1
|
Abbas M, Gururani MA, Ali A, Bajwa S, Hassan R, Batool SW, Imam M, Wei D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024; 29:4914. [PMID: 39459282 PMCID: PMC11510594 DOI: 10.3390/molecules29204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Sakeena Bajwa
- Department of Medical Laboratory Technology, Riphah International University, Faisalabad 44000, Pakistan
| | - Rafia Hassan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Syeda Wajiha Batool
- Department of Biotechnology, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Mahreen Imam
- Department of Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Dongqing Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Li A, La M, Wang Y, Chen T, Mian R, He F, Li Y, Zou D. Target-guided isolation and purification of cyclooxygenase-2 inhibitors from Meconopsis integrifolia (Maxim.) Franch. by high-speed counter-current chromatography combined with ultrafiltration liquid chromatography. J Sep Sci 2024; 47:e2300722. [PMID: 38234021 DOI: 10.1002/jssc.202300722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Meconopsis integrifolia (Maxim.) Franch. is used extensively in traditional Tibetan medicine for its potent anti-inflammatory properties. In this study, six cyclooxygenase-2 (COX-2) inhibitors were purified from M. integrifolia using high-speed counter-current chromatography guided by ultrafiltration liquid chromatography (ultrafiltration-LC). First, ultrafiltration-LC was performed to profile the COX-2 inhibitors in M. integrifolia. The reflux extraction conditions were further optimized using response surface methodology, and the results showed that the targeted COX-2 inhibitors could be well enriched under the optimized extraction conditions. Then the six target COX-2 inhibitors were separated by high-speed countercurrent chromatography with a solvent system composed of ethyl acetate/n-butanol/water (4:1:4, v/v/v. Finally, the six COX-2 inhibitors, including 21.2 mg of 8-hydroxyluteolin 7-sophoroside, 29.6 mg of 8-hydroxyluteolin 7-[6'''-acetylallosyl-(1→2)-glucoside], 42.5 mg of Sinocrassoside D3, 54.1 mg of Hypolaetin 7-[6'''-acetylallosyll-(l→2)-3''-acetylglucoside, 30.6 mg of Hypolaetin 7-[6'''-acetylallosyll-(l→2)-6''-acetylglucoside and 17.8 mg of Hypolaetin were obtained from 500 mg of sample. Their structures were elucidated by 1 H-NMR spectroscopy. This study reveals that ultrafiltration-LC combined with high-speed counter-current chromatography is a robust and efficient strategy for target-guided isolation and purification of bioactive molecules. It also enhances the scientific understanding of the anti-inflammatory properties of M. integrifolia but also paves the way for its further medicinal applications.
Collapse
Affiliation(s)
- Aijing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Mencuo La
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Yao Wang
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Ruisha Mian
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Fangfang He
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Denglang Zou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| |
Collapse
|
3
|
Li A, La M, Wang H, Zhao J, Wang Y, Mian R, He F, Wang Y, Yang T, Zou D. Target-Guided Isolation and Purification of Antioxidants from Urtica laetevirens Maxim. by HSCCC Combined with Online DPPH-HPLC Analysis. Molecules 2023; 28:7332. [PMID: 37959752 PMCID: PMC10650309 DOI: 10.3390/molecules28217332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Urtica laetevirens Maxim. is used extensively in traditional Chinese medicine (TCM) for its potent antioxidative properties. In this study, three antioxidants were purified from U. laetevirens. using HSCCC guided by online DPPH-HPLC analysis. Firstly, the online DPPH-HPLC analysis was performed to profile out the antioxidant active molecules in U. laetevirens. The ultrasonic-assisted extraction conditions were optimized by response surface methodology and the results showed the targeted antioxidant active molecules could be well enriched under the optimized extraction conditions. Then, the antioxidant active molecules were separated by high-speed countercurrent chromatography ethyl acetate/n-butanol/water (2:3:5, v/v/v) as the solvent system. Finally, the three targets including 16.8 mg of Isovitexin, 9.8 mg of Isoorientin, and 26.7 mg of Apigenin-6,8-di-C-β-d-glucopyranoside were obtained from 100 mg of sample. Their structures were identified by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Aijing Li
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Mencuo La
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Huichun Wang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Jianzhong Zhao
- Agricultural and Rural Science and Technology Guidance Development Service Center of Qinghai Province, Xining 810008, China;
| | - Yao Wang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Ruisha Mian
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Fangfang He
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Yuhan Wang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Tingqin Yang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Denglang Zou
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
- Agricultural and Rural Science and Technology Guidance Development Service Center of Qinghai Province, Xining 810008, China;
| |
Collapse
|
4
|
Li L, Zhao J, Yang T, Sun B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: a review. Food Res Int 2022; 153:110956. [DOI: 10.1016/j.foodres.2022.110956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
5
|
Zielińska M, Dereń K, Polak-Szczybyło E, Stępień AE. The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy-Current Reports. Nutrients 2021; 13:3369. [PMID: 34684370 PMCID: PMC8539759 DOI: 10.3390/nu13103369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Black cumin (Nigella sativa, NS) is included in the Ranunculaceae family and is classified as a medicinal plant due to very high levels of various bioactive compounds. They determine its therapeutic effects, including anti-inflammatory, anti-allergic, anti-cancer, hypoglycemic, antioxidant, hypotensive, hypolipidemic, and immunomodulating properties. The results of scientific studies indicate a supporting role of black cumin in the treatment of autoimmune diseases, including rheumatoid arthritis, due to the health-promoting properties of its bioactive ingredients. The aim of the current article is to analyze the results of scientific publications on the role of bioactive ingredients contained in black cumin in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | - Ewelina Polak-Szczybyło
- Department of Dietetics, Institute of Health Sciences, College for Medical Sciences, University of Rzeszow, al/Mjr. W. Kopisto 2a, 35-310 Rzeszow, Poland; (M.Z.); (K.D.); (A.E.S.)
| | | |
Collapse
|
6
|
Chen YH, Bi JH, Xie M, Zhang H, Shi ZQ, Guo H, Yin HB, Zhang JN, Xin GZ, Song HP. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011-2020): Theory, technical route and difficulty. J Chromatogr A 2021; 1651:462307. [PMID: 34161837 DOI: 10.1016/j.chroma.2021.462307] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
The difficulty of traditional Chinese medicine (TCM) researches lies in the complexity of components, metabolites, and bioactivities. For a long time, there has been a lack of connections among the three parts, which is not conducive to the systematic elucidation of TCM effectiveness. To overcome this problem, a classification-based methodology for simplifying TCM researches was refined from literature in the past 10 years (2011-2020). The theoretical basis of this methodology is set theory, and its core concept is classification. Its starting point is that "although TCM may contain hundreds of compounds, the vast majority of these compounds are structurally similar". The methodology is composed by research strategies for components, metabolites and bioactivities of TCM, which are the three main parts of the review. Technical route, key steps and difficulty are introduced in each part. Two perspectives are highlighted in this review: set theory is a theoretical basis for all strategies from a conceptual perspective, and liquid chromatography-mass spectrometry (LC-MS) is a common tool for all strategies from a technical perspective. The significance of these strategies is to simplify complex TCM researches, integrate isolated TCM researches, and build a bridge between traditional medicines and modern medicines. Potential research hotspots in the future, such as discovery of bioactive ingredients from TCM metabolites, are also discussed. The classification-based methodology is a summary of research experience in the past 10 years. We believe it will definitely provide support and reference for the following TCM researches.
Collapse
Affiliation(s)
- Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jing-Hua Bi
- Shanxi Medical University, Taiyuan 030001, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Qi Shi
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hua Guo
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
7
|
Hussain H, Ali I, Wang D, Hakkim FL, Westermann B, Rashan L, Ahmed I, Green IR. Boswellic acids: privileged structures to develop lead compounds for anticancer drug discovery. Expert Opin Drug Discov 2021; 16:851-867. [PMID: 33650441 DOI: 10.1080/17460441.2021.1892640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Cancer has been identified to be the second major cause of death internationally as exemplified by ca. 9.6 million deaths in 2018 along with ca. 18 million new patients in 2018 that have been recorded. Natural boswellic acids (BAs) and their source, frankincense, have been reported to possess in vitro and in vivo anticancer effects toward various cancer cells.Areas covered: This comprehensive review focuses on the importance of boswellic acids (BAs) for the establishment of future treatments of cancer. Moreover, potent semisynthetic derivatives of BAs have been described along with their mode of action. In addition, important structural features of the semisynthetic BAs required for cytotoxic effects are also discussed.Expert opinion: Numerous semisynthetic BAs illustrate excellent cytotoxic effects. Of note, compounds bearing cyanoenone moieties in ring A, endoperoxides and hybrids display increased and more potent cytotoxic effects compared with other semisynthetic BAs. Moreover, BAs have the potential to conjugate or couple with other anticancer compounds to synergistically increase their combined anticancer effects. In addition, to get derived BAs to become lead anticancer compounds, future research should focus on the preparation of ring A cyanoenones, endoperoxides, and C-24 amide analogs.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg, Germany
| | - Iftikhar Ali
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Faruck L Hakkim
- Department of Urology Masonic Cancer Center, University of Minnesota (Twin Cities), Minneapolis, USA
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg, Germany
| | - Luay Rashan
- Medicinal Plants Division, Research Center, Dhofar University, Salalah, Oman
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
8
|
Desai S, Tatke P. Phytochemical Markers: Classification, Applications and Isolation. Curr Pharm Des 2020; 25:2491-2498. [PMID: 31584364 DOI: 10.2174/1381612825666190709203239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND There has been aroused demand for herbal drugs/products worldwide because of their fewer side effects as compared to synthetic drugs. The major obstacle in the global acceptance of herbal products is the lack of proper standardization technique. METHODS Various test procedures have been used for authentication and quality control of botanicals among which marker based standardization has attained more attention. The major challenge faced by phytochemist is to select appropriate phytochemical marker for quality control of herbal drugs. Phytochemical markers used for standardization must be of known purity. Phytochemical markers which are not commercially available have to be isolated from respective medicinal plants. Various chromatographic techniques are reported for the purification of phytomarkers from plants. A comprehensive report on different purification techniques of isolation of phytochemical markers through in-depth review of scientific literature is required. CONCLUSION This article highlights various classifications of phytochemical markers along with their applications in standardization of herbal drugs and various classical and modern analytical techniques for their isolation.
Collapse
Affiliation(s)
- Sonal Desai
- Department of Quality Assurance, SSR College of Pharmacy, Sayli Campus, Sayli Road, Silvassa, UT of Dadra and Nagar Haveli- 396 230, India
| | - Pratima Tatke
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, SNDT Women's University, Santacruz(w), Mumbai-400 049, India
| |
Collapse
|
9
|
Gong G, Xie F, Zheng Y, Hu W, Qi B, He H, Dong TT, Tsim KW. The effect of methanol extract from Saussurea involucrata in the lipopolysaccharide-stimulated inflammation in cultured RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112532. [PMID: 31884036 DOI: 10.1016/j.jep.2019.112532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saussureae Involucratae Herba (SIH), known as "snow lotus" in Uyghur and/or Chinese medicines, is generated from the dried aerial part of Saussurea involucrata (Kar. et Kir.) Sch.-Bip. (Asteraceae). The major pharmaceutical value of SIH has been recorded in China Pharmacopoeia, i.e. to balance the immune system, and thus SIH is commonly used for rheumatoid arthritis treatment. Nevertheless, the detailed mechanism of SIH in immune function is still unresolved. AIM OF THE STUDY Here, we employed macrophage RAW 264.7 cell as a model to demonstrate the signaling pathways, triggered by SIH, in regulating the LPS-induced inflammation. METHODS The application of SIH methanolic extract suppressed the expression of cytokines, a hallmark of chronic inflammation, in lipopolysaccharide (LPS)-stimulated cultures. RESULTS The anti-inflammatory functions of SIH were shown to be triggered via NF-κB/PI3K/MAPK signaling pathways by revealing the specific biomarkers, i.e. translocation activities of NF-κB and phosphorylations of Erk1/2, JNK and Akt. CONCLUSION The aforementioned results showed the underlying action mechanism of SIH in chronic inflammation mitigation, and which might shed light on clinical applications of SIH in traditional Chinese and/or Uyghur medicines.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong, 519041, China
| | - Feng Xie
- Department of Hematology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Yuzhong Zheng
- Department of Biology, Hanshan Normal University, Chaozhou, Guangdong, 521041, China.
| | - Weihui Hu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Baohui Qi
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong, 519041, China
| | - Huan He
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong, 519041, China
| | - Tina Tx Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Karl Wk Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
10
|
Abdin M, Hamed YS, Akhtar HMS, Chen D, Chen G, Wan P, Zeng X. Antioxidant and anti-inflammatory activities of target anthocyanins di-glucosides isolated from Syzygium cumini pulp by high speed counter-current chromatography. J Food Biochem 2020; 44:1050-1062. [PMID: 32212170 DOI: 10.1111/jfbc.13209] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
High-speed counter-current chromatography (HSCCC) was utilized as an effective procedure for isolation of targeted three anthocyanins di-glucosides from Syzygium cumini (SC) pulp by using an optimized biphasic successful combination of different solvents. The resulted fractions described by HPLC/ESI-MS to be delphinidin 3,5-diglucoside (DDG), petunidin 3,5-diglucoside (PDG), and malvidin 3,5-diglucoside (MDG). A weight of 150 mg of sample yielded 7.53, 22.68, and 39.09 mg for DDG, PDG, and MDG, respectively. It was stated that the target three anthocyanins possessed strong antioxidant activities. Furthermore, MDG exhibited definite advantages for inhibition of nitric oxide release and pro-inflammatory mediators like mouse interleukin 6 (IL-6), mouse interleukin (IL-1β) and mouse tumor necrosis factor (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. The results propose that HSCCC can be utilized to separate highly antioxidative and anti-inflammatory natural components from SC pulp. PRACTICAL APPLICATIONS: Anthocyanins are water-soluble pigments and considered one of the groups of bioactive compounds, which generally concentrate in the skin, and often also the flesh of some fruits and vegetables as glycosides like acylglycosides and aglycones of anthocyanidins. The fully ripe fruits of SC contain anthocyanins, like as delphinidin, cyanidin, and petunidin, which supply them a distinctive color and good antioxidant characteristics. HSCCC considers a system of liquid-liquid extraction with separating large quantities of materials, using a minimum of solvent. The findings of the study would pave a separation strategy for potential large-scale preparation of anthocyanins di-glucosides standards for compounds detection and reduce the inflammation symptoms through declining the induction of pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6, which will also enhance the future notification on the structure-activity correlations of anthocyanins di-glucosides.
Collapse
Affiliation(s)
- Mohamed Abdin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.,Food Technology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Yahya Saud Hamed
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.,Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | | | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Fast Isolation of Flavonoids from the Endemic Species Nolana ramosissima I.M. Johnst and Its Endothelium-Independent Relaxation Effect in Rat Aorta. Molecules 2020; 25:molecules25030520. [PMID: 31991709 PMCID: PMC7036828 DOI: 10.3390/molecules25030520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/20/2022] Open
Abstract
The infusion of the desertic plant Nolana ramosissima I.M. Johnst showed vascular smooth muscle relaxation in rat aorta and the presence of several phenolic compounds, which were detected by high resolution UHPLC-Orbitrap-HESI-MS. In addition, five flavonoids were rapidly isolated from a methanolic extract using high-performance counter-current chromatography (HPCCC). The N. ramosissima extract showed endothelium-independent relaxation effect in rat aorta. Sixty-one compounds were detected in the infusion, mainly glycosylated flavonoids, flavanones and several oxylipins, suggesting that a synergistic effect between the compounds in the extracts could be responsible for the relaxation activity. Vascular activity experiments were done in isolated organ bath. In rat aorta, a nitric oxide inhibitor did not prevent the relaxation effects of the extract; however, a selective guanylyl cyclase inhibitor partially blunted this effect. The compound 5,3′-dihydroxy-4′7-dimethoxyflavone presented higher relaxation effect than 100 μg/mL of N. ramosissima extract. The extract and the isolated metabolites from N. ramosissima can show relaxation effects on rat aorta by a mechanism that is independent of the endothelium.
Collapse
|
12
|
Gong G, Huang J, Yang Y, Qi B, Han G, Zheng Y, He H, Chan K, Tsim KW, Dong TT. Saussureae Involucratae Herba (Snow Lotus): Review of Chemical Compositions and Pharmacological Properties. Front Pharmacol 2020; 10:1549. [PMID: 32009958 PMCID: PMC6971814 DOI: 10.3389/fphar.2019.01549] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Saussureae Involucratae Herba is the dried ground part of Saussurea involucrata (Kar. et Kir.) Sch.-Bip, which is also named as “Snow lotus” and being used in traditional Uyghur and/or Chinese medicine. This rare herb can be found at 4,000 m elevation in western part of Tianshan Mountain, Xinjiang China. According to China Pharmacopoeia (2015), the major pharmaceutical values of “Snow lotus” (Xuě liánhuā in Chinese) are alleviating rheumatoid arthritis, accelerating blood circulation and mitigating other “cold” syndromes. Traditionally, the clinical application of “Snow lotus” includes the treatments in inflammation-associated disorder, blood circulation acceleration and heat and dampness elimination. Recent studies suggested that “Snow lotus” possessed therapeutic effects associating with anti-cancer, anti-oxidation, adipogenesis suppression and neuroprotection activities, which were proposed to be related with its bioactive constitutes, i.e. acacetin, hispidulin, and rutin. In the present review, we aim to summarize pharmacological effects and underlying cell signaling pathways of “Snow lotus” in treating various medical problems.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Jing Huang
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Yang Yang
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Baohui Qi
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Guangyi Han
- Gansu Institute for Drug Control, Lanzhou, China
| | - Yuzhong Zheng
- Department of Biology, Hanshan Normal University, Chaozhou, China
| | - Huan He
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Kelvin Chan
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Karl Wk Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Tina Tx Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
13
|
Mahboubi M, Mohammad Taghizadeh Kashani L, Mahboubi M. Nigella sativa fixed oil as alternative treatment in management of pain in arthritis rheumatoid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:69-77. [PMID: 30097124 DOI: 10.1016/j.phymed.2018.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/17/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND N. sativa seeds is the source of fixed oil, which contain fatty acids and thymoquinone. N. sativa fixed oil topically or orally is used traditionally for management of pain in back, joints, musculoskeletal organs and arthritis rheumatoid. PURPOSE The aim of this review article was to evaluate the potential effects of N. sativa fixed oil in pain and inflammation, especially in arthritis rheumatoid. METHODS All information was extracted from accessible and inaccessible sources (books, electronic sources, thesis and etc.). RESULTS The results of our investigation showed N. sativa fixed oil, especially thymoquinone content had valuable anti-inflammatory and analgesic effects via different pathways. The efficacy of thymoquinone as potential treatment was confirmed in different animal model of arthritis and the clinical studies confirmed the oral (n = 4) and topical use (n = 1) of N. sativa fixed oil without adverse effects in patients suffering from arthritis rheumatoid. CONCLUSION The larger multicenter clinical trials for comparing the efficacy of topical, oral administrations and current treatment may help to understand better the efficacy of valuable fixed oil.
Collapse
Affiliation(s)
- Mohaddese Mahboubi
- Department of Microbiology, Medicinal Plant, Research Center of Barij, Kashan, Iran
| | | | - Mona Mahboubi
- Department of Microbiology, Medicinal Plant, Research Center of Barij, Kashan, Iran.
| |
Collapse
|
14
|
Cen Y, Xiao A, Chen X, Liu L. Screening and separation of α-amylase inhibitors from Solanum nigrum
with amylase-functionalized magnetic graphene oxide combined with high-speed counter-current chromatography. J Sep Sci 2017; 40:4780-4787. [DOI: 10.1002/jssc.201700333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yin Cen
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Aiping Xiao
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Liangliang Liu
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha China
| |
Collapse
|
15
|
Xue Y, Zhu L, Yi T. Fingerprint analysis of Resina Draconis by ultra-performance liquid chromatography. Chem Cent J 2017; 11:67. [PMID: 29086860 PMCID: PMC5524661 DOI: 10.1186/s13065-017-0299-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/14/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Resina Draconis, a bright red resin derived from Dracaena cochinchinensis, is a traditional medicine used in China. To improve its quality control approach, an ultra-performance liquid chromatography (UPLC) fingerprint method was developed for rapidly evaluating the quality of Resina Draconis. METHODS The precision, repeatability and stability of the proposed UPLC method were validated in the study. Twelve batches of Resina Draconis samples from various sources were analyzed by the present UPLC method. Common peaks in the chromatograms were adopted to calculate their relative retention time and relative peak area. The chromatographic data were processed by Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine software (Version 2004 A) for similarity analysis. RESULTS The present UPLC method demonstrated a satisfactory precision, repeatability and stability. The analysis time of the present UPLC method was shortened to 30 min, compared with that of the conventional HPLC method was 50 min. The similarities of the 12 Resina Draconis samples were 0.976, 0.993, 0.955, 0.789, 0.989, 0.995, 0.794, 0.994, 0.847, 0.987, 0.997, 0.986, respectively, which indicated that the samples were certainly regionally different. The similarities of the 12 samples showed more similar pattern except for samples 4, 7 and 9. Such variation in similarity may presumably be attributed to differences in source. CONCLUSIONS Compared with the conventional HPLC method, the present UPLC method showed several advantages including shorter analysis time, higher resolution and better separation performance. The UPLC fingerprinting established in the present paper provides a valuable reference for the quality control of Resina Draconis.
Collapse
Affiliation(s)
- Yudi Xue
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region People’s Republic of China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region People’s Republic of China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region People’s Republic of China
| |
Collapse
|