing tools, cystic fibrosis transmembrane conductance regulator (CFTR) "amplifiers," CFTR interactome modulators and the first gene editing attempts.
Collapse
Affiliation(s)
- Giulio Cabrini
- Laboratory of Molecular Pathology, University Hospital, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
16
|
Sanz DJ, Harrison PT. Minigene assay to Evaluate CRISPR/Cas9-based excision of Intronic mutations that Cause Aberrant Splicing in Human Cells. Bio Protoc 2019; 9:e3251. [PMID: 33654776 DOI: 10.21769/bioprotoc.3251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 11/02/2022] Open
Abstract
The construction of Hybrid minigenes provides a robust and simple strategy to study the effects of disease-causing mutations on mRNA splicing when biological material from patient cells is not available. Hybrid minigenes can be used as splicing reporter plasmids allow RNA expression and heterologous splicing reactions between synthetic splicing signals in the vector and endogenous splicing signals in a cloned genomic DNA fragment that contains one or more introns and exons. Minigene-based assay has been used extensively to test the effect of mutations in the splicing of a target sequence. They can also be used to test the ability of CRISPR/Cas9 and one or more associated gRNAs to target specific sequences in the minigene, and determine the effect of these editing events on splicing. As an example, it is shown that CRISPR/Cas9-based, targeted excision of short intronic sequences containing mutations which create cryptic splice signals, can restore normal splicing in a CFTR Hybrid minigene.
Collapse
Affiliation(s)
- David J Sanz
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Patrick T Harrison
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Egorova TV, Zotova ED, Reshetov DA, Polikarpova AV, Vassilieva SG, Vlodavets DV, Gavrilov AA, Ulianov SV, Buchman VL, Deykin AV. CRISPR/Cas9-generated mouse model of Duchenne muscular dystrophy recapitulating a newly identified large 430 kb deletion in the human DMD gene. Dis Model Mech 2019; 12:dmm037655. [PMID: 31028078 PMCID: PMC6505476 DOI: 10.1242/dmm.037655] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
Exon skipping is a promising strategy for Duchenne muscular dystrophy (DMD) disease-modifying therapy. To make this approach safe, ensuring that excluding one or more exons will restore the reading frame and that the resulting protein will retain critical functions of the full-length dystrophin protein is necessary. However, in vivo testing of the consequences of skipping exons that encode the N-terminal actin-binding domain (ABD) has been confounded by the absence of a relevant animal model. We created a mouse model of the disease recapitulating a novel human mutation, a large de novo deletion of exons 8-34 of the DMD gene, found in a Russian DMD patient. This mutation was achieved by deleting exons 8-34 of the X-linked mouse D md gene using CRISPR/Cas9 genome editing, which led to a reading frame shift and the absence of functional dystrophin production. Male mice carrying this deletion display several important signs of muscular dystrophy, including a gradual age-dependent decrease in muscle strength, increased creatine kinase, muscle fibrosis and central nucleation. The degrees of these changes are comparable to those observed in mdx mice, a standard laboratory model of DMD. This new model of DMD will be useful for validating therapies based on skipping exons that encode the N-terminal ABD and for improving our understanding of the role of the N-terminal domain and central rod domain in the biological function of dystrophin. Simultaneous skipping of exons 6 and 7 should restore the gene reading frame and lead to the production of a protein that might retain functionality despite the partial deletion of the ABD.
Collapse
Affiliation(s)
- Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Marlin Biotech LLC, Moscow, 143026, Russia
| | | | | | - Anna V Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Marlin Biotech LLC, Moscow, 143026, Russia
| | - Svetlana G Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Marlin Biotech LLC, Moscow, 143026, Russia
| | - Dmitry V Vlodavets
- Veltischev Scientific Research Clinical Paediatric Institute, Moscow, 125412, Russia
| | - Alexey A Gavrilov
- Group of Genome Spatial Organization, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey V Ulianov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Alexei V Deykin
- Core Facilities, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
18
|
Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine. Front Pharmacol 2019; 10:121. [PMID: 30873022 PMCID: PMC6400831 DOI: 10.3389/fphar.2019.00121] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
An improved understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein structure and the consequences of CFTR gene mutations have allowed the development of novel therapies targeting specific defects underlying CF. Some strategies are mutation specific and have already reached clinical development; some strategies include a read-through of the specific premature termination codons (read-through therapies, nonsense mediated decay pathway inhibitors for Class I mutations); correction of CFTR folding and trafficking to the apical plasma membrane (correctors for Class II mutations); and an increase in the function of CFTR channel (potentiators therapy for Class III mutations and any mutant with a residual function located at the membrane). Other therapies that are in preclinical development are not mutation specific and include gene therapy to edit the genome and stem cell therapy to repair the airway tissue. These strategies that are directed at the basic CF defects are now revolutionizing the treatment for patients and should positively impact their survival rates.
Collapse
Affiliation(s)
- Iwona Pranke
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Anita Golec
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France.,Centre de Référence Maladie Rare, Mucoviscidose et Maladies de CFTR, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
19
|
Cooney AL, McCray PB, Sinn PL. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes (Basel) 2018; 9:genes9110538. [PMID: 30405068 PMCID: PMC6266271 DOI: 10.3390/genes9110538] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a cAMP-regulated anion channel. Although CF is a multi-organ system disease, most people with CF die of progressive lung disease that begins early in childhood and is characterized by chronic bacterial infection and inflammation. Nearly 90% of people with CF have at least one copy of the ΔF508 mutation, but there are hundreds of CFTR mutations that result in a range of disease severities. A CFTR gene replacement approach would be efficacious regardless of the disease-causing mutation. After the discovery of the CFTR gene in 1989, the in vitro proof-of-concept for gene therapy for CF was quickly established in 1990. In 1993, the first of many gene therapy clinical trials attempted to rescue the CF defect in airway epithelia. Despite the initial enthusiasm, there is still no FDA-approved gene therapy for CF. Here we discuss the history of CF gene therapy, from the discovery of the CFTR gene to current state-of-the-art gene delivery vector designs. While implementation of CF gene therapy has proven more challenging than initially envisioned; thanks to continued innovation, it may yet become a reality.
Collapse
Affiliation(s)
- Ashley L Cooney
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Patrick L Sinn
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P. CRISPR-Cas9: A New Addition to the Drug Metabolism and Disposition Tool Box. Drug Metab Dispos 2018; 46:1776-1786. [PMID: 30126863 DOI: 10.1124/dmd.118.082842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9), i.e., CRISPR-Cas9, has been extensively used as a gene-editing technology during recent years. Unlike earlier technologies for gene editing or gene knockdown, such as zinc finger nucleases and RNA interference, CRISPR-Cas9 is comparably easy to use, affordable, and versatile. Recently, CRISPR-Cas9 has been applied in studies of drug absorption, distribution, metabolism, and excretion (ADME) and for ADME model generation. To date, about 50 papers have been published describing in vitro or in vivo CRISPR-Cas9 gene editing of ADME and ADME-related genes. Twenty of these papers describe gene editing of clinically relevant genes, such as ATP-binding cassette drug transporters and cytochrome P450 drug-metabolizing enzymes. With CRISPR-Cas9, the ADME tool box has been substantially expanded. This new technology allows us to develop better and more predictive in vitro and in vivo ADME models and map previously underexplored ADME genes and gene families. In this mini-review, we give an overview of the CRISPR-Cas9 technology and summarize recent applications of CRISPR-Cas9 within the ADME field. We also speculate about future applications of CRISPR-Cas9 in ADME research.
Collapse
Affiliation(s)
- M Karlgren
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - I Simoff
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - M Keiser
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - S Oswald
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - P Artursson
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| |
Collapse
|
21
|
Abstract
Cystic fibrosis (CF) is the most common life-limiting genetic disease in Caucasian patients. Continued advances have led to improved survival, and adults with CF now outnumber children. As our understanding of the disease improves, new therapies have emerged that improve the basic defect, enabling patient-specific treatment and improved outcomes. However, recurrent exacerbations continue to lead to morbidity and mortality, and new pathogens have been identified that may lead to worse outcomes. In addition, new complications, such as CF-related diabetes and increased risk of gastrointestinal cancers, are creating new challenges in management. For patients with end-stage disease, lung transplantation has remained one of the few treatment options, but challenges in identifying the most appropriate patients remain.
Collapse
Affiliation(s)
- Michael M Rey
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| | - Michael P Bonk
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| | - Denis Hadjiliadis
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| |
Collapse
|
22
|
Harrison PT, Hart S. A beginner's guide to gene editing. Exp Physiol 2018; 103:439-448. [DOI: 10.1113/ep086047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Patrick T. Harrison
- Department of Physiology, BioSciences Institute; University College Cork; Cork Ireland
| | - Stephen Hart
- UCL Great Ormond Street Institute of Child Health; University College London; London UK
| |
Collapse
|
23
|
Abstract
Genome editing via homologous recombination (HR) (gene targeting) in human hematopoietic stem cells (HSCs) has the power to reveal gene-function relationships and potentially transform curative hematological gene and cell therapies. However, there are no comprehensive and reproducible protocols for targeting HSCs for HR. Herein, we provide a detailed protocol for the production, enrichment, and in vitro and in vivo analyses of HR-targeted HSCs by combining CRISPR/Cas9 technology with the use of rAAV6 and flow cytometry. Using this protocol, researchers can introduce single-nucleotide changes into the genome or longer gene cassettes with the precision of genome editing. Along with our troubleshooting and optimization guidelines, researchers can use this protocol to streamline HSC genome editing at any locus of interest. The in vitro HSC-targeting protocol and analyses can be completed in 3 weeks, and the long-term in vivo HSC engraftment analyses in immunodeficient mice can be achieved in 16 weeks. This protocol enables manipulation of genes for investigation of gene functions during hematopoiesis, as well as for the correction of genetic mutations in HSC transplantation-based therapies for diseases such as sickle cell disease, β-thalassemia, and primary immunodeficiencies.
Collapse
|
24
|
Sanz DJ, Hollywood JA, Scallan MF, Harrison PT. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA. PLoS One 2017; 12:e0184009. [PMID: 28863137 PMCID: PMC5581164 DOI: 10.1371/journal.pone.0184009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/16/2017] [Indexed: 12/27/2022] Open
Abstract
Cystic Fibrosis is an autosomal recessive disorder caused by mutations in the CFTR gene. CRISPR mediated, template-dependent homology-directed gene editing has been used to correct the most common mutation, c.1521_1523delCTT / p.Phe508del (F508del) which affects ~70% of individuals, but the efficiency was relatively low. Here, we describe a high efficiency strategy for editing of three different rare CFTR mutations which together account for about 3% of individuals with Cystic Fibrosis. The mutations cause aberrant splicing of CFTR mRNA due to the creation of cryptic splice signals that result in the formation of pseudoexons containing premature stop codons c.1679+1634A>G (1811+1.6kbA>G) and c.3718-2477C>T (3849+10kbC>T), or an out-of-frame 5' extension to an existing exon c.3140-26A>G (3272-26A>G). We designed pairs of Cas9 guide RNAs to create targeted double-stranded breaks in CFTR either side of each mutation which resulted in high efficiency excision of the target genomic regions via non-homologous end-joining repair. When evaluated in a mini-gene splicing assay, we showed that targeted excision restored normal splicing for all three mutations. This approach could be used to correct aberrant splicing signals or remove disruptive transcription regulatory motifs caused by deep-intronic mutations in a range of other genetic disorders.
Collapse
Affiliation(s)
- David J. Sanz
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Jennifer A. Hollywood
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Patrick T. Harrison
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Xu Q, Hou YX, Chang XB. CRISPR/Cas9-Mediated Three Nucleotide Insertion Corrects a Deletion Mutation in MRP1/ABCC1 and Restores Its Proper Folding and Function. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624219 PMCID: PMC5443964 DOI: 10.1016/j.omtn.2017.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A three-nucleotide deletion in cystic fibrosis transmembrane conductance regulator/ATP-binding cassette transporter C7 (CFTR/ABCC7) resulting in the absence of phenylalanine at 508 leads to mis-fold of the mutated protein and causes cystic fibrosis. We have used a comparable three-nucleotide deletion mutant in another ABCC family member, multidrug resistance-associated protein (MRP1)/ABCC1, to determine whether CRISPR-Cas9-mediated recombination can safely and efficiently knock in three-nucleotide to correct the mutation. We have found that the rate of homology-directed recombination mediated by guideRNA (gRNA) complementary to the deletion mutant is significantly higher than the one mediated by gRNA complementary to the wild-type (WT) donor. In addition, the rate of homology-directed recombination mediated by gRNA complementary to the WT donor is significantly higher than that of gRNAs complementary to the 5' or 3' side of the deletion mutant. Interestingly, the frequency of mutations introduced by gRNA complementary to the deletion mutant is significantly higher than with gRNA complementary to WT donor. However, combination of gRNAs complementary to both WT donor and deletion mutant decreased the rate of homology-directed recombination, but did not significantly decrease the mutation rate introduced by this system. Thus, the data presented here provide guidance for designing of gRNA and donor DNA to do genome editing, especially to correct the mutations with three mismatched nucleotides, such as three-nucleotide deletion or insertion.
Collapse
Affiliation(s)
- Qinqin Xu
- Department of Biochemistry & Molecular Biology, College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ 85259, USA
| | - Yue-Xian Hou
- Department of Biochemistry & Molecular Biology, College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ 85259, USA
| | - Xiu-Bao Chang
- Department of Biochemistry & Molecular Biology, College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ 85259, USA.
| |
Collapse
|