1
|
Choquet K, Chaumont LP, Bache S, Baxter-Koenigs AR, Churchman LS. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. Genome Res 2025; 35:712-724. [PMID: 39952678 PMCID: PMC12047268 DOI: 10.1101/gr.279203.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/31/2024] [Indexed: 02/17/2025]
Abstract
Quantitative trait loci analyses have revealed an important role for genetic variants in regulating alternative splicing (AS) and alternative cleavage and polyadenylation (APA) in humans. Yet, these studies are generally performed with mature mRNA, so they report on the outcome rather than the processes of RNA maturation and thus may overlook how variants directly modulate pre-mRNA processing. The order in which the many introns of a human gene are removed can substantially influence AS, while nascent RNA polyadenylation can affect RNA stability and decay. However, how splicing order and poly(A) tail length are regulated by genetic variation has never been explored. Here, we used direct RNA nanopore sequencing to investigate allele-specific pre-mRNA maturation in 12 human lymphoblastoid cell lines. We find frequent splicing order differences between alleles and uncover significant single-nucleotide polymorphism (SNP)-splicing order associations in 17 genes. This includes SNPs located in or near splice sites as well as more distal intronic and exonic SNPs. Moreover, several genes showed allele-specific poly(A) tail lengths, many of which also have a skewed allelic abundance ratio. HLA class I transcripts, which encode proteins that play an essential role in antigen presentation, show the most allele-specific splicing orders, which frequently co-occur with allele-specific AS, APA, or poly(A) tail length differences. Together, our results expose new layers of genetic regulation of pre-mRNA maturation and highlight the power of long-read RNA sequencing for allele-specific analyses.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada;
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | - Louis-Philippe Chaumont
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | - Simon Bache
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | | | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Iida N, Okada A, Kobayashi Y, Chiba K, Yatabe Y, Shiraishi Y. Systematically developing a registry of splice-site creating variants utilizing massive publicly available transcriptome sequence data. Nat Commun 2025; 16:426. [PMID: 39788962 PMCID: PMC11718197 DOI: 10.1038/s41467-024-55185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs). To leverage massive transcriptome sequence data such as those available from the Sequence Read Archive, we develop a novel framework to screen for SSCVs solely using transcriptome data. We apply it to 322,072 publicly available transcriptomes and identify 30,130 SSCVs. Among them, 5121 SSCVs affect disease-causing variants. By utilizing this extensive collection of SSCVs, we reveal the characteristics of Alu exonization via SSCVs, especially the hotspots of SSCVs within Alu sequences and their evolutionary relationships. We discover novel gain-of-function SSCVs in the deep intronic region of the NOTCH1 gene and demonstrate that their activation can be suppressed using splice-switching ASOs. Collectively, we provide a systematic approach for automatically acquiring a registry of SSCVs, which facilitates the elucidation of novel biological mechanisms underlying splicing and serves as a valuable resource for drug discovery. The catalogs of SSCVs identified in this study are accessible on the SSCV DB ( https://sscvdb.io ).
Collapse
Affiliation(s)
- Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Yatabe
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
3
|
Choquet K, Chaumont LP, Bache S, Baxter-Koenigs AR, Churchman LS. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610338. [PMID: 39257732 PMCID: PMC11383983 DOI: 10.1101/2024.08.29.610338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Quantitative trait loci analyses have revealed an important role for genetic variants in regulating alternative splicing (AS) and alternative cleavage and polyadenylation (APA) in humans. Yet, these studies are generally performed with mature mRNA, so they report on the outcome rather than the processes of RNA maturation and thus may overlook how variants directly modulate pre-mRNA processing. The order in which the many introns of a human gene are removed can substantially influence AS, while nascent RNA polyadenylation can affect RNA stability and decay. However, how splicing order and poly(A) tail length are regulated by genetic variation has never been explored. Here, we used direct RNA nanopore sequencing to investigate allele-specific pre-mRNA maturation in 12 human lymphoblastoid cell lines. We found frequent splicing order differences between alleles and uncovered significant single nucleotide polymorphism (SNP)-splicing order associations in 17 genes. This included SNPs located in or near splice sites as well as more distal intronic and exonic SNPs. Moreover, several genes showed allele-specific poly(A) tail lengths, many of which also had a skewed allelic abundance ratio. HLA class I transcripts, which encode proteins that play an essential role in antigen presentation, showed the most allele-specific splicing orders, which frequently co-occurred with allele-specific AS, APA or poly(A) tail length differences. Together, our results expose new layers of genetic regulation of pre-mRNA maturation and highlight the power of long-read RNA sequencing for allele-specific analyses.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | - Louis-Philippe Chaumont
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | - Simon Bache
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | | | | |
Collapse
|
4
|
Gene Self-Expressive Networks as a Generalization-Aware Tool to Model Gene Regulatory Networks. Biomolecules 2023; 13:biom13030526. [PMID: 36979461 PMCID: PMC10046116 DOI: 10.3390/biom13030526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Self-expressiveness is a mathematical property that aims at characterizing the relationship between instances in a dataset. This property has been applied widely and successfully in computer-vision tasks, time-series analysis, and to infer underlying network structures in domains including protein signaling interactions and social-networks activity. Nevertheless, despite its potential, self-expressiveness has not been explicitly used to infer gene networks. In this article, we present Generalizable Gene Self-Expressive Networks, a new, interpretable, and generalization-aware formalism to model gene networks, and we propose two methods: GXN•EN and GXN•OMP, based respectively on ElasticNet and OMP (Orthogonal Matching Pursuit), to infer and assess Generalizable Gene Self-Expressive Networks. We evaluate these methods on four Microarray datasets from the DREAM5 benchmark, using both internal and external metrics. The results obtained by both methods are comparable to those obtained by state-of-the-art tools, but are fast to train and exhibit high levels of sparsity, which make them easier to interpret. Moreover we applied these methods to three complex datasets containing RNA-seq informations from different mammalian tissues/cell-types. Lastly, we applied our methodology to compare a normal vs. a disease condition (Alzheimer), which allowed us to detect differential expression of genes’ sub-networks between these two biological conditions. Globally, the gene networks obtained exhibit a sparse and modular structure, with inner communities of genes presenting statistically significant over/under-expression on specific cell types, as well as significant enrichment for some anatomical GO terms, suggesting that such communities may also drive important functional roles.
Collapse
|
5
|
Zhang M, Wang S, Tang X, Ye X, Chen Y, Liu Z, Li L. Use of potassium ion channel and spliceosome proteins as diagnostic biomarkers for sudden unexplained death in schizophrenia. Forensic Sci Int 2022; 340:111471. [PMID: 36162298 DOI: 10.1016/j.forsciint.2022.111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
Abstract
Sudden unexplained death in schizophrenia (SUD-SCZ) is not uncommon and its incidence is approximately three times higher than that in the general population. However, diagnosis of SUD-SCZ remains a great challenge in forensic pathology. This study designed a two-phase study to investigate whether three proteins, namely two potassium ion channel proteins (KCNJ3 and KCNAB1) and one spliceosome protein (SF3B3) that were identified in our previous work, could be applied in the postmortem diagnosis of SUD-SCZ. Immunohistochemical staining of the three biomarkers, followed by a rigorous quantitative analysis, was performed on heart specimens from both SUD-SCZ and control groups. A diagnostic software based on the logistic regression formula derived from the test phase data was then constructed. In the test phase, we found that the staining intensities of KCNJ3, KCNAB1, and SF3B3 were all significantly lower in the SUD-SCZ group (n = 20) as compared with the control group that died from non-natural causes (n = 25), with fold-changes being 14.85 (p < 0.001), 4.13 (p = 0.028) and 2.12 (p = 0.048), respectively. Receiver operating characteristic analysis further illustrated that combination of the three biomarkers achieved the optimal diagnostic specificity (92%) and area under the curve (0.886). In the validation phase, the diagnostic software was confirmed to be a promising tool for predicting the risk of SUD-SCZ in authentic cases. Our study provided a valid strategy towards the practical diagnosis of SUD-SCZ by using KCNJ3, KCNAB1, and SF3B3 proteins as diagnostic biomarkers.
Collapse
Affiliation(s)
- Molin Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Xinru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China; Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| | - Yongsheng Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security Bureau, Shanghai 200083, PR China.
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
6
|
EpisomiR, a New Family of miRNAs, and Its Possible Roles in Human Diseases. Biomedicines 2022; 10:biomedicines10061280. [PMID: 35740302 PMCID: PMC9220071 DOI: 10.3390/biomedicines10061280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are synthesized through a canonical pathway and play a role in human diseases, such as cancers and cardiovascular, neurodegenerative, psychiatric, and chronic inflammatory diseases. The development of sequencing technologies has enabled the identification of variations in noncoding miRNAs. These miRNA variants, called isomiRs, are generated through a non-canonical pathway, by several enzymes that alter the length and sequence of miRNAs. The isomiR family is, now, expanding further to include episomiRs, which are miRNAs with different modifications. Since recent findings have shown that isomiRs reflect the cell-specific biological function of miRNAs, knowledge about episomiRs and isomiRs can, possibly, contribute to the optimization of diagnosis and therapeutic technology for precision medicine.
Collapse
|
7
|
Zhao W, Zhang Q, Wang J, Yu H, Zhen X, Li L, Qu Y, He Y, Zhang J, Li C, Zhang S, Luo B, Huang J, Gao Y. Novel Indel Variation of NPC1 Gene Associates With Risk of Sudden Cardiac Death. Front Genet 2022; 13:869859. [PMID: 35480314 PMCID: PMC9035640 DOI: 10.3389/fgene.2022.869859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Aims: Sudden cardiac death (SCD) was defined as an unexpected death from cardiac causes during a very short duration. It has been reported that Niemann-Pick type C1 (NPC1) gene mutations might be related to cardiovascular diseases. The purpose of the study is to investigate whether common genetic variants of NPC1 is involved in SCD susceptibility. Methods: Based on a candidate-gene-based approach and systematic screening strategy, this study analyzed an 8-bp insertion/deletion polymorphism (rs150703258) within downstream of NPC1 for the association with SCD risk in Chinese populations using 158 SCD cases and 524 controls. The association of rs150703258 and SCD susceptibility was analyzed using logistic regression. Genotype-phenotype correlation analysis was performed using public database including 1000G, expression quantitative trait loci (eQTL), and further validated by human heart tissues using PCR. Dual-luciferase assay was used to explore the potential regulatory role of rs150703258. Gene expression profiling interactive analysis and transcription factors prediction were performed. Results: Logistic regression analysis exhibited that the deletion allele of rs150703258 significantly increased the risk of SCD [odds ratio (OR) = 1.329; 95% confidence interval (95%CI):1.03–1.72; p = 0.0289]. Genotype-phenotype correlation analysis showed that the risk allele was significantly associated with higher expression of NPC1 at mRNA and protein expressions level in human heart tissues. eQTL analysis showed NPC1 and C18orf8 (an adjacent gene to NPC1) are both related to rs150703258 and have higher expression level in the samples with deletion allele. Dual-luciferase activity assays indicate a significant regulatory role for rs150703258. Gene expression profiling interactive analysis revealed that NPC1 and C18orf8 seemed to be co-regulated in human blood, arteries and heart tissues. In silico analysis showed that the rs150703258 deletion variant may create transcription factor binding sites. In addition, a rare 12-bp allele (4-bp longer than the insertion allele) of rs150703258 was discovered in the current cohort. Conclusion: In summary, our study revealed that rs150703258 might contribute to SCD susceptibility by regulating NPC1 and C18orf8 expression. This indel may be a potential marker for risk stratification and molecular diagnosis of SCD. Validations in different ethnic groups with larger sample size and mechanism explorations are warranted to confirm our findings.
Collapse
Affiliation(s)
- Wenfeng Zhao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Jiawen Wang
- Institute of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xiaoyuan Zhen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan Qu
- Department of Biological Science, Science School of Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Bin Luo
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Bin Luo, ; Jiang Huang, ; Yuzhen Gao,
| | - Jiang Huang
- Institute of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Bin Luo, ; Jiang Huang, ; Yuzhen Gao,
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
- *Correspondence: Bin Luo, ; Jiang Huang, ; Yuzhen Gao,
| |
Collapse
|
8
|
Liu X, Zhao J, Xue L, Zhao T, Ding W, Han Y, Ye H. A comparison of transcriptome analysis methods with reference genome. BMC Genomics 2022; 23:232. [PMID: 35337265 PMCID: PMC8957167 DOI: 10.1186/s12864-022-08465-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background The application of RNA-seq technology has become more extensive and the number of analysis procedures available has increased over the past years. Selecting an appropriate workflow has become an important issue for researchers in the field. Methods In our study, six popular analytical procedures/pipeline were compared using four RNA-seq datasets from mouse, human, rat, and macaque, respectively. The gene expression value, fold change of gene expression, and statistical significance were evaluated to compare the similarities and differences among the six procedures. qRT-PCR was performed to validate the differentially expressed genes (DEGs) from all six procedures. Results Cufflinks-Cuffdiff demands the highest computing resources and Kallisto-Sleuth demands the least. Gene expression values, fold change, p and q values of differential expression (DE) analysis are highly correlated among procedures using HTseq for quantification. For genes with medium expression abundance, the expression values determined using the different procedures were similar. Major differences in expression values come from genes with particularly high or low expression levels. HISAT2-StringTie-Ballgown is more sensitive to genes with low expression levels, while Kallisto-Sleuth may only be useful to evaluate genes with medium to high abundance. When the same thresholds for fold change and p value are chosen in DE analysis, StringTie-Ballgown produce the least number of DEGs, while HTseq-DESeq2, -edgeR or -limma generally produces more DEGs. The performance of Cufflinks-Cuffdiff and Kallisto-Sleuth varies in different datasets. For DEGs with medium expression levels, the biological verification rates were similar among all procedures. Conclusion Results are highly correlated among RNA-seq analysis procedures using HTseq for quantification. Difference in gene expression values mainly come from genes with particularly high or low expression levels. Moreover, biological validation rates of DEGs from all six procedures were similar for genes with medium expression levels. Investigators can choose analytical procedures according to their available computer resources, or whether genes of high or low expression levels are of interest. If computer resources are abundant, one can utilize multiple procedures to obtain the intersection of results to get the most reliable DEGs, or to obtain a combination of results to get a more comprehensive DE profile for transcriptomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08465-0.
Collapse
Affiliation(s)
- Xu Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Jialu Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liting Xue
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Wei Ding
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuying Han
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Wang S, Lin Y, Liang P, Li Q, Li W, Wang Z, Wang J, Chen J, Zha D. De novo Splice Site Mutation of the CHD7 Gene in a Chinese Patient with Typical CHARGE Syndrome. ORL J Otorhinolaryngol Relat Spec 2022; 84:417-424. [PMID: 35078197 DOI: 10.1159/000520376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION CHARGE syndrome (CS, OMIM 214800) is a rare genetic disease characterized by multiple congenital abnormalities, including coloboma, heart defect, atresia of the choanae, retardation of development, genital anomalies, and ear anomalies/deafness. The syndrome is mainly caused by a heterozygous variant in the chromodomain helicase DNA-binding protein 7 (CHD7) gene that encodes the CHD7 protein, involved in the ATP-dependent remodeling of chromatin. METHODS In this study, the next-generation sequencing targeted panel was used to detect a de novo variant c.3523-2A>G in the CHD7 gene in a patient with severe CS, congenital heart disease, left coloboma of the choroid, cryptorchidism, and congenital deafness. The Sanger sequencing confirmed the variant and clarified it as de novo variant by short tandem repeat analysis in the patient family. We analyzed the effect of a variant by Minigene assay to evaluate the pathogenicity of the variant. RESULTS In summary, cDNA analysis confirmed that c.3523-2A>G variant activates a cryptic splice site, resulting in 172 base pair missing in exon 15, leading to the premature truncation of the CHD7 protein (p.V1175Afs*11). CONCLUSION The present study functionally characterized the novel c.3523-2A>G variant in CHD7, providing further confirmatory evidence that it is associated with CS.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China,
| | - Ying Lin
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Pengfei Liang
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Qiong Li
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Wei Li
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Zhaoxia Wang
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jian Wang
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jun Chen
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Zhang Q, He Y, Xu H, Li L, Guo Y, Zhang J, Cheng L, Yu H, Dai Y, Yang Q, Yang Z, Li C, Zhang S, Zhu S, Luo B, Gao Y. Modulation of STIM1 by a risk insertion/deletion polymorphism underlying genetics susceptibility to sudden cardiac death originated from coronary artery disease. Forensic Sci Int 2021; 328:111010. [PMID: 34592581 DOI: 10.1016/j.forsciint.2021.111010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022]
Abstract
Stromal interaction molecule 1 (STIM1), as a dynamic calcium signal transducer and key regulator of cardiomyocyte Ca2+ homeostasis, has been implicated in various pathological processes related to sudden cardiac death originated from coronary artery disease (SCD-CAD). In this study, we performed a systematic variant screening on promoter region of STIM1 to filter potential functional genetic variations. Based on the screening results, a 5-bp insertion/deletion (indel) polymorphism (rs3061890) in promoter region of STIM1 was selected as the candidate variant. We investigated the association of rs3061890 with SCD-CAD susceptibility in Chinese Han populations. The homozygote del/del genotype significantly increased risk for SCD-CAD as compared with the ins/ins genotype (odds ratio, 2.86 [95% confidence interval, 1.69-4.29]; P = 2.3 × 10-5). Compared with the common allele, the 5-bp deletion risk allele exhibited lower transcriptional capacity in luciferase assays. Intriguingly, genotype-phenotype correlation studies using human myocardium tissue samples revealed that the expression of STIM1 was associated with the genotype of rs3061890. Computational prediction combined with electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays provided convincing evidence for stronger binding affinity of ELF1 (E74 like ETS transcription factor 1) with the deletion allele promoter. Taken together, our findings implied an allele-specific mechanism of regulating the transcription of STIM1 via ELF1, which contribute to SCD-CAD susceptibility. rs3061890 may thus considered as a candidate genetic marker for SCD-CAD prediction and prevention.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China.
| | - Hongfei Xu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yadong Guo
- Department of Forensic Sciences, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Lei Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yunda Dai
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Qi Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Bin Luo
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Zhang Q, Yu H, Yang Z, Li L, He Y, Zhu S, Li C, Zhang S, Luo B, Gao Y. A Functional Indel Polymorphism Within MIR155HG Is Associated With Sudden Cardiac Death Risk in a Chinese Population. Front Cardiovasc Med 2021; 8:671168. [PMID: 34136547 PMCID: PMC8200405 DOI: 10.3389/fcvm.2021.671168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Sudden cardiac death (SCD) is a devastating complication of multiple disease processes and has gradually became a major public health issue. miR-155 is one of the best characterized miRNAs and plays a critical role in several physiological and pathological process, including cardiovascular diseases. In this study, we systematically screened the whole region of miR-155 host gene (MIR155HG) and identified a 4-bp insertion/deletion variant (rs72014506) residing in the intron region of MIR155HG as the candidate polymorphism. The association of rs72014506 with SCD susceptibility was evaluated using 166 SCD cases and 830 healthy controls in a Chinese population. Logistic regression analysis suggested that the homozygote del/del genotype significantly decreased the risk of SCD [odds ratio (OR) = 0.29; 95% confidence interval (CI) = 0.12–0.74; Ptrend = 0.0004]. Further genotype–expression association study using human myocardium tissue samples suggested that the deletion allele was intimately linked to lower the expression of both MIR155HG and mature miR155. Luciferase activity assay also revealed that the deletion allele of rs72014506 inhibited gene transcriptional activity. Finally, we performed electrophoretic mobility shift assay and verified the preferential binding affinity of the deletion allele with POU2F1 (POU domain class 2 transcription factor 1). Collectively, we have successfully identified a SCD risk conferring polymorphism in the MIR155HG gene and a likely biological mechanism for the decreased risk of SCD associated with the deletion allele. This novel variant may thus serve as a potential genetic marker for SCD diagnosis and prevention in natural populations, if validated by further studies with a larger sample size.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Bin Luo
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Population-scale study of eRNA transcription reveals bipartite functional enhancer architecture. Nat Commun 2020; 11:5963. [PMID: 33235186 PMCID: PMC7687912 DOI: 10.1038/s41467-020-19829-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Enhancer RNAs (eRNA) are unstable non-coding RNAs, transcribed bidirectionally from active regulatory sequences, whose expression levels correlate with enhancer activity. We use capped-nascent-RNA sequencing to efficiently capture bidirectional transcription initiation across several human lymphoblastoid cell lines (Yoruba population) and detect ~75,000 eRNA transcription sites with high sensitivity and specificity. The use of nascent-RNA sequencing sidesteps the confounding effect of eRNA instability. We identify quantitative trait loci (QTLs) associated with the level and directionality of eRNA expression. High-resolution analyses of these two types of QTLs reveal distinct positions of enrichment at the central transcription factor (TF) binding regions and at the flanking eRNA initiation regions, both of which are associated with mRNA expression QTLs. These two regions-the central TF-binding footprint and the eRNA initiation cores-define a bipartite architecture of enhancers, inform enhancer function, and can be used as an indicator of the significance of non-coding regulatory variants.
Collapse
|
13
|
Jones JD, Monroe J, Koutmou KS. A molecular-level perspective on the frequency, distribution, and consequences of messenger RNA modifications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1586. [PMID: 31960607 PMCID: PMC8243748 DOI: 10.1002/wrna.1586] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/21/2019] [Accepted: 01/04/2020] [Indexed: 01/16/2023]
Abstract
Cells use chemical modifications to alter the sterics, charge, and conformations of large biomolecules, modulating their biogenesis, function, and stability. Until recently post-transcriptional RNA modifications were thought to be largely limited to nonprotein coding RNA species. However, this dogma has rapidly transformed with the discovery of a host of modifications in protein coding messenger RNAs (mRNAs). Recent advancements in genome-wide sequencing technologies have enabled the identification of mRNA modifications as a potential new frontier in gene regulation-leading to the development of the epitranscriptome field. As a result, there has been a flurry of multiple groundbreaking discoveries, including new modifications, nucleoside modifying enzymes ("writers" and "erasers"), and RNA binding proteins that recognize chemical modifications ("readers"). These discoveries opened the door to understanding how post-transcriptional mRNA modifications can modulate the mRNA lifecycle, and established a link between the epitranscriptome and human health and disease. Despite a rapidly growing recognition of their importance, fundamental questions regarding the identity, prevalence, and functional consequences of mRNA modifications remain to be answered. Here, we highlight quantitative studies that characterize mRNA modification abundance, frequency, and interactions with cellular machinery. As the field progresses, we see a need for the further integration of quantitative and reductionist approaches to complement transcriptome wide studies in order to establish a molecular-level framework for understanding the consequences of mRNA chemical modifications on biological processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Sümegi A, Hendrik Z, Gáll T, Felszeghy E, Szakszon K, Antal-Szalmás P, Beke L, Papp Á, Méhes G, Balla J, Balla G. A novel splice site indel alteration in the EIF2AK3 gene is responsible for the first cases of Wolcott-Rallison syndrome in Hungary. BMC MEDICAL GENETICS 2020; 21:61. [PMID: 32216767 PMCID: PMC7099831 DOI: 10.1186/s12881-020-0985-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/25/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Wolcott-Rallison Syndrome (WRS) is a rare autosomal recessive disease that is the most common cause of neonatal diabetes in consanguineous families. WRS is caused by various genetic alterations of the Eukaryotic Translation Initiation Factor 2-Alpha Kinase 3 (EIF2AK3) gene. METHODS Genetic analysis of a consanguineous family where two children were diagnosed with WRS was performed by Sanger sequencing. The altered protein was investigated by in vitro cloning, expression and immunohistochemistry. RESULTS The first cases in Hungary, - two patients in one family, where the parents were fourth-degree cousins - showed the typical clinical features of WRS: early onset diabetes mellitus with hyperglycemia, growth retardation, infection-induced multiple organ failure. The genetic background of the disease was a novel alteration in the EIF2AK3 gene involving the splice site of exon 11- intron 11-12 boundary: g.53051_53062delinsTG. According to cDNA sequencing this created a new splice site and resulted in a frameshift and the development of an early termination codon at amino acid position 633 (p.Pro627AspfsTer7). Based on in vitro cloning and expression studies, the truncated protein was functionally inactive. Immunohistochemistry revealed that the intact protein was absent in the islets of pancreas, furthermore insulin expressing cells were also dramatically diminished. Elevated GRP78 and reduced CHOP protein expression were observed in the liver. CONCLUSIONS The novel genetic alteration causing the absence of the EIF2AK3 protein resulted in insufficient handling of severe endoplasmic reticulum stress, leading to liver failure and demise of the patients.
Collapse
Affiliation(s)
- Andrea Sümegi
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - Enikő Felszeghy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - Katalin Szakszon
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - Péter Antal-Szalmás
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - Lívia Beke
- Department of Pathology, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - Ágnes Papp
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 98, Nagyerdei krt, Debrecen, H-4032, Hungary.,Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 98, Nagyerdei krt, Debrecen, H-4032, Hungary. .,Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98, Nagyerdei krt, Debrecen, H-4032, Hungary.
| |
Collapse
|
15
|
Mariella E, Marotta F, Grassi E, Gilotto S, Provero P. The Length of the Expressed 3' UTR Is an Intermediate Molecular Phenotype Linking Genetic Variants to Complex Diseases. Front Genet 2019; 10:714. [PMID: 31475030 PMCID: PMC6707137 DOI: 10.3389/fgene.2019.00714] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
In the last decades, genome-wide association studies (GWAS) have uncovered tens of thousands of associations between common genetic variants and complex diseases. However, these statistical associations can rarely be interpreted functionally and mechanistically. As the majority of the disease-associated variants are located far from coding sequences, even the relevant gene is often unclear. A way to gain insight into the relevant mechanisms is to study the genetic determinants of intermediate molecular phenotypes, such as gene expression and transcript structure. We propose a computational strategy to discover genetic variants affecting the relative expression of alternative 3′ untranslated region (UTR) isoforms, generated through alternative polyadenylation, a widespread posttranscriptional regulatory mechanism known to have relevant functional consequences. When applied to a large dataset in which whole genome and RNA sequencing data are available for 373 European individuals, 2,530 genes with alternative polyadenylation quantitative trait loci (apaQTL) were identified. We analyze and discuss possible mechanisms of action of these variants, and we show that they are significantly enriched in GWAS hits, in particular those concerning immune-related and neurological disorders. Our results point to an important role for genetically determined alternative polyadenylation in affecting predisposition to complex diseases, and suggest new ways to extract functional information from GWAS data.
Collapse
Affiliation(s)
- Elisa Mariella
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico Marotta
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Grassi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Stefano Gilotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Center for Tranlational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Lord J, Gallone G, Short PJ, McRae JF, Ironfield H, Wynn EH, Gerety SS, He L, Kerr B, Johnson DS, McCann E, Kinning E, Flinter F, Temple IK, Clayton-Smith J, McEntagart M, Lynch SA, Joss S, Douzgou S, Dabir T, Clowes V, McConnell VPM, Lam W, Wright CF, FitzPatrick DR, Firth HV, Barrett JC, Hurles ME. Pathogenicity and selective constraint on variation near splice sites. Genome Res 2018; 29:159-170. [PMID: 30587507 PMCID: PMC6360807 DOI: 10.1101/gr.238444.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Mutations that perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequencing data from 7833 probands with developmental disorders (DDs) and their unaffected parents, as well as more than 60,000 aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice sites and quantify the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained genes in healthy subjects, and excess de novo mutations in patients highlighted particular positions within and around the consensus splice site of greater functional relevance. By using mutational burden analyses in this large cohort of proband–parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucleotides (73%) and flanking noncanonical positions (27%), and calculate the positive predictive value of pathogenicity for different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated genes at noncanonical positions in splice sites. We estimate 35%–40% of pathogenic variants in noncanonical splice site positions are missing from public databases.
Collapse
Affiliation(s)
- Jenny Lord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Giuseppe Gallone
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Patrick J Short
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jeremy F McRae
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Holly Ironfield
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Elizabeth H Wynn
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sebastian S Gerety
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Liu He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Diana S Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, OPD2, Northern General Hospital, Sheffield S5 7AU, United Kingdom
| | - Emma McCann
- Liverpool Women's Hospital Foundation Trust, Liverpool L8 7SS, United Kingdom
| | - Esther Kinning
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of Medical Genetics, Yorkhill Hospital, Glasgow G3 8SJ, United Kingdom
| | - Frances Flinter
- South East Thames Regional Genetics Centre, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London SE1 9RT, United Kingdom
| | - I Karen Temple
- Faculty of Medicine, University of Southampton, Institute of Developmental Sciences, Southampton SO16 6YD, United Kingdom.,Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton SO16 5YA, United Kingdom
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Meriel McEntagart
- South West Thames Regional Genetics Centre, St. George's Healthcare NHS Trust, St. George's, University of London, London SW17 0RE, United Kingdom
| | | | - Shelagh Joss
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast BT9 7AB, United Kingom
| | - Virginia Clowes
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Northwick Park and St. Mark's Hospitals, Harrow HA1 3UJ, United Kingdom
| | - Vivienne P M McConnell
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast BT9 7AB, United Kingom
| | - Wayne Lam
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, United Kingdom
| | - David R FitzPatrick
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.,MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.,East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jeffrey C Barrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
17
|
Martínez-Bueno M, Oparina N, Dozmorov MG, Marion MC, Comeau ME, Gilkeson G, Kamen D, Weisman M, Salmon J, McCune JW, Harley JB, Kimberly R, James JA, Merrill J, Montgomery C, Langefeld CD, Alarcón-Riquelme ME. Trans-Ethnic Mapping of BANK1 Identifies Two Independent SLE-Risk Linkage Groups Enriched for Co-Transcriptional Splicing Marks. Int J Mol Sci 2018; 19:ijms19082331. [PMID: 30096841 PMCID: PMC6121630 DOI: 10.3390/ijms19082331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 11/17/2022] Open
Abstract
BANK1 is a susceptibility gene for several systemic autoimmune diseases in several populations. Using the genome-wide association study (GWAS) data from Europeans (EUR) and African Americans (AA), we performed an extensive fine mapping of ankyrin repeats 1 (BANK1). To increase the SNP density, we used imputation followed by univariate and conditional analysis, combined with a haplotypic and expression quantitative trait locus (eQTL) analysis. The data from Europeans showed that the associated region was restricted to a minimal and dependent set of SNPs covering introns two and three, and exon two. In AA, the signal found in the Europeans was split into two independent effects. All of the major risk associated SNPs were eQTLs, and the risks were associated with an increased BANK1 gene expression. Functional annotation analysis revealed the enrichment of repressive B cell epigenomic marks (EZH2 and H3K27me3) and a strong enrichment of splice junctions. Furthermore, one eQTL located in intron two, rs13106926, was found within the binding site for RUNX3, a transcriptional activator. These results connect the local genome topography, chromatin structure, and the regulatory landscape of BANK1 with co-transcriptional splicing of exon two. Our data defines a minimal set of risk associated eQTLs predicted to be involved in the expression of BANK1 modulated through epigenetic regulation and splicing. These findings allow us to suggest that the increased expression of BANK1 will have an impact on B-cell mediated disease pathways.
Collapse
Affiliation(s)
- Manuel Martínez-Bueno
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Government, PTS, 18016 Granada, Spain.
| | - Nina Oparina
- Unit of Chronic Inflammatory Diseases, Institute for Environmental Medicine, Karolinska Institutet, 171 67 Solna, Sweden.
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Miranda C Marion
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mary E Comeau
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Gary Gilkeson
- Division of Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Diane Kamen
- Division of Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Michael Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Jane Salmon
- Hospital for Special Surgery, New York, NY 10021, USA.
| | - Joseph W McCune
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, OH and US Department of Veterans Affairs Medical Center, Cincinnati, OH 45229, USA.
| | - Robert Kimberly
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA.
| | - Judith A James
- Arthritis and Clinical Immunology and Clinical Pharmacology Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Joan Merrill
- Arthritis and Clinical Immunology and Clinical Pharmacology Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Courtney Montgomery
- Arthritis and Clinical Immunology and Clinical Pharmacology Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Carl D Langefeld
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Government, PTS, 18016 Granada, Spain.
- Unit of Chronic Inflammatory Diseases, Institute for Environmental Medicine, Karolinska Institutet, 171 67 Solna, Sweden.
- Arthritis and Clinical Immunology and Clinical Pharmacology Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
18
|
Targeting the Polyadenylation Signal of Pre-mRNA: A New Gene Silencing Approach for Facioscapulohumeral Dystrophy. Int J Mol Sci 2018; 19:ijms19051347. [PMID: 29751519 PMCID: PMC5983732 DOI: 10.3390/ijms19051347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is characterized by the contraction of the D4Z4 array located in the sub-telomeric region of the chromosome 4, leading to the aberrant expression of the DUX4 transcription factor and the mis-regulation of hundreds of genes. Several therapeutic strategies have been proposed among which the possibility to target the polyadenylation signal to silence the causative gene of the disease. Indeed, defects in mRNA polyadenylation leads to an alteration of the transcription termination, a disruption of mRNA transport from the nucleus to the cytoplasm decreasing the mRNA stability and translation efficiency. This review discusses the polyadenylation mechanisms, why alternative polyadenylation impacts gene expression, and how targeting polyadenylation signal may be a potential therapeutic approach for FSHD.
Collapse
|
19
|
Brümmer A, Yang Y, Chan TW, Xiao X. Structure-mediated modulation of mRNA abundance by A-to-I editing. Nat Commun 2017; 8:1255. [PMID: 29093448 PMCID: PMC5665907 DOI: 10.1038/s41467-017-01459-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
RNA editing introduces single nucleotide changes to RNA, thus potentially diversifying gene expression. Recent studies have reported significant changes in RNA editing profiles in disease and development. The functional consequences of these widespread alterations remain elusive because of the unknown function of most RNA editing sites. Here, we carry out a comprehensive analysis of A-to-I editomes in human populations. Surprisingly, we observe highly similar editing profiles across populations despite striking differences in the expression levels of ADAR genes. Striving to explain this discrepancy, we uncover a functional mechanism of A-to-I editing in regulating mRNA abundance. We show that A-to-I editing stabilizes RNA secondary structures and reduces the accessibility of AGO2-miRNA to target sites in mRNAs. The editing-dependent stabilization of mRNAs in turn alters the observed editing levels in the stable RNA repertoire. Our study provides valuable insights into the functional impact of RNA editing in human cells.
Collapse
Affiliation(s)
- Anneke Brümmer
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Yun Yang
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Tracey W Chan
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA.
| |
Collapse
|
20
|
Bajad P, Jantsch MF, Keegan L, O'Connell M. A to I editing in disease is not fake news. RNA Biol 2017; 14:1223-1231. [PMID: 28346055 PMCID: PMC5699539 DOI: 10.1080/15476286.2017.1306173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency, leading to the production of alternative protein variants. However, the majority of editing events occur within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different adenosine bases are potential targets but editing efficiency is usually much lower. Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi-Goutières syndrome (AGS) in affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases can no longer be ignored. The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to alter genetic information at the RNA level. In this review we focus on the role of ADARs in disease development and progression and on their potential use to artificially modify RNAs in a targeted manner.
Collapse
Affiliation(s)
- Prajakta Bajad
- Medical University of Vienna, Center of Anatomy and Cell Biology, Department of Cell- and Developmental Biology, Schwarzspanierstrasse, Vienna, Austria
| | - Michael F. Jantsch
- Medical University of Vienna, Center of Anatomy and Cell Biology, Department of Cell- and Developmental Biology, Schwarzspanierstrasse, Vienna, Austria
| | - Liam Keegan
- CEITEC at Masaryk University, Kamenice, Czech Republic
| | | |
Collapse
|
21
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
22
|
Yan J, Kang C, Bian Z, Jin R, Ma X, Du Z, Yao H, Gao L. Sequence-Dependent Self-Assembly of Chiral Polyimides. Chem Asian J 2017; 12:841-845. [DOI: 10.1002/asia.201700284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/10/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jijun Yan
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chuanqing Kang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Zheng Bian
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Rizhe Jin
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Xiaoye Ma
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Zhijun Du
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Haibo Yao
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Lianxun Gao
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| |
Collapse
|