1
|
Choi JT, Choi Y, Lee Y, Lee SH, Kang S, Lee KT, Bahn YS. The hybrid RAVE complex plays V-ATPase-dependent and -independent pathobiological roles in Cryptococcus neoformans. PLoS Pathog 2023; 19:e1011721. [PMID: 37812645 PMCID: PMC10586682 DOI: 10.1371/journal.ppat.1011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/19/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
V-ATPase, which comprises 13-14 subunits, is essential for pH homeostasis in all eukaryotes, but its proper function requires a regulator to assemble its subunits. While RAVE (regulator of H+-ATPase of vacuolar and endosomal membranes) and Raboconnectin-3 complexes assemble V-ATPase subunits in Saccharomyces cerevisiae and humans, respectively, the function of the RAVE complex in fungal pathogens remains largely unknown. In this study, we identified two RAVE complex components, Rav1 and Wdr1, in the fungal meningitis pathogen Cryptococcus neoformans, and analyzed their roles. Rav1 and Wdr1 are orthologous to yeast RAVE and human Rabconnectin-3 counterparts, respectively, forming the hybrid RAVE (hRAVE) complex. Deletion of RAV1 caused severe defects in growth, cell cycle control, morphogenesis, sexual development, stress responses, and virulence factor production, while the deletion of WDR1 resulted in similar but modest changes, suggesting that Rav1 and Wdr1 play central and accessary roles, respectively. Proteomics analysis confirmed that Wdr1 was one of the Rav1-interacting proteins. Although the hRAVE complex generally has V-ATPase-dependent functions, it also has some V-ATPase-independent roles, suggesting a unique role beyond conventional intracellular pH regulation in C. neoformans. The hRAVE complex played a critical role in the pathogenicity of C. neoformans, and RAV1 deletion attenuated virulence and impaired blood-brain barrier crossing ability. This study provides comprehensive insights into the pathobiological roles of the fungal RAVE complex and suggests a novel therapeutic strategy for controlling cryptococcosis.
Collapse
Affiliation(s)
- Jin-Tae Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yujin Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seung-Heon Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seun Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonbuk, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
2
|
Druseikis M, Mottola A, Berman J. The Metabolism of Susceptibility: Clearing the FoG Between Tolerance and Resistance in Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:36-46. [DOI: 10.1007/s40588-023-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Telzrow CL, Esher Righi S, Cathey JM, Granek JA, Alspaugh JA. Cryptococcus neoformans Mar1 function links mitochondrial metabolism, oxidative stress, and antifungal tolerance. Front Physiol 2023; 14:1150272. [PMID: 36969606 PMCID: PMC10033685 DOI: 10.3389/fphys.2023.1150272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Microbial pathogens undergo significant physiological changes during interactions with the infected host, including alterations in metabolism and cell architecture. The Cryptococcus neoformans Mar1 protein is required for the proper ordering of the fungal cell wall in response to host-relevant stresses. However, the precise mechanism by which this Cryptococcus-specific protein regulates cell wall homeostasis was not defined. Methods: Here, we use comparative transcriptomics, protein localization, and phenotypic analysis of a mar1D loss-of-function mutant strain to further define the role of C. neoformans Mar1 in stress response and antifungal resistance. Results: We demonstrate that C. neoformans Mar1 is highly enriched in mitochondria. Furthermore, a mar1Δ mutant strain is impaired in growth in the presence of select electron transport chain inhibitors, has altered ATP homeostasis, and promotes proper mitochondrial morphogenesis. Pharmacological inhibition of complex IV of the electron transport chain in wild-type cells promotes similar cell wall changes as the mar1Δ mutant strain, supporting prior associations between mitochondrial function and cell wall homeostasis. Although Mar1 is not required for general susceptibility to the azole antifungals, the mar1Δ mutant strain displays increased tolerance to fluconazole that correlates with repressed mitochondrial metabolic activity. Discussion: Together, these studies support an emerging model in which the metabolic activity of microbial cells directs cell physiological changes to allow persistence in the face of antimicrobial and host stress.
Collapse
Affiliation(s)
- Calla L. Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Shannon Esher Righi
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jackson M. Cathey
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Joshua A. Granek
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
4
|
Role of the Heme Activator Protein Complex in the Sexual Development of Cryptococcus neoformans. mSphere 2022; 7:e0017022. [PMID: 35638350 PMCID: PMC9241503 DOI: 10.1128/msphere.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCAAT-binding heme activator protein (HAP) complex, comprising the DNA-binding heterotrimeric complex Hap2/3/5 and transcriptional activation subunit HapX, is a key regulator of iron homeostasis, mitochondrial functions, and pathogenicity in Cryptococcus neoformans, which causes fatal meningoencephalitis. However, its role in the development of human fungal pathogens remains unclear. To elucidate the role of the HAP complex in C. neoformans development, we constructed hap2Δ, hap3Δ, hap5Δ, and hapXΔ mutants and their complemented congenic MATα H99 and MATa YL99a strains. The HAP complex plays a conserved role in iron utilization and stress responses in cells of both mating types. Deletion of any of the HAP complex components markedly enhances filamentation during bisexual mating. However, the Hap2/3/5 complex, but not HapX, is crucial in repressing pheromone production and cell fusion and is thus a critical repressor of sexual differentiation of C. neoformans. Interestingly, deletion of the heterotrimeric complex transcriptionally regulated both positive and negative regulators in the pheromone-responsive Cpk1 mitogen-activated protein kinase (MAPK) pathway. Chromatin immunoprecipitation-quantitative PCR analysis revealed that the HAP complex physically bound to the CCAAT motif of the CRG1 and GPA2 promoter regions. Notably, the HAP complex was differentially localized depending on the mating type in basal conditions; it was enriched in the nuclei of MATα cells but diffused in the cytoplasm of MATa cells. Interestingly, however, a portion of the HAP complex in both mating types relocalized to the cell membrane during mating. In conclusion, the Hap2/3/5 heterotrimeric complex and HapX play major and minor roles, respectively, in repressing the sexual development of C. neoformans in association with the Cpk1 MAPK pathway. IMPORTANCECryptococcus neoformans isolates are of two mating types: MATα strains, which are predominant, and MATa strains, isolated from the sub-Saharan African region, where cryptococcosis is most abundant and severe. Here, we demonstrated the function of the CCAAT-binding HAP complex (Hap2/3/5/X) as a transcriptional repressor of Cpk1 pathway-related genes in cells of both mating types. Deletion of any HAP complex component markedly enhanced filamentation without affecting normal sporulation. In particular, deletion of the DNA-binding HAP complex components (Hap2/3/5), but not HapX, markedly enhanced pheromone production and cell fusion efficiency, validating its repressive role in the early stage of mating in C. neoformans. The HAP complex regulates the expression of both negative and positive mating regulators and is thus crucial for the regulation of the Cpk1 MAPK pathway during mating. This study provides insights into the complex signaling networks governing the sexual differentiation of C. neoformans.
Collapse
|
5
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
6
|
Kim S, Park J, Kim D, Choi S, Moon H, Young Shin J, Kim J, Son H. Development of a versatile copper-responsive gene expression system in the plant-pathogenic fungus Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2021; 22:1427-1435. [PMID: 34390122 PMCID: PMC8518565 DOI: 10.1111/mpp.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Fusarium graminearum is an important plant-pathogenic fungus that causes Fusarium head blight on wheat and barley, and ear rot on maize worldwide. This fungus has been widely used as a model organism to study various biological processes of plant-pathogenic fungi because of its amenability to genetic manipulation and well-established outcross system. Gene deletion and overexpression/constitutive expression of target genes are tools widely used to investigate the molecular mechanism underlying fungal development, virulence, and secondary metabolite production. However, for fine-tuning gene expression and studying essential genes, a conditional gene expression system is necessary that enables repression or induction of gene expression by modifying external conditions. Until now, only a few conditional expression systems have been developed in plant-pathogenic fungi. This study proposes a new and versatile conditional gene expression system in F. graminearum using the promoter of a copper-responsive gene, designated F. graminearum copper-responsive 1 (FCR1). Transcript levels of FCR1 were found to be greatly affected by copper availability conditions. Moreover, the promoter (PFCR1 ), 1 kb upstream of the FCR1 open reading frame, was sufficient to confer copper-dependent gene expression. Replacement of a green fluorescent protein gene and FgENA5 promoter with a PFCR1 promoter clearly showed that PFCR1 could be used for fine-tuning gene expression in this fungus. We also demonstrated the applicability of this conditional gene expression system to an essential gene study by replacing the promoter of FgIRE1, an essential gene of F. graminearum. This enabled the generation of FgIRE1 suppression mutants, which allowed functional characterization of the gene. This study reported the first conditional gene expression system in F. graminearum using both repression and induction. This system would be a convenient way to precisely control gene expression and will be used to determine the biological functions of various genes, including essential ones.
Collapse
Affiliation(s)
- Sieun Kim
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
| | - Jiyeun Park
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
| | - Dohun Kim
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
| | - Soyoung Choi
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
| | - Heeji Moon
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
| | - Ji Young Shin
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Jung‐Eun Kim
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Hokyoung Son
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
7
|
Swift CL, Malinov NG, Mondo SJ, Salamov A, Grigoriev IV, O'Malley MA. A Genomic Catalog of Stress Response Genes in Anaerobic Fungi for Applications in Bioproduction. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:708358. [PMID: 37744151 PMCID: PMC10512342 DOI: 10.3389/ffunb.2021.708358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/07/2021] [Indexed: 09/26/2023]
Abstract
Anaerobic fungi are a potential biotechnology platform to produce biomass-degrading enzymes. Unlike model fungi such as yeasts, stress responses that are relevant during bioprocessing have not yet been established for anaerobic fungi. In this work, we characterize both the heat shock and unfolded protein responses of four strains of anaerobic fungi (Anaeromyces robustus, Caecomyces churrovis, Neocallimastix californiae, and Piromyces finnis). The inositol-requiring 1 (Ire1) stress sensor, which typically initiates the fungal UPR, was conserved in all four genomes. However, these genomes also encode putative transmembrane kinases with catalytic domains that are similar to the metazoan stress-sensing enzyme PKR-like endoplasmic reticulum kinase (PERK), although whether they function in the UPR of anaerobic fungi remains unclear. Furthermore, we characterized the global transcriptional responses of Anaeromyces robustus and Neocallimastix californiae to a transient heat shock. Both fungi exhibited the hallmarks of ER stress, including upregulation of genes with functions in protein folding, ER-associated degradation, and intracellular protein trafficking. Relative to other fungi, the genomes of Neocallimastigomycetes contained the greatest gene percentage of HSP20 and HSP70 chaperones, which may serve to stabilize their asparagine-rich genomes. Taken together, these results delineate the unique stress response of anaerobic fungi, which is an important step toward their development as a biotechnology platform to produce enzymes and valuable biomolecules.
Collapse
Affiliation(s)
- Candice L. Swift
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nikola G. Malinov
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| |
Collapse
|
8
|
Sircaik S, Román E, Bapat P, Lee KK, Andes DR, Gow NAR, Nobile CJ, Pla J, Panwar SL. The protein kinase Ire1 impacts pathogenicity of Candida albicans by regulating homeostatic adaptation to endoplasmic reticulum stress. Cell Microbiol 2021; 23:e13307. [PMID: 33403715 PMCID: PMC8044019 DOI: 10.1111/cmi.13307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER‐resident protein, inositol‐requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling. Concordantly, an Ire1‐mutant strain exhibits pleiotropic roles in ER stress response, antifungal tolerance, cell wall regulation and virulence‐related traits. Hac1 is the downstream target of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from HAC1 mRNA during tunicamycin‐induced ER stress. Ire1 also activates the UPR in response to perturbations in cell wall integrity and cell membrane homeostasis in a manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the Ire1‐mutant strain is severely defective in hyphal morphogenesis and biofilm formation as well as in establishing a successful infection in vivo. Together, these findings demonstrate that C. albicans Ire1 functions to regulate traits that are essential for virulence and suggest its importance in responding to multiple stresses, thus integrating various stress signals to maintain ER homeostasis.
Collapse
Affiliation(s)
- Shabnam Sircaik
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Quantitative and System Biology Graduate Program, University of California, Merced, California, USA
| | - Keunsook K Lee
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Neil A R Gow
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Health Sciences Research Institute, University of California, Merced, California, USA
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Sneh Lata Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Functional Coupling between the Unfolded Protein Response and Endoplasmic Reticulum/Golgi Ca 2+-ATPases Promotes Stress Tolerance, Cell Wall Biosynthesis, and Virulence of Aspergillus fumigatus. mBio 2020; 11:mBio.01060-20. [PMID: 32487759 PMCID: PMC7267887 DOI: 10.1128/mbio.01060-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many species of pathogenic fungi deploy the unfolded protein response (UPR) to expand the folding capacity of the endoplasmic reticulum (ER) in proportion to the demand for virulence-related proteins that traffic through the secretory pathway. Although Ca2+ plays a pivotal role in ER function, the mechanism by which transcriptional upregulation of the protein folding machinery is coordinated with Ca2+ homeostasis is incompletely understood. In this study, we investigated the link between the UPR and genes encoding P-type Ca2+-ATPases in the human-pathogenic mold Aspergillus fumigatus We demonstrate that acute ER stress increases transcription of the srcA gene, encoding a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family, as well as that of pmrA, encoding a secretory pathway Ca2+-ATPase (SPCA) in the Golgi membrane. Loss of the UPR transcription factor HacA prevented the induction of srcA and pmrA transcription during ER stress, defining these ER/Golgi Ca2+ pumps as novel downstream targets of this pathway. While deletion of srcA alone caused no major deficiencies, a ΔsrcA/ΔpmrA mutant displayed a severe polarity defect, was hypersensitive to ER stress, and showed attenuated virulence. In addition, cell wall analyses revealed a striking reduction in mannose levels in the absence of both Ca2+ pumps. The ΔhacA mutant was hypersensitive to agents that block calcineurin-dependent signaling, consistent with a functional coupling between the UPR and Ca2+ homeostasis. Together, these findings demonstrate that the UPR integrates the need for increased levels of chaperone and folding enzymes with an influx of Ca2+ into the secretory pathway to support fungal growth, stress adaptation, and pathogenicity.IMPORTANCE The UPR is an intracellular signal transduction pathway that maintains homeostasis of the ER. The pathway is also tightly linked to the expression of virulence-related traits in diverse species of human-pathogenic and plant-pathogenic fungal species, including the predominant mold pathogen infecting humans, Aspergillus fumigatus Despite advances in the understanding of UPR signaling, the linkages and networks that are governed by this pathway are not well defined. In this study, we revealed that the UPR is a major driving force for stimulating Ca2+ influx at the ER and Golgi membranes and that the coupling between the UPR and Ca2+ import is important for virulence, cell wall biosynthesis, and resistance to antifungal compounds that inhibit Ca2+ signaling.
Collapse
|
10
|
The Unfolded Protein Response Regulates Pathogenic Development of Ustilago maydis by Rok1-Dependent Inhibition of Mating-Type Signaling. mBio 2019; 10:mBio.02756-19. [PMID: 31848283 PMCID: PMC6918084 DOI: 10.1128/mbio.02756-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The unfolded protein response (UPR) is crucial for endoplasmic reticulum (ER) homeostasis and disease development in fungal pathogens. In the plant-pathogenic fungus Ustilago maydis, the UPR supports fungal proliferation in planta and effector secretion for plant defense suppression. In this study, we uncovered that UPR activity, which is normally restricted to the biotrophic stage in planta, inhibits mating and the formation of infectious filaments by Rok1-dependent dephosphorylation of the pheromone responsive mitogen-activated protein kinase (MAPK) Kpp2. This observation is relevant for understanding how the fungal virulence program is regulated by cellular physiology. UPR-mediated control of mating-type signaling pathways predicts that effector gene expression and the virulence potential are controlled by ER stress levels. Fungal pathogens require the unfolded protein response (UPR) to maintain protein homeostasis of the endoplasmic reticulum (ER) during pathogenic development. In the corn smut fungus Ustilago maydis, pathogenic development is controlled by the a and b mating-type loci. The UPR is specifically activated after plant penetration and required for efficient secretion of effectors and suppression of the plant defense response. The interaction between the UPR regulator Cib1 and the central developmental regulator Clp1 modulates the pathogenic program and triggers fungal colonization of the host plant. By contrast, when activated before plant penetration, the UPR interferes with fungal virulence by reducing expression of bE and bW, the central regulators of pathogenic development encoded by the b mating-type locus. Here, we show that this inhibitory effect results from UPR-mediated suppression of the pheromone response pathway upstream of the b regulatory network. UPR activity prompts dephosphorylation of the pheromone-responsive mitogen-activated protein kinase (MAPK) Kpp2, reducing activity of the pheromone response factor Prf1 that regulates expression of bE and bW. Deletion of the dual specificity phosphatase rok1 fully suppressed UPR-dependent inhibition of Kpp2 phosphorylation, formation of infectious filaments, and fungal virulence. Rok1 determines the activity of mating-type signaling pathways and thus the degree of fungal virulence. We propose that UPR-dependent regulation of Rok1 aligns ER physiology with fungal aggressiveness and effector gene expression during biotrophic growth of U. maydis in the host plant.
Collapse
|
11
|
Adulcikas J, Sonda S, Norouzi S, Sohal SS, Myers S. Targeting the Zinc Transporter ZIP7 in the Treatment of Insulin Resistance and Type 2 Diabetes. Nutrients 2019; 11:nu11020408. [PMID: 30781350 PMCID: PMC6412268 DOI: 10.3390/nu11020408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/13/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease associated with dysfunctional metabolic processes that lead to abnormally high levels of blood glucose. Preceding the development of T2DM is insulin resistance (IR), a disorder associated with suppressed or delayed responses to insulin. The effects of this response are predominately mediated through aberrant cell signalling processes and compromised glucose uptake into peripheral tissue including adipose, liver and skeletal muscle. Moreover, a major factor considered to be the cause of IR is endoplasmic reticulum (ER) stress. This subcellular organelle plays a pivotal role in protein folding and processes that increase ER stress, leads to maladaptive responses that result in cell death. Recently, zinc and the proteins that transport this metal ion have been implicated in the ER stress response. Specifically, the ER-specific zinc transporter ZIP7, coined the "gate-keeper" of zinc release from the ER into the cytosol, was shown to be essential for maintaining ER homeostasis in intestinal epithelium and myeloid leukaemia cells. Moreover, ZIP7 controls essential cell signalling pathways similar to insulin and activates glucose uptake in skeletal muscle. Accordingly, ZIP7 may be essential for the control of ER localized zinc and mechanisms that disrupt this process may lead to ER-stress and contribute to IR. Accordingly, understanding the mechanisms of ZIP7 action in the context of IR may provide opportunities to develop novel therapeutic options to target this transporter in the treatment of IR and subsequent T2DM.
Collapse
Affiliation(s)
- John Adulcikas
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Sabrina Sonda
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Shaghayegh Norouzi
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Sukhwinder Singh Sohal
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia.
| |
Collapse
|
12
|
Wang ZA, Li LX, Doering TL. Unraveling synthesis of the cryptococcal cell wall and capsule. Glycobiology 2019; 28:719-730. [PMID: 29648596 DOI: 10.1093/glycob/cwy030] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/28/2018] [Indexed: 11/15/2022] Open
Abstract
Fungal pathogens cause devastating infections in millions of individuals each year, representing a huge but underappreciated burden on human health. One of these, the opportunistic fungus Cryptococcus neoformans, kills hundreds of thousands of patients annually, disproportionately affecting people in resource-limited areas. This yeast is distinguished from other pathogenic fungi by a polysaccharide capsule that is displayed on the cell surface. The capsule consists of two complex polysaccharide polymers: a mannan substituted with xylose and glucuronic acid, and a galactan with galactomannan side chains that bear variable amounts of glucuronic acid and xylose. The cell wall, with which the capsule is associated, is a matrix of alpha and beta glucans, chitin, chitosan, and mannoproteins. In this review, we focus on synthesis of the wall and capsule, both of which are critical for the ability of this microbe to cause disease and are distinct from structures found in either model yeasts or the mammals afflicted by this infection. Significant research effort over the last few decades has been applied to defining the synthetic machinery of these two structures, including nucleotide sugar metabolism and transport, glycosyltransferase activities, polysaccharide export, and assembly and association of structural elements. Discoveries in this area have elucidated fundamental biology and may lead to novel targets for antifungal therapy. In this review, we summarize the progress made in this challenging and fascinating area, and outline future research questions.
Collapse
Affiliation(s)
- Zhuo A Wang
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| | - Lucy X Li
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| |
Collapse
|
13
|
The Unfolded Protein Response Pathway in the Yeast Kluyveromyces lactis. A Comparative View among Yeast Species. Cells 2018; 7:cells7080106. [PMID: 30110882 PMCID: PMC6116095 DOI: 10.3390/cells7080106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/04/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells have evolved signalling pathways that allow adaptation to harmful conditions that disrupt endoplasmic reticulum (ER) homeostasis. When the function of the ER is compromised in a condition known as ER stress, the cell triggers the unfolded protein response (UPR) in order to restore ER homeostasis. Accumulation of misfolded proteins due to stress conditions activates the UPR pathway. In mammalian cells, the UPR is composed of three branches, each containing an ER sensor (PERK, ATF6 and IRE1). However, in yeast species, the only sensor present is the inositol-requiring enzyme Ire1. To cope with unfolded protein accumulation, Ire1 triggers either a transcriptional response mediated by a transcriptional factor that belongs to the bZIP transcription factor family or an mRNA degradation process. In this review, we address the current knowledge of the UPR pathway in several yeast species: Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida glabrata, Cryptococcus neoformans, and Candida albicans. We also include unpublished data on the UPR pathway of the budding yeast Kluyveromyces lactis. We describe the basic components of the UPR pathway along with similarities and differences in the UPR mechanism that are present in these yeast species.
Collapse
|
14
|
Jung KW, Lee KT, So YS, Bahn YS. Genetic Manipulation of Cryptococcus neoformans. ACTA ACUST UNITED AC 2018; 50:e59. [PMID: 30016567 DOI: 10.1002/cpmc.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen, which causes life-threatening meningoencephalitis in immunocompromised individuals and is responsible for more than 1,000,000 infections and 600,000 deaths annually worldwide. Nevertheless, anti-cryptococcal therapeutic options are limited, mainly because of the similarity between fungal and human cellular structures. Owing to advances in genetic and molecular techniques and bioinformatics in the past decade, C. neoformans, belonging to the phylum basidiomycota, is now a major pathogenic fungal model system. In particular, genetic manipulation is the first step in the identification and characterization of the function of genes for understanding the mechanisms underlying the pathogenicity of C. neoformans. This unit describes protocols for constructing target gene deletion mutants using double-joint (DJ) PCR, constitutive overexpression strains using the histone H3 gene promoter, and epitope/fluorescence protein-tagged strains in C. neoformans. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yee-Seul So
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Evolutionarily Conserved and Divergent Roles of Unfolded Protein Response (UPR) in the Pathogenic Cryptococcus Species Complex. Sci Rep 2018; 8:8132. [PMID: 29802329 PMCID: PMC5970146 DOI: 10.1038/s41598-018-26405-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
The unfolded protein response (UPR) pathway, consisting of the evolutionarily conserved Ire1 kinase/endonuclease and the bZIP transcription factor Hxl1, is critical for the pathogenicity of Cryptococcus neoformans; however, its role remains unknown in other pathogenic Cryptococcus species. Here, we investigated the role of the UPR pathway in C. deuterogattii, which causes pneumonia and systemic cryptococcosis, even in immunocompetent individuals. In response to ER stress, C. deuterogattii Ire1 triggers unconventional splicing of HXL1 to induce the expression of UPR target genes such as KAR2, DER1, ALG7, and ERG29. Furthermore, C. deuterogattii Ire1 is required for growth at mammalian body temperature, similar to C. neoformans Ire1. However, deletion of HXL1 does not significantly affect the growth of C. deuterogattii at 37 °C, which is in contrast to the indispensable role of HXL1 in the growth of C. neoformans at 37 °C. Nevertheless, both C. deuterogattii ire1Δ and hxl1Δ mutants are avirulent in a murine model of systemic cryptococcosis, suggesting that a non-thermotolerance phenotypic trait also contributes to the role of the UPR pathway in the virulence of pathogenic Cryptococcus species. In conclusion, the UPR pathway plays redundant and distinct roles in the virulence of members of the pathogenic Cryptococcus species complex.
Collapse
|
16
|
Fu C, Heitman J. PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet 2017; 13:e1007113. [PMID: 29176784 PMCID: PMC5720818 DOI: 10.1371/journal.pgen.1007113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/07/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy events. Taken together, our findings suggest distinct mating mechanisms for unisexual and bisexual reproduction in Cryptococcus, exemplifying distinct evolutionary trajectories within this pathogenic species complex.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|