1
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
An S, Ahn E, Koo T, Park S, Suh B, Rengasamy KP, Lyu G, Kim C, Kim B, Kim H, Park S, Tan D, Cho US. The graphene-based affinity cryo-EM grid for the endogenous protein structure determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.638683. [PMID: 40060550 PMCID: PMC11888290 DOI: 10.1101/2025.02.22.638683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Following recent advancements in cryo-electron microscopy (cryo-EM) instrumentation and software algorithms, the next bottleneck in achieving high-resolution cryo-EM structures arises from sample preparation. To overcome this, we developed a graphene-based affinity cryo-EM grid, the Graffendor (GFD) grid, to target low-abundance endogenous protein complexes. To maintain grid quality and consistency within a single batch of 36 grids, we established a one-step crosslinking batch-production method using genetically modified ALFA nanobody as affinity probe (GFD-A grid). Using low concentrations of β-galactosidase-2xALFA, we demonstrated the GFD-A grid's efficiency in capturing tagged proteins and resolving its cryo-EM structure at 2.71 Å. To test its application for endogenous proteins, we engineered yeast cells with a C-terminal tandem affinity tag (3xALFA-Tev-3xFlag: ATF) at Pop6, a shared component of RNase MRP and RNase P. Cryo-EM structures of RNase MRP and RNase P were resolved at 3.3 Å and 3.0 Å from cell lysates, and 3.6 Å and 3.9 Å from anti-flag elution, respectively. Notably, additional densities were observed in the structures obtained from cell lysates, which were absent in those from the anti-FLAG eluate. These findings establish the GFD-A grid as a robust platform for investigating endogenous proteins, capable of capturing transient interactions and enhancing the resolution of challenging cryo-EM structures with greater efficiency.
Collapse
Affiliation(s)
- Sojin An
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eungjin Ahn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Hanwha Solutions Chemical Division R&D Center, Daejeon, South Korea
| | - Tyler Koo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Soyoung Park
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, South Korea
| | - Boeon Suh
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, South Korea
| | - Krishna P Rengasamy
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Gaocong Lyu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- The Molecular Biophysics and Structural Biology Program, University of Pittsburgh, PA 15213, USA
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, South Korea
| | - Byungchul Kim
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Sangho Park
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Cooperative Center for Research Facilities, Sungkyunkwan University, Suwon, South Korea
| | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University, NY 11794, USA
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Zhang DY, Xu Z, Li JY, Mao S, Wang H. Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics. ACS NANO 2025; 19:120-151. [PMID: 39723464 DOI: 10.1021/acsnano.4c12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the structures, interactions, and dynamics of molecules in their native liquid state is a long-existing challenge in chemistry, molecular science, and biophysics with profound scientific significance. Advanced transmission electron microscopy (TEM)-based imaging techniques with the use of graphene emerged as promising tools, mainly due to their performance on spatial and temporal resolution. This review focuses on the various approaches to achieving high-resolution imaging of individual molecules and their transient interactions. We highlight the crucial role of graphene grids in cryogenic electron microscopy for achieving Ångstrom-level resolution for resolving molecular structures and the importance of graphene liquid cells in liquid-phase TEM for directly observing dynamics with subnanometer resolution at a frame rate of several frames per second, as well as the cross-talks of the two imaging modes. To understand the chemistry and physics encoded in these molecular movies, incorporating machine learning algorithms for image analysis provides a promising approach that further bolsters the resolution adventure. Besides reviewing the recent advances and methodologies in TEM imaging of individual molecules using graphene, this review also outlines future directions to improve these techniques and envision problems in molecular science, chemistry, and biology that could benefit from these experiments.
Collapse
Affiliation(s)
- De-Yi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Zhipeng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Mao
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
4
|
Zhao Q, Hong X, Wang Y, Zhang S, Ding Z, Meng X, Song Q, Hong Q, Jiang W, Shi X, Cai T, Cong Y. An immobilized antibody-based affinity grid strategy for on-grid purification of target proteins enables high-resolution cryo-EM. Commun Biol 2024; 7:715. [PMID: 38858498 PMCID: PMC11164986 DOI: 10.1038/s42003-024-06406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
In cryo-electron microscopy (cryo-EM), sample preparation poses a critical bottleneck, particularly for rare or fragile macromolecular assemblies and those suffering from denaturation and particle orientation distribution issues related to air-water interface. In this study, we develop and characterize an immobilized antibody-based affinity grid (IAAG) strategy based on the high-affinity PA tag/NZ-1 antibody epitope tag system. We employ Pyr-NHS as a linker to immobilize NZ-1 Fab on the graphene oxide or carbon-covered grid surface. Our results demonstrate that the IAAG grid effectively enriches PA-tagged target proteins and overcomes preferred orientation issues. Furthermore, we demonstrate the utility of our IAAG strategy for on-grid purification of low-abundance target complexes from cell lysates, enabling atomic resolution cryo-EM. This approach greatly streamlines the purification process, reduces the need for large quantities of biological samples, and addresses common challenges encountered in cryo-EM sample preparation. Collectively, our IAAG strategy provides an efficient and robust means for combined sample purification and vitrification, feasible for high-resolution cryo-EM. This approach holds potential for broader applicability in both cryo-EM and cryo-electron tomography (cryo-ET).
Collapse
Affiliation(s)
- Qiaoyu Zhao
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaoyu Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shaoning Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Zhanyu Ding
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xueming Meng
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qianqian Song
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qin Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wanying Jiang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiangyi Shi
- Shanghai Nanoport, Thermo Fisher Scientific, Shanghai, China
| | - Tianxun Cai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Ramlaul K, Feng Z, Canavan C, de Martín Garrido N, Carreño D, Crone M, Jensen KE, Li B, Barnett H, Riglar DT, Freemont PS, Miller D, Aylett CHS. A 3D-printed flow-cell for on-grid purification of electron microscopy samples directly from lysate. J Struct Biol 2023; 215:107999. [PMID: 37451560 DOI: 10.1016/j.jsb.2023.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
While recent advances in cryo-EM, coupled with single particle analysis, have the potential to allow structure determination in a near-native state from vanishingly few individual particles, this vision has yet to be realised in practise. Requirements for particle numbers that currently far exceed the theoretical lower limits, challenges with the practicalities of achieving high concentrations for difficult-to-produce samples, and inadequate sample-dependent imaging conditions, all result in significant bottlenecks preventing routine structure determination using cryo-EM. Therefore, considerable efforts are being made to circumvent these bottlenecks by developing affinity purification of samples on-grid; at once obviating the need to produce large amounts of protein, as well as more directly controlling the variable, and sample-dependent, process of grid preparation. In this proof-of-concept study, we demonstrate a further practical step towards this paradigm, developing a 3D-printable flow-cell device to allow on-grid affinity purification from raw inputs such as whole cell lysates, using graphene oxide-based affinity grids. Our flow-cell device can be interfaced directly with routinely-used laboratory equipment such as liquid chromatographs, or peristaltic pumps, fitted with standard chromatographic (1/16") connectors, and can be used to allow binding of samples to affinity grids in a controlled environment prior to the extensive washing required to remove impurities. Furthermore, by designing a device which can be 3D printed and coupled to routinely used laboratory equipment, we hope to increase the accessibility of the techniques presented herein to researchers working towards single-particle macromolecular structures.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ziyi Feng
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Caoimhe Canavan
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Natàlia de Martín Garrido
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - David Carreño
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Michael Crone
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Kirsten E Jensen
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Bing Li
- Hamlyn Centre, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Harry Barnett
- Imperial College Advanced Hackspace, Imperial College London, London, United Kingdom
| | - David T Riglar
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Paul S Freemont
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - David Miller
- Imperial College Advanced Hackspace, Imperial College London, London, United Kingdom.
| | - Christopher H S Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| |
Collapse
|
6
|
Grassetti AV, May MB, Davis JH. Application of monolayer graphene to cryo-electron microscopy grids for high-resolution structure determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550908. [PMID: 37546934 PMCID: PMC10402136 DOI: 10.1101/2023.07.28.550908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In cryogenic electron microscopy (cryo-EM), purified macromolecules are typically applied to a grid bearing a holey carbon foil, blotted to remove excess liquid and rapidly frozen in a roughly 20-100 nm thick layer of vitreous ice that is suspended across roughly 1 μm-wide foil holes. The resulting sample is then imaged using cryogenic transmission electron microscopy and, after substantial image processing, near-atomic resolution structures can be determined. Despite cryo-EM's widespread adoption, sample preparation remains a severe bottleneck in cryo-EM workflows, with users often encountering challenges related to samples behaving poorly in the suspended vitreous ice. Recently, methods have been developed to modify cryo-EM grids with a single continuous layer of graphene, which acts as a support surface that often increases particle density in the imaged area and can reduce interactions between particles and the air-water interface. Here, we provide detailed protocols for the application of graphene to cryo-EM grids, and for rapidly assessing the relative hydrophilicity of the resulting grids. Additionally, we describe an EM-based method to confirm the presence of graphene by visualizing its characteristic diffraction pattern. Finally, we demonstrate the utility of these graphene supports by rapidly reconstructing a 2.7 Å resolution density map of an exemplar Cas9 complex using a highly pure sample at a relatively low concentration.
Collapse
Affiliation(s)
- Andrew V. Grassetti
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mira B. May
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
7
|
Ahn E, Kim B, Park S, Erwin AL, Sung SH, Hovden R, Mosalaganti S, Cho US. Batch Production of High-Quality Graphene Grids for Cryo-EM: Cryo-EM Structure of Methylococcus capsulatus Soluble Methane Monooxygenase Hydroxylase. ACS NANO 2023; 17:6011-6022. [PMID: 36926824 PMCID: PMC10062032 DOI: 10.1021/acsnano.3c00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has become a widely used tool for determining the protein structure. Despite recent technical advances, sample preparation remains a major bottleneck for several reasons, including protein denaturation at the air-water interface, the presence of preferred orientations, nonuniform ice layers, etc. Graphene, a two-dimensional allotrope of carbon consisting of a single atomic layer, has recently gained attention as a near-ideal support film for cryo-EM that can overcome these challenges because of its superior properties, including mechanical strength and electrical conductivity. Here, we introduce a reliable, easily implemented, and reproducible method to produce 36 graphene-coated grids within 1.5 days. To demonstrate their practical application, we determined the cryo-EM structure of Methylococcus capsulatus soluble methane monooxygenase hydroxylase (sMMOH) at resolutions of 2.9 and 2.5 Å using Quantifoil and graphene-coated grids, respectively. We found that the graphene-coated grid has several advantages, including a smaller amount of protein required and avoiding protein denaturation at the air-water interface. By comparing the cryo-EM structure of sMMOH with its crystal structure, we identified subtle yet significant geometrical changes at the nonheme diiron center, which may better indicate the active site configuration of sMMOH in the resting/oxidized state.
Collapse
Affiliation(s)
- Eungjin Ahn
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Byungchul Kim
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soyoung Park
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Fine Chemistry, Seoul National University
of Science and Technology, Seoul 139-743, Korea
| | - Amanda L. Erwin
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United
States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suk Hyun Sung
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48105, United
States
| | - Robert Hovden
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48105, United
States
- Applied
Physics Program, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Shyamal Mosalaganti
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United
States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Uhn-Soo Cho
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Fujita J, Makino F, Asahara H, Moriguchi M, Kumano S, Anzai I, Kishikawa JI, Matsuura Y, Kato T, Namba K, Inoue T. Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis. Sci Rep 2023; 13:2279. [PMID: 36755111 PMCID: PMC9908306 DOI: 10.1038/s41598-023-29396-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Functionalization of graphene is one of the most important fundamental technologies in a wide variety of fields including industry and biochemistry. We have successfully achieved a novel oxidative modification of graphene using photoactivated ClO2· as a mild oxidant and confirmed the oxidized graphene grid is storable with its functionality for at least three months under N2 atmosphere. Subsequent chemical functionalization enabled us to develop an epoxidized graphene grid (EG-grid™), which effectively adsorbs protein particles for electron cryomicroscopy (cryoEM) image analysis. The EG-grid dramatically improved the particle density and orientation distribution. The density maps of GroEL and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were reconstructed at 1.99 and 2.16 Å resolution from only 504 and 241 micrographs, respectively. A sample solution of 0.1 mg ml-1 was sufficient to reconstruct a 3.10 Å resolution map of SARS-CoV-2 spike protein from 1163 micrographs. The map resolutions of β-galactosidase and apoferritin easily reached 1.81 Å and 1.29 Å resolution, respectively, indicating its atomic-resolution imaging capability. Thus, the EG-grid will be an extremely powerful tool for highly efficient high-resolution cryoEM structural analysis of biological macromolecules.
Collapse
Affiliation(s)
- Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL Ltd, 3-2-1 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Maiko Moriguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shota Kumano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Open and Transdisciplinary Research Initiatives, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,dotAqua Inc., 2-1 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
9
|
Nickl P, Hilal T, Olal D, Donskyi IS, Radnik J, Ludwig K, Haag R. A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205932. [PMID: 36507556 DOI: 10.1002/smll.202205932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Protein adsorption at the air-water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir-Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air-water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology.
Collapse
Affiliation(s)
- Philip Nickl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Tarek Hilal
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Daniel Olal
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Ievgen Sergeevitch Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Jörg Radnik
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
10
|
Bromberg R, Cai K, Guo Y, Plymire D, Emde T, Puzio M, Borek D, Otwinowski Z. The His-tag as a decoy modulating preferred orientation in cryoEM. Front Mol Biosci 2022; 9:912072. [PMID: 36325274 PMCID: PMC9619061 DOI: 10.3389/fmolb.2022.912072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
The His-tag is a widely used affinity tag that facilitates purification by means of affinity chromatography of recombinant proteins for functional and structural studies. We show here that His-tag presence affects how coproheme decarboxylase interacts with the air-water interface during grid preparation for cryoEM. Depending on His-tag presence or absence, we observe significant changes in patterns of preferred orientation. Our analysis of particle orientations suggests that His-tag presence can mask the hydrophobic and hydrophilic patches on a protein’s surface that mediate the interactions with the air-water interface, while the hydrophobic linker between a His-tag and the coding sequence of the protein may enhance other interactions with the air-water interface. Our observations suggest that tagging, including rational design of the linkers between an affinity tag and a protein of interest, offer a promising approach to modulating interactions with the air-water interface.
Collapse
Affiliation(s)
- Raquel Bromberg
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Ligo Analytics, Dallas, TX, United States
| | - Kai Cai
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yirui Guo
- Ligo Analytics, Dallas, TX, United States
| | - Daniel Plymire
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Ligo Analytics, Dallas, TX, United States
| | - Tabitha Emde
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Maciej Puzio
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dominika Borek
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Center for Structural Genomics of Infectious Diseases, Dallas, TX, United States
- *Correspondence: Dominika Borek, ; Zbyszek Otwinowski,
| | - Zbyszek Otwinowski
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Center for Structural Genomics of Infectious Diseases, Dallas, TX, United States
- *Correspondence: Dominika Borek, ; Zbyszek Otwinowski,
| |
Collapse
|
11
|
Fan H, Sun F. Developing Graphene Grids for Cryoelectron Microscopy. Front Mol Biosci 2022; 9:937253. [PMID: 35911962 PMCID: PMC9326159 DOI: 10.3389/fmolb.2022.937253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cryogenic electron microscopy (cryo-EM) single particle analysis has become one of the major techniques used to study high-resolution 3D structures of biological macromolecules. Specimens are generally prepared in a thin layer of vitrified ice using a holey carbon grid. However, the sample quality using this type of grid is not always ideal for high-resolution imaging even when the specimens in the test tube behave ideally. Various problems occur during a vitrification procedure, including poor/nonuniform distribution of particles, preferred orientation of particles, specimen denaturation/degradation, high background from thick ice, and beam-induced motion, which have become important bottlenecks in high-resolution structural studies using cryo-EM in many projects. In recent years, grids with support films made of graphene and its derivatives have been developed to efficiently solve these problems. Here, the various advantages of graphene grids over conventional holey carbon film grids, functionalization of graphene support films, production methods of graphene grids, and origins of pristine graphene contamination are reviewed and discussed.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory, Guangzhou, China
| |
Collapse
|
12
|
Fan H, Wang B, Zhang Y, Zhu Y, Song B, Xu H, Zhai Y, Qiao M, Sun F. A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nat Commun 2021; 12:7257. [PMID: 34907237 PMCID: PMC8671466 DOI: 10.1038/s41467-021-27596-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/27/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) has become a powerful tool to resolve high-resolution structures of biomacromolecules in solution. However, air-water interface induced preferred orientations, dissociation or denaturation of biomacromolecules during cryo-vitrification remains a limiting factor for many specimens. To solve this bottleneck, we developed a cryo-EM support film using 2D crystals of hydrophobin HFBI. The hydrophilic side of the HFBI film adsorbs protein particles via electrostatic interactions and sequesters them from the air-water interface, allowing the formation of sufficiently thin ice for high-quality data collection. The particle orientation distribution can be regulated by adjusting the buffer pH. Using this support, we determined the cryo-EM structures of catalase (2.29 Å) and influenza haemagglutinin trimer (2.56 Å), which exhibited strong preferred orientations using a conventional cryo-vitrification protocol. We further show that the HFBI film is suitable to obtain high-resolution structures of small proteins, including aldolase (150 kDa, 3.28 Å) and haemoglobin (64 kDa, 3.6 Å). Our work suggests that HFBI films may have broad future applications in increasing the success rate and efficiency of cryo-EM.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yan Zhang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China.
- School of Life Science, Shanxi University, Shanxi, China.
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, 101400, Beijing, China.
- Bioland Laboratory, 510005, Guangzhou, Guangdong Province, China.
| |
Collapse
|
13
|
Wu K, Wu D, Zhu L, Wu Y. Application of Monolayer Graphene and Its Derivative in Cryo-EM Sample Preparation. Int J Mol Sci 2021; 22:8940. [PMID: 34445650 PMCID: PMC8396334 DOI: 10.3390/ijms22168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cryo-electron microscopy (Cryo-EM) has become a routine technology for resolving the structure of biological macromolecules due to the resolution revolution in recent years. The specimens are typically prepared in a very thin layer of vitrified ice suspending in the holes of the perforated amorphous carbon film. However, the samples prepared by directly applying to the conventional support membranes may suffer from partial or complete denaturation caused by sticking to the air-water interface (AWI). With the application in materials, graphene has also been used recently to improve frozen sample preparation instead of a suspended conventional amorphous thin carbon. It has been proven that graphene or graphene oxide and various chemical modifications on its surface can effectively prevent particles from adsorbing to the AWI, which improves the dispersion, adsorbed number, and orientation preference of frozen particles in the ice layer. Their excellent properties and thinner thickness can significantly reduce the background noise, allowing high-resolution three-dimensional reconstructions using a minimum data set.
Collapse
Affiliation(s)
- Ke Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
| | - Di Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
| | - Li Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
- Electron Microscopy Centre of Lanzhou University, Lanzhou 730000, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
14
|
Hoq MR, Vago FS, Li K, Kovaliov M, Nicholas RJ, Huryn DM, Wipf P, Jiang W, Thompson DH. Affinity Capture of p97 with Small-Molecule Ligand Bait Reveals a 3.6 Å Double-Hexamer Cryoelectron Microscopy Structure. ACS NANO 2021; 15:8376-8385. [PMID: 33900731 PMCID: PMC11752781 DOI: 10.1021/acsnano.0c10185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent progress in the development of affinity grids for cryoelectron microscopy (cryo-EM) typically employs genetic engineering of the protein sample such as histidine or Spy tagging, immobilized antibody capture, or nonselective immobilization via electrostatic interactions or Schiff base formation. We report a powerful and flexible method for the affinity capture of target proteins for cryo-EM analysis that utilizes small-molecule ligands as bait for concentrating human target proteins directly onto the grid surface for single-particle reconstruction. This approach is demonstrated for human p97, captured using two different small-molecule high-affinity ligands of this AAA+ ATPase. Four electron density maps are revealed, each representing a p97 conformational state captured from solution, including a double-hexamer structure resolved to 3.6 Å. These results demonstrate that the noncovalent capture of protein targets on EM grids modified with high-affinity ligands can enable the structure elucidation of multiple configurational states of the target and potentially inform structure-based drug design campaigns.
Collapse
Affiliation(s)
- Md Rejaul Hoq
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Frank S. Vago
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Kunpeng Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Marina Kovaliov
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh Pennsylvania 15261, USA
| | - Robert J. Nicholas
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Donna M. Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh Pennsylvania 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Wen Jiang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Cancer Research, West Lafayette, Indiana 47907, USA
| | - David H. Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Cancer Research, West Lafayette, Indiana 47907, USA
| |
Collapse
|
15
|
Kumar A, Sengupta N, Dutta S. Simplified Approach for Preparing Graphene Oxide TEM Grids for Stained and Vitrified Biomolecules. NANOMATERIALS 2021; 11:nano11030643. [PMID: 33808009 PMCID: PMC7999706 DOI: 10.3390/nano11030643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
In this manuscript, we report the application of graphene oxide (GO) in the preparation of cryo-electron microscopy (cryo-EM) and transmission electron microscopy (TEM) grids. We treated GO with water and organic solvents, such as, methanol, ethanol and isopropanol separately to isolate significantly large GO monolayer flake to fabricate the grids for cryo-EM and TEM study. We implemented a simplified approach to isolate flakes of GO monolayer for constructing the TEM grids, independent of expensive heavy equipment (Langmuir-Blodgett trough, glow-discharge system, carbon-evaporator or plasma-cleaner or peristaltic pumps). We employed confocal microscopy, SEM and TEM to characterize the flake size, stability and transparency of the GO monolayer and atomic force microscopy (AFM) to probe the depth of GO coated grids. Additionally, GO grids are visualized at cryogenic condition for suitability of GO monolayer for cryo-EM study. In addition, GO-Met-H2O grids reduce the effect of preferred orientation of biological macromolecules within the amorphous ice. The power-spectrum and contrast-transfer-function unequivocally suggest that GO-Met-H2O fabricated holey grids have excellent potential for application in high-resolution structural characterization of biomolecules. Furthermore, only 200 movies and ~8000 70S ribosome particles are selected on GO-coated grids for cryo-EM reconstruction to achieve high-resolution structure.
Collapse
Affiliation(s)
| | | | - Somnath Dutta
- Correspondence: ; Tel.: +91-080-2293-3453; Fax: +91-080-2360-0535
| |
Collapse
|
16
|
Glaeser RM. Preparing Better Samples for Cryo-Electron Microscopy: Biochemical Challenges Do Not End with Isolation and Purification. Annu Rev Biochem 2021; 90:451-474. [PMID: 33556280 DOI: 10.1146/annurev-biochem-072020-020231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The preparation of extremely thin samples, which are required for high-resolution electron microscopy, poses extreme risk of damaging biological macromolecules due to interactions with the air-water interface. Although the rapid increase in the number of published structures initially gave little indication that this was a problem, the search for methods that substantially mitigate this hazard is now intensifying. The two main approaches under investigation are (a) immobilizing particles onto structure-friendly support films and (b) reducing the length of time during which such interactions may occur. While there is little possibility of outrunning diffusion to the interface, intentional passivation of the interface may slow the process of adsorption and denaturation. In addition, growing attention is being given to gaining more effective control of the thickness of the sample prior to vitrification.
Collapse
Affiliation(s)
- Robert M Glaeser
- Department of Molecular and Cell Biology and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
17
|
General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM. Proc Natl Acad Sci U S A 2020; 117:24269-24273. [PMID: 32913054 PMCID: PMC7533693 DOI: 10.1073/pnas.2009707117] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite the increasing efforts in developing affinity grids to facilitate sample preparation for challenging systems and dynamic complexes, they are not widely used in cryo-electron microscopy (EM) owing to concerns of limiting resolution. We show that our affinity grids extract proteins through covalent bonding with 3.3-Å reconstruction. To our knowledge, no example of small proteins (<200 KDa) has been successfully tested with other affinity grids. With encouraging results further from a mixture sample, we believe that the strategy described here is highly applicable to a broad array of challenging macromolecules and thus is a method of broad interest to the cryo-EM community. The dramatic improvement in cryo-EM sample preparation outlined here paves the way to “purification on the grid.” Affinity grids have great potential to facilitate rapid preparation of even quite impure samples in single-particle cryo-electron microscopy (EM). Yet despite the promising advances of affinity grids over the past decades, no single strategy has demonstrated general utility. Here we chemically functionalize cryo-EM grids coated with mostly one or two layers of graphene oxide to facilitate affinity capture. The protein of interest is tagged using a system that rapidly forms a highly specific covalent bond to its cognate catcher linked to the grid via a polyethylene glycol (PEG) spacer. Importantly, the spacer keeps particles away from both the air–water interface and the graphene oxide surface, protecting them from potential denaturation and rendering them sufficiently flexible to avoid preferential sample orientation concerns. Furthermore, the PEG spacer successfully reduces nonspecific binding, enabling high-resolution reconstructions from a much cruder lysate sample.
Collapse
|
18
|
Ahmed I, Akram Z, Sahar MSU, Iqbal HMN, Landsberg MJ, Munn AL. WITHDRAWN: Structural studies of vitrified biological proteins and macromolecules - A review on the microimaging aspects of cryo-electron microscopy. Int J Biol Macromol 2020:S0141-8130(20)33915-5. [PMID: 32710963 DOI: 10.1016/j.ijbiomac.2020.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - M Sana Ullah Sahar
- School of Engineering, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
19
|
Zhu X, Aoyama E, Birk AV, Onasanya O, Carr WH, Mourokh L, Minteer SD, Vittadello M. Cytochrome c oxidase oxygen reduction reaction induced by cytochrome c on nickel-coordination surfaces based on graphene oxide in suspension. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148262. [PMID: 32673675 DOI: 10.1016/j.bbabio.2020.148262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The electrochemical and spectroscopic investigation of bacterial electron-transfer proteins stabilized on solid state electrodes has provided an effective approach for functional respiratory enzyme studies. METHODS We assess the biocompatibility of carboxylated graphene oxide (CGO) functionalized with Nickel nitrilotriacetic groups (CGO-NiNTA) ccordinating His-tagged cytochrome c oxidase (CcO) from Rhodobacter sphaeroides. RESULTS Kinetic studies employing UV-visible absorption spectroscopy confirmed that the immobilized CcO oxidized horse-heart cytochrome c (Cyt c) albeit at a slower rate than isolated CcO. The oxygen reduction reaction as catalyzed by immobilized CcO could be clearly distinguished from that arising from CGO-NiNTA in the presence of Cyt c and dithiothreitol (DTT) as a sacrificial reducing agent. Our findings indicate that while the protein content is about 3.7‰ by mass with respect to the support, the contribution to the oxygen consumption activity averaged at 56.3%. CONCLUSIONS The CGO-based support stabilizes the free enzyme which, while capable of Cyt c oxidation, is unable to carry out oxygen consumption in solution on its own under our conditions. The turnover rate for the immobilized CcO was as high as 240 O2 molecules per second per CcO unit. GENERAL SIGNIFICANCE In vitro investigations of electron flow on isolated components of bacterial electron-transfer enzymes immobilized on the surface of CGO in suspension are expected to shed new light on microbial bioenergetic functions, that could ultimately contribute toward the improvement of performance in living organisms.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Department of Chemistry and Environmental Science, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA
| | - Erika Aoyama
- Department of Chemistry, The University of Utah, Salt Lake City, UT 84112, USA
| | - Alexander V Birk
- Department of Chemistry and Environmental Science, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA; Department of Biology, York College of CUNY, Jamaica, NY 11451, USA
| | - Oladapo Onasanya
- Department of Chemistry and Environmental Science, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA
| | - William H Carr
- Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA
| | - Lev Mourokh
- Department of Physics, Queens College of CUNY, Queens, NY 11367, USA; The Graduate Center of CUNY, New York, NY 10016, USA
| | - Shelley D Minteer
- Department of Chemistry, The University of Utah, Salt Lake City, UT 84112, USA
| | - Michele Vittadello
- Department of Chemistry and Environmental Science, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA; The Graduate Center of CUNY, New York, NY 10016, USA.
| |
Collapse
|
20
|
McCafferty CL, Verbeke EJ, Marcotte EM, Taylor DW. Structural Biology in the Multi-Omics Era. J Chem Inf Model 2020; 60:2424-2429. [PMID: 32129623 PMCID: PMC7254829 DOI: 10.1021/acs.jcim.9b01164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Rapid developments in cryogenic electron microscopy have opened new avenues to probe the structures of protein assemblies in their near native states. Recent studies have begun applying single -particle analysis to heterogeneous mixtures, revealing the potential of structural-omics approaches that combine the power of mass spectrometry and electron microscopy. Here we highlight advances and challenges in sample preparation, data processing, and molecular modeling for handling increasingly complex mixtures. Such advances will help structural-omics methods extend to cellular-level models of structural biology.
Collapse
Affiliation(s)
- Caitlyn L. McCafferty
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
| | - Eric J. Verbeke
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
| | - Edward M. Marcotte
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
- Institute
for Cellular and Molecular Biology, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Systems and Synthetic Biology, University
of Texas at Austin, Austin, Texas 78712, United States
| | - David W. Taylor
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
- Institute
for Cellular and Molecular Biology, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Systems and Synthetic Biology, University
of Texas at Austin, Austin, Texas 78712, United States
- LIVESTRONG
Cancer Institutes, Dell Medical School, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Abstract
Cryogenic electron microscopy (cryo-EM) enables structure determination of macromolecular objects and their assemblies. Although the techniques have been developing for nearly four decades, they have gained widespread attention in recent years due to technical advances on numerous fronts, enabling traditional microscopists to break into the world of molecular structural biology. Many samples can now be routinely analyzed at near-atomic resolution using standard imaging and image analysis techniques. However, numerous challenges to conventional workflows remain, and continued technical advances open entirely novel opportunities for discovery and exploration. Here, I will review some of the main methods surrounding cryo-EM with an emphasis specifically on single-particle analysis, and I will highlight challenges, open questions, and opportunities for methodology development.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- From the Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
22
|
Liu N, Zhang J, Chen Y, Liu C, Zhang X, Xu K, Wen J, Luo Z, Chen S, Gao P, Jia K, Liu Z, Peng H, Wang HW. Bioactive Functionalized Monolayer Graphene for High-Resolution Cryo-Electron Microscopy. J Am Chem Soc 2019; 141:4016-4025. [DOI: 10.1021/jacs.8b13038] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peng Gao
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Wang H, Han W, Takagi J, Cong Y. Yeast Inner-Subunit PA–NZ-1 Labeling Strategy for Accurate Subunit Identification in a Macromolecular Complex through Cryo-EM Analysis. J Mol Biol 2018; 430:1417-1425. [DOI: 10.1016/j.jmb.2018.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 12/25/2022]
|
25
|
Abstract
It has become clear that the standard cartoon, in which macromolecular particles prepared for electron cryo-microscopy are shown to be surrounded completely by vitreous ice, often is not accurate. In particular, the standard picture does not include the fact that diffusion to the air-water interface, followed by adsorption and possibly denaturation, can occur on the time scale that normally is required to make thin specimens. The extensive literature on interaction of proteins with the air-water interface suggests that many proteins can bind to the interface, either directly or indirectly via a sacrificial layer of already-denatured protein. In the process, the particles of interest can, in some cases, become preferentially oriented, and in other cases they can be damaged and/or aggregated at the surface. Thus, although a number of methods and recipes have evolved for dealing with protein complexes that prove to be difficult, making good cryo-grids can still be a major challenge for each new type of specimen. Recognition that the air-water interface is a very dangerous place to be has inspired work on some novel approaches for preparing cryo-grids. At the moment, two of the most promising ones appear to be: (1) thin and vitrify the specimen much faster than is done currently or (2) immobilize the particles onto a structure-friendly support film so that they cannot diffuse to the air-water interface.
Collapse
Affiliation(s)
- Robert M Glaeser
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94705
| |
Collapse
|
26
|
Wang W, Zhu H, Dong Y, Tian Z, Dong T, Hu H, Niu C. Dimorphic expression of sex-related genes in different gonadal development stages of sterlet, Acipenser ruthenus, a primitive fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1557-1569. [PMID: 28963671 DOI: 10.1007/s10695-017-0392-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Molecular mechanism of sex determination and differentiation of sturgeon, a primitive fish species, is extraordinarily important due to the valuable caviar; however, it is still poorly known. The present work aimed to identify the major genes involved in regulating gonadal development of sterlet, a small species of sturgeon, from 13 candidate genes which have been shown to relate to gonadal differentiation and development in other teleost fish. The sex and gonadal development of sterlets were determined by histological observation and levels of sex steroids testosterone (T), 11-ketotestosterone (11-KT), and 17β-estradiol (E2) in serum. Sexually dimorphic gene expressions were investigated. The results revealed that gonadal development were asynchronous in 2-year-old male and female sterlets with the testes in early or mid-spermatogenesis and the ovaries in chromatin nucleolus stage or perinucleolus stage, respectively. The levels of T and E2 were not significantly different between sexes or different gonadal development stages while 11-KT had the higher level in mid-spermatogenesis testis stage. In all the investigated gonadal development stages, gene dmrt1 and hsd11b2 were expressed higher in male whereas foxl2 and cyp19a1 were expressed higher in female. Thus, these genes provided the promising markers for sex identification of sterlet. It was unexpected that dkk1 and dax1 had significantly higher expression in ovarian perinucleolus stage than in ovarian chromatin nucleolus stage and in the testis, suggesting that these two genes had more correlation with ovarian development than with the testis, contrary to the previous reports in other vertebrates. Testicular development-related genes (gsdf and amh) and estrogen receptor genes (era and erb) differentially expressed at different testis or ovary development stages, but their expressions were not absolutely significantly different in male and female, depending on the gonadal development stage. Expression of androgen receptor gene ar or rspo, which was supposed to be related to ovarian development, presented no difference between gonadal development stages investigated in this study whenever in male or female.
Collapse
Affiliation(s)
- Wei Wang
- Beijing Normal University, No. 19 Xin Jie Kou Wai Avenue, Haidian District, Beijing, 100875, China
- National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No. BZ0301), Beijing Fisheries Research Institute, No.18 Ma Jia Pu Road, Fengtai District, Beijing, 100068, China
| | - Hua Zhu
- National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No. BZ0301), Beijing Fisheries Research Institute, No.18 Ma Jia Pu Road, Fengtai District, Beijing, 100068, China
| | - Ying Dong
- National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No. BZ0301), Beijing Fisheries Research Institute, No.18 Ma Jia Pu Road, Fengtai District, Beijing, 100068, China
| | - ZhaoHui Tian
- National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No. BZ0301), Beijing Fisheries Research Institute, No.18 Ma Jia Pu Road, Fengtai District, Beijing, 100068, China
| | - Tian Dong
- National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No. BZ0301), Beijing Fisheries Research Institute, No.18 Ma Jia Pu Road, Fengtai District, Beijing, 100068, China
| | - HongXia Hu
- National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No. BZ0301), Beijing Fisheries Research Institute, No.18 Ma Jia Pu Road, Fengtai District, Beijing, 100068, China.
| | - CuiJuan Niu
- Beijing Normal University, No. 19 Xin Jie Kou Wai Avenue, Haidian District, Beijing, 100875, China.
| |
Collapse
|
27
|
Earl LA, Falconieri V, Milne JL, Subramaniam S. Cryo-EM: beyond the microscope. Curr Opin Struct Biol 2017; 46:71-78. [PMID: 28646653 PMCID: PMC5683925 DOI: 10.1016/j.sbi.2017.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023]
Abstract
The pace at which cryo-EM is being adopted as a mainstream tool in structural biology has continued unabated over the past year. Initial successes in obtaining near-atomic resolution structures with cryo-EM were enabled to a large extent by advances in microscope and detector technology. Here, we review some of the complementary technical improvements that are helping sustain the cryo-EM revolution. We highlight advances in image processing that permit high resolution structure determination even in the presence of structural and conformational heterogeneity. We also review selected examples where biochemical strategies for membrane protein stabilization facilitate cryo-EM structure determination, and discuss emerging approaches for further improving the preparation of reliable plunge-frozen specimens.
Collapse
Affiliation(s)
- Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline Ls Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|