1
|
Gong Y, Gong D, Liu S, Gong X, Xiong J, Zhang J, Jiang L, Liu J, Zhu L, Luo H, Xu K, Yang X, Li B. Deciphering the role of NcRNAs in Pancreatic Cancer immune evasion and drug resistance: a new perspective for targeted therapy. Front Immunol 2024; 15:1480572. [PMID: 39555076 PMCID: PMC11563824 DOI: 10.3389/fimmu.2024.1480572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Pancreatic cancer (PC) is a very aggressive digestive system tumor, known for its high mortality rate, low cure rate, low survival rate and poor prognosis. In particular, pancreatic ductal adenocarcinoma (PADC), which accounts for more than 90% of PC cases, has an overall 5-year survival rate of only 5%, which is an extremely critical situation. Early detection and effective treatment of PC is extremely difficult, which leads many patients to despair. In the current medical context, targeted therapy, as an important strategy for cancer treatment, is expected. However, the problems of immune escape and drug resistance in PC have become two major obstacles that are difficult to be overcome by targeted therapy. How to break through these two difficulties has become a key issue to be solved in the field of PC therapy. In recent years, non-coding RNAs (ncRNAs) have continued to heat up in the field of cancer research. NcRNAs play a pivotal role in gene regulation, cell differentiation, development, and disease processes, and their important roles in the genesis, development, and therapeutic response of PC have been gradually revealed. More importantly, ncRNAs have many advantages as therapeutic targets, such as high specificity and low side effects, making them a new favorite in the field of PC therapy. Therefore, the aim of this paper is to provide new ideas and methods for the targeted therapy of PC by reviewing the mechanism of action of four major ncRNAs (circRNAs, lncRNAs, miRNAs, siRNAs) in both immune escape and drug resistance of PC. It is expected that an effective way to overcome immune escape and drug resistance can be found through in-depth study of ncRNA, bringing a ray of hope to PC patients.
Collapse
Affiliation(s)
- Yu Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Desheng Gong
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- General Surgery Department, The TCM Hospital of Longquanyi, Chengdu, China
| | - Sinian Liu
- Department of Pathology, Xichong People’s Hospital, Nanchong, China
| | - Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Jinghan Zhang
- Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Zhu
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Huiyang Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Liu M, Wang L, Yu Q, Song J, Zhu L, Jia KH, Qin X. The response of LncRNAs associated with photosynthesis-and pigment synthesis-related genes to green light in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2024; 161:65-78. [PMID: 38108929 DOI: 10.1007/s11120-023-01062-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The quality of light is an important abiotic factor that affects the growth and development of green plants. Ultraviolet, red, blue, and far-red light all have demonstrated roles in regulating green plant growth and development, as well as light morphogenesis. However, the mechanism underlying photosynthetic organism responses to green light throughout the life of them are not clear. In this study, we exposed the unicellular green alga Chlamydomonas reinhardtii to green light and analyzed the dynamics of transcriptome changes. Based on the whole transcriptome data from C. reinhardtii, a total of 9974 differentially expressed genes (DEGs) were identified under green light. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were mainly related to "carboxylic acid metabolic process," "enzyme activity," "carbon metabolism," and "photosynthesis and other processes." At the same time, 253 differentially expressed long non-coding RNAs (DELs) were characterized as green light responsive. We also made a detailed analysis of the responses of photosynthesis- and pigment synthesis-related genes in C. reinhardtii to green light and found that these genes exhibited obvious dynamic expression. Lastly, we constructed a co-expression regulatory network, comprising 49 long non-coding RNAs (lncRNAs) and 20 photosynthesis and pigment related genes, of which 9 mRNAs were also the predicted trans/cis-targets of 8 lncRNAs, these results suggested that lncRNAs may affect the expression of mRNAs related to photosynthesis and pigment synthesis. Our findings give a preliminary explanation of the response mechanism of C. reinhardtii to green light at the transcriptional level.
Collapse
Affiliation(s)
- Menghua Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Longxin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qianqian Yu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jialin Song
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
- Shandong University of Arts, Jinan, China
| | - Lixia Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
3
|
Dadras N, Hasanpur K, Razeghi J, Kianianmomeni A. Different transcription of novel, functional long non-coding RNA genes by UV-B in green algae, Volvox carteri. Int Microbiol 2024; 27:213-225. [PMID: 37264144 DOI: 10.1007/s10123-023-00378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Long non-coding RNAs (lncRNAs) are identified as important regulatory molecules related to diverse biological processes. In recent years, benefiting from the rapid development of high-throughput sequencing technology, RNA-seq, and analysis methods, more lncRNAs have been identified and discovered in various plant and algal species. However, so far, only limited studies related to algal lncRNAs are available. Volvox carteri f. nagariensis is the best multicellular model organism to study in developmental and evolutionary biology; therefore, studying and increasing information about this species is important. This study identified lncRNAs in the multicellular green algae Volvox carteri and 1457 lncRNAs were reported, using RNA-seq data and with the help of bioinformatics tools and software. This study investigated the effect of low-dose UV-B radiation on changes in the expression profile of lncRNAs in gonidial and somatic cells. The differential expression of lncRNAs was analyzed between the treatment (UV-B) and the control (WL) groups in gonidial and somatic cells. A total of 37 and 26 lncRNAs with significant differential expression in gonidial and somatic cells, respectively, were reported. Co-expression analysis between the lncRNAs and their neighbor protein-coding genes (in the interval of ± 10 Kb) was accomplished. In gonidial cells, 184 genes with a positive correlation and 13 genes with a negative correlation (greater than 0.95), and in somatic cells, 174 genes with a positive correlation, and 18 genes with a negative correlation were detected. Functional analysis of neighboring coding genes was also performed based on gene ontology. The results of the current work may help gain deeper insight into the regulation of gene expression in the studied model organism, Volvox carteri.
Collapse
Affiliation(s)
- Negin Dadras
- Department of Plant, Cellular and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Jafar Razeghi
- Department of Plant, Cellular and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, Faculty of Natural Sciences, University of Bielefeld, Bielefeld, Germany
- CNSAC MedShop GmbH, Heinrich-Schneidmadl-Str. 15, 3100, St. Pölten, Austria
| |
Collapse
|
4
|
Debit A, Charton F, Pierre-Elies P, Bowler C, Cruz de Carvalho H. Differential expression patterns of long noncoding RNAs in a pleiomorphic diatom and relation to hyposalinity. Sci Rep 2023; 13:2440. [PMID: 36765079 PMCID: PMC9918465 DOI: 10.1038/s41598-023-29489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Long non-coding (lnc)RNAs have been shown to have central roles in stress responses, cell identity and developmental processes in multicellular organisms as well as in unicellular fungi. Previous works have shown the occurrence of lncRNAs in diatoms, namely in Phaeodactylum tricornutum, many of which being expressed under specific stress conditions. Interestingly, P. tricornutum is the only known diatom that has a demonstrated morphological plasticity, occurring in three distinct morphotypes: fusiform, triradiate and oval. Although the morphotypes are interchangeable, the fusiform is the dominant one while both the triradiate and the oval forms are less common, the latter often being associated with stress conditions such as low salinity and solid culture media, amongst others. Nonetheless, the molecular basis underpinning morphotype identity in P. tricornutum remains elusive. Using twelve previously published transcriptomic datasets originating from the three morphotypes of P. tricornutum, we sought to investigate the expression patterns of lncRNAs (lincRNAs and NATs) in these distinct morphotypes, using pairwise comparisons, in order to explore the putative involvement of these noncoding molecules in morphotype identity. We found that differentially expressed lncRNAs cluster according to morphotype, indicating that lncRNAs are not randomly expressed, but rather seem to provide a specific (noncoding) transcriptomic signature of the morphotype. We also present evidence to suggest that the major differences in DE genes (both noncoding and coding) between the stress related oval morphotype and the most common fusiform morphotype could be due, to a large extent, to the hyposaline culture conditions rather than to the morphotype itself. However, several lncRNAs associated to each one of the three morphotypes were identified, which could have a potential role in morphotype (or cell) identity in P. tricornutum, similar to what has been found in both animals and plant development.
Collapse
Affiliation(s)
- Ahmed Debit
- Institut de Biologie de L'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Florent Charton
- Institut de Biologie de L'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Priscillia Pierre-Elies
- Institut de Biologie de L'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Chris Bowler
- Institut de Biologie de L'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Helena Cruz de Carvalho
- Institut de Biologie de L'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France.
- Faculté des Sciences et Technologie, Université Paris Est-Créteil (UPEC), 61, Avenue du Général De Gaulle, 94000, Créteil, France.
| |
Collapse
|
5
|
Hasi G, Sodnompil T, Na H, Liu H, Ji M, Xie W, Nasenochir N. Whole transcriptome sequencing reveals core genes related to spermatogenesis in Bactrian camels. J Anim Sci 2023; 101:skad115. [PMID: 37083698 PMCID: PMC10718809 DOI: 10.1093/jas/skad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 04/22/2023] Open
Abstract
Bactrian camels survive and reproduce better in extreme climatic conditions than other domestic animals can. However, the reproductive efficiency of camels under their natural pastoral conditions is low. Several factors affect mammalian reproductive performance, including testicular development, semen quality, libido, and mating ability. Testis is a main reproductive organ of the male and is responsible for producing spermatozoa and hormones. However, our understanding of the expression patterns of the genes in camel testis is minimal. Thus, we performed total RNA-sequencing to investigate the gene expression pattern. As a result, 1,538 differential expressed mRNAs (DEmRNAs), 702 differential expressed long non-coding RNAs (DElncRNAs), and 61 differential expressed microRNAs (DEmiRNAs) were identified between pubertal and adult Bactrian camel testes. Then the genomic features, length distribution, and other characteristics of the lncRNAs and mRNAs in the Bactrian camel testis were investigated. Target genes of the DEmiRNAs and DEmRNAs were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Genes, such as AMHR2, FGF1, ACTL7A, GATA4, WNT4, ID2, LAMA1, IGF1, INHBB, and TLR2, were mainly involved in the TGF-β, PI3K-AKT, Wnt, GnRH, and Hippo signaling pathways which relate to spermatogenesis. Some of the DEmiRNAs were predicted to be associated with numerous DElncRNAs and DEmRNAs through competing endogenous RNA (ceRNA) regulatory network. At last, the candidate genes were validated by RT-qPCR, dual fluorescent reporter gene, and a fluorescence in situ hybridization (FISH) assay. This research provides high-throughput RNA sequencing data of the testes of Bactrian camels across different developmental stages. It lays the foundation for further investigations on lncRNAs, miRNAs, and mRNAs that involved in Bactrian camel spermatogenesis.
Collapse
Affiliation(s)
- Gaowa Hasi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Tserennadmid Sodnompil
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Haya Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Hejie Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Musi Ji
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Wangwei Xie
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Narenhua Nasenochir
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| |
Collapse
|
6
|
Strenkert D, Yildirim A, Yan J, Yoshinaga Y, Pellegrini M, O'Malley RC, Merchant SS, Umen JG. The landscape of Chlamydomonas histone H3 lysine 4 methylation reveals both constant features and dynamic changes during the diurnal cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:352-368. [PMID: 35986497 PMCID: PMC9588799 DOI: 10.1111/tpj.15948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 05/29/2023]
Abstract
Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G1 phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G0 phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%). The likelihood of a gene being marked by H3K4me3 correlated with it being transcribed at some point during the life cycle but not necessarily by continuous active transcription, as exemplified by early zygotic genes, which may remain transcriptionally dormant for thousands of generations between sexual cycles. The exceptions to this rule were around 120 loci, some of which encode non-poly-adenylated transcripts, such as small nuclear RNAs and replication-dependent histones that had H3K4me3 peaks only when they were being transcribed. Mono-methylated H3K4 was the default state for the vast majority of histones that were bound outside of transcription start sites and terminator regions of genes. A small fraction of the genome that was depleted of any H3 lysine 4 methylation was enriched for DNA cytosine methylation and the genes within these DNA methylation islands were poorly expressed. Besides marking protein coding genes, H3K4me3 ChIP-seq data served also as a annotation tool for validation of hundreds of long non-coding RNA genes.
Collapse
Affiliation(s)
- Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Asli Yildirim
- Institute of Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los Angeles, CA, 90095, USA
| | - Juying Yan
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matteo Pellegrini
- Institute of Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ronan C O'Malley
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
7
|
Wei L, Liu B, Liu D, Xu Z, Wang R, Zhang W. Identification and expression analysis of genome-wide long noncoding RNA responsive CO 2 fluctuated environment in marine microalga Nannochloropsis oceanica. MARINE POLLUTION BULLETIN 2022; 176:113419. [PMID: 35152114 DOI: 10.1016/j.marpolbul.2022.113419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to participate in plant growth and development as well as response to different biotic and abiotic stresses. However, the knowledge of lncRNA was limited in microalgae. In this study, by RNA deep sequencing, 134 lncRNAs were identified in marine Nannochloropsis oceanica in response to carbon dioxide fluctuation. Among them, there were 51 lncRNAs displayed differentially expressed between low and high CO2 treatments, including 33 upregulation and 18 downregulation lncRNAs. Cellulose metabolic process, glucan metabolic process, polysaccharide metabolic process, and transmembrane transporter activity were functionally enriched. Multiple potential target genes of lncRNA and lncRNA-mRNA co-located gene network were analyzed. Subsequent analysis had demonstrated that lncRNAs would participate in many biological molecular processes, including gene expression, transcriptional regulation, protein expression and epigenetic regulation. In addition, alternative splicing events were firstly analyzed in response to CO2 fluctuation. There were 2051 alternative splicing (AS events) identified, which might be associated with lncRNA. These observations will provide a novel insight into lncRNA function in Nannochloropsis and provide a series of targets for lncRNA-based gene editing in future.
Collapse
Affiliation(s)
- Li Wei
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Bingqing Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Danmei Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhengru Xu
- College of Foreign Language, Hainan Normal University, Haikou 571157, China
| | - Ruiping Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Wenfei Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
8
|
Liu N, Wang P, Li X, Pei Y, Sun Y, Ma X, Ge X, Zhu Y, Li F, Hou Y. Long Non-Coding RNAs profiling in pathogenesis of Verticillium dahliae: New insights in the host-pathogen interaction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111098. [PMID: 34895536 DOI: 10.1016/j.plantsci.2021.111098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Verticillium dahliae causes vascular wilt disease on cotton (Gossypium hirsutum), resulting in devastating yield loss worldwide. While little is known about the mechanism of long non-coding RNAs (lncRNAs), several lncRNAs have been implicated in numerous physiological processes and diseases. To better understand V. dahliae pathogenesis, lncRNA was conducted in a V. dahliae virulence model. Potential target genes of significantly regulated lncRNAs were predicted using cis/trans-regulatory algorithms. This study provides evidence for lncRNAs' regulatory role in pathogenesis-related genes. Interestingly, lncRNAs were identified and varying in terms of RNA length and nutrient starvation treatments. Efficient pathogen nutrition during the interaction with the host is a requisite factor during infection. Our observations directly link to mutated V. dahliae invasion, explaining infected cotton have lower pathogenicity and lethality compared to V. dahliae. Remarkably, lncRNAs XLOC_006536 and XLOC_000836 involved in the complex regulation of pathogenesis-related genes in V. dahliae were identified. For the first time the regulatory role of lncRNAs in filamentous fungi was uncovered, and it is our contention that elucidation of lncRNAs will advance our understanding in the development and pathogenesis of V. dahliae and offer alternatives in the control of the diseases caused by fungus V. dahliae attack.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiaowen Ma
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Yutao Zhu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China.
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Ye T, Wang B, Li C, Bian P, Chen L, Wang G. Exposure of cyanobacterium Nostoc sp. to the Mars-like stratosphere environment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112307. [PMID: 34649187 DOI: 10.1016/j.jphotobiol.2021.112307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023]
Abstract
During the HH-19-2 flight mission of the Chinese Scientific Experimental System, dried Nostoc sp. cells were exposed to the stratosphere environment (32,508 m altitude) for 3 h and 22 min. The atmospheric pressure, temperature, relative humidity, and ionizing and non-ionizing radiation levels at that altitude are similar to those on the surface of Mars. Although analyses revealed decreased photosynthetic activity, a decline in autofluorescence, and damage to the cellular morphology in the flight-exposed sample, the death rate was low (28%). Physiological changes were not obvious after the exposure to the Mars-like vacuum conditions. The ground-exposed samples showed a similar trend to the flight-exposed samples, but the damage was relatively slight. RNA-sequencing data revealed a number of affected metabolic pathways: photosynthetic system and CO2 fixation function, activation of antioxidant systems, heat shock protein, DNA repair, and protein synthesis. Results suggest that Nostoc sp. has the potential to survive in a Mars-like environment and that it may be a suitable pioneer species to colonize Mars in the future in closed life-support systems (base) or in localities with relatively suitable conditions for life, such as localities with water available.
Collapse
Affiliation(s)
- Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Po Bian
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, China
| | - Lanzhou Chen
- School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Craig RJ, Hasan AR, Ness RW, Keightley PD. Comparative genomics of Chlamydomonas. THE PLANT CELL 2021; 33:1016-1041. [PMID: 33793842 PMCID: PMC8226300 DOI: 10.1093/plcell/koab026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
Despite its role as a reference organism in the plant sciences, the green alga Chlamydomonas reinhardtii entirely lacks genomic resources from closely related species. We present highly contiguous and well-annotated genome assemblies for three unicellular C. reinhardtii relatives: Chlamydomonas incerta, Chlamydomonas schloesseri, and the more distantly related Edaphochlamys debaryana. The three Chlamydomonas genomes are highly syntenous with similar gene contents, although the 129.2 Mb C. incerta and 130.2 Mb C. schloesseri assemblies are more repeat-rich than the 111.1 Mb C. reinhardtii genome. We identify the major centromeric repeat in C. reinhardtii as a LINE transposable element homologous to Zepp (the centromeric repeat in Coccomyxa subellipsoidea) and infer that centromere locations and structure are likely conserved in C. incerta and C. schloesseri. We report extensive rearrangements, but limited gene turnover, between the minus mating type loci of these Chlamydomonas species. We produce an eight-species core-Reinhardtinia whole-genome alignment, which we use to identify several hundred false positive and missing genes in the C. reinhardtii annotation and >260,000 evolutionarily conserved elements in the C. reinhardtii genome. In summary, these resources will enable comparative genomics analyses for C. reinhardtii, significantly extending the analytical toolkit for this emerging model system.
Collapse
Affiliation(s)
| | - Ahmed R Hasan
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Peter D Keightley
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| |
Collapse
|
11
|
Jain P, Hussian S, Nishad J, Dubey H, Bisht DS, Sharma TR, Mondal TK. Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress. Mol Biol Rep 2021; 48:2261-2271. [PMID: 33742326 DOI: 10.1007/s11033-021-06246-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Abstract
Salinity adversely affects the yield and growth of rice (Oryza sativa L.) plants severely, particularly at reproductive stage. Long non-coding RNAs (lncRNAs) are key regulators of diverse molecular and cellular processes in plants. Till now, no systematic study has been reported for regulatory roles of lncRNAs in rice under salinity at reproductive stage. In this study, total 80 RNA-seq data of Horkuch (salt-tolerant) and IR-29 (salt-sensitive) genotypes of rice were used and found 1626 and 2208 transcripts as putative high confidence lncRNAs, among which 1529 and 2103 were found to be novel putative lncRNAs in root and leaf tissue respectively. In Horkuch and IR-29, 14 and 16 lncRNAs were differentially expressed in root tissue while 18 and 63 lncRNAs were differentially expressed in leaf tissue. Interaction analysis among the lncRNAs, miRNAs and corresponding mRNAs indicated that these modules are involved in different biochemical pathways e.g. phenyl propanoid pathway during salinity stress in rice. Interestingly, two differentially expressed lncRNAs such as TCONS_00008914 and TCONS_00008749 were found as putative target mimics of known rice miRNAs. This study indicates that lncRNAs are involved in salinity adaptation of rice at reproductive stage through certain biochemical pathways.
Collapse
Affiliation(s)
- Priyanka Jain
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Samreen Hussian
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Jyoti Nishad
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Himanshu Dubey
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Deepak Singh Bisht
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India.
| |
Collapse
|
12
|
Cruz de Carvalho MH, Bowler C. Global identification of a marine diatom long noncoding natural antisense transcripts (NATs) and their response to phosphate fluctuations. Sci Rep 2020; 10:14110. [PMID: 32839470 PMCID: PMC7445176 DOI: 10.1038/s41598-020-71002-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/06/2020] [Indexed: 11/09/2022] Open
Abstract
Often ignored and regarded as mere transcriptional noise, long noncoding RNAs (lncRNAs) are starting to be considered key regulators of gene expression across the Eukarya domain of life. In the model diatom Phaeodactylum tricornutum, we have previously reported the occurrence of 1,510 intergenic lncRNAs (lincRNAs), many of which displaying specific patterns of expression under phosphate fluctuation (Pi). Using strand-specific RNA-sequencing data we now expand the repertoire of P. tricornutum lncRNAs by identifying 2,628 novel natural antisense transcripts (NATs) that cover 21.5% of the annotated genomic loci. We found that NAT expression is tightly regulated by phosphate depletion and other naturally occurring environmental stresses. Furthermore, we identified 121 phosphate stress responsive NAT-mRNA pairs, the great majority of which showing a positive correlation (concordant pairs) and a small fraction with negative correlation (discordant pairs). Taken together our results show that NATs are highly abundant transcripts in P. tricornutum and that their expression is under tight regulation by nutrient and environmental stresses. Furthermore, our results suggest that in P. tricornutum Pi stress response NAT pairs predominantly regulate positively the expression of their cognate sense genes, the latter being involved in several biological processes underlying the control of cellular homeostasis under stress.
Collapse
Affiliation(s)
- Maria Helena Cruz de Carvalho
- Institut de Biologie de L'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France. .,Faculté des sciences et technologie, Université Paris Est-Créteil (UPEC), 94000, Créteil, France.
| | - Chris Bowler
- Institut de Biologie de L'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| |
Collapse
|
13
|
Lin Z, Xiong Y, Xue Y, Mao M, Xiang Y, He Y, Rafique F, Hu H, Liu J, Li X, Sun L, Huang Z, Ma J. Screening and characterization of long noncoding RNAs involved in the albinism of Ananas comosus var. bracteatus leaves. PLoS One 2019; 14:e0225602. [PMID: 31756232 PMCID: PMC6874346 DOI: 10.1371/journal.pone.0225602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play key regulatory roles in plant growth, development, and biotic and abiotic stress physiology. Revealing the mechanism of lncRNA regulation in the albino portions of leaves is important for understanding the development of chimeric leaves in Ananas comosus var. bracteatus. In this study, a total of 3,543 candidate lncRNAs were identified, among which 1,451 were differentially expressed between completely green (CGr) and completely white (CWh) leaves. LncRNAs tend to have shorter transcripts, lower expression levels, and greater expression specificity than protein-coding genes. Predicted lncRNA targets were functionally annotated by the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A lncRNA-mRNA interaction network was constructed, and 36 target mRNAs related to chlorophyll metabolism were predicted to interact with 86 lncRNAs. Among these, 25 significantly differentially expressed lncRNAs putatively interacted with 16 target mRNAs. Based on an expression pattern analysis of the lncRNAs and their target mRNAs, the lncRNAs targeting magnesium chelatase subunit H (ChlH), protochlorophyllide oxidoreductase (POR), and heme o synthase (COX10) were suggested as key regulators of chlorophyll metabolism. This study provides the first lncRNA database for A. comosus var. bracteatus and contributes greatly to understanding the mechanism of epigenetic regulation of leaf albinism.
Collapse
Affiliation(s)
- Zhen Lin
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingyuan Xiong
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanbin Xue
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Meiqin Mao
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yixuan Xiang
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yehua He
- Horticultural Biotechnology College of South China Agricultural University, Guangzhou, Guangdong, China
| | - Fatima Rafique
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Hu
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiawen Liu
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xi Li
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lingxia Sun
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhuo Huang
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
14
|
Anwar M, Lou S, Chen L, Li H, Hu Z. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2019; 292:121972. [PMID: 31444119 DOI: 10.1016/j.biortech.2019.121972] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Recently, ensuring energy security is a key challenge to political and economic strength in the world. Bio-hydrogen production from microalgae is the promising alternative source for potential renewable and self-sustainability energy but still in the initial phase of development. Practically and sustainability of microalgae hydrogen production is still debatable. The genetic engineering and metabolic pathway engineering of hydrogenase and nitrogenase play a key role to enhance hydrogen production. Microalgae have photosynthetic efficiency and synthesize huge carbohydrate biomass, used as 4th generation feedstock to generate bio-hydrogen. Recent genetically modified strains of microalgae are the attractive source for enhancing bio-hydrogen production in the future. The potential of hydrogen production from microRNAs are gaining great interest of researcher. The main objective of this review is attentive discussed recent approaches on new molecular genetics engineering and metabolic pathway developments, modern photo-bioreactors efficiency, economic assessment, limitations and knowledge gap of bio-hydrogen production from microalgae.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Sulin Lou
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Liu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, People's Republic of China.
| |
Collapse
|
15
|
Yang H, Wang X, Li Z, Guo Q, Yang M, Chen D, Wang C. The Effect of Blue Light on the Production of Citrinin in Monascus purpureus M9 by Regulating the mraox Gene through lncRNA AOANCR. Toxins (Basel) 2019; 11:toxins11090536. [PMID: 31540336 PMCID: PMC6784174 DOI: 10.3390/toxins11090536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Blue light, as an important environmental factor, can regulate the production of various secondary metabolites of Monascus purpureus M9, including mycotoxin-citrinin, pigments, and monacolin K. The analysis of citrinin in Monascus M9 exposed to blue light for 0 min./d, 15 min./d, and 60 min./d showed that 15 min./d of blue light illumination could significantly increase citrinin production, while 60 min./d of blue light illumination decreased citrinin production. Analysis of long non-coding RNA (LncRNA) was performed on the transcripts of Monascus M9 under three culture conditions, and this analysis identified an lncRNA named AOANCR that can negatively regulate the mraox gene. Fermentation studies suggested that alternate respiratory pathways could be among the pathways that are involved in the regulation of the synthesis of citrinin by environmental factors. Aminophylline and citric acid were added to the culture medium to simulate the process of generating cyclic adenosine monophosphate (cAMP) in cells under illumination conditions. The results of the fermentation showed that aminophylline and citric acid could increase the expression of the mraox gene, decrease the expression of lncRNA AOANCR, and reduce the yield of citrinin. This result also indicates a reverse regulation relationship between lncRNA AOANCR and the mraox gene. A blue light signal might regulate the mraox gene at least partially through lncRNA AOANCR, thereby regulating citrinin production. Citrinin has severe nephrotoxicity in mammals, and it is important to control the residual amout of citrinin in red yeast products during fermentation. LncRNA AOANCR and mraox can potentially be used as new targets for the control of citrinin production.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xufeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingguan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Di Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
16
|
Xu L, Fan J, Wang Q. Omics Application of Bio-Hydrogen Production Through Green Alga Chlamydomonas reinhardtii. Front Bioeng Biotechnol 2019; 7:201. [PMID: 31497598 PMCID: PMC6712067 DOI: 10.3389/fbioe.2019.00201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
This article summarizes the current knowledge regarding omics approaches, which include genomics, transcriptomics, proteomics and metabolomics, in the context of bio-hydrogen production in Chlamydomonas reinhardtii. In this paper, critical genes (HydA1, Hyd A2, Sulp, Tla1, Sta7, PFL1) involved in H2 metabolism were identified and analyzed for their function in H2 accumulation. Furthermore, the advantages of gene microarrays and RNA-seq were compared, as well as their applications in transcriptomic analysis of H2 production. Moreover, as a useful tool, proteomic analysis could identify different proteins that participate in H2 metabolism. This review provides fundamental theory and an experimental basis for H2 production, and further research effort is needed in this field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianhua Fan
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Quanxi Wang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
17
|
Huang XY, Li M, Luo R, Zhao FJ, Salt DE. Epigenetic regulation of sulfur homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4171-4182. [PMID: 31087073 DOI: 10.1093/jxb/erz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved sophisticated mechanisms for adaptation to fluctuating availability of nutrients in soil. Such mechanisms are of importance for plants to maintain homeostasis of nutrient elements for their development and growth. The molecular mechanisms controlling the homeostasis of nutrient elements at the genetic level have been gradually revealed, including the identification of regulatory factors and transporters responding to nutrient stresses. Recent studies have suggested that such responses are controlled not only by genetic regulation but also by epigenetic regulation. In this review, we present recent studies on the involvement of DNA methylation, histone modifications, and non-coding RNA-mediated gene silencing in the regulation of sulfur homeostasis and the response to sulfur deficiency. We also discuss the potential effect of sulfur-containing metabolites such as S-adenosylmethionine on the maintenance of DNA and histone methylation.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengzhen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rongjian Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
18
|
Zhou Y, Cho WK, Byun HS, Chavan V, Kil EJ, Lee S, Hong SW. Genome-wide identification of long non-coding RNAs in tomato plants irradiated by neutrons followed by infection with Tomato yellow leaf curl virus. PeerJ 2019; 7:e6286. [PMID: 30713817 PMCID: PMC6354667 DOI: 10.7717/peerj.6286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in regulating many biological processes. In this study, tomato seeds were first irradiated by neutrons. Eight tomato mutants were then selected and infected by Tomato yellow leaf curl virus (TYLCV). RNA sequencing followed by bioinformatics analyses identified 1,563 tomato lncRNAs. About half of the lncRNAs were derived from intergenic regions, whereas antisense lncRNAs accounted for 35%. There were fewer lncRNAs identified in our study than in other studies identifying tomato lncRNAs. Functional classification of 794 lncRNAs associated with tomato genes showed that many lncRNAs were associated with binding functions required for interactions with other molecules and localized in the cytosol and membrane. In addition, we identified 19 up-regulated and 11 down-regulated tomato lncRNAs by comparing TYLCV infected plants to non-infected plants using previously published data. Based on these results, the lncRNAs identified in this study provide important resources for characterization of tomato lncRNAs in response to TYLCV infection.
Collapse
Affiliation(s)
- Yujie Zhou
- Department of Energy Science, Sungkyunkwan University, Suwon, South Korea
| | - Won Kyong Cho
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Seong Byun
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Vivek Chavan
- Department of Energy Science, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Seung-Woo Hong
- Department of Physics, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
19
|
Yan Q, Wu F, Yan Z, Li J, Ma T, Zhang Y, Zhao Y, Wang Y, Zhang J. Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery. BMC PLANT BIOLOGY 2019; 19:23. [PMID: 30634906 PMCID: PMC6330494 DOI: 10.1186/s12870-018-1626-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/28/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Water stress seriously constrains plant growth and yield. Long non-coding RNAs (lncRNAs) serve as versatile regulators in various biological regulatory processes. To date, the systematic screening and potential functions of lncRNA have not yet been characterized in Cleistogenes songorica, especially under water stress conditions. RESULTS In this study, we obtained the root and shoot transcriptomes of young C. songorica plants subjected to different degrees of water stress and recovery treatments by Illumina-based RNA-seq. A total of 3397 lncRNAs were identified through bioinformatics analysis. LncRNA differential expression analysis indicated that the higher response of roots compared to shoots during water stress and recovery. We further identified the 1644 transcription factors, 189 of which were corresponded to 163 lncRNAs in C. songorica. Though comparative analyses with major Poaceae species based on blast, 81 water stress-related orthologues regulated to lncRNAs were identified as a core of evolutionary conserved genes important to regulate water stress responses in the family. Among these target genes, two genes were found to be involved in the abscisic acid (ABA) signalling pathway, and four genes were enriched for starch and sucrose metabolism. Additionally, the 52 lncRNAs were predicted as target mimics for microRNAs (miRNAs) in C. songorica. RT-qPCR results suggested that MSTRG.43964.1 and MSTRG.4400.2 may regulate the expression of miRNA397 and miRNA166, respectively, as target mimics under water stress and during recovery. Finally, a co-expression network was constructed based on the lncRNAs, miRNAs, protein-coding genes (PCgenes) and transcription factors under water stress and during recovery in C. songorica. CONCLUSIONS In C. songorica, lncRNAs, miRNAs, PCgenes and transcription factors constitute a complex transcriptional regulatory network which lncRNAs can regulate PCgenes and miRNAs under water stress and recovery. This study provides fundamental resources to deepen our knowledge on lncRNAs during ubiquitous water stress.
Collapse
Affiliation(s)
- Qi Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| | - Fan Wu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| | - Zhuanzhuan Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| | - Jie Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| | - Tiantian Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yufei Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yufeng Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
20
|
Meng Z, Chen C, Cao H, Wang J, Shen E. Whole transcriptome sequencing reveals biologically significant RNA markers and related regulating biological pathways in cardiomyocyte hypertrophy induced by high glucose. J Cell Biochem 2018; 120:1018-1027. [PMID: 30242883 DOI: 10.1002/jcb.27546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte hypertrophy is a physiological adaptation used in an attempt to augment or preserve cardiac function for short periods. Long-term cardiomyocyte hypertrophy often progresses to heart failure. Previous studies have presented comprehensive mechanisms underlying cardiomyocyte hypertrophy, such as signaling pathways, marker genes, and marker miRNAs or lncRNAs. However, the mechanism in RNA level is still unclear. In this study, we used the whole transcriptome technology on cardiomyocety hypertrophy cells, which were cultured with a high concentration of d-glucose. Many differentially expressed markers, including genes, lncRNAs, miRNAs, and circRNAs were identified. Further quantitative real-time PCR verified the highly specific expressed genes, such as Eid1, Timm8b, Mrpl50, Dusp18, Abrc1, Klf13, and Igf1. Moreover, the functional pathways were also enriched with the differentially expressed lncRNA, miRNA, and circRNA. Our study gives new insights into cardiomyocyte hypertrophy and makes great progress in comprehending its mechanism.
Collapse
Affiliation(s)
- Zheying Meng
- Department of Ultrasound in Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ultrasound in Medicine, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Cui Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Hongli Cao
- Department of Ultrasound in Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Wang
- Department of Ultrasound in Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E Shen
- Department of Ultrasound in Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Lou S, Sun T, Li H, Hu Z. Mechanisms of microRNA-mediated gene regulation in unicellular model alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:244. [PMID: 30202439 PMCID: PMC6129010 DOI: 10.1186/s13068-018-1249-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 05/30/2023]
Abstract
MicroRNAs are a class of endogenous non-coding RNAs that play a vital role in post-transcriptional gene regulation in eukaryotic cells. In plants and animals, miRNAs are implicated in diverse roles ranging from immunity against viral infections, developmental pathways, molecular pathology of cancer and regulation of protein expression. However, the role of miRNAs in the unicellular model green alga Chlamydomonas reinhardtii remains unclear. The mode of action of miRNA-induced gene silencing in C. reinhardtii is very similar to that of higher eukaryotes, in terms of the activation of the RNA-induced silencing complex and mRNA targeting. Certain studies indicate that destabilization of mRNAs and mRNA turnover could be the major possible functions of miRNAs in eukaryotic algae. Here, we summarize recent findings that have advanced our understanding of miRNA regulatory mechanisms in C. reinhardtii.
Collapse
Affiliation(s)
- Sulin Lou
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Ting Sun
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
22
|
Developmental Dynamics of Long Noncoding RNA Expression during Sexual Fruiting Body Formation in Fusarium graminearum. mBio 2018; 9:mBio.01292-18. [PMID: 30108170 PMCID: PMC6094484 DOI: 10.1128/mbio.01292-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum, we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies.
Collapse
|
23
|
Wu S, Liu Y, Guo W, Cheng X, Ren X, Chen S, Li X, Duan Y, Sun Q, Yang X. Identification and characterization of long noncoding RNAs and mRNAs expression profiles related to postnatal liver maturation of breeder roosters using Ribo-zero RNA sequencing. BMC Genomics 2018; 19:498. [PMID: 29945552 PMCID: PMC6020324 DOI: 10.1186/s12864-018-4891-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The liver is mainly hematopoietic in the embryo, and converts into a major metabolic organ in the adult. Therefore, it is intensively remodeled after birth to adapt and perform adult functions. Long non-coding RNAs (lncRNAs) are involved in organ development and cell differentiation, likely they have potential roles in regulating postnatal liver development. Herein, in order to understand the roles of lncRNAs in postnatal liver maturation, we analyzed the lncRNAs and mRNAs expression profiles in immature and mature livers from one-day-old and adult (40 weeks of age) breeder roosters by Ribo-Zero RNA-Sequencing. RESULTS Around 21,939 protein-coding genes and 2220 predicted lncRNAs were expressed in livers of breeder roosters. Compared to protein-coding genes, the identified chicken lncRNAs shared fewer exons, shorter transcript length, and significantly lower expression levels. Notably, in comparison between the livers of newborn and adult breeder roosters, a total of 1570 mRNAs and 214 lncRNAs were differentially expressed with the criteria of log2fold change > 1 or < - 1 and P values < 0.05, which were validated by qPCR using randomly selected five mRNAs and five lncRNAs. Further GO and KEGG analyses have revealed that the differentially expressed mRNAs were involved in the hepatic metabolic and immune functional changes, as well as some biological processes and pathways including cell proliferation, apoptotic and cell cycle that are implicated in the development of liver. We also investigated the cis- and trans- regulatory effects of differentially expressed lncRNAs on its target genes. GO and KEGG analyses indicated that these lncRNAs had their neighbor protein coding genes and trans-regulated genes associated with adapting of adult hepatic functions, as well as some pathways involved in liver development, such as cell cycle pathway, Notch signaling pathway, Hedgehog signaling pathway, and Wnt signaling pathway. CONCLUSIONS This study provides a catalog of mRNAs and lncRNAs related to postnatal liver maturation of chicken, and will contribute to a fuller understanding of biological processes or signaling pathways involved in significant functional transition during postnatal liver development that differentially expressed genes and lncRNAs could take part in.
Collapse
Affiliation(s)
- Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Wei Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xi Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xiaochun Ren
- Dazhou Institute of Agricultural Sciences, Dazhou, 635000 Sichuan China
| | - Si Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xueyuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yongle Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
24
|
Negri TDC, Alves WAL, Bugatti PH, Saito PTM, Domingues DS, Paschoal AR. Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants. Brief Bioinform 2018; 20:682-689. [DOI: 10.1093/bib/bby034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/30/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tatianne da Costa Negri
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil and Informatics and Knowledge Management Graduate Program, Universidade Nove de Julho, São Paulo, Brazil
| | | | - Pedro Henrique Bugatti
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil
| | - Priscila Tiemi Maeda Saito
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil
| | - Douglas Silva Domingues
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil and Department of Botany, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, SP, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil
| |
Collapse
|
25
|
Wang Z, Li B, Li Y, Zhai X, Dong Y, Deng M, Zhao Z, Cao Y, Fan G. Identification and characterization of long noncoding RNA in Paulownia tomentosa treated with methyl methane sulfonate. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:325-334. [PMID: 29515326 PMCID: PMC5834995 DOI: 10.1007/s12298-018-0513-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 05/25/2023]
Abstract
Paulownia is a tree native to China, with important ecological and economic value. Long noncoding RNAs (lncRNAs) are known to play important roles in eukaryotic gene regulation. However, no lncRNAs have been reported in Paulownia so far. We performed RNA sequencing of two Paulownia tomentosa lncRNA libraries constructed from the terminal buds of normal untreated seedlings and 60 mg L-1 MMS-treated seedlings, and obtained a total of 2531 putative lncRNAs. The average length of the lncRNA transcripts was much less than the average length of the mRNA transcripts in the P. tomentosa libraries. A few of the Paulownia lncRNAs were conserved among ten species tested. We identified seven lncRNAs as precursors of 13 known miRNAs, 15 lncRNAs may act as target mimics of 19 miRNAs, and 351 unique noncoding sequences belonging to 133 conserved lncRNA families. In addition, we identified 220 lncRNAs responsive to methyl methane sulfonate (MMS), including seven phytohormone-related lncRNAs and one lncRNAs involved in base excision repair. This is the first time that lncRNAs have been explored in Paulownia. The lncRNA data may also provide new insights into the MMS-response in P. tomentosa.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yongsheng Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan People’s Republic of China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| |
Collapse
|
26
|
Li H, Liu Y, Wang Y, Chen M, Zhuang X, Wang C, Wang J, Hu Z. Improved photobio-H 2 production regulated by artificial miRNA targeting psbA in green microalga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:36. [PMID: 29449884 PMCID: PMC5808451 DOI: 10.1186/s13068-018-1030-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/23/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Sulfur-deprived cultivation of Chlamydomonas reinhardtii, referred as "two-stage culture" transferring the cells from regular algal medium to sulfur-deplete one, has been extensively studied to improve photobio-H2 production in this green microalga. During sulfur-deprivation treatment, the synthesis of a key component of photosystem II complex, D1 protein, was inhibited and improved photobio-H2 production could be established in C. reinhardtii. However, separation of algal cells from a regular liquid culture medium to a sulfur-deprived one is not only a discontinuous process, but also a cost- and time-consuming operation. More applicable and economic alternatives for sustained H2 production by C. reinhardtii are still highly required. RESULTS In the present study, a significant improvement in photobio-H2 production was observed in the transgenic green microalga C. reinhardtii, which employed a newly designed strategy based on a heat-inducible artificial miRNA (amiRNA) expression system targeting D1-encoded gene, psbA. A transgenic algal strain referred as "amiRNA-D1" has been successfully obtained by transforming the expression vector containing a heat-inducible promoter. After heat shock conducted in the same algal cultures, the expression of amiRNA-D1 was detected increased 15-fold accompanied with a 73% decrease of target gene psbA. More interestingly, this transgenic alga accumulated about 60% more H2 content than the wild-type strain CC-849 at the end of 7-day cultivation. CONCLUSIONS The photobio-H2 production in the engineered transgenic alga was significantly improved. Without imposing any nutrient-deprived stress, this novel strategy provided a convenient and efficient way for regulation of photobio-H2 production in green microalga by simply "turn on" the expression of a designed amiRNA.
Collapse
Affiliation(s)
- Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Yanmei Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Yuting Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Meirong Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xiaoshan Zhuang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Jiangxin Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
27
|
Wang Y, Zhuang X, Chen M, Zeng Z, Cai X, Li H, Hu Z. An endogenous microRNA (miRNA1166.1) can regulate photobio-H 2 production in eukaryotic green alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:126. [PMID: 29743954 PMCID: PMC5930490 DOI: 10.1186/s13068-018-1126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/20/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Hydrogen photoproduction from green microalgae is regarded as a promising alternative solution for energy problems. However, the simultaneous oxygen evolution from microalgae can prevent continuous hydrogen production due to the hypersensitivity of hydrogenases to oxygen. Sulfur deprivation can extend the duration of algal hydrogen production, but it is uneconomical to alternately culture algal cells in sulfur-sufficient and sulfur-deprived media. RESULTS In this study, we developed a novel way to simulate sulfur-deprivation treatment while constantly maintaining microalgal cells in sulfur-sufficient culture medium by overexpressing an endogenous microRNA (miR1166.1). Based on our previous RNA-seq analysis in the model green alga Chlamydomonas reinhardtii, three endogenous miRNAs responsive to sulfur deprivation (cre-miR1166.1, cre-miR1150.3, and cre-miR1158) were selected. Heat-inducible expression vectors containing the selected miRNAs were constructed and transformed into C. reinhardtii. Comparison of H2 production following heat induction in the three transgenic strains and untransformed control group identified miR1166.1 as the best candidate for H2 production regulation. Moreover, enhanced photobio-H2 production was observed with repeated induction of miR1166.1 expression. CONCLUSIONS This study is the first to identify a physiological function of endogenous miR1166.1 and to show that a natural miRNA can regulate hydrogen photoproduction in the unicellular model organism C. reinhardtii.
Collapse
Affiliation(s)
- Yuting Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xiaoshan Zhuang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Meirong Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhiyong Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xiaoqi Cai
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
28
|
Long Non-Coding RNAs Responsive to Witches’ Broom Disease in Paulownia tomentosa. FORESTS 2017. [DOI: 10.3390/f8090348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Jain P, Sharma V, Dubey H, Singh PK, Kapoor R, Kumari M, Singh J, Pawar DV, Bisht D, Solanke AU, Mondal T, Sharma T. Identification of long non-coding RNA in rice lines resistant to Rice blast pathogen Maganaporthe oryzae. Bioinformation 2017; 13:249-255. [PMID: 28959093 PMCID: PMC5609289 DOI: 10.6026/97320630013249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023] Open
Abstract
Rice blast disease caused by a fungus Magnaporthae oryzae is one of the most important biotic factors that severely damage the rice crop. Several molecular approaches are now being applied to tackle this issue in rice. It is of interest to study long non-coding RNA (lncRNA) in rice to control the disease. lncRNA, a non-coding transcript that does not encode protein, is known to play an important role in gene regulation of various biological processes. Here we describe a computational pipeline to identify lncRNA from a resistant rice line. The number of lncRNA found in resistant line was 1429, 1927 and 1981 in mock and M. oryzae (ZB13 and Zhong) inoculated samples, respectively. Functional classification of these lncRNA reveals a higher number of long intergenic non-coding RNA compared to antisense lncRNA in both mock and M. oryzae inoculated resistant rice lines. Many intergenic lncRNA candidates were identified from resistant rice line and their role to regulate the resistance mechanism in rice during M. oryzae invasion is implied.
Collapse
Affiliation(s)
- Priyanka Jain
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
- Department of Bioscience & Biotechnology, Banasthali University, Tonk, Rajasthan-304022, India
| | - Vinay Sharma
- Department of Bioscience & Biotechnology, Banasthali University, Tonk, Rajasthan-304022, India
| | - Himanshu Dubey
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali, Punjab-140306, India
- Department of Bioscience & Biotechnology, Banasthali University, Tonk, Rajasthan-304022, India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali, Punjab-140306, India
| | - Mandeeep Kumari
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| | - Jyoti Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| | - Deepak V. Pawar
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| | - Deepak Bisht
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| | - Amolkumar U. Solanke
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| | - T.K. Mondal
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| | - T.R. Sharma
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab-140306, India
| |
Collapse
|
30
|
Li S, Yu X, Lei N, Cheng Z, Zhao P, He Y, Wang W, Peng M. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 2017; 7:45981. [PMID: 28387315 PMCID: PMC5384091 DOI: 10.1038/srep45981] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
Cold and drought stresses seriously affect cassava (Manihot esculenta) plant growth and yield. Recently, long noncoding RNAs (lncRNAs) have emerged as key regulators of diverse cellular processes in mammals and plants. To date, no systematic screening of lncRNAs under abiotic stress and their regulatory roles in cassava has been reported. In this study, we present the first reference catalog of 682 high-confidence lncRNAs based on analysis of strand-specific RNA-seq data from cassava shoot apices and young leaves under cold, drought stress and control conditions. Among them, 16 lncRNAs were identified as putative target mimics of cassava known miRNAs. Additionally, by comparing with small RNA-seq data, we found 42 lncNATs and sense gene pairs can generate nat-siRNAs. We identified 318 lncRNAs responsive to cold and/or drought stress, which were typically co-expressed concordantly or discordantly with their neighboring genes. Trans-regulatory network analysis suggested that many lncRNAs were associated with hormone signal transduction, secondary metabolites biosynthesis, and sucrose metabolism pathway. The study provides an opportunity for future computational and experimental studies to uncover the functions of lncRNAs in cassava.
Collapse
Affiliation(s)
- Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ning Lei
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pingjuan Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenquan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
31
|
Wang Y, Jiang X, Hu C, Sun T, Zeng Z, Cai X, Li H, Hu Z. Optogenetic regulation of artificial microRNA improves H 2 production in green alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:257. [PMID: 29151886 PMCID: PMC5678773 DOI: 10.1186/s13068-017-0941-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/21/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is an ideal model organism not only for the study of basic metabolic processes in both plants and animals but also the production of biofuels including hydrogen. Transgenic analysis of C. reinhardtii is now well established and very convenient, but inducible exogenous gene expression systems remain under-studied. The most commonly used heat shock-inducible system has serious effects on algal cell growth and is difficult and costly to control in large-scale culture. Previous studies of hydrogen photoproduction in Chlamydomonas also use this heat-inducible system to activate target gene transcription and hydrogen synthesis. RESULTS Here we describe a blue light-inducible system with which we achieved optogenetic regulation of target gene expression in C. reinhardtii. This light-inducible system was engineered in a photosynthetic organism for the first time. The photo-inducible heterodimerizing proteins CRY2 and CIB1 were fused to VP16 transcription activation domain and the GAL4 DNA-binding domain, respectively. This scheme allows for transcription activation of the target gene downstream of the activation sequence in response to blue light. Using this system, we successfully engineered blue light-inducible hydrogen-producing transgenic alga. The transgenic alga was cultured under red light and grew approximately normally until logarithmic phase. When illuminated with blue light, the transgenic alga expressed the artificial miRNA targeting photosynthetic system D1 protein, and altered hydrogen production was observed. CONCLUSIONS The light-inducible system successfully activated the artificial miRNA and, consequently, regulation of its target gene under blue light. Moreover, hydrogen production was enhanced using this system, indicating a more convenient and efficient approach for gene expression regulation in large-scale microalgae cultivation. This optogenetic gene control system is a useful tool for gene regulation and also establishes a novel way to improve hydrogen production in green algae.
Collapse
Affiliation(s)
- Yuting Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xinqin Jiang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Changxing Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Ting Sun
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhiyong Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xiaoqi Cai
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|