1
|
De Santis A, De Santis L, Rossi F, Gasparini S, Licursi V, Amico VA, Capone I, Fragale A, D'atri S, Gabriele L, Presutti C. NSD2 and miRNAs as Key Regulators of Melanoma Response to Romidepsin and Interferon-α2b Treatment. Cancer Med 2025; 14:e70917. [PMID: 40386826 PMCID: PMC12086509 DOI: 10.1002/cam4.70917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND We investigated the role of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) and microRNAs (miRNAs) in melanoma de-differentiation following Romidepsin and Interferon-α2b (RI) treatment. Melanoma is the most lethal form of skin cancer, and despite advancements in therapy, treatment resistance remains a major challenge. De-differentiation has been widely recognized as a key factor contributing to therapy resistance. METHODS RNA-seq and TCGA transcriptomic data were re-analyzed to identify miRNAs and NSD2 expressions. The functional impact of selected miRNAs was then investigated at the molecular and phenotypic levels using primary and immortalized cell lines. RESULTS Our findings demonstrate that RI treatment induces a de-differentiation process in primary melanoma cells, resembling that observed in therapy-resistant melanoma. This effect is particularly pronounced in cells with an intrinsic proliferative phenotype, where we observed significant downregulation of NSD2, a key epigenetic regulator implicated in multiple cancers. Additionally, we identified specific miRNAs as mediators of NSD2 downregulation, influencing melanoma cell viability and fitness. CONCLUSIONS These findings provide new insights into the molecular mechanisms driving melanoma progression and highlight potential therapeutic targets to counteract treatment resistance.
Collapse
Affiliation(s)
- Alessandro De Santis
- Department of Biology and Biotechnology Charles DarwinSapienza University of RomeRomeItaly
| | - Lucrezia De Santis
- Department of Biology and Biotechnology Charles DarwinSapienza University of RomeRomeItaly
| | - Francesca Rossi
- Max Planck Institute for Molecular GeneticsChromatin Structure and FunctionBerlinGermany
| | - Silvia Gasparini
- Institute of Molecular Biology and Pathology (IBPM)National Research Council (CNR) of ItalyRomeItaly
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM)National Research Council (CNR) of ItalyRomeItaly
| | - Vito Antonio Amico
- Department of Biology and Biotechnology Charles DarwinSapienza University of RomeRomeItaly
| | - Imerio Capone
- Molecular Oncology LaboratoryIstituto Dermatopatico Dell'immacolata IDI‐IRCCSRomeItaly
- Istituto Superiore di SanitàDepartment of Oncology and Molecular MedicineRomeItaly
| | - Alessandra Fragale
- Molecular Oncology LaboratoryIstituto Dermatopatico Dell'immacolata IDI‐IRCCSRomeItaly
- Istituto Superiore di SanitàDepartment of Oncology and Molecular MedicineRomeItaly
| | - Stefania D'atri
- Molecular Oncology LaboratoryIstituto Dermatopatico Dell'immacolata IDI‐IRCCSRomeItaly
| | - Lucia Gabriele
- Molecular Oncology LaboratoryIstituto Dermatopatico Dell'immacolata IDI‐IRCCSRomeItaly
- Istituto Superiore di SanitàDepartment of Oncology and Molecular MedicineRomeItaly
| | - Carlo Presutti
- Department of Biology and Biotechnology Charles DarwinSapienza University of RomeRomeItaly
| |
Collapse
|
2
|
Aertgeerts M, Meyers S, Gielen O, Lamote J, Dewaele B, Tajdar M, Maertens J, De Bie J, De Keersmaecker K, Boeckx N, Michaux L, Uyttebroeck A, Demeyer S, Segers H, Cools J. Single-cell DNA and surface protein characterization of high hyperdiploid acute lymphoblastic leukemia at diagnosis and during treatment. Hemasphere 2025; 9:e70085. [PMID: 39944233 PMCID: PMC11814536 DOI: 10.1002/hem3.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/22/2024] [Indexed: 02/19/2025] Open
Abstract
High hyperdiploid (HeH) B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent subtype of childhood ALL. This leukemia is characterized by trisomies and tetrasomies of specific chromosomes and additional point mutations. Here, we used single-cell targeted DNA and antibody sequencing to determine the clonal evolution of HeH B-ALL during development and chemotherapy treatment. Chromosomal copy number changes were mostly stable over all the leukemia cells, while mutations were typically subclonal. Within all 13 cases, at least one RAS mutant (KRAS or NRAS) subclone was detected (range: 1 to 4 subclones with RAS mutations), indicating the importance of RAS signaling in HeH B-ALL development. NSD2 mutations were detected in 4 out of 13 cases and always in a subclone with RAS signaling mutations. Single-cell DNA sequencing detected residual leukemia cells during chemotherapy treatment, and analysis of chromosomal copy number changes aided in the accurate detection of these cells. Our single-cell data demonstrate that chromosomal changes are acquired prior to additional mutations and that RAS signaling mutations are present in all HeH cases, often as subclonal mutations. This single-cell multi-omics study enabled us to extensively characterize the genetic and surface protein heterogeneity in patients with HeH B-ALL.
Collapse
Affiliation(s)
- Margo Aertgeerts
- Department of OncologyKU LeuvenLeuvenBelgium
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
| | - Sarah Meyers
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Olga Gielen
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Jochen Lamote
- Center for Cancer BiologyVIBLeuvenBelgium
- VIB Flow Core LeuvenVIB TechnologiesLeuvenBelgium
| | - Barbara Dewaele
- Department of Human GeneticsKU LeuvenLeuvenBelgium
- Center of Human GeneticsUZ LeuvenLeuvenBelgium
| | - Mercedeh Tajdar
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
- Department of Laboratory MedicineUZ LeuvenLeuvenBelgium
| | - Johan Maertens
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
- Department of HematologyUZ LeuvenLeuvenBelgium
| | | | - Kim De Keersmaecker
- Department of OncologyKU LeuvenLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
| | - Nancy Boeckx
- Department of OncologyKU LeuvenLeuvenBelgium
- Department of Laboratory MedicineUZ LeuvenLeuvenBelgium
| | - Lucienne Michaux
- Department of Human GeneticsKU LeuvenLeuvenBelgium
- Center of Human GeneticsUZ LeuvenLeuvenBelgium
| | - Anne Uyttebroeck
- Department of OncologyKU LeuvenLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Pediatric Hematology and OncologyUZ LeuvenLeuvenBelgium
| | - Sofie Demeyer
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Heidi Segers
- Department of OncologyKU LeuvenLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Pediatric Hematology and OncologyUZ LeuvenLeuvenBelgium
| | - Jan Cools
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| |
Collapse
|
3
|
Li M, Chen H, Yang X, Zhang W, Ma C, Wang Q, Wang X, Gao R. Conditional knockout of the NSD2 gene in mouse intestinal epithelial cells inhibits colorectal cancer progression. Animal Model Exp Med 2025; 8:322-331. [PMID: 38400589 PMCID: PMC11871126 DOI: 10.1002/ame2.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Nuclear receptor-binding SET domain 2 (NSD2) is a histone methyltransferase, that catalyzes dimethylation of lysine 36 of histone 3 (H3K36me2) and is associated with active transcription of a series of genes. NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prognosis in several types of tumors. METHODS We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells. We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer. The development of colorectal tumors were investigated using post-necropsy quantification, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with wild-type (WT) control mice, NSD2fl/fl-Vil1-Cre mice exhibited significantly decreased tumor numbers, histopathological changes, and cytokine expression in colorectal tumors. CONCLUSIONS Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.
Collapse
Affiliation(s)
- Mengyuan Li
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Hanxue Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Chengyan Ma
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Qinghong Wang
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Xinpei Wang
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Ran Gao
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| |
Collapse
|
4
|
Ma S, Long G, Jiang Z, Zhang Y, Sun L, Pan Y, You Q, Guo X. Recent advances in targeting histone H3 lysine 36 methyltransferases for cancer therapy. Eur J Med Chem 2024; 274:116532. [PMID: 38805937 DOI: 10.1016/j.ejmech.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.
Collapse
Affiliation(s)
- Sai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangkui Sun
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Kanaoka S, Okabe A, Kanesaka M, Rahmutulla B, Fukuyo M, Seki M, Hoshii T, Sato H, Imamura Y, Sakamoto S, Ichikawa T, Kaneda A. Chromatin activation with H3K36me2 and compartment shift in metastatic castration-resistant prostate cancer. Cancer Lett 2024; 588:216815. [PMID: 38490329 DOI: 10.1016/j.canlet.2024.216815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.
Collapse
Affiliation(s)
- Sanji Kanaoka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan
| | - Manato Kanesaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Sato
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Imamura
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan.
| |
Collapse
|
6
|
Yao Z, Song P, Jiao W. Pathogenic role of super-enhancers as potential therapeutic targets in lung cancer. Front Pharmacol 2024; 15:1383580. [PMID: 38681203 PMCID: PMC11047458 DOI: 10.3389/fphar.2024.1383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Lung cancer is still one of the deadliest malignancies today, and most patients with advanced lung cancer pass away from disease progression that is uncontrollable by medications. Super-enhancers (SEs) are large clusters of enhancers in the genome's non-coding sequences that actively trigger transcription. Although SEs have just been identified over the past 10 years, their intricate structure and crucial role in determining cell identity and promoting tumorigenesis and progression are increasingly coming to light. Here, we review the structural composition of SEs, the auto-regulatory circuits, the control mechanisms of downstream genes and pathways, and the characterization of subgroups classified according to SEs in lung cancer. Additionally, we discuss the therapeutic targets, several small-molecule inhibitors, and available treatment options for SEs in lung cancer. Combination therapies have demonstrated considerable advantages in preclinical models, and we anticipate that these drugs will soon enter clinical studies and benefit patients.
Collapse
Affiliation(s)
- Zhiyuan Yao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Piao L, Gao Y, Xu X, Su Y, Wang YD, Zhou J, Gao Y, Fang J, Li Q, Chang S, Kong R. Discovery of potent small molecule inhibitors of histone lysine methyltransferase NSDs. Eur J Med Chem 2024; 268:116264. [PMID: 38412693 DOI: 10.1016/j.ejmech.2024.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Nuclear receptor binding SET domain (NSD) proteins are a class of histone lysine methyltransferases and implicated in multiple cancer types with aberrant expression and involvement of cancer related signaling pathways. In this study, a series of small-molecule compounds including compound 2 and 3 are identified against the SET domain of NSDs through structure-based virtual screening. Our lead compound 3 exhibits potent inhibitory activities in vitro towards the NSD2-SET and NSD3-SET with an IC50 of 0.81 μM and 0.84 μM, respectively, and efficiently inhibits histone H3 lysine 36 dimethylation and decreases the expression of NSDs-targeted genes in non-small cell lung cancer cells at 100 nM. Compound 3 suppresses cell proliferation and reduces the clonogenicity in H460 and H1299 non-small cell lung cancer cells, and induces s-phase cell cycle arrest and apoptosis. These data establish our compounds as a valuable tool-kit for the study of the biological roles of NSDs in cancer.
Collapse
Affiliation(s)
- Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | - Ying Gao
- Primary Biotechnology Co., Ltd., Changzhou, 213125, China
| | - Xiaoshuang Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | - Yangyang Su
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | | | - Jie Zhou
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Yang Gao
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Jin Fang
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Qihui Li
- Primary Biotechnology Co., Ltd., Changzhou, 213125, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China.
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China.
| |
Collapse
|
8
|
Li Q, Zhu J, Zhang Y, Pan Y, Li Z, Wang M, Gao Y, Feng D, He X, Zhang C. Association of WHSC1/NSD2 and T-cell infiltration with prostate cancer metastasis and prognosis. Sci Rep 2023; 13:21629. [PMID: 38062230 PMCID: PMC10703870 DOI: 10.1038/s41598-023-48906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Progress in immunotherapy for prostate cancer (PCa) lags that for other cancers, mainly because of limited immune infiltration in PCa. This study aimed to assess the feasibility of NSD2 as an immunotherapeutic target in PCa. Immunohistochemistry was performed to evaluate the expression pattern of NSD2 in 34 cases of benign prostatic hyperplasia (BPH), 36 cases of prostatic intraepithelial neoplasia (PIN), and 57 cases of PCa, including 19 cases of metastatic castration-resistant prostatic cancer (mCRPC). Single-cell RNA sequencing and gene set enrichment analysis (GSEA) were used to correlate NSD2 with certain downstream pathways. Furthermore, the Immuno-Oncology-Biological-Research (IOBR) software package was used to analyze the potential roles of NSD2 in the tumor microenvironment. We found that the positive expression rate of NSD2 increased progressively in BPH, PIN and PCa. mCRPC had the highest staining intensity for NSD2. High NSD2 expression was positively correlated with the infiltration level of CD4+ tumor-infiltrating lymphocytes (TILs) and negatively correlated with that of CD8+ TILs. Importantly, a new immune classification based on NSD2 expression and CD4+ TILs and CD8+ TILs was successfully used to stratify PCa patients based on OS.PSA and CD4+ TILs are independent risk factors for PCa bone metastasis. This study demonstrates a novel role for NSD2 in defining immune infiltrate on in PCa and highlights the great potential for its application in immunotherapy response evaluation for prostate malignancies.
Collapse
Affiliation(s)
- Qiheng Li
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Jiang Zhu
- Department of Urology Surgery, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yun Pan
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Zhengjin Li
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Min Wang
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yixuan Gao
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Dongmei Feng
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Xiaoyong He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Chunmei Zhang
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China.
| |
Collapse
|
9
|
Jahankhani K, Ahangari F, Adcock IM, Mortaz E. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie 2023; 213:130-138. [PMID: 37230238 PMCID: PMC10202899 DOI: 10.1016/j.biochi.2023.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown diverse life-threatening effects, most of which are considered short-term. In addition to its short-term effects, which has claimed many millions of lives since 2019, the long-term complications of this virus are still under investigation. Similar to many oncogenic viruses, it has been hypothesized that SARS-CoV-2 employs various strategies to cause cancer in different organs. These include leveraging the renin angiotensin system, altering tumor suppressing pathways by means of its nonstructural proteins, and triggering inflammatory cascades by enhancing cytokine production in the form of a "cytokine storm" paving the way for the emergence of cancer stem cells in target organs. Since infection with SARS-CoV-2 occurs in several organs either directly or indirectly, it is expected that cancer stem cells may develop in multiple organs. Thus, we have reviewed the impact of coronavirus disease 2019 (COVID-19) on the vulnerability and susceptibility of specific organs to cancer development. It is important to note that the cancer-related effects of SARS-CoV-2 proposed in this article are based on the ability of the virus and its proteins to cause cancer but that the long-term consequences of this infection will only be illustrated in the long run.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Immune Health Program at Hunter Medical Research Institute and the College of Health and Medicine at the University of Newcastle, Australia
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
11
|
Recent advances in nuclear receptor-binding SET domain 2 (NSD2) inhibitors: An update and perspectives. Eur J Med Chem 2023; 250:115232. [PMID: 36863225 DOI: 10.1016/j.ejmech.2023.115232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Nuclear receptor-binding SET domain 2 (NSD2) is a histone lysine methyltransferase (HKMTase), which is mainly responsible for the di-methylation of lysine residues on histones, which are involved in the regulation of various biological pathways. The amplification, mutation, translocation, or overexpression of NSD2 can be linked to various diseases. NSD2 has been identified as a promising drug target for cancer therapy. However, relatively few inhibitors have been discovered and this field still needs further exploration. This review provides a detailed summary of the biological studies related to NSD2 and the current progress of inhibitors, research, and describes the challenges in the development of NSD2 inhibitors, including SET (su(var), enhancer-of-zeste, trithorax) domain inhibitors and PWWP1 (proline-tryptophan-tryptophan-proline 1) domain inhibitors. Through analysis and discussion of the NSD2-related crystal complexes and the biological evaluation of related small molecules, we hope to provide insights for future drug design and optimization methods that will stimulate the development of novel NSD2 inhibitors.
Collapse
|
12
|
Lundstrom K, Hromić-Jahjefendić A, Bilajac E, Aljabali AAA, Baralić K, Sabri NA, Shehata EM, Raslan M, Ferreira ACBH, Orlandi L, Serrano-Aroca Á, Tambuwala MM, Uversky VN, Azevedo V, Alzahrani KJ, Alsharif KF, Halawani IF, Alzahrani FM, Redwan EM, Barh D. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal 2023; 101:110495. [PMID: 36252792 PMCID: PMC9568271 DOI: 10.1016/j.cellsig.2022.110495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.
Collapse
Affiliation(s)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11865, Egypt.
| | - Eslam M Shehata
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Mohamed Raslan
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Ana Cláudia B H Ferreira
- Campinas State University, Campinas, São Paulo, Brazil; University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Lidiane Orlandi
- University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India.
| |
Collapse
|
13
|
Arjoune A, Sirard MA. The genomic response of human granulosa cells (KGN) to melatonin and specific agonists/antagonists to the melatonin receptors. Sci Rep 2022; 12:17539. [PMID: 36266374 PMCID: PMC9584952 DOI: 10.1038/s41598-022-21162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Melatonin is a known modulator of follicle development; it acts through several molecular cascades via binding to its two specific receptors MT1 and MT2. Even though it is believed that melatonin can modulate granulosa cell (GC) functions, there is still limited knowledge of how it can act in human GC through MT1 and MT2 and which one is more implicated in the effects of melatonin on the metabolic processes in the dominant follicle. To better characterize the roles of these receptors on the effects of melatonin on follicular development, human granulosa-like tumor cells (KGN) were treated with specific melatonin receptor agonists and antagonists, and gene expression was analyzed with RNA-seq technology. Following appropriate normalization and the application of a fold change cut-off of 1.5 (FC 1.5, p ≤ 0.05) for each treatment, lists of the principal differentially expressed genes (DEGs) are generated. Analysis of major upstream regulators suggested that the MT1 receptor may be involved in the melatonin antiproliferative effect by reprogramming the metabolism of human GC by activating the PKB signaling pathway. Our data suggest that melatonin may act complementary through both MT1 and MT2 receptors to modulate human GC steroidogenesis, proliferation, and differentiation. However, MT2 receptors may be the ones implicated in transducing the effects of melatonin on the prevention of GC luteinization and follicle atresia at the antral follicular stage through stimulating the PKA pathway.
Collapse
Affiliation(s)
- Asma Arjoune
- grid.23856.3a0000 0004 1936 8390Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de L’agriculture et de l’alimentation, Département des Sciences animales, Université Laval, Québec, QC G1V 0A6 Canada ,grid.419508.10000 0001 2295 3249Department of Animal Production, National Agronomic Institute of Tunisia, University of Carthage, 43 Avenue Charles Nicolle, 1082 Mahrajène, Tunisia
| | - Marc-André Sirard
- grid.23856.3a0000 0004 1936 8390Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de L’agriculture et de l’alimentation, Département des Sciences animales, Université Laval, Québec, QC G1V 0A6 Canada
| |
Collapse
|
14
|
Azagra A, Cobaleda C. NSD2 as a Promising Target in Hematological Disorders. Int J Mol Sci 2022; 23:11075. [PMID: 36232375 PMCID: PMC9569587 DOI: 10.3390/ijms231911075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of the epigenetic machinery are critically involved in cancer development and maintenance; therefore, the proteins in charge of the generation of epigenetic modifications are being actively studied as potential targets for anticancer therapies. A very important and widespread epigenetic mark is the dimethylation of Histone 3 in Lysine 36 (H3K36me2). Until recently, it was considered as merely an intermediate towards the generation of the trimethylated form, but recent data support a more specific role in many aspects of genome regulation. H3K36 dimethylation is mainly carried out by proteins of the Nuclear SET Domain (NSD) family, among which NSD2 is one of the most relevant members with a key role in normal hematopoietic development. Consequently, NSD2 is frequently altered in several types of tumors-especially in hematological malignancies. Herein, we discuss the role of NSD2 in these pathological processes, and we review the most recent findings in the development of new compounds aimed against the oncogenic forms of this novel anticancer candidate.
Collapse
Affiliation(s)
| | - César Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CSIC–Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
15
|
Topchu I, Pangeni RP, Bychkov I, Miller SA, Izumchenko E, Yu J, Golemis E, Karanicolas J, Boumber Y. The role of NSD1, NSD2, and NSD3 histone methyltransferases in solid tumors. Cell Mol Life Sci 2022; 79:285. [PMID: 35532818 PMCID: PMC9520630 DOI: 10.1007/s00018-022-04321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Iuliia Topchu
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Rajendra P Pangeni
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Sitapakha, Mahalaxmi-4, Lalitpur, Bagmati, 44700, Nepal
| | - Igor Bychkov
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Sven A Miller
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Jindan Yu
- Department of Medicine-Hematology/Oncology and Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Erica Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA
| | - John Karanicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Yanis Boumber
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. 74 Karl Marks, Kazan, 420012, Russia.
| |
Collapse
|
16
|
NSD2 activates the E2F transcription factor 1/Y-box binding protein 2 axis to promote the malignant development of oral squamous cell carcinoma. Arch Oral Biol 2022; 138:105412. [DOI: 10.1016/j.archoralbio.2022.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
17
|
Sengupta D, Zeng L, Li Y, Hausmann S, Ghosh D, Yuan G, Nguyen TN, Lyu R, Caporicci M, Morales Benitez A, Coles GL, Kharchenko V, Czaban I, Azhibek D, Fischle W, Jaremko M, Wistuba II, Sage J, Jaremko Ł, Li W, Mazur PK, Gozani O. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis. Mol Cell 2021; 81:4481-4492.e9. [PMID: 34555356 PMCID: PMC8571016 DOI: 10.1016/j.molcel.2021.08.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2E1099K, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models. Pathologic H3K36me2 generation by NSD2 amplifies transcriptional output of KRAS and several complementary oncogenic gene expression programs. We establish a versatile in vivo CRISPRi-based system to test gene functions in LUAD and find that NSD2 loss strongly attenuates tumor progression. NSD2 knockdown also blocks neoplastic growth of PDXs (patient-dervived xenografts) from primary LUAD. Finally, a treatment regimen combining NSD2 depletion with MEK1/2 inhibition causes nearly complete regression of LUAD tumors. Our work identifies NSD2 as a bona fide LUAD therapeutic target and suggests a pivotal epigenetic role of the NSD2-H3K36me2 axis in sustaining oncogenic signaling.
Collapse
Affiliation(s)
| | - Liyong Zeng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yumei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debopam Ghosh
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gang Yuan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Thuyen N Nguyen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruitu Lyu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Marcello Caporicci
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Garry L Coles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vladlena Kharchenko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Iwona Czaban
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dulat Azhibek
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Wolfgang Fischle
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Łukasz Jaremko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics 2021; 13:199. [PMID: 34715919 PMCID: PMC8555273 DOI: 10.1186/s13148-021-01187-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modification is an important form of epigenetic regulation. Thereinto, histone methylation is a critical determination of chromatin states, participating in multiple cellular processes. As a conserved histone methylation mark, histone 3 lysine 36 trimethylation (H3K36me3) can mediate multiple transcriptional-related events, such as the regulation of transcriptional activity, transcription elongation, pre-mRNA alternative splicing, and RNA m6A methylation. Additionally, H3K36me3 also contributes to DNA damage repair. Given the crucial function of H3K36me3 in genome regulation, the roles of H3K36me3 and its sole methyltransferase SETD2 in pathogenesis, especially malignancies, have been emphasized in many studies, and it is conceivable that disruption of histone methylation regulatory network composed of "writer", "eraser", "reader", and the mutation of H3K36me3 codes have the capacity of powerfully modulating cancer initiation and development. Here we review H3K36me3-mediated biological processes and summarize the latest findings regarding its role in cancers. We highlight the significance of epigenetic combination therapies in cancers.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
19
|
Shrestha A, Kim N, Lee SJ, Jeon YH, Song JJ, An H, Cho SJ, Kadayat TM, Chin J. Targeting the Nuclear Receptor-Binding SET Domain Family of Histone Lysine Methyltransferases for Cancer Therapy: Recent Progress and Perspectives. J Med Chem 2021; 64:14913-14929. [PMID: 34488340 DOI: 10.1021/acs.jmedchem.1c01116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor-binding SET domain (NSD) proteins are a class of histone lysine methyltransferases (HKMTases) that are amplified, mutated, translocated, or overexpressed in various types of cancers. Several campaigns to develop NSD inhibitors for cancer treatment have begun following recent advances in knowledge of NSD1, NSD2, and NSD3 structures and functions as well as the U.S. FDA approval of the first HKMTase inhibitor (tazemetostat, an EZH2 inhibitor) to treat follicular lymphoma and epithelioid sarcoma. This perspective highlights recent findings on the structures of catalytic su(var), enhancer-of-zeste, trithorax (SET) domains and other functional domains of NSD methyltransferases. In addition, recent progress and efforts to discover NSD-specific small molecule inhibitors against cancer-targeting catalytic SET domains, plant homeodomains, and proline-tryptophan-tryptophan-proline domains are summarized.
Collapse
Affiliation(s)
- Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Nayeon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| |
Collapse
|
20
|
Identification of histone methyltransferase NSD2 as an important oncogenic gene in colorectal cancer. Cell Death Dis 2021; 12:974. [PMID: 34671018 PMCID: PMC8528846 DOI: 10.1038/s41419-021-04267-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is the second common cause of cancer-related human mortalities. Dysregulation of histone 3 (H3) methylation could lead to transcriptional activation of multiple oncogenes, which is closely associated with CRC tumorigenesis and progression. Nuclear receptor-binding SET Domain protein 2 (NSD2) is a key histone methyltransferase catalyzing histone H3 lysine 36 dimethylation (H3K36me2). Its expression, the potential functions, and molecular mechanisms in CRC are studied here. Gene Expression Profiling Interactive Analysis (GEPIA) bioinformatics results showed that the NSD2 mRNA expression is elevated in both colon cancers and rectal cancers. Furthermore, NSD2 mRNA and protein expression levels in local colon cancer tissues are significantly higher than those in matched surrounding normal tissues. In primary human colon cancer cells and established CRC cell lines, shRNA-induced silencing or CRISPR/Cas9-induced knockout of NSD2 inhibited cell viability, proliferation, cell cycle progression, migration, and invasion. Furthermore, NSD2 shRNA or knockout induced mitochondrial depolarization, DNA damage, and apoptosis in the primary and established CRC cells. Contrarily, ectopic NSD2 overexpression in primary colon cancer cells further enhanced cell proliferation, migration, and invasion. H3K36me2, expressions of multiple oncogenes (ADAM9, EGFR, Sox2, Bcl-2, SYK, and MET) and Akt activation were significantly decreased after NSD2 silencing or knockout in primary colon cancer cells. Their levels were however increased after ectopic NSD2 overexpression. A catalytic inactive NSD2 (Y1179A) also inhibited H3K36me2, multiple oncogenes expression, and Akt activation, as well as cell proliferation and migration in primary colon cancer cells. In vivo, intratumoral injection of adeno-associated virus (AAV)-packed NSD2 shRNA largely inhibited primary colon cancer cell xenograft growth in nude mice. Together, NSD2 exerted oncogenic functions in CRC and could be a promising therapeutic target.
Collapse
|
21
|
Van Rechem C, Ji F, Chakraborty D, Black JC, Sadreyev RI, Whetstine JR. Collective regulation of chromatin modifications predicts replication timing during cell cycle. Cell Rep 2021; 37:109799. [PMID: 34610305 PMCID: PMC8530517 DOI: 10.1016/j.celrep.2021.109799] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Replication timing (RT) associates with genome architecture, while having a mixed relationship to histone marks. By profiling replication at high resolution and assessing broad histone marks across the cell cycle at the resolution of RT with and without genetic perturbation, we address the causal relationship between histone marks and RT. Four primary chromatin states, including an uncharacterized H3K36me2 state, emerge and define 97% of the mappable genome. RT and local replication patterns (e.g., initiation zones) quantitatively associate with chromatin states, histone mark dynamics, and spatial chromatin structure. Manipulation of broad histone marks and enhancer elements by overexpressing the histone H3 lysine 9/36 tri-demethylase KDM4A impacts RT across 11% of the genome. Broad histone modification changes were strong predictors of the observed RT alterations. Lastly, replication within H3K36me2-enriched neighborhoods is sensitive to KDM4A overexpression and is controlled at a megabase scale. These studies establish a role for collective chromatin mark regulation in modulating RT.
Collapse
Affiliation(s)
- Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Stanford Medicine, Stanford, CA 94305, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Damayanti Chakraborty
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Joshua C Black
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
22
|
Want MY, Karasik E, Gillard B, McGray AJR, Battaglia S. Inhibition of WHSC1 Allows for Reprogramming of the Immune Compartment in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22168742. [PMID: 34445452 PMCID: PMC8395944 DOI: 10.3390/ijms22168742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy initially demonstrated promising results in prostate cancer (PCa), but the modest or negative results of many recent trials highlight the need to overcome the poor immunogenicity of this cancer. The design of effective therapies for PCa is challenged by the limited understanding of the interface between PCa cells and the immune system in mediating therapeutic resistance. Prompted by our recent observations that elevated WHSC1, a histone methyltransferase known to promote progression of numerous cancers, can silence antigen processing and presentation in PCa, we performed a single-cell analysis of the intratumoral immune dynamics following in vivo pharmacological inhibition of WHSC1 in mice grafted with TRAMP C2 cells. We observed an increase in cytotoxic T and NK cells accumulation and effector function, accompanied by a parallel remodeling of the myeloid compartment, as well as abundant shifts in key ligand–receptor signaling pathways highlighting changes in cell-to-cell communication driven by WHSC1 inhibition. This comprehensive profiling of both immune and molecular changes during the course of WHSC1 blockade deepens our fundamental understanding of how anti-tumor immune responses develop and can be enhanced therapeutically for PCa.
Collapse
Affiliation(s)
- Muzamil Y. Want
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.K.); (B.G.)
| | - Bryan Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.K.); (B.G.)
| | - A. J. Robert McGray
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
| | - Sebastiano Battaglia
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| |
Collapse
|
23
|
Tu Z, Chen X, Tian T, Chen G, Huang M. Prognostic significance of epigenetic regulatory gene expression in patients with non-small-cell lung cancer. Aging (Albany NY) 2021; 13:7397-7415. [PMID: 33658396 PMCID: PMC7993691 DOI: 10.18632/aging.202600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
In this study, we used public databases to investigate the prognostic significance of epigenetic regulatory gene expression in patients with non small-cell lung cancer (NSCLC). Oncomine database analysis showed that the mRNA levels of seven epigenetic regulatory genes, UHRF1, EZH2, TTF2, SUV39H2, PCNA, WHSC1 and RAD54L, genes were significantly upregulated in NSCLC patients as compared to normal lung tissues. Functional enrichment analysis of these seven genes showed that the most enriched GO terms were DNA repair and rhythmic process, whereas, the most enriched KEGG pathway was lysine degradation pathway. The mRNA and protein expression levels of UHRF1, EZH2, TTF2, WHSC1 and RAD54L significantly correlated with tumor stage in NSCLC patients. Moreover, NSCLC patients exhibiting higher UHRF1, EZH2, WHSC1 and RAD54L mRNA and protein expression levels had poorer progression-free survival and overall survival. These findings demonstrate that UHRF1, EZH2, WHSC1 and RAD54L are potential prognostic biomarkers to distinguish high-risk from low-risk NSCLC patients.
Collapse
Affiliation(s)
- Zegui Tu
- Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,West China Medical School, Sichuan University, Chengdu 610041, P.R. China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Tian Tian
- Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,West China Medical School, Sichuan University, Chengdu 610041, P.R. China
| | - Guo Chen
- Global Infotech Software Limited Corporation, Chengdu 610041, Sichuan, P.R. China
| | - Meijuan Huang
- Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,West China Medical School, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
24
|
Wang W, Chen Y, Zhao J, Chen L, Song W, Li L, Lin GN. Alternatively Splicing Interactomes Identify Novel Isoform-Specific Partners for NSD2. Front Cell Dev Biol 2021; 9:612019. [PMID: 33718354 PMCID: PMC7947288 DOI: 10.3389/fcell.2021.612019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Nuclear receptor SET domain protein (NSD2) plays a fundamental role in the pathogenesis of Wolf-Hirschhorn Syndrome (WHS) and is overexpressed in multiple human myelomas, but its protein-protein interaction (PPI) patterns, particularly at the isoform/exon levels, are poorly understood. We explored the subcellular localizations of four representative NSD2 transcripts with immunofluorescence microscopy. Next, we used label-free quantification to perform immunoprecipitation mass spectrometry (IP-MS) analyses of the transcripts. Using the interaction partners for each transcript detected in the IP-MS results, we identified 890 isoform-specific PPI partners (83% are novel). These PPI networks were further divided into four categories of the exon-specific interactome. In these exon-specific PPI partners, two genes, RPL10 and HSPA8, were successfully confirmed by co-immunoprecipitation and Western blotting. RPL10 primarily interacted with Isoforms 1, 3, and 5, and HSPA8 interacted with all four isoforms, respectively. Using our extended NSD2 protein interactions, we constructed an isoform-level PPI landscape for NSD2 to serve as reference interactome data for NSD2 spliceosome-level studies. Furthermore, the RNA splicing processes supported by these isoform partners shed light on the diverse roles NSD2 plays in WHS and myeloma development. We also validated the interactions using Western blotting, RPL10, and the three NSD2 (Isoform 1, 3, and 5). Our results expand gene-level NSD2 PPI networks and provide a basis for the treatment of NSD2-related developmental diseases.
Collapse
Affiliation(s)
- Weidi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Yucan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
25
|
Gao B, Liu X, Li Z, Zhao L, Pan Y. Overexpression of EZH2/NSD2 Histone Methyltransferase Axis Predicts Poor Prognosis and Accelerates Tumor Progression in Triple-Negative Breast Cancer. Front Oncol 2021; 10:600514. [PMID: 33665162 PMCID: PMC7921704 DOI: 10.3389/fonc.2020.600514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Two histone methyltransferases, enhancer of zeste homolog 2 (EZH2) and nuclear SET domain-containing 2 (NSD2), are aberrantly expressed in several types of human cancers. However, the regulatory relationship between EZH2 and NSD2 and their prognostic values in breast cancer (BC) have not been fully elucidated. In this study, we demonstrated that EZH2 and NSD2 were overexpressed in BC compared with benign lesions and normal tissues using tissue microarray, immunohistochemistry, and bioinformatic databases. Both EZH2 and NSD2 expression were associated with pathological grade of tumor and lymph node metastasis. A comprehensive survival analysis using Kaplan-Meier Plotter database indicated that EZH2 expression was negatively correlated with relapse-free survival (RFS), overall survival (OS), distant metastasis-free survival (DMFS), and postprogression survival (PPS) in 3951 BC patients, and NSD2 expression was negatively correlated with RFS and DMFS. Notably, EZH2 and NSD2 expression were coordinately higher in triple-negative breast cancer (TNBC) than that in other subtypes. Stable knockdown of EZH2 using lentiviral shRNA vector significantly reduced the proliferation, migration and invasion abilities of TNBC cell line MDA-MB-231 and MDA-MB-468, and downregulated NSD2 expression as well as the levels of H3K27me3 and H3K36me2, two histone methylation markers catalyzed by EZH2 and NSD2, respectively. By contrast, overexpression of EZH2 using adenovirus vector displayed an inverse phenotype. Furthermore, knockdown of NSD2 in EZH2-overexpressing cells could dramatically attenuate EZH2-mediated oncogenic effects. Bioinformatic analysis further revealed the function and pathway enrichments of co-expressed genes and interactive genes of EZH2/NSD2 axis, suggesting that EZH2/NSD2 axis was associated with cell division, mitotic nuclear division and transition of mitotic cell cycle in TNBC. Taken together, EZH2/NSD2 axis may act as a predictive marker for poor prognosis and accelerate the progression of TNBC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Xiumin Liu
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Zhengjin Li
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Lixian Zhao
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Yun Pan
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
26
|
Want MY, Tsuji T, Singh PK, Thorne JL, Matsuzaki J, Karasik E, Gillard B, Cortes Gomez E, Koya RC, Lugade A, Odunsi K, Battaglia S. WHSC1/NSD2 regulates immune infiltration in prostate cancer. J Immunother Cancer 2021; 9:jitc-2020-001374. [PMID: 33589522 PMCID: PMC7887377 DOI: 10.1136/jitc-2020-001374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunotherapy in prostate cancer (PCa) lags behind the progresses obtained in other cancer types partially because of its limited immune infiltration. Tumor-resident immune cells have been detected in the prostate, but the regulatory mechanisms that govern tumor infiltration are still poorly understood. To address this gap, we investigated the role of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), a histone methyltransferase enzyme that targets dimethyl and trimethyl H3K36. WHSC1 is known to promote malignant growth and progression in multiple tumors, but its role in the interface between PCa and immune system is unknown. METHODS RNA Sequencing (RNASeq) data from patients with PCa from The Cancer Genome Atlas (TCGA) were collected and divided into top/bottom 30% based on the expression of WHSC1 and disease-free survival was calculated. Publicly available chromatin immunoprecipitation (ChIPSeq) data were obtained from Cistrome and integrated with the available RNASeq data. RNASeq, ATACSeq and methylomic were analyzed using R Bioconductor packages comparing C42 cells with or without stable knockdown on WHSC1. Flow cytometry was used to measure Major Histocompatibility complex (MHC) levels, MHC-bound ovalbumin and tumor infiltration. C57B6 and NOD scid gamma (NSG) mice were subcutaneously grafted with TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) C2 cells and treated with MCTP39 (10 mg/kg); tumor size was monitored over time and curves were compared using permutation analyses. All analyses used a significance threshold of 0.05. RESULTS Leveraging TCGA data, we demonstrated that elevated WHSC1 levels positively correlate with the presence of an immunosuppressive microenvironment. We validated those results in vitro, demonstrating that genetic and pharmacological inhibition of WHSC1 restores antigen presentation. This occurs via an elegant epigenetic regulation of gene expression at the chromatin and DNA methylation levels. In vivo studies in immunocompetent mice also show an increased frequency of CD8+ T cells in tumors from mice treated with WHSC1 inhibitor, supporting the hypothesis that the antitumor effect following WHSC1 inhibition requires a fully functional immune system. CONCLUSIONS This study demonstrates a novel role for WHSC1 in defining immune infiltration in PCa, with significant future implications for the use of immunotherapies in prostate malignancies.
Collapse
Affiliation(s)
- Muzamil Y Want
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Takemasa Tsuji
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Prashant K Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - James L Thorne
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, West Yorkshire, UK
| | - Junko Matsuzaki
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ellen Karasik
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Bryan Gillard
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard C Koya
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Amit Lugade
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kunle Odunsi
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sebastiano Battaglia
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
27
|
Farhangdoost N, Horth C, Hu B, Bareke E, Chen X, Li Y, Coradin M, Garcia BA, Lu C, Majewski J. Chromatin dysregulation associated with NSD1 mutation in head and neck squamous cell carcinoma. Cell Rep 2021; 34:108769. [PMID: 33626351 PMCID: PMC8006058 DOI: 10.1016/j.celrep.2021.108769] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Chromatin dysregulation has emerged as an important mechanism of oncogenesis. To develop targeted treatments, it is important to understand the transcriptomic consequences of mutations in chromatin modifier genes. Recently, mutations in the histone methyltransferase gene nuclear receptor binding SET domain protein 1 (NSD1) have been identified in a subset of common and deadly head and neck squamous cell carcinomas (HNSCCs). Here, we use genome-wide approaches and genome editing to dissect the downstream effects of loss of NSD1 in HNSCC. We demonstrate that NSD1 mutations are responsible for loss of intergenic H3K36me2 domains, followed by loss of DNA methylation and gain of H3K27me3 in the affected genomic regions. In addition, those regions are enriched in cis-regulatory elements, and subsequent loss of H3K27ac correlates with reduced expression of their target genes. Our analysis identifies genes and pathways affected by the loss of NSD1 and paves the way to further understanding the interplay among chromatin modifications in cancer. Farhangdoost et al. use genome editing and TCGA primary tumor data to provide a link between NSD1 loss, chromatin and regulatory landscape, gene expression, and molecular characteristics of this tumor subtype. Their study extends the understanding of tumorigenic mechanisms underlying head and neck cancers with mutations in NSD1.
Collapse
Affiliation(s)
- Nargess Farhangdoost
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
28
|
Chen R, Chen Y, Zhao W, Fang C, Zhou W, Yang X, Ji M. The Role of Methyltransferase NSD2 as a Potential Oncogene in Human Solid Tumors. Onco Targets Ther 2020; 13:6837-6846. [PMID: 32764971 PMCID: PMC7367929 DOI: 10.2147/ott.s259873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022] Open
Abstract
Malignant solid tumors are the leading cause of death in humans, and epigenetic regulation plays a significant role in studying the mechanism of human solid tumors. Recently, histone lysine methylation has been demonstrated to be involved in the development of human solid tumors due to its epigenetic stability and some other advantages. The 90-kb protein methyltransferase nuclear receptor SET domain-containing 2 (NSD2) is a member of nuclear receptor SET domain-containing (NSD) protein lysine methyltransferase (KMT) family, which can cause epigenomic aberrations via altering the methylation states. Studies have shown that NSD2 is frequently over-expressed in multiple types of aggressive solid tumors, including breast cancer, renal cancer, prostate cancer, cervical cancer, and osteosarcoma, and such up-regulation has been linked to poor prognosis and recurrence. Further studies have identified that over-expression of NSD2 promotes cell proliferation, migration, invasion, and epithelial–mesenchymal transformation (EMT), suggesting its potential oncogenic role in solid tumors. Moreover, Gene Expression Profiling Interactive Analysis (GEPIA) was searched for validation of prognostic value of NSD2 in human solid tumors. However, the underlying specific mechanism remains unclear. In our present work, we summarized the latest advances in NSD2 expression and clinical applications in solid tumors, and our findings provided valuable insights into the targeted therapeutic regimens of solid tumors.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Weiqing Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Cheng Fang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Wenjie Zhou
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| |
Collapse
|
29
|
Tanaka H, Igata T, Etoh K, Koga T, Takebayashi S, Nakao M. The NSD2/WHSC1/MMSET methyltransferase prevents cellular senescence-associated epigenomic remodeling. Aging Cell 2020; 19:e13173. [PMID: 32573059 PMCID: PMC7433007 DOI: 10.1111/acel.13173] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/01/2020] [Accepted: 05/17/2020] [Indexed: 01/22/2023] Open
Abstract
Senescent cells may possess the intrinsic programs of metabolic and epigenomic remodeling, but the molecular mechanism remains to be clarified. Using an RNAi-based screen of chromatin regulators, we found that knockdown of the NSD2/WHSC1/MMSET methyltransferase induced cellular senescence that augmented mitochondrial mass and oxidative phosphorylation in primary human fibroblasts. Transcriptome analysis showed that loss of NSD2 downregulated the expression of cell cycle-related genes in a retinoblastoma protein (RB)-mediated manner. Chromatin immunoprecipitation analyses further revealed that NSD2 was enriched at the gene bodies of actively transcribed genes, including cell cycle-related genes, and that loss of NSD2 decreased the levels of histone H3 lysine 36 trimethylation (H3K36me3) at these gene loci. Consistent with these findings, oncogene-induced or replicative senescent cells showed reduced NSD2 expression together with lower H3K36me3 levels at NSD2-enriched genes. In addition, we found that NSD2 gene was upregulated by serum stimulation and required for the induction of cell cycle-related genes. Indeed, in both mouse and human tissues and human cancer cell lines, the expression levels of NSD2 were positively correlated with those of cell cycle-related genes. These data reveal that NSD2 plays a pivotal role in epigenomic maintenance and cell cycle control to prevent cellular senescence.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Department of Medical Cell Biology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Tomoka Igata
- Department of Medical Cell Biology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Kan Etoh
- Department of Medical Cell Biology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Shin‐ichiro Takebayashi
- Department of Medical Cell Biology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
- Japan Agency for Medical Research and Development Tokyo Japan
| |
Collapse
|
30
|
Tutuncuoglu B, Cakir M, Batra J, Bouhaddou M, Eckhardt M, Gordon DE, Krogan NJ. The Landscape of Human Cancer Proteins Targeted by SARS-CoV-2. Cancer Discov 2020; 10:916-921. [PMID: 32444466 PMCID: PMC7357668 DOI: 10.1158/2159-8290.cd-20-0559] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mapping of SARS-CoV-2 human protein–protein interactions by Gordon and colleagues revealed druggable targets that are hijacked by the virus. Here, we highlight several oncogenic pathways identified at the host–virus interface of SARS-CoV-2 to enable cancer biologists to apply their knowledge for rapid drug repurposing to treat COVID-19, and help inform the response to potential long-term complications of the disease.
Collapse
Affiliation(s)
- Beril Tutuncuoglu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California.,The Cancer Cell Map Initiative (CCMI), University of California, San Francisco, California, and University of California, San Diego, La Jolla, California
| | - Merve Cakir
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California.,The Cancer Cell Map Initiative (CCMI), University of California, San Francisco, California, and University of California, San Diego, La Jolla, California
| | - Jyoti Batra
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California.,The Cancer Cell Map Initiative (CCMI), University of California, San Francisco, California, and University of California, San Diego, La Jolla, California
| | - Manon Eckhardt
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California
| | - David E Gordon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California. .,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California.,The Cancer Cell Map Initiative (CCMI), University of California, San Francisco, California, and University of California, San Diego, La Jolla, California
| |
Collapse
|
31
|
Yuan S, Natesan R, Sanchez-Rivera FJ, Li J, Bhanu NV, Yamazoe T, Lin JH, Merrell AJ, Sela Y, Thomas SK, Jiang Y, Plesset JB, Miller EM, Shi J, Garcia BA, Lowe SW, Asangani IA, Stanger BZ. Global Regulation of the Histone Mark H3K36me2 Underlies Epithelial Plasticity and Metastatic Progression. Cancer Discov 2020; 10:854-871. [PMID: 32188706 DOI: 10.1158/2159-8290.cd-19-1299] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Epithelial plasticity, reversible modulation of a cell's epithelial and mesenchymal features, is associated with tumor metastasis and chemoresistance, leading causes of cancer mortality. Although different master transcription factors and epigenetic modifiers have been implicated in this process in various contexts, the extent to which a unifying, generalized mechanism of transcriptional regulation underlies epithelial plasticity remains largely unknown. Here, through targeted CRISPR/Cas9 screening, we discovered two histone-modifying enzymes involved in the writing and erasing of H3K36me2 that act reciprocally to regulate epithelial-to-mesenchymal identity, tumor differentiation, and metastasis. Using a lysine-to-methionine histone mutant to directly inhibit H3K36me2, we found that global modulation of the mark is a conserved mechanism underlying the mesenchymal state in various contexts. Mechanistically, regulation of H3K36me2 reprograms enhancers associated with master regulators of epithelial-to-mesenchymal state. Our results thus outline a unifying epigenome-scale mechanism by which a specific histone modification regulates cellular plasticity and metastasis in cancer. SIGNIFICANCE: Although epithelial plasticity contributes to cancer metastasis and chemoresistance, no strategies exist for pharmacologically inhibiting the process. Here, we show that global regulation of a specific histone mark, H3K36me2, is a universal epigenome-wide mechanism that underlies epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition in carcinoma cells. These results offer a new strategy for targeting epithelial plasticity in cancer.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Salina Yuan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramakrishnan Natesan
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natarajan V Bhanu
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taiji Yamazoe
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey H Lin
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allyson J Merrell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yogev Sela
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stacy K Thomas
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacqueline B Plesset
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Junwei Shi
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York.,Howard Hughes Medical Institute, New York, New York
| | - Irfan A Asangani
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
He Y, Long W, Liu Q. Targeting Super-Enhancers as a Therapeutic Strategy for Cancer Treatment. Front Pharmacol 2019; 10:361. [PMID: 31105558 PMCID: PMC6499164 DOI: 10.3389/fphar.2019.00361] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023] Open
Abstract
Super-enhancers (SEs) refer to large clusters of enhancers that drive gene expressions. Recent data has provided novel insights in elucidating the roles of SEs in many diseases, including cancer. Many mechanisms involved in tumorigenesis and progression, ranging from internal gene mutation and rearrangement to external damage and inducement, have been demonstrated to be highly associated with SEs. Moreover, translocation, formation, deletion, or duplication of SEs themselves could lead to tumor development. It has been reported that various oncogenic molecules and pathways are tightly regulated by SEs. Moreover, several clinical trials on novel SEs blockers, such as BET inhibitor and CDK7i, have indicated the potential roles of SEs in cancer therapy. In this review, we highlighted the underlying mechanism of action of SEs in cancer development and the corresponding novel potential therapeutic strategies. It is speculated that targeting SEs could complement the traditional approaches and lead to more effective treatment for cancer patients.
Collapse
Affiliation(s)
- Yi He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Kumar A, Kumari N, Nallabelli N, Prasad R. Pathogenic and Therapeutic Role of H3K4 Family of Methylases and Demethylases in Cancers. Indian J Clin Biochem 2019; 34:123-132. [PMID: 31092985 DOI: 10.1007/s12291-019-00828-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Histone modifications occupy an essential position in the epigenetic landscape of the cell, and their alterations have been linked to cancers. Histone 3 lysine 4 (H3K4) methylation has emerged as a critical epigenetic cue for the regulation of gene transcription through dynamic modulation by several H3K4 methyltransferases (writers) and demethylases (erasers). Any disturbance in the delicate balance of writers and erasers can result in the mis-regulation of H3K4 methylation, which has been demonstrated in several human cancers. Therefore, H3K4 methylation has been recognized as a putative therapeutic or prognostic tool and drug trials of different inhibitors of this process have demonstrated promising results. Henceforth, more detailed knowledge of H3K4 methylation is utmost important for elucidating the complex cellular processes, which might help in improving the disease outcome. The primary focus of this review will be directed on deciphering the role of H3K4 methylation along with its writers/erasers in different cancers.
Collapse
Affiliation(s)
- Aman Kumar
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Niti Kumari
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Nayudu Nallabelli
- 2Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Rajendra Prasad
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| |
Collapse
|
34
|
Wojcik JB, Marchione DM, Sidoli S, Djedid A, Lisby A, Majewski J, Garcia BA. Epigenomic Reordering Induced by Polycomb Loss Drives Oncogenesis but Leads to Therapeutic Vulnerabilities in Malignant Peripheral Nerve Sheath Tumors. Cancer Res 2019; 79:3205-3219. [PMID: 30898839 DOI: 10.1158/0008-5472.can-18-3704] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/17/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with recurrent loss-of-function alterations in polycomb-repressive complex 2 (PRC2), a histone-modifying complex involved in transcriptional silencing. To understand the role of PRC2 loss in pathogenesis and identify therapeutic targets, we conducted parallel global epigenomic and proteomic analysis of archival formalin-fixed, paraffin-embedded (FFPE) human MPNST with and without PRC2 loss (MPNSTLOSS vs. MPNSTRET). Loss of PRC2 resulted in increased histone posttranslational modifications (PTM) associated with active transcription, most notably H3K27Ac and H3K36me2, whereas repressive H3K27 di- and trimethylation (H3K27me2/3) marks were globally lost without a compensatory gain in other repressive PTMs. Instead, DNA methylation globally increased in MPNSTLOSS. Epigenomic changes were associated with upregulation of proteins in growth pathways and reduction in IFN signaling and antigen presentation, suggesting a role for epigenomic changes in tumor progression and immune evasion, respectively. These changes also resulted in therapeutic vulnerabilities. Knockdown of NSD2, the methyltransferase responsible for H3K36me2, restored MHC expression and induced interferon pathway expression in a manner similar to PRC2 restoration. MPNSTLOSS were also highly sensitive to DNA methyltransferase and histone deacetylase (HDAC) inhibitors. Overall, these data suggest that global loss of PRC2-mediated repression renders MPNST differentially dependent on DNA methylation to maintain transcriptional integrity and makes them susceptible to therapeutics that promote aberrant transcription initiation. SIGNIFICANCE: Global profiling of histone PTMs and protein expression in archival human MPNST illustrates how PRC2 loss promotes oncogenesis but renders tumors vulnerable to pharmacologic modulation of transcription.See related commentary by Natarajan and Venneti, p. 3172.
Collapse
Affiliation(s)
- John B Wojcik
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anissa Djedid
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Amanda Lisby
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacek Majewski
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, González-Corpas A, Barrero MJ. CREBBP/EP300 Bromodomain Inhibition Affects the Proliferation of AR-Positive Breast Cancer Cell Lines. Mol Cancer Res 2019; 17:720-730. [DOI: 10.1158/1541-7786.mcr-18-0719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
36
|
Aytes A, Giacobbe A, Mitrofanova A, Ruggero K, Cyrta J, Arriaga J, Palomero L, Farran-Matas S, Rubin MA, Shen MM, Califano A, Abate-Shen C. NSD2 is a conserved driver of metastatic prostate cancer progression. Nat Commun 2018; 9:5201. [PMID: 30518758 PMCID: PMC6281610 DOI: 10.1038/s41467-018-07511-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023] Open
Abstract
Deciphering cell-intrinsic mechanisms of metastasis progression in vivo is essential to identify novel therapeutic approaches. Here we elucidate cell-intrinsic drivers of metastatic prostate cancer progression through analyses of genetically engineered mouse models (GEMM) and correlative studies of human prostate cancer. Expression profiling of lineage-marked cells from mouse primary tumors and metastases defines a signature of de novo metastatic progression. Cross-species master regulator analyses comparing this mouse signature with a comparable human signature identifies conserved drivers of metastatic progression with demonstrable clinical and functional relevance. In particular, nuclear receptor binding SET Domain Protein 2 (NSD2) is robustly expressed in lethal prostate cancer in humans, while its silencing inhibits metastasis of mouse allografts in vivo. We propose that cross-species analysis can elucidate mechanisms of metastasis progression, thus providing potential additional therapeutic opportunities for treatment of lethal prostate cancer.
Collapse
Affiliation(s)
- Alvaro Aytes
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA.
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, 199, 08908, Barcelona, Spain.
| | - Arianna Giacobbe
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - Antonina Mitrofanova
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, 65 Bergen Street, Newark, NJ, 07101, USA
| | - Katia Ruggero
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, 199, 08908, Barcelona, Spain
| | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Juan Arriaga
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - Luis Palomero
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, 199, 08908, Barcelona, Spain
| | - Sonia Farran-Matas
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, 199, 08908, Barcelona, Spain
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department for BioMedical Research, University of Bern, Murtenstrasse 35, CH-3008, Bern, Switzerland
| | - Michael M Shen
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY, 10032, USA.
| | - Cory Abate-Shen
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA.
- Department of Medicine, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
37
|
Suhaimi SS, Ab Mutalib NS, Khor SS, Zain RRM, Syafruddin SE, Abu N, Mohd Dali AZH, Jamal R. Targeted Next-Generation Sequencing Identifies Actionable Targets in Estrogen Receptor Positive and Estrogen Receptor Negative Endometriod Endometrial Cancer. Front Pharmacol 2018; 9:750. [PMID: 30057548 PMCID: PMC6053487 DOI: 10.3389/fphar.2018.00750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022] Open
Abstract
Endometrioid endometrial cancer (EEC) is the commonest form of endometrial cancer and can be divided into estrogen receptor (ER) positive and negative subtypes. The mutational profiles of EEC have been shown to aid in tailoring treatment; however, little is known about the differences between the gene mutation profiles between these two subtypes. This study aims to investigate the gene mutation profile in ER positive and negative EEC, and to further elucidate the role of WHSC1 mutations in this cancer. EEC and normal endometrial tissues were obtained from 29 patients and subjected to next-generation sequencing (NGS) using Ion Ampliseq Comprehensive Cancer PanelTM targeting 409 cancer related. A total of 741 non-synonymous alterations were identified from 272 genes in ER positive subtype while 448 non-synonymous variants were identified from 221 genes in ER negative subtype. PTEN is the most frequently altered gene in ER positive subtype (64%, 7/11) while ARID1A is the most frequently altered gene in ER negative subtype (50%, 4/8). We also identified alterations in ERRB3 (36%, 4/11), GNAS (36%, 4/11), and WHSC1 (27%, 3/11) in the ER positive subtype. WHSC1 R1126H and L1268P were shown to significantly increase cell viability, proliferation, migration, and survival. In addition, reduction in ER expression sensitized EEC-1 cell with WHSC1 L1268P mutant to Fulvestrant treatment. We revealed the mutational spectra of ER positive and ER negative EEC that could lead to better understanding of the biological mechanisms of endometrial cancer and may ultimately result in improvement of treatment options and patient prognosis.
Collapse
Affiliation(s)
- Siti Syazani Suhaimi
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| | | | - Reena Rahayu Md Zain
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| | - Ahmad Zailani Hatta Mohd Dali
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, Graña-Castro O, Pisano DG, Barrero MJ. CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation. Epigenetics Chromatin 2018; 11:30. [PMID: 29884215 PMCID: PMC5992658 DOI: 10.1186/s13072-018-0197-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background The reported antitumor activity of the BET family bromodomain inhibitors has prompted the development of inhibitors against other bromodomains. However, the human genome encodes more than 60 different bromodomains and most of them remain unexplored. Results We report that the bromodomains of the histone acetyltransferases CREBBP/EP300 are critical to sustain the proliferation of human leukemia and lymphoma cell lines. EP300 is very abundant at super-enhancers in K562 and is coincident with sites of GATA1 and MYC occupancy. In accordance, CREBBP/EP300 bromodomain inhibitors interfere with GATA1- and MYC-driven transcription, causing the accumulation of cells in the G0/G1 phase of the cell cycle. The CREBBP/CBP30 bromodomain inhibitor CBP30 displaces CREBBP and EP300 from GATA1 and MYC binding sites at enhancers, resulting in a decrease in the levels of histone acetylation at these regulatory regions and consequently reduced gene expression of critical genes controlled by these transcription factors. Conclusions Our data shows that inhibition of CREBBP/EP300 bromodomains can interfere with oncogene-driven transcriptional programs in cancer cells and consequently hold therapeutic potential. Electronic supplementary material The online version of this article (10.1186/s13072-018-0197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronica Garcia-Carpizo
- CNIO-Lilly Epigenetics Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Sergio Ruiz-Llorente
- CNIO-Lilly Epigenetics Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Jacinto Sarmentero
- CNIO-Lilly Epigenetics Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Maria J Barrero
- CNIO-Lilly Epigenetics Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
39
|
Campos-Sanchez E, Deleyto-Seldas N, Dominguez V, Carrillo-de-Santa-Pau E, Ura K, Rocha PP, Kim J, Aljoufi A, Esteve-Codina A, Dabad M, Gut M, Heyn H, Kaneda Y, Nimura K, Skok JA, Martinez-Frias ML, Cobaleda C. Wolf-Hirschhorn Syndrome Candidate 1 Is Necessary for Correct Hematopoietic and B Cell Development. Cell Rep 2018; 19:1586-1601. [PMID: 28538178 DOI: 10.1016/j.celrep.2017.04.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/20/2017] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
Immunodeficiency is one of the most important causes of mortality associated with Wolf-Hirschhorn syndrome (WHS), a severe rare disease originated by a deletion in chromosome 4p. The WHS candidate 1 (WHSC1) gene has been proposed as one of the main genes responsible for many of the alterations in WHS, but its mechanism of action is still unknown. Here, we present in vivo genetic evidence showing that Whsc1 plays an important role at several points of hematopoietic development. Particularly, our results demonstrate that both differentiation and function of Whsc1-deficient B cells are impaired at several key developmental stages due to profound molecular defects affecting B cell lineage specification, commitment, fitness, and proliferation, demonstrating a causal role for WHSC1 in the immunodeficiency of WHS patients.
Collapse
Affiliation(s)
- Elena Campos-Sanchez
- Department of Cell Biology and Immunology, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid 28049, Spain
| | - Nerea Deleyto-Seldas
- Department of Cell Biology and Immunology, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid 28049, Spain
| | | | - Enrique Carrillo-de-Santa-Pau
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Kiyoe Ura
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Pedro P Rocha
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - JungHyun Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Arafat Aljoufi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Maria Luisa Martinez-Frias
- ECEMC (Spanish Collaborative Study of Congenital Malformations), Madrid 28029, Spain; CIAC (Research Center on Congenital Anomalies), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain; CIBER de Enfermedades Raras (CIBERER), U724, Madrid 28029, Spain
| | - Cesar Cobaleda
- Department of Cell Biology and Immunology, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid 28049, Spain.
| |
Collapse
|
40
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 797] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|