1
|
Docimo T, Paesano A, D'Agostino N, D'Amelia V, Garramone R, Carputo D, Aversano R. Exploring CDF gene family in wild potato under salinity stress unveils promising candidates for developing climate-resilient crops. Sci Rep 2024; 14:24619. [PMID: 39426998 PMCID: PMC11490634 DOI: 10.1038/s41598-024-75412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
The DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors involved in diverse biological processes, including response to biotic and abiotic stresses. Members of this family have been reported in the cultivated potato Solanum tuberosum, but clues to the roles of several Dof genes are still lacking. Potato wild relatives represent a genetic reservoir for breeding as they could provide useful alleles for adaptation to the environment and tolerance to biotic and abiotic stresses. We performed an in silico analysis to identify genes belonging to the Dof family in the wild potato S. commersonii, confirming that the identified Dof genes can be grouped in four classes (A, B, C, D), as reported for cultivated potato. A special focus was dedicated to Cycling Dof Factors (CDFs), which play a crucial role in plant responses to abiotic stresses. Analysis of available RNA-seq data confirmed CDF genes as regulated by stresses and often in a tissue specific manner. To ascertain their involvement in the stress response, S. tuberosum and S. commersonii plantlets growing in vitro were subjected to salt stress (80mM NaCl) for short (2 days) and prolonged (7 days) times. Analysis of phenotypic traits and qRT-PCR expression profiles of target CDF genes in aerial and root tissues showed differences between the two species. In addition, after saline treatment, changes in total phenols, proline, and malondialdehyde suggested a diverse perception of saline stress in S. commersonii vs. S. tuberosum. Overall, this study provided useful clues to the involvement of CDF genes in salt response and promoted the identification of potential candidate genes for further functional studies.
Collapse
Affiliation(s)
- Teresa Docimo
- Institute of Biosciences and Bioresources (CNR-IBBR), National Research Council of Italy, Via Università 133, Portici, NA, Italy.
| | - Anna Paesano
- Department of Agricultural Sciences, University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Italy
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Viale Fanin 40, Bologna, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Italy.
| | - Vincenzo D'Amelia
- Institute of Biosciences and Bioresources (CNR-IBBR), National Research Council of Italy, Via Università 133, Portici, NA, Italy
- Department of Agricultural Sciences, University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Italy
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Italy
| |
Collapse
|
2
|
Fu C, Xiao Y, Jiang N, Yang Y. Genome-wide identification and molecular evolution of Dof gene family in Camellia oleifera. BMC Genomics 2024; 25:702. [PMID: 39026173 PMCID: PMC11264790 DOI: 10.1186/s12864-024-10622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
DNA binding with one finger(Dof) gene family is a class of transcription factors which play an important role on plant growth and development. Genome-wide identification results indicated that there were 45 Dof genes(ColDof) in C.oleifera genome. All 45 ColDof proteins were non-transmembrane and non-secretory proteins. Phosphorylation site analysis showed that biological function of ColDof proteins were mainly realized by phosphorylation at serine (Ser) site. The secondary structure of 44 ColDof proteins was dominated by random coil, and only one ColDof protein was dominated by α-helix. ColDof genes' promoter region contained a variety of cis-acting elements, including light responsive regulators, gibberellin responsive regulators, abscisic acid responsive regulators, auxin responsive regulators and drought induction responsive regulators. The SSR sites analysis showed that the proportion of single nucleotide repeats and the frequency of A/T in ColDof genes were the largest. Non-coding RNA analysis showed that 45 ColDof genes contained 232 miRNAs. Transcription factor binding sites of ColDof genes showed that ColDof genes had 5793 ERF binding sites, 4381 Dof binding sites, 2206 MYB binding sites, 3702 BCR-BPC binding sites. ColDof9, ColDof39 and ColDof44 were expected to have the most TFBSs. The collinearity analysis showed that there were 40 colinear locis between ColDof proteins and AtDof proteins. Phylogenetic analysis showed that ColDof gene family was most closely related to that of Camellia sinensis var. sinensis cv.Biyun and Camellia lanceoleosa. Protein-protein interaction analysis showed that ColDof34, ColDof20, ColDof28, ColDof35, ColDof42 and ColDof26 had the most protein interactions. The transcriptome analysis of C. oleifera seeds showed that 21 ColDof genes were involved in the growth and development process of C. oleifera seeds, and were expressed in 221 C. oleifera varieties. The results of qRT-PCR experiments treated with different concentrations NaCl and PEG6000 solutions indicated that ColDof1, ColDof2, ColDof14 and ColDof36 not only had significant molecular mechanisms for salt stress tolerance, but also significant molecular functions for drought stress tolerance in C. oleifera. The results of this study provide a reference for further understanding of the function of ColDof genes in C.oleifera.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - YuJie Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| |
Collapse
|
3
|
Cai K, Xie X, Han L, Chen J, Zhang J, Yuan H, Shen J, Ren Y, Zhao X. Identification and functional analysis of the DOF gene family in Populus simonii: implications for development and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1412175. [PMID: 38779074 PMCID: PMC11109421 DOI: 10.3389/fpls.2024.1412175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Background Populus simonii, a notable native tree species in northern China, demonstrates impressive resistance to stress, broad adaptability, and exceptional hybridization potential. DOF family is a class of specific transcription factors that only exist in plants, widely participating in plant growth and development, and also playing an important role in abiotic stress response. To date, there have been no reported studies on the DOF gene family in P. simonii, and the expression levels of this gene family in different tissues of poplar, as well as its expression patterns under cold, heat, and other stress conditions, remain unclear. Methods In this study, DOF gene family were identified from the P. simonii genome, and various bioinformatics data on the DOF gene family, gene structure, gene distribution, promoters and regulatory networks were analyzed. Quantitative real time PCR technology was used to verify the expression patterns of the DOF gene family in different poplar tissues. Results This research initially pinpointed 41 PSDOF genes in P. simonii genome. The chromosomal localization results revealed that the PSDOF genes is unevenly distributed among 19 chromosomes, with the highest number of genes located on chromosomes 4, 5, and 11. A phylogenetic tree was constructed based on the homology between Arabidopsis thaliana and P. simonii, dividing the 41 PSDOF genes into seven subgroups. The expression patterns of PSDOF genes indicated that specific genes are consistently upregulated in various tissues and under different stress conditions, suggesting their pivotal involvement in both plant development and response to stress. Notably, PSDOF35 and PSDOF28 serve as pivotal hubs in the interaction network, playing a unique role in coordinating with other genes within the family. Conclusion The analysis enhances our comprehension of the functions of the DOF gene family in tissue development and stress responses within P. simonii. These findings provide a foundation for future exploration into the biological roles of DOF gene family.
Collapse
Affiliation(s)
- Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoyu Xie
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lu Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Junbo Chen
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Jinwang Zhang
- The Forest Tree Genetics and Breeding Laboratory, Tongliao Forestry and Grassland Science Research Institute, Tongliao, China
| | - Hongtao Yuan
- The Forest Tree Genetics and Breeding Laboratory, Tongliao Forestry and Grassland Science Research Institute, Tongliao, China
| | - Jiajia Shen
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Yishuang Ren
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Gu F, Zhang W, Wang T, He X, Chen N, Zhang Y, Song C. Identification of Dof transcription factors in Dendrobium huoshanense and expression pattern under abiotic stresses. Front Genet 2024; 15:1394790. [PMID: 38711915 PMCID: PMC11070552 DOI: 10.3389/fgene.2024.1394790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction: DNA-binding with one finger (Dof) transcription factors (TFs) are a unique family of TFs found in higher plants that regulate plant responses to light, hormones, and abiotic stresses. The specific involvement of Dof genes in the response to environmental stresses remains unknown in D. huoshanense. Methods: A total of 22 Dof family genes were identified from the D. huoshanense genome. Results: Chromosome location analysis showed that DhDof genes were distributed on 12 chromosomes, with the largest number of Dof genes located on chromosome 8. The phylogenetic tree revealed that DhDofs could be categorized into 11 distinct subgroups. In addition to the common groups, DhDof4, DhDof5, DhDof17, and the AtDof1.4 ortholog were clustered into the B3 subgroup. Group E was a newly identified branch, among which DhDof6, DhDof7, DhDof8, and DhDof9 were in an independent branch. The conserved motifs and gene structure revealed the differences in motif number and composition of DhDofs. The dof domain near the N-terminus was highly conserved and contained a C2-C2-type zinc finger structure linked with four cysteines. Microsynteny and interspecies collinearity revealed gene duplication events and phylogenetic tree among DhDofs. Large-scale gene duplication had not occurred among the DhDofs genes and only in one pair of genes on chromosome 13. Synteny blocks were found more often between D. huoshanense and its relatives and less often between Oryza sativa and Arabidopsis thaliana. Selection pressure analysis indicated that DhDof genes were subject to purifying selection. Expression profiles and correlation analyses revealed that the Dof gene under hormone treatments showed several different expression patterns. DhDof20 and DhDof21 had the highest expression levels and were co-expressed under MeJA induction. The cis-acting element analysis revealed that each DhDof had several regulatory elements involved in plant growth as well as abiotic stresses. qRT-PCR analysis demonstrated that DhDof2 was the main ABA-responsive gene and DhDof7 was the main cold stress-related gene. IAA suppressed the expression of some Dof candidates, and SA inhibited most of the candidate genes. Discussion: Our results may provide new insights for the further investigation of the Dof genes and the screening of the core stress-resistance genes.
Collapse
Affiliation(s)
- Fangli Gu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenwu Zhang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
| | - Tingting Wang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaomei He
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Naifu Chen
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cheng Song
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
5
|
Wu Y, Su SX, Wang T, Peng GH, He L, Long C, Li W. Identification and expression characteristics of NLP (NIN-like protein) gene family in pepper (Capsicum annuum L.). Mol Biol Rep 2023; 50:6655-6668. [PMID: 37358766 DOI: 10.1007/s11033-023-08587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Pepper (Capsicum annum L.) is the main crop in the vegetable industry. The growth and development of peppers are regulated by nitrate, but there is limited research on the molecular mechanisms of nitrate absorption and assimilation in peppers. A plant specific transcription factor NLP plays an important role in nitrate signal transduction. METHODS AND RESULTS In this study, a total of 7 NLP members were identified based on pepper genome data. Two nitrogen transport elements (GCN4) were found in the CaNLP5 promoter. In the phylogenetic tree, CaNLP members are divided into three branches, with pepper NLP and tomato NLP having the closest genetic relationship. The expression levels of CaNLP1, CaNLP3, and CaNLP4 are relatively high in the roots, stems, and leaves. The expression level of CaNLP7 gene is relatively high during the 5-7 days of pepper fruit color transformation. After various non-Biotic stress and hormone treatments, the expression of CaNLP1 was at a high level. The expression of CaNLP3 and CaNLP4 was down regulated in leaves, but up regulated in roots. Under conditions of nitrogen deficiency and sufficient nitrate, the expression patterns of NLP genes in pepper leaves and roots were determined. CONCLUSION These results provide important insights into the multiple functions of CaNLPs in regulating nitrate absorption and transport.
Collapse
Affiliation(s)
- Yuan Wu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Shi-Xian Su
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Tao Wang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China
| | - Gui-Hua Peng
- Research Institute of Pepper, Zunyi, 563000, Guizhou Province, China
| | - Lei He
- Research Institute of Pepper, Zunyi, 563000, Guizhou Province, China
| | - Cha Long
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Wei Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China.
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.
| |
Collapse
|
6
|
Quan X, Meng C, Zhang N, Liang X, Li J, Li H, He W. Genome-Wide Analysis of Barley bHLH Transcription Factors and the Functional Characterization of HvbHLH56 in Low Nitrogen Tolerance in Arabidopsis. Int J Mol Sci 2023; 24:ijms24119740. [PMID: 37298691 DOI: 10.3390/ijms24119740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Improvement of low nitrogen (LN) tolerance or nitrogen use efficiency (NUE) in crops is imperative for environment-friendly agriculture development. The basic helix-loop-helix (bHLH) transcription factors are involved in multiple abiotic stresses and are suitable as candidate genes for improving LN tolerance. Few studies were performed on the characterization of the HvbHLH gene family and their function in response to LN stress in barley. In this study, 103 HvbHLH genes were identified through genome-wide analysis. HvbHLH proteins were classified into 20 subfamilies based on phylogenetic analysis in barley, which was supported by conserved motifs and gene structure analysis. The stress-related cis-element analysis in the promoters showed that HvbHLHs are probably involved in multiple stress responses. By phylogenetic analysis of HvbHLHs and bHLHs in other plants, some HvbHLHs were predicted to play roles in response to nutrition deficiency stress. Furthermore, at least 16 HvbHLHs were differentially expressed in two barley genotypes differing in LN tolerance under LN stress. Finally, overexpression of HvbHLH56 enhanced LN stress tolerance in transgenic Arabidopsis, suggesting it is an important regulator in LN stress response. The differentially expressed HvbHLHs identified herein may be valuable for the breeding of barley cultivars with LN tolerance.
Collapse
Affiliation(s)
- Xiaoyan Quan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chen Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xiaoli Liang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
7
|
Kim DH, Lim SH, Lee JY. Expression of RsPORB Is Associated with Radish Root Color. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112214. [PMID: 37299194 DOI: 10.3390/plants12112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Radish (Raphanus sativus) plants exhibit varied root colors due to the accumulation of chlorophylls and anthocyanins compounds that are beneficial for both human health and visual quality. The mechanisms of chlorophyll biosynthesis have been extensively studied in foliar tissues but remain largely unknown in other tissues. In this study, we examined the role of NADPH:protochlorophyllide oxidoreductases (PORs), which are key enzymes in chlorophyll biosynthesis, in radish roots. The transcript level of RsPORB was abundantly expressed in green roots and positively correlated with chlorophyll content in radish roots. Sequences of the RsPORB coding region were identical between white (948) and green (847) radish breeding lines. Additionally, virus-induced gene silencing assay with RsPORB exhibited reduced chlorophyll contents, verifying that RsPORB is a functional enzyme for chlorophyll biosynthesis. Sequence comparison of RsPORB promoters from white and green radishes showed several insertions and deletions (InDels) and single-nucleotide polymorphisms. Promoter activation assays using radish root protoplasts verified that InDels of the RsPORB promoter contribute to its expression level. These results suggested that RsPORB is one of the key genes underlying chlorophyll biosynthesis and green coloration in non-foliar tissues, such as roots.
Collapse
Affiliation(s)
- Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
8
|
Xu F, Asghar MA. Editorial: Seed-environment interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1201047. [PMID: 37215288 PMCID: PMC10195042 DOI: 10.3389/fpls.2023.1201047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Fei Xu
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan, China
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| |
Collapse
|
9
|
Liu W, Ren W, Liu X, He L, Qin C, Wang P, Kong L, Li Y, Liu Y, Ma W. Identification and characterization of Dof genes in Cerasus humilis. FRONTIERS IN PLANT SCIENCE 2023; 14:1152685. [PMID: 37077646 PMCID: PMC10106723 DOI: 10.3389/fpls.2023.1152685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Introduction Dof genes encode plant-specific transcription factors, which regulate various biological processes such as growth, development, and secondary metabolite accumulation. Methods We conducted whole-genome analysis of Chinese dwarf cherry (Cerasus humilis) to identify ChDof genes and characterize the structure, motif composition, cis-acting elements, chromosomal distribution, and collinearity of these genes as well as the physical and chemical properties, amino acid sequences, and phylogenetic evolution of the encoded proteins. Results The results revealed the presence of 25 ChDof genes in C. humilis genome. All 25 ChDof genes could be divided into eight groups, and the members of the same group had similar motif arrangement and intron-exon structure. Promoter analysis showed that cis-acting elements responsive to abscisic acid, low temperature stress, and light were dominant. Transcriptome data revealed that most ChDof genes exhibited tissue-specific expression. Then, we performed by qRT-PCR to analyze the expression patterns of all 25 ChDof genes in fruit during storage. The results indicated that these genes exhibited different expression patterns, suggesting that they played an important role in fruit storage. Discussion The results of this study provide a basis for further investigation of the biological function of Dof genes in C. humilis fruit.
Collapse
Affiliation(s)
- Weili Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Lianqing He
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Li
- Berry Resource Research Center, Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Yunwei Liu
- Berry Resource Research Center, Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Zhang Q, Zhong S, Dong Q, Yang H, Yang H, Tan F, Chen C, Ren T, Shen J, Cao G, Luo P. Identification of Photoperiod- and Phytohormone-Responsive DNA-Binding One Zinc Finger (Dof) Transcription Factors in Akebia trifoliata via Genome-Wide Expression Analysis. Int J Mol Sci 2023; 24:ijms24054973. [PMID: 36902404 PMCID: PMC10002981 DOI: 10.3390/ijms24054973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
As a kind of plant-specific transcription factor (TF), DNA-Binding One Zinc Finger (Dof) is widely involved in the response to environmental change, and as an evolutionarily important perennial plant species, Akebia trifoliata is ideal for studying environmental adaptation. In this study, a total of 41 AktDofs were identified in the A. trifoliata genome. First, the characteristics, including the length, exon number, and chromosomal distribution of the AktDofs and the isoelectric point (PI), amino acid number, molecular weight (MW), and conserved motifs of their putative proteins, were reported. Second, we found that all AktDofs evolutionarily underwent strong purifying selection, and many (33, 80.5%) of them were generated by whole-genome duplication (WGD). Third, we outlined their expression profiles by the use of available transcriptomic data and RT-qPCR analysis. Finally, we identified four candidate genes (AktDof21, AktDof20, AktDof36, and AktDof17) and three other candidate genes (AktDof26, AktDof16, and AktDof12) that respond to long day (LD) and darkness, respectively, and that are closely associated with phytohormone-regulating pathways. Overall, this research is the first to identify and characterize the AktDofs family and is very helpful for further research on A. trifoliata adaptation to environmental factors, especially photoperiod changes.
Collapse
Affiliation(s)
- Qiuyi Zhang
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Qing Dong
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Hao Yang
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Huai Yang
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Tianheng Ren
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoxing Cao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University of Sichuan Province, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
11
|
Zhang C, Dong T, Yu J, Hong H, Liu S, Guo F, Ma H, Zhang J, Zhu M, Meng X. Genome-wide survey and expression analysis of Dof transcription factor family in sweetpotato shed light on their promising functions in stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1140727. [PMID: 36895872 PMCID: PMC9989284 DOI: 10.3389/fpls.2023.1140727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
DNA-binding with one finger (Dof) transcription factors play a crucial role in plant abiotic stress regulatory networks, although massive Dofs have been systematically characterized in plants, they have not been identified in the hexaploid crop sweetpotato. Herein, 43 IbDof genes were detected to be disproportionally dispersed across 14 of the 15 chromosomes of sweetpotato, and segmental duplications were discovered to be the major driving force for the expansion of IbDofs. The collinearity analysis of IbDofs with their related orthologs from eight plants revealed the potential evolutionary history of Dof gene family. Phylogenetic analysis displayed that IbDof proteins were assigned into nine subfamilies, and the regularity of gene structures and conserved motifs was consistent with the subgroup classification. Additionally, five chosen IbDof genes were shown to be substantially and variably induced under various abiotic conditions (salt, drought, heat, and cold), as well as hormone treatments (ABA and SA), according to their transcriptome data and qRT-PCR experiments. Consistently, the promoters of IbDofs contained a number of cis-acting elements associated with hormone and stress responses. Besides, it was noted that IbDof2 had transactivation activity in yeasts, while IbDof-11/-16/-36 did not, and protein interaction network analysis and yeast two-hybrid experiments revealed a complicated interaction connection amongst IbDofs. Collectively, these data lay a foundation for further functional explorations of IbDof genes, especially with regards to the possible application of multiple IbDof members in breeding the tolerant plants.
Collapse
Affiliation(s)
- Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jing Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Haiting Hong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hongting Ma
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
12
|
Arkwazee HA, Wallace LT, Hart JP, Griffiths PD, Myers JR. Genome-Wide Association Study (GWAS) of White Mold Resistance in Snap Bean. Genes (Basel) 2022; 13:2297. [PMID: 36553566 PMCID: PMC9777983 DOI: 10.3390/genes13122297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
White mold can result in snap bean yield losses of 90 to 100% when field conditions favor the pathogen. A genome-wide association study (GWAS) was conducted to detect loci significantly associated with white mold resistance in a panel of snap bean (Phaseolus vulgaris L.) cultivars. Two populations of snap bean were used in this study. The first population was the BeanCAP (Coordinated Agriculture Project) Snap Bean Diversity Panel (SBDP) (n = 136), and the second population was the Snap Bean Association Panel (SnAP) (n = 378). SBDP was evaluated for white mold reaction in the field in 2012 and 2013, and SnAP was screened in a greenhouse only using the seedling straw test in 2016. Two reference genomes representing the Andean and Middle American centers of domestication were utilized to align the genotyping-by-sequencing (GBS) data. A GWAS was performed using FarmCPU with one principal component after comparing five models. Thirty-four single-nucleotide polymorphisms (SNPs) significantly associated with white mold resistance were detected. Eleven significant SNPs were identified by the seedling straw test, and 23 significant SNPs were identified by field data. Fifteen SNPs were identified within a 100 kb window containing pentatricopeptide repeat (PPR)-encoding genes, and eleven were close to leucine-rich repeat (LRR)-encoding genes, suggesting that these two classes are of outsized importance for snap bean resistance to white mold.
Collapse
Affiliation(s)
- Haidar A. Arkwazee
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani 46001, Iraq
| | - Lyle T. Wallace
- USDA-ARS, Plant Germplasm Introduction and Testing Research Unit, 201 Clark Hall, Washington State University, Pullman, WA 99164, USA
| | - John P. Hart
- USDA-ARS, Tropical Agriculture Research Station (TARS), 2200 P. A. Campos Ave., Suite 201, Mayagüez, PR 00680-5470, USA
| | - Phillip D. Griffiths
- School of Integrated Plant Sciences (Horticulture Section), Cornell University Agritech, 635 W. North St., Geneva, NY 14456, USA
| | - James R. Myers
- Department of Horticulture, Oregon State University, 4017 Ag & Life Sciences Bldg., Corvallis, OR 97331, USA
| |
Collapse
|
13
|
Li J, Jia X, Yang Y, Chen Y, Wang L, Liu L, Li M. Genome-Wide Identification of the DOF Gene Family Involved in Fruitlet Abscission in Areca catechu L. Int J Mol Sci 2022; 23:ijms231911768. [PMID: 36233072 PMCID: PMC9569674 DOI: 10.3390/ijms231911768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Fruitlet abscission frequently occurs in Areca catechu L. and causes considerable production loss. However, the inducement mechanism of fruitlet abscission remains mysterious. In this study, we observed that the cell architecture in the abscission zone (AZ) was distinct with surrounding tissues, and varied obviously before and after abscission. Transcriptome analysis of the “about-to-abscise” and “non-abscised” AZs were performed in A. catechu, and the genes encoding the plant-specific DOF (DNA-binding with one finger) transcription factors showed a uniform up-regulation in AZ, suggesting a role of the DOF transcription in A. catechu fruitlet abscission. In total, 36 members of the DOF gene family distributed in 13 chromosomes were identified from the A. catechu genome. The 36 AcDOF genes were classified into nine subgroups based on phylogenic analysis. Six of them showed an AZ-specific expression pattern, and their expression levels varied according to the abscission process. In total, nine types of phytohormone response cis-elements and five types of abiotic stress related cis-elements were identified in the promoter regions of the AcDOF genes. In addition, histochemical staining showed that lignin accumulation of vascular bundles in AZ was significantly lower than that in pedicel and mesocarp, indicating the specific characteristics of the cell architecture in AZ. Our data suggests that the DOF transcription factors might play a role in fruitlet abscission regulation in A. catechu.
Collapse
Affiliation(s)
- Jia Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaocheng Jia
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yunche Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Linkai Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Liyun Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-13319516033
| |
Collapse
|
14
|
Ganesh A, Shukla V, Mohapatra A, George AP, Bhukya DPN, Das KK, Kola VSR, Suresh A, Ramireddy E. Root Cap to Soil Interface: A Driving Force Toward Plant Adaptation and Development. PLANT & CELL PHYSIOLOGY 2022; 63:1038-1051. [PMID: 35662353 DOI: 10.1093/pcp/pcac078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Land plants have developed robust roots to grow in diverse soil ecosystems. The distal end of the root tip has a specialized organ called the 'root cap'. The root cap assists the roots in penetrating the ground, absorbing water and minerals, avoiding heavy metals and regulating the rhizosphere microbiota. Furthermore, root-cap-derived auxin governs the lateral root patterning and directs root growth under varying soil conditions. The root cap formation is hypothesized as one of the key innovations during root evolution. Morphologically diversified root caps in early land plant lineage and later in angiosperms aid in improving the adaptation of roots and, thereby, plants in diverse soil environments. This review article presents a retrospective view of the root cap's important morphological and physiological characteristics for the root-soil interaction and their response toward various abiotic and biotic stimuli. Recent single-cell RNAseq data shed light on root cap cell-type-enriched genes. We compiled root cap cell-type-enriched genes from Arabidopsis, rice, maize and tomato and analyzed their transcription factor (TF) binding site enrichment. Further, the putative gene regulatory networks derived from root-cap-enriched genes and their TF regulators highlight the species-specific biological functions of root cap genes across the four plant species.
Collapse
Affiliation(s)
- Alagarasan Ganesh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Shukla
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Ankita Mohapatra
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Abin Panackal George
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Durga Prasad Naik Bhukya
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Krishna Kodappully Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vijaya Sudhakara Rao Kola
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Aparna Suresh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Eswarayya Ramireddy
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
15
|
Nie WF, Chen Y, Tao J, Li Y, Liu J, Zhou Y, Yang Y. Identification of the 12-oxo-phytoeienoic acid reductase (OPR) gene family in pepper (Capsicum annuum L.) and functional characterization of CaOPR6 in pepper fruit development and stress response. Genome 2022; 65:537-545. [PMID: 35944282 DOI: 10.1139/gen-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 12-oxo-phytoeienoic acid reductase (OPR) is a kind of enzyme in octadecanoid biosynthesis pathway, which determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR encoding genes in Capsicum annuum plants. In this study, seven OPR family genes (CaOPR1-7) were identified from the C. annuum genome. The physical and chemical properties of CaOPR1-7 were further analyzed, including gene expression patterns, promoter elements and chromosomal locations. The results showed that the seven CaOPR homologous could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in Arabidopsis. The expression of CaOPR6 was significantly induced by various stresses such as cold, salt and pathogen infection, indicating that CaOPR6 plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of CaOPR6 in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in Solanaceae vegetables.
Collapse
Affiliation(s)
| | - Yue Chen
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Junjie Tao
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Yu Li
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Jianping Liu
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Yong Zhou
- Jiangxi Agricultural University, Nanchang, China;
| | - Youxin Yang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| |
Collapse
|
16
|
Genome-Wide Identification and Expression Analysis of Dof Transcription Factors in Lotus (Nelumbo nucifera Gaertn.). PLANTS 2022; 11:plants11152057. [PMID: 35956535 PMCID: PMC9370771 DOI: 10.3390/plants11152057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022]
Abstract
Lotus (Nelumbo nucifera Gaertn.) is a traditional Chinese aquatic flower with high ornamental and economic value, but water salinity seriously affects lotus cultivation and distribution. The Dof transcription factors (TFs) play a crucial function in the regulatory network of growth and defense in plants. However, no systematic investigations of the Dof TFs in lotus have been performed. In this study, comprehensive searches of the lotus genome yielded 29 potential NnDofs. We carried out a series of standardized analyses, which include physical properties, multiple sequence alignment, phylogenetic analysis, gene structure, motif composition, cis-acting element prediction, chromosome distribution, and synteny analysis. The results showed that segment duplication probably caused the NnDofs gene family expansion. The potential functions of NnDofs in lotus development and stress conditions are speculated by promoter analysis. Furthermore, a complete expression investigation of NnDofs utilizing an RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) was performed. The majority of the NnDofs exhibit tissue-specific expression patterns, and many genes have been identified as being extremely sensitive to salt stressors. Overall, this study is the first to report a genome-wide assessment of the Dof family in lotus, and the findings offer vital insights for prospective functional studies on lotus salinity stress.
Collapse
|
17
|
Jadhav KP, Saykhedkar GR, Tamilarasi PM, Devasree S, Ranjani RV, Sarankumar C, Bharathi P, Karthikeyan A, Arulselvi S, Vijayagowri E, Ganesan KN, Paranidharan V, Nair SK, Babu R, Ramalingam J, Raveendran M, Senthil N. GBS-Based SNP Map Pinpoints the QTL Associated With Sorghum Downy Mildew Resistance in Maize (Zea mays L.). Front Genet 2022; 13:890133. [PMID: 35937985 PMCID: PMC9348272 DOI: 10.3389/fgene.2022.890133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Sorghum downy mildew (SDM), caused by the biotrophic fungi Peronosclerospora sorghi, threatens maize production worldwide, including India. To identify quantitative trait loci (QTL) associated with resistance to SDM, we used a recombinant inbred line (RIL) population derived from a cross between resistant inbred line UMI936 (w) and susceptible inbred line UMI79. The RIL population was phenotyped for SDM resistance in three environments [E1-field (Coimbatore), E2-greenhouse (Coimbatore), and E3-field (Mandya)] and also utilized to construct the genetic linkage map by genotyping by sequencing (GBS) approach. The map comprises 1516 SNP markers in 10 linkage groups (LGs) with a total length of 6924.7 cM and an average marker distance of 4.57 cM. The QTL analysis with the phenotype and marker data detected nine QTL on chromosome 1, 2, 3, 5, 6, and 7 across three environments. Of these, QTL namely qDMR1.2, qDMR3.1, qDMR5.1, and qDMR6.1 were notable due to their high phenotypic variance. qDMR3.1 from chromosome 3 was detected in more than one environment (E1 and E2), explaining the 10.3% and 13.1% phenotypic variance. Three QTL, qDMR1.2, qDMR5.1, and qDMR6.1 from chromosomes 1, 5, and 6 were identified in either E1 or E3, explaining 15.2%–18% phenotypic variance. Moreover, genome mining on three QTL (qDMR3.1, qDMR5.1, and qDMR6.1) reveals the putative candidate genes related to SDM resistance. The information generated in this study will be helpful for map-based cloning and marker-assisted selection in maize breeding programs.
Collapse
Affiliation(s)
- Kashmiri Prakash Jadhav
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gajanan R. Saykhedkar
- Asian Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, India
| | | | - Subramani Devasree
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rajagopalan Veera Ranjani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chandran Sarankumar
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Pukalenthy Bharathi
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Soosai Arulselvi
- Agricultural College and Research Institute, Thanjavur, Tamil Nadu Agricultural University, Thanjavur, India
| | - Esvaran Vijayagowri
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kalipatty Nalliappan Ganesan
- Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Vaikuntavasan Paranidharan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sudha K. Nair
- Asian Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, India
| | - Raman Babu
- Corteva Agrisciences, Multi Crop Research Centre, Hyderabad, India
| | - Jegadeesan Ramalingam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Natesan Senthil
- Department of Biotechnology, Centre of Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
- *Correspondence: Natesan Senthil,
| |
Collapse
|
18
|
Joubert M, van den Berg N, Theron J, Swart V. Transcriptomics Advancement in the Complex Response of Plants to Viroid Infection. Int J Mol Sci 2022; 23:ijms23147677. [PMID: 35887025 PMCID: PMC9318114 DOI: 10.3390/ijms23147677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Viroids are the smallest plant pathogens, consisting of a single-stranded circular RNA of less than 500 ribonucleotides in length. Despite their noncoding nature, viroids elicit disease symptoms in many economically important plant hosts, and are, thus, a class of pathogens of great interest. How these viroids establish disease within host plants, however, is not yet fully understood. Recent transcriptomic studies have revealed that viroid infection influences the expression of genes in several pathways and processes in plants, including defence responses, phytohormone signalling, cell wall modification, photosynthesis, secondary metabolism, transport, gene expression and protein modification. There is much debate about whether affected pathways signify a plant response to viroid infection, or are associated with the appearance of disease symptoms in these interactions. In this review, we consolidate the findings of viroid–host transcriptome studies to provide an overview of trends observed in the data. When considered together, changes in the gene expression of different hosts upon viroid infection reveal commonalities and differences in diverse interactions. Here, we discuss whether trends in host gene expression can be correlated to plant defence or disease development during viroid infection, and highlight avenues for future research in this field.
Collapse
Affiliation(s)
- Melissa Joubert
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Correspondence:
| |
Collapse
|
19
|
Wang Z, Wong DCJ, Chen Z, Bai W, Si H, Jin X. Emerging Roles of Plant DNA-Binding With One Finger Transcription Factors in Various Hormone and Stress Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:844201. [PMID: 35668792 PMCID: PMC9165642 DOI: 10.3389/fpls.2022.844201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/25/2022] [Indexed: 05/24/2023]
Abstract
Coordinated transcriptional regulation of stress-responsive genes orchestrated by a complex network of transcription factors (TFs) and the reprogramming of metabolism ensure a plant's continued growth and survival under adverse environmental conditions (e.g., abiotic stress). DNA-binding with one finger (Dof) proteins, a group of plant-specific TF, were identified as one of several key components of the transcriptional regulatory network involved in abiotic stress responses. In many plant species, Dofs are often activated in response to a wide range of adverse environmental conditions. Dofs play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Moreover, Dofs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid, jasmonate, SA and redox signaling in response to many abiotic stresses. Taken together, we highlight a unique role of Dofs in hormone and stress signaling that integrates plant response to adverse environmental conditions with different aspects of plant growth and development.
Collapse
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Zhengliang Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wei Bai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
20
|
Baloch FS, Nadeem MA, Sönmez F, Habyarimana E, Mustafa Z, Karaköy T, Cömertpay G, Alsaleh A, Çiftçi V, Sun S, Chung G, Chung YS. Magnesium- a Forgotten Element: Phenotypic Variation and Genome Wide Association Study in Turkish Common Bean Germplasm. Front Genet 2022; 13:848663. [PMID: 35586571 PMCID: PMC9108430 DOI: 10.3389/fgene.2022.848663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Magnesium (Mg) is the fourth most abundant element in the human body and plays the role of cofactor for more than 300 enzymatic reactions. In plants, Mg is involved in various key physiological and biochemical processes like growth, development, photophosphorylation, chlorophyll formation, protein synthesis, and resistance to biotic and abiotic stresses. Keeping in view the importance of this element, the present investigation aimed to explore the Mg contents diversity in the seeds of Turkish common bean germplasm and to identify the genomic regions associated with this element. A total of 183 common bean accessions collected from 19 provinces of Turkey were used as plant material. Field experiments were conducted according to an augmented block design during 2018 in two provinces of Turkey, and six commercial cultivars were used as a control group. Analysis of variance depicted that Mg concentration among common bean accessions was statistically significant (p < 0.05) within each environment, however genotype × environment interaction was non-significant. A moderate level (0.60) of heritability was found in this study. Overall mean Mg contents for both environments varied from 0.33 for Nigde-Dermasyon to 1.52 mg kg−1 for Nigde-Derinkuyu landraces, while gross mean Mg contents were 0.92 mg kg−1. At the province level, landraces from Bolu were rich while the landraces from Bitlis were poor in seed Mg contents respectively. The cluster constellation plot divided the studied germplasm into two populations on the basis of their Mg contents. Marker-trait association was performed using a mixed linear model (Q + K) with a total of 7,900 DArTseq markers. A total of six markers present on various chromosomes (two at Pv01, and one marker at each chromosome i.e., Pv03, Pv07, Pv08, Pv11) showed statistically significant association for seed Mg contents. Among these identified markers, the DArT-3367607 marker present on chromosome Pv03 contributed to maximum phenotypic variation (7.5%). Additionally, this marker was found within a narrow region of previously reported markers. We are confident that the results of this study will contribute significantly to start common bean breeding activities using marker assisted selection regarding improved Mg contents.
Collapse
Affiliation(s)
- Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
- *Correspondence: Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Ferit Sönmez
- Department of Seed Science and Technology, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Zemran Mustafa
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Gönül Cömertpay
- Eastern Mediterranean Agricultural Research Institute, Adana, Turkey
| | - Ahmad Alsaleh
- Molecular Genetic Laboratory, Science and Technology Application and Research Center, Institute for Hemp Research, Yozgat Bozok University, Yozgat, Turkey
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Chonnam, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, South Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea
- *Correspondence: Faheem Shehzad Baloch, ; Yong Suk Chung,
| |
Collapse
|
21
|
Kang WH, Lee J, Koo N, Kwon JS, Park B, Kim YM, Yeom SI. Universal gene co-expression network reveals receptor-like protein genes involved in broad-spectrum resistance in pepper (Capsicum annuum L.). HORTICULTURE RESEARCH 2022; 9:uhab003. [PMID: 35043174 PMCID: PMC8968494 DOI: 10.1093/hr/uhab003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/08/2021] [Indexed: 05/21/2023]
Abstract
Receptor-like proteins (RLPs) on plant cells have been implicated in immune responses and developmental processes. Although hundreds of RLP genes have been identified in plants, only a few RLPs have been functionally characterized in a limited number of plant species. Here, we identified RLPs in the pepper (Capsicum annuum) genome and performed comparative transcriptomics coupled with the analysis of conserved gene co-expression networks (GCNs) to reveal the role of core RLP regulators in pepper-pathogen interactions. A total of 102 RNA-seq datasets of pepper plants infected with four pathogens were used to construct CaRLP-targeted GCNs (CaRLP-GCNs). Resistance-responsive CaRLP-GCNs were merged to construct a universal GCN. Fourteen hub CaRLPs, tightly connected with defense-related gene clusters, were identified in eight modules. Based on the CaRLP-GCNs, we evaluated whether hub CaRLPs in the universal GCN are involved in the biotic stress response. Of the nine hub CaRLPs tested by virus-induced gene silencing, three genes (CaRLP264, CaRLP277, and CaRLP351) showed defense suppression with less hypersensitive response-like cell death in race-specific and non-host resistance response to viruses and bacteria, respectively, and consistently enhanced susceptibility to Ralstonia solanacearum and/or Phytophthora capsici. These data suggest that key CaRLPs are involved in the defense response to multiple biotic stresses and can be used to engineer a plant with broad-spectrum resistance. Together, our data show that generating a universal GCN using comprehensive transcriptome datasets can provide important clues to uncover genes involved in various biological processes.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828,
Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Boseul Park
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Genome Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828,
Republic of Korea
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| |
Collapse
|
22
|
Chai N, Xu J, Zuo R, Sun Z, Cheng Y, Sui S, Li M, Liu D. Metabolic and Transcriptomic Profiling of Lilium Leaves Infected With Botrytis elliptica Reveals Different Stages of Plant Defense Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:730620. [PMID: 34630478 PMCID: PMC8493297 DOI: 10.3389/fpls.2021.730620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
Botrytis elliptica, the causal agent of gray mold disease, poses a major threat to commercial Lilium production, limiting its ornamental value and yield. The molecular and metabolic regulation mechanisms of Lilium's defense response to B. elliptica infection have not been completely elucidated. Here, we performed transcriptomic and metabolomic analyses of B. elliptica resistant Lilium oriental hybrid "Sorbonne" to understand the molecular basis of gray mold disease resistance in gray mold disease. A total of 115 differentially accumulated metabolites (DAMs) were detected by comparing the different temporal stages of pathogen infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed the differentially expressed genes (DEGs) and DAMs were enriched in the phenylpropanoid and flavonoid pathways at all stages of infection, demonstrating the prominence of these pathways in the defense response of "Sorbonne" to B. elliptica. Network analysis revealed high interconnectivity of the induced defense response. Furthermore, time-course analysis of the transcriptome and a weighted gene coexpression network analysis (WGCNA) led to the identification of a number of hub genes at different stages, revealing that jasmonic acid (JA), salicylic acid (SA), brassinolide (BR), and calcium ions (Ca2+) play a crucial role in the response of "Sorbonne" to fungal infection. Our work provides a comprehensive perspective on the defense response of Lilium to B. elliptica infection, along with a potential transcriptional regulatory network underlying the defense response, thereby offering gene candidates for resistance breeding and metabolic engineering of Lilium.
Collapse
Affiliation(s)
- Nan Chai
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jie Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Rumeng Zuo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhengqiong Sun
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Genome-wide survey of sugar beet (Beta vulgaris subsp. vulgaris) Dof transcription factors reveals structural diversity, evolutionary expansion and involvement in taproot development and biotic stress response. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Ferreira-Neto JRC, Borges ANDC, da Silva MD, Morais DADL, Bezerra-Neto JP, Bourque G, Kido EA, Benko-Iseppon AM. The Cowpea Kinome: Genomic and Transcriptomic Analysis Under Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:667013. [PMID: 34194450 PMCID: PMC8238008 DOI: 10.3389/fpls.2021.667013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
The present work represents a pioneering effort, being the first to analyze genomic and transcriptomic data from Vigna unguiculata (cowpea) kinases. We evaluated the cowpea kinome considering its genome-wide distribution and structural characteristics (at the gene and protein levels), sequence evolution, conservation among Viridiplantae species, and gene expression in three cowpea genotypes under different stress situations, including biotic (injury followed by virus inoculation-CABMV or CPSMV) and abiotic (root dehydration). The structural features of cowpea kinases (VuPKs) indicated that 1,293 bona fide VuPKs covered 20 groups and 118 different families. The RLK-Pelle was the largest group, with 908 members. Insights on the mechanisms of VuPK genomic expansion and conservation among Viridiplantae species indicated dispersed and tandem duplications as major forces for VuPKs' distribution pattern and high orthology indexes and synteny with other legume species, respectively. K a /K s ratios showed that almost all (91%) of the tandem duplication events were under purifying selection. Candidate cis-regulatory elements were associated with different transcription factors (TFs) in the promoter regions of the RLK-Pelle group. C2H2 TFs were closely associated with the promoter regions of almost all scrutinized families for the mentioned group. At the transcriptional level, it was suggested that VuPK up-regulation was stress, genotype, or tissue dependent (or a combination of them). The most prominent families in responding (up-regulation) to all the analyzed stresses were RLK-Pelle_DLSV and CAMK_CAMKL-CHK1. Concerning root dehydration, it was suggested that the up-regulated VuPKs are associated with ABA hormone signaling, auxin hormone transport, and potassium ion metabolism. Additionally, up-regulated VuPKs under root dehydration potentially assist in a critical physiological strategy of the studied cowpea genotype in this assay, with activation of defense mechanisms against biotic stress while responding to root dehydration. This study provides the foundation for further studies on the evolution and molecular function of VuPKs.
Collapse
Affiliation(s)
| | | | - Manassés Daniel da Silva
- Laboratory of Molecular Genetics, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | | | - João Pacífico Bezerra-Neto
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | - Guillaume Bourque
- Génome Québec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Ederson Akio Kido
- Laboratory of Molecular Genetics, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | - Ana Maria Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
25
|
Ferreira-Neto JRC, da Silva MD, Rodrigues FA, Nepomuceno AL, Pandolfi V, de Lima Morais DA, Kido EA, Benko-Iseppon AM. Importance of inositols and their derivatives in cowpea under root dehydration: An omics perspective. PHYSIOLOGIA PLANTARUM 2021; 172:441-462. [PMID: 33247842 DOI: 10.1111/ppl.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
This work presents a robust analysis of the inositols (INSs) and raffinose family oligosaccharides (RFOs) pathways, using genomic and transcriptomic tools in cowpea under root dehydration. Nineteen (~70%) of the 26 scrutinized enzymes presented transcriptional up-regulation in at least one treatment time. The transcriptional orchestration allowed categorization of the analyzed enzymes as time-independent (those showing the same regulation throughout the assay) and time-dependent (those showing different transcriptional regulation over time). It is suggested that up-regulated time-independent enzymes (INSs: myo-inositol oxygenase, inositol-tetrakisphosphate 1-kinase 3, phosphatidylinositol 4-phosphate 5-kinase 4-like, 1-phosphatidylinositol-3-phosphate 5-kinase, phosphoinositide phospholipase C, and non-specific phospholipase C; RFOs: α-galactosidase, invertase, and raffinose synthase) actively participate in the reorganization of cowpea molecular physiology under the applied stress. In turn, time-dependent enzymes, especially those up-regulated in some of the treatment times (INSs: inositol-pentakisphosphate 2-kinase, phosphatidylinositol 4-kinase, phosphatidylinositol synthase, multiple inositol polyphosphate phosphatase 1, methylmalonate-semialdehyde dehydrogenase, triosephosphate isomerase, myo-inositol-3-phosphate synthase, phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein-tyrosine-phosphatase, and phosphatidylinositol 3-kinase; RFOs: galactinol synthase) seem to participate in fine-tuning of the molecular physiology, helping the cowpea plants to acclimatize under dehydration stress. Not all loci encoding the studied enzymes were expressed during the assay; most of the expressed ones exhibited a variable transcriptional profile in the different treatment times. Genes of the INSs and RFOs pathways showed high orthology with analyzed Phaseoleae members, suggesting a relevant role within this legume group. Regarding the promoter regions of INSs and RFOs genes, some bona fide cis-regulatory elements were identified in association with seven transcription factor families (AP2-EFR, Dof-type, MADS-box, bZIP, CPP, ZF-HD, and GATA-type). Members of INSs and RFOs pathways potentially participate in other processes regulated by these proteins in cowpea.
Collapse
Affiliation(s)
- José R C Ferreira-Neto
- Laboratory of Molecular Genetics, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | | | - Fabiana A Rodrigues
- Federal Institute of Education, Science and Technology of Mato Grosso do Sul, Cuiaba, Brazil
| | - Alexandre L Nepomuceno
- Brazilian Agricultural Research Corporation's-EMBRAPA Soybean, Rodovia Carlos João Strass-Distrito de Warta, Londrina, Brazil
| | - Valesca Pandolfi
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | | | - Ederson A Kido
- Laboratory of Molecular Genetics, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | - Ana M Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
26
|
Kang WH, Park B, Lee J, Yeom SI. Tissue-Specific RNA-Seq Analysis and Identification of Receptor-Like Proteins Related to Plant Growth in Capsicum annuum. PLANTS (BASEL, SWITZERLAND) 2021; 10:972. [PMID: 34068172 PMCID: PMC8152994 DOI: 10.3390/plants10050972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Receptor-like proteins (RLPs) are a gene family of cell surface receptors that are involved in plant growth, development, and disease resistance. In a recent study, 438 pepper RLP genes were identified in the Capsicum annuum genome (CaRLPs) and determined to be present in response to multiple biotic stresses. To further understand the role of CaRLPs in plant growth and development, we analyzed expression patterns of all CaRLPs from various pepper tissues and developmental stages using RNA-seq. Ten CaRLP genes were selected for further analysis according to transcript levels with hierarchical clustering. The selected CaRLP genes displayed similarity of motifs within the same groups and structures typical of RLPs. To examine RLP function in growth and development, we performed loss-of-function analysis using a virus-induced gene silencing system. Three of the ten tested CaRLPs (CaRLP238, 253, and 360) in silenced plants exhibited phenotypic alteration with growth retardation compared to controls. All three gene-silenced peppers showed significant differences in root dry weight. Only CaRLP238 had significant differences in both root and shoot dry weight. Our results suggest that CaRLPs may play important roles in regulation of plant growth and development as well as function in defense responses to biotic stresses in the RLP gene family.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Boseul Park
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (B.P.); (J.L.)
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (B.P.); (J.L.)
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea;
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (B.P.); (J.L.)
| |
Collapse
|
27
|
Khan I, Khan S, Zhang Y, Zhou J. Genome-wide analysis and functional characterization of the Dof transcription factor family in rice (Oryza sativa L.). PLANTA 2021; 253:101. [PMID: 33856565 DOI: 10.1007/s00425-021-03627-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Exhaustive searches of the rice genome have revealed 30 different potential OsDof (Oryza sativa DNA binding with One Finger) genes. Their subcellular localization, phylogenetic relationship, conserved motifs identification, chromosomal allocation, expression patterns, and interaction networks were analyzed. The Dof (DNA binding with One Finger) family of transcription factors represents a particular class of plant-specific transcriptional regulators, contain a highly conserved region of 50-52 amino acids (Dof domain) and involved in various plant developmental processes and response to various environmental stresses. Few (Oryza sativa) OsDof genes have been demonstrated previously for their biological functions but there is no comprehensive study on most of the Dof genes of rice. In the current study, exhaustive searches of the rice genome revealed 30 different potential OsDof genes, and then their subcellular localization, phylogenetic relationship, conserved motifs identification, chromosomal allocation, expression patterns, and interaction networks were analyzed. Phylogenetic analysis of Dof proteins in rice showed that they are distributed in 4 groups. By genome-wide observation of gene expression profiles, we found that OsDof genes showed significant variances in expression levels in different tissues across multiple developmental stages. Protein-protein correlation network analysis, shows a statically significant overlap of some OsDofs, suggesting their similar functions and a high degree of co-expression. The Dof family transcription factors have been reported for their involvement in the regulation of various gene expression processes in rice but still, most of the Dof genes are not characterized for their specific physiological functions. This study revealed useful information and clues about predicting the potential roles of OsDofs in rice by combining their genome-wide characterization, expression profiling, protein-protein interactions, and for further studies to develop high-quality rice varieties.
Collapse
Affiliation(s)
- Ibrahim Khan
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, K.P, Pakistan.
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianping Zhou
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
28
|
Genome-wide identification and characterization of basic helix-loop-helix genes in nine molluscs. Gene 2021; 785:145604. [PMID: 33766707 DOI: 10.1016/j.gene.2021.145604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factors form a large superfamily that plays an important role in numerous physiological processes, including development and response to environmental stresses. In this study, the distribution of bHLH genes in nine molluscs was systematically investigated (including five bivalves, three gastropods and one cephalopod). Finally, 53-85 bHLH genes were identified from each genome and classified into corresponding families by using phylogenetic analysis. The results of gene structure and conserved motif analysis illustrated the hereditary conservation of bHLH transcription factors during evolution but showed low similarity in group C. Through transcription profile analysis of C. gigas and T. granosa, we found a important role of bHLH genes in responding to multiple external challenges and development; meanwhile, they also exhibited tissue-specific expression. Interestingly, we were also surprised to find different bHLH genes from the same group generally possess similar patterns expression that tends to simultaneously present high or lower expression of multiple challenges and different tissues in this study. In summary, this study lays the foundation for further investigation of the biological functions and evolution of molluscan bHLH genes.
Collapse
|
29
|
Cao B, Cui Y, Lou K, Luo D, Liu Z, Zhou Q. Genome-Wide Identification and Expression Analysis of the Dof Gene Family in Medicago sativa L. Under Various Abiotic Stresses. DNA Cell Biol 2020; 39:1976-1989. [PMID: 33001712 DOI: 10.1089/dna.2020.5652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Dof transcription factor is a plant-specific transcriptional regulator that plays important roles in plant development and acts as a mediator in plant external stress responses. However, Dofs have previously been identified in several plants but not in alfalfa (Medicago sativa L.), one of the most widely cultivated forage legumes. In the present study, a total of 40 MsDof genes were identified, and the phylogenetic reconstruction, classification, conserved motifs, and expression patterns under abscisic acid (ABA), cold, heat, drought and salt stresses of these Dof genes were comprehensively analyzed. The Dof genes family in alfalfa could be classified into eight classes. Gene ontology (GO) and tissue-specific analysis indicated that most MsDof genes may be involved in biological functions during plant growth. Moreover, the expression profiles and quantitative real-time PCR analysis indicated that eight candidate abiotic tolerance genes were induced in response to four abiotic stresses. This study identified the possibility of abiotic tolerance candidate genes playing various roles in stress resistance at the whole genome level, which would provide new information on the Dof family in alfalfa.
Collapse
Affiliation(s)
- Bo Cao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yue Cui
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Keke Lou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dong Luo
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
Baba VY, Powell AF, Ivamoto-Suzuki ST, Pereira LFP, Vanzela ALL, Giacomin RM, Strickler SR, Mueller LA, Rodrigues R, Gonçalves LSA. Capsidiol-related genes are highly expressed in response to Colletotrichum scovillei during Capsicum annuum fruit development stages. Sci Rep 2020; 10:12048. [PMID: 32694584 PMCID: PMC7374708 DOI: 10.1038/s41598-020-68949-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/03/2020] [Indexed: 11/23/2022] Open
Abstract
Capsicum annuum is one of the most important horticultural crops worldwide. Anthracnose disease (Colletotrichum spp.) is a major constraint for chili production, causing substantial losses. Capsidiol is a sesquiterpene phytoalexin present in pepper fruits that can enhance plant resistance. The genetic mechanisms involved in capisidiol biosynthesis are still poorly understood. In this study, a 3′ RNA sequencing approach was used to develop the transcriptional profile dataset of C. annuum genes in unripe (UF) and ripe fruits (RF) in response to C. scovillei infection. Results showed 4,845 upregulated and 4,720 downregulated genes in UF, and 2,560 upregulated and 1,762 downregulated genes in RF under fungus inoculation. Four capsidiol-related genes were selected for RT-qPCR analysis, two 5-epi-aristolochene synthase (CA12g05030, CA02g09520) and two 5-epi-aristolochene-1,3-dihydroxylase genes (CA12g05070, CA01g05990). CA12g05030 and CA01g05990 genes showed an early response to fungus infection in RF (24 h post-inoculation—HPI), being 68-fold and 53-fold more expressed at 96 HPI, respectively. In UF, all genes showed a late response, especially CA12g05030, which was 700-fold more expressed at 96 HPI compared to control plants. We are proving here the first high-throughput expression dataset of pepper fruits in response to anthracnose disease in order to contribute for future pepper breeding programs.
Collapse
Affiliation(s)
- Viviane Y Baba
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Suzana T Ivamoto-Suzuki
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, Brazil.,Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| | | | - André L L Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Universidade Estadual de Londrina, Londrina, Brazil
| | - Renata M Giacomin
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | - Rosana Rodrigues
- Genética e Melhoramento de Plantas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Leandro S A Gonçalves
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
31
|
Identification and characterization of Dof in Tef [Eragrostis tef (Zucc.) Trotter] using in silico approaches. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Guerriero G, Piasecki E, Berni R, Xu X, Legay S, Hausman JF. Identification of Callose Synthases in Stinging Nettle and Analysis of Their Expression in Different Tissues. Int J Mol Sci 2020; 21:ijms21113853. [PMID: 32481765 PMCID: PMC7313033 DOI: 10.3390/ijms21113853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
Callose is an important biopolymer of β-1,3-linked glucose units involved in different phases of plant development, reproduction and response to external stimuli. It is synthesized by glycosyltransferases (GTs) known as callose synthases (CalS) belonging to family 48 in the Carbohydrate-Active enZymes (CAZymes) database. These GTs are anchored to the plasma membrane via transmembrane domains. Several genes encoding CalS have been characterized in higher plants with 12 reported in the model organism Arabidopsis thaliana. Recently, the de novo transcriptome of a fibre-producing clone of stinging nettle (Urtica dioica L.) was published and here it is mined for CalS genes with the aim of identifying members differentially expressed in the core and cortical tissues of the stem. The goal is to understand whether specific CalS genes are associated with distinct developmental stages of the stem internodes (elongation, thickening). Nine genes, eight of which encoding full-length CalS, are identified in stinging nettle. The phylogenetic analysis with CalS proteins from other fibre crops, namely textile hemp and flax, reveals grouping into 6 clades. The expression profiles in nettle tissues (roots, leaves, stem internodes sampled at different heights) reveal differences that are most noteworthy in roots vs. leaves. Two CalS are differentially expressed in the internodes sampled at the top and middle of the stem. Implications of their role in nettle stem tissue development are discussed.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
- Correspondence: ; Tel.: +352-275-888-5096; Fax: +352-275-8885
| | - Emilie Piasecki
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100 Siena, Italy;
| | - Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| |
Collapse
|
33
|
Genome-Wide Identification, Structure Characterization, and Expression Profiling of Dof Transcription Factor Gene Family in Wheat (Triticum aestivum L.). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA binding with one finger (Dof) proteins are plant-specific transcription factors with crucial roles in plant growth and stress response. Even so, little is known about them in wheat. In this study, 108 wheat Dof (TaDof) genes across 21 chromosomes were detected. Although variable in sequence length, molecular weight, and isoelectric point, all TaDof proteins contained conserved zinc-finger structures and were phylogenetically divided into 7 sub-groups. Exon/intron and motif analyses suggested that TaDof structures and conserved motifs were similar within sub-groups but diverse among sub-groups. Many segmental duplications were identified and Ka/Ks and inter-species synthetic analyses indicated that polyploidization was main reason for increased number of TaDofs. Prediction and experimental confirmation revealed that TaDofs functioned as transcription factors in the nucleus. Expression pattern profiling showed that TaDofs specifically affected growth and development, and biotic and abiotic stress responses. Wheat miRNAs and cis-regulator were predicted as essential players in molding TaDofs expression patterns. qRT-PCR analysis revealed that TaDofs were induced by salt and drought stresses. Customized annotation revealed that TaDofs were widely involved in phytohormone response, defense, growth and development, and metabolism. Our study provided a comprehensive understanding to wheat TaDofs.
Collapse
|
34
|
Zhou Y, Cheng Y, Wan C, Li J, Yang Y, Chen J. Genome-wide characterization and expression analysis of the Dof gene family related to abiotic stress in watermelon. PeerJ 2020; 8:e8358. [PMID: 32110479 PMCID: PMC7032062 DOI: 10.7717/peerj.8358] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/04/2019] [Indexed: 02/05/2023] Open
Abstract
The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors that play vital roles in many biological processes and stress responses. In the present study, a total of 36 ClDof genes were identified in the watermelon genome, which were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the ClDof proteins could be divided into nine groups, and the members in a particular group had similar motif arrangement and exon-intron structure. Synteny analysis indicated the presence of a large number of syntenic relationship events between watermelon and cucumber. In promoter analysis, five kinds of stress-related and nine kinds of hormone-related cis-elements were identified in the promoter regions of ClDof genes. We then analyzed the expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR, and the results showed that they have tissue-specific expression patterns. We also evaluated the expression levels of 12 selected ClDof genes under salt stress and ABA treatments using qRT-PCR. As a result, they showed differential expression under these treatments, suggesting their important roles in stress response. Taken together, our results provide a basis for future research on the biological functions of Dof genes in watermelon.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Yuan Cheng
- Zhejiang Academy of Agricultural Sciences, State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Hanghzou, Zhejiang, China
| | - Chunpeng Wan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jingwen Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jinyin Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Pingxiang University, Pingxiang, Jiangxi, China
| |
Collapse
|
35
|
Kang WH, Sim YM, Koo N, Nam JY, Lee J, Kim N, Jang H, Kim YM, Yeom SI. Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci Data 2020; 7:17. [PMID: 31932587 PMCID: PMC6957515 DOI: 10.1038/s41597-020-0352-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/17/2019] [Indexed: 01/17/2023] Open
Abstract
Peppers (Capsicum annuum L.), belonging to the Solanaceae family, are one of the most economically important crops globally. Like other crops, peppers are threatened by diverse environmental conditions due to different pathogens and abiotic stresses. High-quality reference genomes with massive datasets of transcriptomes from various conditions can provide clues to preferred agronomic traits for breeding. However, few global gene expression profiling datasets have been published to examine the environmental stress-resistant mechanisms in peppers. In this study, we report the RNA-seq analyses of peppers treated with heat, cold, salinity, and osmotic stress at six different time points. RNA-seq libraries from 78 RNA samples containing three biological replicates per time point for each of the abiotic stresses and a mock control were constructed. A total of 204.68 Gb of transcriptome data were verified by differentially expressed genes and gene ontology enrichment analysis. Analyses of the transcriptome data in this study will provide useful information for basic studies of various stimuli to facilitate the development of stress-resistant pepper cultivars.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Young Mi Sim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jae-Young Nam
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Nayoung Kim
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
36
|
Tolosa LN, Zhang Z. The Role of Major Transcription Factors in Solanaceous Food Crops under Different Stress Conditions: Current and Future Perspectives. PLANTS 2020; 9:plants9010056. [PMID: 31906447 PMCID: PMC7020414 DOI: 10.3390/plants9010056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Plant growth, development, and productivity are adversely affected by environmental stresses such as drought (osmotic stress), soil salinity, cold, oxidative stress, irradiation, and diverse diseases. These impacts are of increasing concern in light of climate change. Noticeably, plants have developed their adaptive mechanism to respond to environmental stresses by transcriptional activation of stress-responsive genes. Among the known transcription factors, DoF, WRKY, MYB, NAC, bZIP, ERF, ARF and HSF are those widely associated with abiotic and biotic stress response in plants. Genome-wide identification and characterization analyses of these transcription factors have been almost completed in major solanaceous food crops, emphasizing these transcription factor families which have much potential for the improvement of yield, stress tolerance, reducing marginal land and increase the water use efficiency of solanaceous crops in arid and semi-arid areas where plant demand more water. Most importantly, transcription factors are proteins that play a key role in improving crop yield under water-deficient areas and a place where the severity of pathogen is very high to withstand the ongoing climate change. Therefore, this review highlights the role of major transcription factors in solanaceous crops, current and future perspectives in improving the crop traits towards abiotic and biotic stress tolerance and beyond. We have tried to accentuate the importance of using genome editing molecular technologies like CRISPR/Cas9, Virus-induced gene silencing and some other methods to improve the plant potential in giving yield under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Lemessa Negasa Tolosa
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
- Correspondence:
| |
Collapse
|
37
|
Haq SU, Khan A, Ali M, Gai WX, Zhang HX, Yu QH, Yang SB, Wei AM, Gong ZH. Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper (Capsicum annuum L.). PLANTA 2019; 250:2127-2145. [PMID: 31606756 DOI: 10.1007/s00425-019-03290-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 05/24/2023]
Abstract
HSP60 gene family in pepper was analyzed through bioinformatics along with transcriptional regulation against multiple abiotic and hormonal stresses. Furthermore, the knockdown of CaHSP60-6 increased sensitivity to heat stress. The 60 kDa heat shock protein (HSP60) also known as chaperonin (cpn60) is encoded by multi-gene family that plays an important role in plant growth, development and in stress response as a molecular chaperone. However, little is known about the HSP60 gene family in pepper (Capsicum annuum L.). In this study, 16 putative pepper HSP60 genes were identified through bioinformatic tools. The phylogenetic tree revealed that eight of the pepper HSP60 genes (50%) clustered into group I, three (19%) into group II, and five (31%) into group III. Twelve (75%) CaHSP60 genes have more than 10 introns, while only a single gene contained no introns. Chromosomal mapping revealed that the tandem and segmental duplication events occurred in the process of evolution. Gene ontology enrichment analysis predicted that CaHSP60 genes were responsible for protein folding and refolding in an ATP-dependent manner in response to various stresses in the biological processes category. Multiple stress-related cis-regulatory elements were found in the promoter region of these CaHSP60 genes, which indicated that these genes were regulated in response to multiple stresses. Tissue-specific expression was studied under normal conditions and induced under 2 h of heat stress measured by RNA-Seq data and qRT-PCR in different tissues (roots, stems, leaves, and flowers). The data implied that HSP60 genes play a crucial role in pepper growth, development, and stress responses. Fifteen (93%) CaHSP60 genes were induced in both, thermo-sensitive B6 and thermo-tolerant R9 lines under heat treatment. The relative expression of nine representative CaHSP60 genes in response to other abiotic stresses (cold, NaCl, and mannitol) and hormonal applications [ABA, methyl jasmonate (MeJA), and salicylic acid (SA)] was also evaluated. Knockdown of CaHSP60-6 increased the sensitivity to heat shock treatment as documented by a higher relative electrolyte leakage, lipid peroxidation, and reactive oxygen species accumulation in silenced pepper plants along with a substantial lower chlorophyll content and antioxidant enzyme activity. These results suggested that HSP60 might act as a positive regulator in pepper defense against heat and other abiotic stresses. Our results provide a basis for further functional analysis of HSP60 genes in pepper.
Collapse
Affiliation(s)
- Saeed Ul Haq
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
38
|
Genome-Wide Analysis of Basic Helix-Loop-Helix Superfamily Members Reveals Organization and Chilling-Responsive Patterns in Cabbage (Brassica oleracea var. capitata L.). Genes (Basel) 2019; 10:genes10110914. [PMID: 31717469 PMCID: PMC6895899 DOI: 10.3390/genes10110914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
Basic helix–loop–helix (bHLH) transcription factor (TF) family is commonly found in eukaryotes, which is one of the largest families of regulator proteins. It plays an important role in plant growth and development, as well as various biotic and abiotic stresses. However, a comprehensive analysis of the bHLH family has not been reported in Brassica oleracea. In this study, we systematically describe the BobHLHs in the phylogenetic relationships, expression patterns in different organs/tissues, and in response to chilling stress, and gene and protein characteristics. A total of 234 BobHLH genes were identified in the B. oleracea genome and were further clustered into twenty-three subfamilies based on the phylogenetic analyses. A large number of BobHLH genes were unevenly located on nine chromosomes of B. oleracea. Analysis of RNA-Seq expression profiles revealed that 21 BobHLH genes exhibited organ/tissue-specific expression. Additionally, the expression of six BobHLHs (BobHLH003, -048, -059, -093, -109, and -148) were significantly down-regulated in chilling-sensitive cabbage (CS-D9) and chilling-tolerant cabbage (CT-923). At 24 h chilling stress, BobHLH054 was significantly down-regulated and up-regulated in chilling-treated CS-D9 and CT-923. Conserved motif characterization and exon/intron structural patterns showed that BobHLH genes had similar structures in the same subfamily. This study provides a comprehensive analysis of BobHLH genes and reveals several candidate genes involved in chilling tolerance of B. oleracea, which may be helpful to clarify the roles of bHLH family members and understand the regulatory mechanisms of BobHLH genes in response to the chilling stress of cabbage.
Collapse
|
39
|
Zheng J, Liu F, Zhu C, Li X, Dai X, Yang B, Zou X, Ma Y. Identification, expression, alternative splicing and functional analysis of pepper WRKY gene family in response to biotic and abiotic stresses. PLoS One 2019; 14:e0219775. [PMID: 31329624 PMCID: PMC6645504 DOI: 10.1371/journal.pone.0219775] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
WRKY proteins are a large group of plant transcription factors that are involved in various biological processes, including biotic and abiotic stress responses, hormone response, plant development, and metabolism. WRKY proteins have been identified in several plants, but only a few have been identified in Capsicum annuum. Here, we identified a total of 62 WRKY genes in the latest pepper genome. These genes were classified into three groups (Groups 1–3) based on the structural features of their proteins. The structures of the encoded proteins, evolution, and expression under normal growth conditions were analyzed and 35 putative miRNA target sites were predicted in 20 CaWRKY genes. Moreover, the response to cold or CMV treatments of selected WRKY genes were examined to validate the roles under stresses. And alternative splicing (AS) events of some CaWRKYs were also identified under CMV infection. Promoter analysis confirmed that CaWRKY genes are involved in growth, development, and biotic or abiotic stress responses in hot pepper. The comprehensive analysis provides fundamental information for better understanding of the signaling pathways involved in the WRKY-mediated regulation of developmental processes, as well as biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Jingyuan Zheng
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Feng Liu
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chunhui Zhu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuefeng Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiongze Dai
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Bozhi Yang
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuexiao Zou
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yanqing Ma
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha, China
- * E-mail:
| |
Collapse
|
40
|
Li T, Wang YH, Liu JX, Feng K, Xu ZS, Xiong AS. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit Rev Biotechnol 2019; 39:680-692. [DOI: 10.1080/07388551.2019.1608153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Yu J, Ai G, Shen D, Chai C, Jia Y, Liu W, Dou D. Bioinformatical analysis and prediction of Nicotiana benthamiana bHLH transcription factors in Phytophthora parasitica resistance. Genomics 2019; 111:473-482. [PMID: 29522799 DOI: 10.1016/j.ygeno.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 01/18/2023]
Abstract
The basic helix-loop-helix (bHLH) family, one of the largest transcription factor groups in plants, regulates many critical developmental processes. However, their functions in plant defense have not been extensively studied in Nicotiana benthamiana, an important model plant species for phytopathology. Here, we identified N. benthamiana bHLH genes (NbbHLHs) using a whole-genome searching approach, and found that the NbbHLHs are highly enriched and some subfamilies are selectively expanded in N. benthamiana. The results showed that gene duplication may be responsible for bHLH family expansion in this plant. Furthermore, we analyzed their expression profiles upon infection with Phytophthora parasitica. Finally, 28 candidate NbbHLHs may play important roles in Phytophthora pathogen resistance using cis-element analysis and protein-interaction network prediction. Taken together, our results established a platform for future studies of the gene family and provide molecular insights into plant immune responses against P. parasitica.
Collapse
Affiliation(s)
- Jing Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Ai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyue Chai
- College of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Yuling Jia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Liu
- College of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Naqvi RZ, Zaidi SSEA, Mukhtar MS, Amin I, Mishra B, Strickler S, Mueller LA, Asif M, Mansoor S. Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PLoS One 2019; 14:e0210011. [PMID: 30730891 PMCID: PMC6366760 DOI: 10.1371/journal.pone.0210011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022] Open
Abstract
Cotton is a commercial and economically important crop that generates billions of dollars in annual revenue worldwide. However, cotton yield is affected by a sap-sucking insect Bemisia tabaci (whitefly), and whitefly-borne cotton leaf curl disease (CLCuD). The causative agent of devastating CLCuD is led by the viruses belonging to the genus Begomovirus (family Geminiviridae), collectively called cotton leaf curl viruses. Unfortunately, the extensively cultivated cotton (Gossypium hirsutum) species are highly susceptible and vulnerable to CLCuD. Yet, the concomitant influence of whitefly and CLCuD on the susceptible G. hirsutum transcriptome has not been interpreted. In the present study we have employed an RNA Sequencing (RNA-Seq) transcriptomics approach to explore the differential gene expression in susceptible G. hirsutum variety upon infection with viruliferous whiteflies. Comparative RNA-Seq of control and CLCuD infected plants was done using Illumina HiSeq 2500. This study yielded 468 differentially expressed genes (DEGs). Among them, we identified 220 up and 248 downregulated DEGs involved in disease responses and pathogen defense. We selected ten genes for downstream RT-qPCR analyses on two cultivars, Karishma and MNH 786 that are susceptible to CLCuD. We observed a similar expression pattern of these genes in both susceptible cultivars that was also consistent with our transcriptome data further implying a wider application of our global transcription study on host susceptibility to CLCuD. We next performed weighted gene co-expression network analysis that revealed six modules. This analysis also identified highly co-expressed genes as well as 55 hub genes that co-express with ≥ 50 genes. Intriguingly, most of these hub genes are shown to be downregulated and enriched in cellular processes. Under-expression of such highly co-expressed genes suggests their roles in favoring the virus and enhancing plant susceptibility to CLCuD. We also discuss the potential mechanisms governing the establishment of disease susceptibility. Overall, our study provides a comprehensive differential gene expression analysis of G. hirsutum under whitefly-mediated CLCuD infection. This vital study will advance the understanding of simultaneous effect of whitefly and virus on their host and aid in identifying important G. hirsutum genes which intricate in its susceptibility to CLCuD.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- * E-mail:
| |
Collapse
|
43
|
Kang WH, Yeom SI. Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato. THE PLANT PATHOLOGY JOURNAL 2018; 34:435-444. [PMID: 30369853 PMCID: PMC6200040 DOI: 10.5423/ppj.oa.02.2018.0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, Jinju 52828,
Korea
- Corresponding author: Phone) +82-55-772-1917, FAX) +82-55-772-1919, E-mail)
| |
Collapse
|
44
|
Jin JH, Wang M, Zhang HX, Khan A, Wei AM, Luo DX, Gong ZH. Genome-wide identification of the AP2/ERF transcription factor family in pepper (Capsicum annuum L.). Genome 2018; 61:663-674. [PMID: 29958096 DOI: 10.1139/gen-2018-0036] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The AP2/ERF family is one of the largest transcription factor families in the plant kingdom. AP2/ERF genes contributing to various processes including plant growth, development, and response to various stresses have been identified. In this study, 175 putative AP2/ERF genes were identified in the latest pepper genome database and classified into AP2, RAV, ERF, and Soloist subfamilies. Their chromosomal localization, gene structure, conserved motif, cis-acting elements within the promoter region, and subcellular locations were analyzed. Transient expression of CaAP2/ERF proteins in tobacco revealed that CaAP2/ERF064, CaAP2/ERF109, and CaAP2/ERF127 were located in the nucleus, while CaAP2/ERF171 was located in the nucleus and cytoplasm. Most of the CaAP2/ERF genes contained cis-elements within their promoter regions that responded to various stresses (HSE, LTR, MBS, Box-W1/W-box, and TC-rich repeats) and phytohormones (ABRE, CGTCA-motif, and TCA-element). Furthermore, RNA-seq analysis revealed that CaAP2/ERF genes showed differential expression profiles in various tissues as well as under biotic stresses. Moreover, qRT-PCR analysis of eight selected CaAP2/ERF genes also showed differential expression patterns in response to infection with Phytophthora capsici (HX-9) and in response to phytohormones (SA, MeJA, and ETH). This study will provide basic insights for further studies of the CaAP2/ERF genes involved in the interaction between pepper and P. capsici.
Collapse
Affiliation(s)
- Jing-Hao Jin
- a College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Min Wang
- a College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Huai-Xia Zhang
- a College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Abid Khan
- a College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Ai-Min Wei
- b Tianjin Vegetable Research Center, Tianjin 300192, P.R. China
| | - De-Xu Luo
- c Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huaian, Jiangsu 223001, P.R. China
| | - Zhen-Hui Gong
- a College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
45
|
Waseem M, Ahmad F, Habib S, Li Z. Genome-wide identification of the auxin/indole-3-acetic acid (Aux/IAA) gene family in pepper, its characterisation, and comprehensive expression profiling under environmental and phytohormones stress. Sci Rep 2018; 8:12008. [PMID: 30104758 PMCID: PMC6089902 DOI: 10.1038/s41598-018-30468-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
Auxin is an essential phytohormone that plays a crucial role in the growth and development of plants in stressful environments. Here, we analysed the auxin/indole-3-acetic acid (Aux/IAA) gene family, which produces auxin in pepper, and succeeded in identifying 27 putative members containing four conserved domains (I. II. III and IV) in their protein sequences. Sequence analysis, chromosomal mapping and motif prediction of all identified CaAux/IAA genes were performed. It was observed that these genes contained four conserved motifs divided into nine different groups and distributed across nine chromosomes in pepper plants. RNA-seq analysis revealed the organ specific expression of many CaAux/IAA genes. However, the majority of genes were expressed with high expression levels in the early stages of fruit development. However, the maximum expression level of the CA03g34540 gene was observed in the breaker stage. Moreover, thirteen CaAux/IAA genes were labelled as early responsive genes to various phytohormone and abiotic stresses. Furthermore, RNA-seq analysis in response to pathogen inoculation (PepMoV, TMV strains P0/P1, and Phytophthora capsici) showed distinct expression profiles of all identified genes, suggesting the diverse expression nature of genes under these stress conditions. Overall, this study provides insight into the dynamic response of CaAux/IAA genes under environmental and phytohormones stress conditions, providing bases to further explore the importance of these genes through mutant/transgenic analysis in pepper.
Collapse
Affiliation(s)
- Muhammad Waseem
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Fiaz Ahmad
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sidra Habib
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
46
|
Ali M, Luo DX, Khan A, Haq SU, Gai WX, Zhang HX, Cheng GX, Muhammad I, Gong ZH. Classification and Genome-Wide Analysis of Chitin-Binding Proteins Gene Family in Pepper (Capsicum annuum L.) and Transcriptional Regulation to Phytophthora capsici, Abiotic Stresses and Hormonal Applications. Int J Mol Sci 2018; 19:E2216. [PMID: 30060631 PMCID: PMC6121964 DOI: 10.3390/ijms19082216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 11/26/2022] Open
Abstract
Chitin-binding proteins are pathogenesis-related gene family, which play a key role in the defense response of plants. However, thus far, little is known about the chitin-binding family genes in pepper (Capsicum annuum L.). In current study, 16 putative chitin genes (CaChi) were retrieved from the latest pepper genome database, and were classified into four distinct classes (I, III, IV and VI) based on their sequence structure and domain architectures. Furthermore, the structure of gene, genome location, gene duplication and phylogenetic relationship were examined to clarify a comprehensive background of the CaChi genes in pepper. The tissue-specific expression analysis of the CaChi showed the highest transcript levels in seed followed by stem, flower, leaf and root, whereas the lowest transcript levels were noted in red-fruit. Phytophthora capsici post inoculation, most of the CaChi (CaChiI3, CaChiIII1, CaChiIII2, CaChiIII4, CaChiIII6, CaChiIII7, CaChiIV1, CaChiVI1 and CaChiVI2) were induced by both strains (PC and HX-9). Under abiotic and exogenous hormonal treatments, the CaChiIII2, CaChiIII7, CaChiVI1 and CaChiVI2 were upregulated by abiotic stress, while CaChiI1, CaChiIII7, CaChiIV1 and CaChiIV2 responded to hormonal treatments. Furthermore, CaChiIV1-silenced plants display weakened defense by reducing (60%) root activity and increase susceptibility to NaCl stress. Gene ontology (GO) enrichment analysis revealed that CaChi genes primarily contribute in response to biotic, abiotic stresses and metabolic/catabolic process within the biological process category. These results exposed that CaChi genes are involved in defense response and signal transduction, suggesting their vital roles in growth regulation as well as response to stresses in pepper plant. In conclusion, these finding provide basic insights for functional validation of the CaChi genes in different biotic and abiotic stresses.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huaian 223001, China.
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Saeed Ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
47
|
Global gene expression profiling for fruit organs and pathogen infections in the pepper, Capsicum annuum L. Sci Data 2018; 5:180103. [PMID: 29870035 PMCID: PMC5987667 DOI: 10.1038/sdata.2018.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/06/2018] [Indexed: 01/21/2023] Open
Abstract
Hot pepper (Capsicum annuum) is one of the most consumed vegetable crops in the world and useful to human as it has many nutritional and medicinal values. Genomic resources of pepper are publically available since the pepper genomes have been completed and massive data such as transcriptomes have been deposited. Nevertheless, global transcriptome profiling is needed to identify molecular mechanisms related to agronomic traits in pepper, but limited analyses are published. Here, we report the comprehensive analysis of pepper transcriptomes during fruit ripening and pathogen infection. For the ripening, transcriptome data were obtained from placenta and pericarp at seven developmental stages. To reveal global transcriptomic landscapes during infection, leaves at six time points post-infection by one of three pathogens (Phytophthora infestans, Pepper mottle virus, and Tobacco mosaic virus P0 strain) were profiled. The massive parallel transcriptome profiling in this study will serve as a valuable resource for detection of molecular networks of fruit development and disease resistance in Capsicum annuum.
Collapse
|
48
|
Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Sci Rep 2018; 8:5500. [PMID: 29615685 PMCID: PMC5883049 DOI: 10.1038/s41598-018-23761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/19/2018] [Indexed: 11/22/2022] Open
Abstract
The dirigent (DIR and DIR-like) proteins involved in lignification, play a pivotal role against biotic and abiotic stresses in plants. However, no information is available about DIR gene family in pepper (Capsicum annuum L.). In this study, 24 putative dirigent genes (CaDIRs) were identified, their gene structure, genome location, gene duplication and phylogenetic relationship were elucidated. Tissue-specific expression analysis displayed the highest transcription levels in flower, stem and leaf. Some CaDIRs were up-regulated by virulent (CaDIR2, 3, 6, 7, 11, 14, 16, 22 and 23) and avirulent (CaDIR3, 5, 7, 16, 20, 22, 23 and 24) Phytophthora capsici strains, as well as by Methyl jasmonate, salicylic acid, NaCl and mannitol stresses. Acid-soluble lignin content increased (103.21%) after P. capsici inoculation (48-hour). Silencing of CaDIR7 weakened plant defense by reducing (~50%) root activity and made plants more susceptible (35.7%) to P. capsici and NaCl (300 mM). Leaf discs of the CaDIR7:silenced plants exposed to NaCl and mannitol (300 mM each), exhibited a significant decrease (56.25% and 48% respectively) in the chlorophyll content. These results suggested that CaDIR7 is involved in pepper defense response against pathogen and abiotic stresses and the study will provide basic insights for future research regarding CaDIRs.
Collapse
|
49
|
Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 2017; 18:210. [PMID: 29089032 DOI: 10.1007/s13580-019-00157-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/19/2019] [Accepted: 10/06/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. RESULTS We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. CONCLUSIONS Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.
Collapse
Affiliation(s)
- Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Shin Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Sub Shin
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju, 54896, South Korea
| | - Minkyu Park
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Youngsill Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - JunKi Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Yunji Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Ryan W Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | | | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
50
|
Zhang Z, Yuan L, Liu X, Chen X, Wang X. Evolution analysis of Dof transcription factor family and their expression in response to multiple abiotic stresses in Malus domestica. Gene 2017; 639:137-148. [PMID: 28986315 DOI: 10.1016/j.gene.2017.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
As a family of transcription factors, DNA binding with one figure (Dof) proteins play important roles in various biological processes in plants. Here, a total of 60 putative apple (Malus domestica) Dof genes (MdDof) were identified and mapped to different chromosomes. Chromosomal distribution and synteny analysis indicated that the expansion of the MdDof genes came primarily from segmental and duplication events, and from whole genome duplication, which lead to more Dof members in apples than in other plants. All 60 MdDof genes were classified into thirteen groups, according to multiple sequence alignment and the phylogenetic tree constructed of Dof genes from apple, peach (Prunus persica), Arabidopsis and rice. Within each group, the members shared a similar exon/intron and motif compositions, although the sizes of the MdDof genes and encoding proteins were quite different. Several Dof genes from the apple and peach were identified to be homologues based on their close synteny relationship, which suggested that these genes bear similar functions. Half of the MdDof genes were randomly selected to determine their responses to different stresses. The majority of MdDof genes were quite sensitive to PEG, NaCl, cold and exogenous ABA treatment. Our results suggested that MdDof family members may play important roles in plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Zhengrong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xin Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xuesen Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|