1
|
Göksu C, Gregersen F, Scheffler K, Eroğlu HH, Heule R, Siebner HR, Hanson LG, Thielscher A. Volumetric measurements of weak current-induced magnetic fields in the human brain at high resolution. Magn Reson Med 2023; 90:1874-1888. [PMID: 37392412 DOI: 10.1002/mrm.29780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE Clinical use of transcranial electrical stimulation (TES) requires accurate knowledge of the injected current distribution in the brain. MR current density imaging (MRCDI) uses measurements of the TES-induced magnetic fields to provide this information. However, sufficient sensitivity and image quality in humans in vivo has only been documented for single-slice imaging. METHODS A recently developed, optimally spoiled, acquisition-weighted, gradient echo-based 2D-MRCDI method has now been advanced for volume coverage with densely or sparsely distributed slices: The 3D rectilinear sampling (3D-DENSE) and simultaneous multislice acquisition (SMS-SPARSE) were optimized and verified by cable-loop experiments and tested with 1-mA TES experiments for two common electrode montages. RESULTS Comparisons between the volumetric methods against the 2D-MRCDI showed that relatively long acquisition times of 3D-DENSE using a single slab with six slices hindered the expected sensitivity improvement in the current-induced field measurements but improved sensitivity by 61% in the Laplacian of the field, on which some MRCDI reconstruction methods rely. Also, SMS-SPARSE acquisition of three slices, with a factor 2 CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) acceleration, performed best against the 2D-MRCDI with sensitivity improvements for the∆ B z , c $$ \Delta {B}_{z,c} $$ and Laplacian noise floors of 56% and 78% (baseline without current flow) as well as 43% and 55% (current injection into head). SMS-SPARSE reached a sensitivity of 67 pT for three distant slices at 2 × 2 × 3 mm3 resolution in 10 min of total scan time, and consistently improved image quality. CONCLUSION Volumetric MRCDI measurements with high sensitivity and image quality are well suited to characterize the TES field distribution in the human brain.
Collapse
Affiliation(s)
- Cihan Göksu
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Fróði Gregersen
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
- Sino-Danish Center for Education and Research, Aarhus, Denmark
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Hasan H Eroğlu
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Rahel Heule
- High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
2
|
Soleimani G, Kupliki R, Paulus M, Ekhtiari H. Dose-response in modulating brain function with transcranial direct current stimulation: From local to network levels. PLoS Comput Biol 2023; 19:e1011572. [PMID: 37883583 PMCID: PMC10629666 DOI: 10.1371/journal.pcbi.1011572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/07/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Understanding the dose-response relationship is crucial in studying the effects of brain stimulation techniques, such as transcranial direct current stimulation (tDCS). The dose-response relationship refers to the relationship between the received stimulation dose and the resulting response, which can be described as a function of the dose at various levels, including single/multiple neurons, clusters, regions, or networks. Here, we are focused on the received stimulation dose obtained from computational head models and brain responses which are quantified by functional magnetic resonance imaging (fMRI) data. In this randomized, triple-blind, sham-controlled clinical trial, we recruited sixty participants with methamphetamine use disorders (MUDs) as a sample clinical population who were randomly assigned to receive either sham or active tDCS. Structural and functional MRI data, including high-resolution T1 and T2-weighted MRI, resting-state functional MRI, and a methamphetamine cue-reactivity task fMRI, were acquired before and after tDCS. Individual head models were generated using the T1 and T2-weighted MRI data to simulate electric fields. In a linear approach, we investigated the associations between electric fields (received dose) and changes in brain function (response) at four different levels: voxel level, regional level (using atlas-based parcellation), cluster level (identifying active clusters), and network level (task-based functional connectivity). At the voxel level, regional level, and cluster level, no FDR-corrected significant correlation was observed between changes in functional activity and electric fields. However, at the network level, a significant positive correlation was found between frontoparietal connectivity and the electric field at the frontopolar stimulation site (r = 0.42, p corrected = 0.02; medium effect size). Our proposed pipeline offers a methodological framework for analyzing tDCS effects by exploring dose-response relationships at different levels, enabling a direct link between electric field variability and the neural response to tDCS. The results indicate that network-based analysis provides valuable insights into the dependency of tDCS neuromodulatory effects on the individual's regional current dose. Integration of dose-response relationships can inform dose optimization, customization, or the extraction of predictive/treatment-response biomarkers in future brain stimulation studies.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rayus Kupliki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| | - Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| |
Collapse
|
3
|
Soleimani G, Towhidkhah F, Saviz M, Ekhtiari H. Cortical Morphology in Cannabis Use Disorder: Implications for Transcranial Direct Current Stimulation Treatment. Basic Clin Neurosci 2023; 14:647-662. [PMID: 38628838 PMCID: PMC11016884 DOI: 10.32598/bcn.2021.3400.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/18/2021] [Accepted: 05/27/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) has been studied as an adjunctive treatment option for substance use disorders (SUDs). Alterations in brain structure following SUD may change tDCS-induced electric field (EF) and subsequent responses; however, group-level differences between healthy controls (HC) and participants with SUDs in terms of EF and its association with cortical architecture have not yet been modeled quantitatively. This study provides a methodology for group-level analysis of computational head models to investigate the influence of cortical morphology metrics on EFs. Methods Whole-brain surface-based morphology was conducted, and cortical thickness, volume, and surface area were compared between participants with cannabis use disorders (CUD) (n=20) and age-matched HC (n=22). Meanwhile, EFs were simulated for bilateral tDCS over the dorsolateral prefrontal cortex. The effects of structural alterations on EF distribution were investigated based on individualized computational head models. Results Regarding EF, no significant difference was found within the prefrontal cortex; however, EFs were significantly different in left-postcentral and right-superior temporal gyrus (P<0.05) with higher levels of variance in CUD compared to HC [F(39, 43)=5.31, P<0.0001, C=0.95]. Significant differences were observed in cortical area (caudal anterior cingulate and rostral middle frontal), thickness (lateral orbitofrontal), and volume (paracentral and fusiform) between the two groups. Conclusion Brain morphology and tDCS-induced EFs may be changed following CUD; however, differences between CUD and HCs in EFs do not always overlap with brain areas that show structural alterations. To sufficiently modulate stimulation targets, whether individuals with CUD need different stimulation doses based on tDCS target location should be checked.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Biomedical Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehrdad Saviz
- Department of Biomedical Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hamed Ekhtiari
- Laureate Institute of Brain Research, Tulsa, United States of America
| |
Collapse
|
4
|
Nikolin S, Martin D, Loo CK, Boonstra TW. Transcranial Direct Current Stimulation Modulates Working Memory Maintenance Processes in Healthy Individuals. J Cogn Neurosci 2023; 35:468-484. [PMID: 36603051 DOI: 10.1162/jocn_a_01957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of transcranial direct current stimulation (tDCS) at the pFC are often investigated using cognitive paradigms, particularly working memory tasks. However, the neural basis for the neuromodulatory cognitive effects of tDCS, including which subprocesses are affected by stimulation, is not completely understood. We investigated the effects of tDCS on working memory task-related spectral activity during and after tDCS to gain better insights into the neurophysiological changes associated with stimulation. We reanalyzed data from 100 healthy participants grouped by allocation to receive either sham (0 mA, 0.016 mA, and 0.034 mA) or active (1 mA or 2 mA) stimulation during a 3-back task. EEG data were used to analyze event-related spectral power in frequency bands associated with working memory performance. Frontal theta event-related synchronization (ERS) was significantly reduced post-tDCS in the active group. Participants receiving active tDCS had slower RTs following tDCS compared with sham, suggesting interference with practice effects associated with task repetition. Theta ERS was not significantly correlated with RTs or accuracy. tDCS reduced frontal theta ERS poststimulation, suggesting a selective disruption to working memory cognitive control and maintenance processes. These findings suggest that tDCS selectively affects specific subprocesses during working memory, which may explain heterogenous behavioral effects.
Collapse
Affiliation(s)
- Stevan Nikolin
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Donel Martin
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Colleen K Loo
- University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, New South Wales, Australia
| | - Tjeerd W Boonstra
- University of New South Wales, Sydney, Australia
- Maastricht University, The Netherlands
| |
Collapse
|
5
|
Left Prefrontal tDCS during Learning Does Not Enhance Subsequent Verbal Episodic Memory in Young Adults: Results from Two Double-Blind and Sham-Controlled Experiments. Brain Sci 2023; 13:brainsci13020241. [PMID: 36831783 PMCID: PMC9954521 DOI: 10.3390/brainsci13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Recent studies suggest that transcranial direct current stimulation (tDCS) applied over the prefrontal cortex (PFaC) may enhance episodic memory ability. As such, there is ongoing interest in the therapeutic potential of this technique in age-related memory decline. At the same time, the findings are not yet conclusive regarding the magnitude of this effect, and assumptions regarding underlying brain mechanisms of stimulation-induced changes in behaviour are yet to be tested in detail. Here, we evaluated the effect of tDCS over left PFC on verbal episodic memory in young adults. Two separate randomized, double-blind, sham-controlled experiments were carried out using (1) incidental learning followed by a recognition test and (2) intentional learning followed by a free recall. In both studies, participants performed a learning task with active or sham tDCS during the encoding period, followed by retrieval tasks on the same day and the next day. The results suggest that, contrary to expectations, active tDCS did not enhance memory performance relative to sham tDCS. Possible reasons behind the lack of enhancement effects are discussed, including the possibility that memory enhancement effects of tDCS may be smaller than first thought. Scientific practices that could improve estimation accuracy in the field are also discussed.
Collapse
|
6
|
Jwa AS, Goodman JS, Glover GH. Inconsistencies in mapping current distribution in transcranial direct current stimulation. FRONTIERS IN NEUROIMAGING 2023; 1:1069500. [PMID: 37555148 PMCID: PMC10406311 DOI: 10.3389/fnimg.2022.1069500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 08/10/2023]
Abstract
INTRODUCTION tDCS is a non-invasive neuromodulation technique that has been widely studied both as a therapy for neuropsychiatric diseases and for cognitive enhancement. However, recent meta-analyses have reported significant inconsistencies amongst tDCS studies. Enhancing empirical understanding of current flow in the brain may help elucidate some of these inconsistencies. METHODS We investigated tDCS-induced current distribution by injecting a low frequency current waveform in a phantom and in vivo. MR phase images were collected during the stimulation and a time-series analysis was used to reconstruct the magnetic field. A current distribution map was derived from the field map using Ampere's law. RESULTS The current distribution map in the phantom showed a clear path of current flow between the two electrodes, with more than 75% of the injected current accounted for. However, in brain, the results did evidence a current path between the two target electrodes but only some portion ( 25%) of injected current reached the cortex demonstrating that a significant fraction of the current is bypassing the brain and traveling from one electrode to the other external to the brain, probably due to conductivity differences in brain tissue types. Substantial inter-subject and intra-subject (across consecutive scans) variability in current distribution maps were also observed in human but not in phantom scans. DISCUSSIONS An in-vivo current mapping technique proposed in this study demonstrated that much of the injected current in tDCS was not accounted for in human brain and deviated to the edge of the brain. These findings would have ramifications in the use of tDCS as a neuromodulator and may help explain some of the inconsistencies reported in other studies.
Collapse
Affiliation(s)
- Anita S. Jwa
- Stanford University Law School, Stanford, CA, United States
| | - Jonathan S. Goodman
- Program in Biophysics, Stanford School of Medicine, Stanford, CA, United States
| | - Gary H. Glover
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Arora Y, Dutta A. Perspective: Disentangling the effects of tES on neurovascular unit. Front Neurol 2023; 13:1038700. [PMID: 36698881 PMCID: PMC9868757 DOI: 10.3389/fneur.2022.1038700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can modulate the neurovascular unit, including the perivascular space morphology, but the mechanisms are unclear. In this perspective article, we used an open-source "rsHRF toolbox" and an open-source functional magnetic resonance imaging (fMRI) transcranial direct current stimulation (tDCS) data set to show the effects of tDCS on the temporal profile of the haemodynamic response function (HRF). We investigated the effects of tDCS in the gray matter and at three regions of interest in the gray matter, namely, the anodal electrode (FC5), cathodal electrode (FP2), and an independent site remote from the electrodes (PZ). A "canonical HRF" with time and dispersion derivatives and a finite impulse response (FIR) model with three parameters captured the effects of anodal tDCS on the temporal profile of the HRF. The FIR model showed tDCS onset effects on the temporal profile of HRF for verum and sham tDCS conditions that were different from the no tDCS condition, which questions the validity of the sham tDCS (placebo). Here, we postulated that the effects of tDCS onset on the temporal profile of HRF are subserved by the effects on neurovascular coupling. We provide our perspective based on previous work on tES effects on the neurovascular unit, including mechanistic grey-box modeling of the effects of tES on the vasculature that can facilitate model predictive control (MPC). Future studies need to investigate grey-box modeling of online effects of tES on the neurovascular unit, including perivascular space, neurometabolic coupling, and neurovascular coupling, that can facilitate MPC of the tES dose-response to address the momentary ("state") and phenotypic ("trait") factors.
Collapse
Affiliation(s)
- Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurugram, India
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
8
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Leaver AM, Gonzalez S, Vasavada M, Kubicki A, Jog M, Wang DJJ, Woods RP, Espinoza R, Gollan J, Parrish T, Narr KL. Modulation of Brain Networks during MR-Compatible Transcranial Direct Current Stimulation. Neuroimage 2022; 250:118874. [PMID: 35017127 PMCID: PMC9623807 DOI: 10.1016/j.neuroimage.2022.118874] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) can influence performance on behavioral tasks and improve symptoms of brain conditions. Yet, it remains unclear precisely how tDCS affects brain function and connectivity. Here, we measured changes in functional connectivity (FC) metrics in blood-oxygenation-level-dependent (BOLD) fMRI data acquired during MR-compatible tDCS in a whole-brain analysis with corrections for false discovery rate. Volunteers (n=64) received active tDCS, sham tDCS, and rest (no stimulation), using one of three previously established electrode tDCS montages targeting left dorsolateral prefrontal cortex (DLPFC, n=37), lateral temporoparietal area (LTA, n=16), or superior temporal cortex (STC, n=11). In brain networks where simulated E field was highest in each montage, connectivity with remote nodes decreased during active tDCS. During active DLPFC-tDCS, connectivity decreased between a fronto-parietal network and subgenual ACC, while during LTA-tDCS connectivity decreased between an auditory-somatomotor network and frontal operculum. Active DLPFC-tDCS was also associated with increased connectivity within an orbitofrontal network overlapping subgenual ACC. Irrespective of montage, FC metrics increased in sensorimotor and attention regions during both active and sham tDCS, which may reflect the cognitive-perceptual demands of tDCS. Taken together, these results indicate that tDCS may have both intended and unintended effects on ongoing brain activity, stressing the importance of including sham, stimulation-absent, and active comparators in basic science and clinical trials of tDCS.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Northwestern University, Chicago, IL, 60611; Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095.
| | - Sara Gonzalez
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Megha Vasavada
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Antoni Kubicki
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Mayank Jog
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Danny J J Wang
- Department of Neurology, University of Southern California, Los Angeles CA 90033
| | - Roger P Woods
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| | - Jacqueline Gollan
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611
| | - Todd Parrish
- Department of Radiology, Northwestern University, Chicago, IL, 60611
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|
10
|
Magnetic Resonance Current Density Imaging (MR-CDI). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1380:135-155. [DOI: 10.1007/978-3-031-03873-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Molero-Chamizo A, Nitsche MA, Gutiérrez Lérida C, Salas Sánchez Á, Martín Riquel R, Andújar Barroso RT, Alameda Bailén JR, García Palomeque JC, Rivera-Urbina GN. Standard Non-Personalized Electric Field Modeling of Twenty Typical tDCS Electrode Configurations via the Computational Finite Element Method: Contributions and Limitations of Two Different Approaches. BIOLOGY 2021; 10:1230. [PMID: 34943145 PMCID: PMC8698402 DOI: 10.3390/biology10121230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation procedure to modulate cortical excitability and related brain functions. tDCS can effectively alter multiple brain functions in healthy humans and is suggested as a therapeutic tool in several neurological and psychiatric diseases. However, variability of results is an important limitation of this method. This variability may be due to multiple factors, including age, head and brain anatomy (including skull, skin, CSF and meninges), cognitive reserve and baseline performance level, specific task demands, as well as comorbidities in clinical settings. Different electrode montages are a further source of variability between tDCS studies. A procedure to estimate the electric field generated by specific tDCS electrode configurations, which can be helpful to adapt stimulation protocols, is the computational finite element method. This approach is useful to provide a priori modeling of the current spread and electric field intensity that will be generated according to the implemented electrode montage. Here, we present standard, non-personalized model-based electric field simulations for motor, dorsolateral prefrontal, and posterior parietal cortex stimulation according to twenty typical tDCS electrode configurations using two different current flow modeling software packages. The resulting simulated maximum intensity of the electric field, focality, and current spread were similar, but not identical, between models. The advantages and limitations of both mathematical simulations of the electric field are presented and discussed systematically, including aspects that, at present, prevent more widespread application of respective simulation approaches in the field of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany;
- Department of Neurology, University Medical Hospital Bergmannsheil, 44789 Bochum, Germany
| | | | - Ángeles Salas Sánchez
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Raquel Martín Riquel
- Department of Psychology, University of Córdoba, 14071 Córdoba, Spain; (C.G.L.); (R.M.R.)
| | - Rafael Tomás Andújar Barroso
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - José Ramón Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Jesús Carlos García Palomeque
- Histology Department, School of Medicine, Cadiz University and District Jerez Costa-N., Andalusian Health Service, 11003 Cádiz, Spain;
| | | |
Collapse
|
12
|
Göksu C, Scheffler K, Gregersen F, Eroğlu HH, Heule R, Siebner HR, Hanson LG, Thielscher A. Sensitivity and resolution improvement for in vivo magnetic resonance current-density imaging of the human brain. Magn Reson Med 2021; 86:3131-3146. [PMID: 34337785 DOI: 10.1002/mrm.28944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Magnetic resonance current-density imaging (MRCDI) combines MRI with low-intensity transcranial electrical stimulation (TES; 1-2 mA) to map current flow in the brain. However, usage of MRCDI is still hampered by low measurement sensitivity and image quality. METHODS Recently, a multigradient-echo-based MRCDI approach has been introduced that presently has the best-documented efficiency. This MRCDI approach has now been advanced in three directions and has been validated by phantom and in vivo experiments. First, the importance of optimum spoiling for brain imaging was verified. Second, the sensitivity and spatial resolution were improved by using acquisition weighting. Third, navigators were added as a quality control measure for tracking physiological noise. Combining these advancements, the optimized MRCDI method was tested by using 1 mA TES for two different injection profiles. RESULTS For a session duration of 4:20 min, the new MRCDI method was able to detect TES-induced magnetic fields at a sensitivity level of 84 picotesla, representing a twofold efficiency increase against our original method. A comparison between measurements and simulations based on personalized head models showed a consistent increase in the coefficient of determination of ΔR2 = 0.12 for the current-induced magnetic fields and ΔR2 = 0.22 for the current flow reconstructions. Interestingly, some of the simulations still clearly deviated from the measurements despite the strongly improved measurement quality. This highlights the utility of MRCDI to improve head models for TES simulations. CONCLUSION The achieved sensitivity improvement is an important step from proof-of-concept studies toward a broader application of MRCDI in clinical and basic neuroscience research.
Collapse
Affiliation(s)
- Cihan Göksu
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark.,High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Fróði Gregersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark.,Center for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark.,Sino-Danish Center for Education and Research, Aarhus, Denmark
| | - Hasan H Eroğlu
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark.,Center for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Rahel Heule
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark.,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark.,Center for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark.,Center for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
13
|
De Souza CG, Pegado R, Costa J, Morya E, Baptista AF, Unal G, Bikson M, Okano AH. Alternate sessions of transcranial direct current stimulation (tDCS) reduce chronic pain in women affected by chikungunya. A randomized clinical trial. Brain Stimul 2021; 14:541-548. [PMID: 33667699 DOI: 10.1016/j.brs.2021.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/28/2020] [Accepted: 02/21/2021] [Indexed: 12/27/2022] Open
Abstract
CONTEXT Thousands of people worldwide have been infected by the chikungunya virus (CHIKV), and the persistence of joint pain symptoms has been considered the main problem. Neuromodulation techniques such as transcranial direct current stimulation (tDCS) act on brain areas involved in the processing of chronic pain. It was previously demonstrated that tDCS for five consecutive days significantly reduced pain in the chronic phase of chikungunya (CHIK). OBJECTIVE To analyze the effect of alternate tDCS sessions on pain and functional capacity in individuals affected by CHIK. METHODS In a randomized clinical trial, 58 women in the chronic phase of CHIK were divided into two groups: active-tDCS (M1-S0, 2 mA, 20 min) and sham-tDCS. The Visual Analogue Scale (VAS) and the Brief Pain Inventory (BPI) were used to assess pain, while the Health Assessment Questionnaire (HAQ) assessed functional capacity. These scales were used before and after six sessions of tDCS in nonconsecutive days on the primary motor cortex, and at follow-up consultation 7 and 15 days after the last session. A repeated measures mixed-model ANOVA was used for comparison between groups (significant p-values < 0.05). RESULTS A significant pain reduction (Z [3, 171] = 14.303; p < 0.0001) was observed in the tDCS group compared to the sham group; no significant difference in functional capacity was observed (Z [1.57] = 2.797; p = 0.1). CONCLUSION Our results suggest that six nonconsecutive sessions of active tDCS on M1 reduce pain in chronic CHIKV arthralgia.
Collapse
Affiliation(s)
- Clecio Gabriel De Souza
- Federal University of Rio Grande Do Norte, Postgraduate Program in Rehabilitation Sciences, Santa Cruz, RN, Brazil; Graduate Program in Collective Health, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Rodrigo Pegado
- Federal University of Rio Grande Do Norte, Postgraduate Program in Rehabilitation Sciences, Santa Cruz, RN, Brazil; NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil.
| | - Jardson Costa
- Faculty Estacio of Rio Grande Do Norte, Natal, RN, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Macaíba, RN, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil; NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil.
| | - Abrahão Fontes Baptista
- Universidade Federal do ABC, Center for Mathematics, Computing and Cognition, São Bernardo do Campo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil; NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, NY, USA
| | - Alexandre Hideki Okano
- Universidade Federal do ABC, Center for Mathematics, Computing and Cognition, São Bernardo do Campo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil; NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil.
| |
Collapse
|
14
|
In-vivo imaging of targeting and modulation of depression-relevant circuitry by transcranial direct current stimulation: a randomized clinical trial. Transl Psychiatry 2021; 11:138. [PMID: 33627624 PMCID: PMC7904813 DOI: 10.1038/s41398-021-01264-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Recent clinical trials of transcranial direct current stimulation (tDCS) in depression have shown contrasting results. Consequently, we used in-vivo neuroimaging to confirm targeting and modulation of depression-relevant neural circuitry by tDCS. Depressed participants (N = 66, Baseline Hamilton Depression Rating Scale (HDRS) 17-item scores ≥14 and <24) were randomized into Active/Sham and High-definition (HD)/Conventional (Conv) tDCS groups using a double-blind, parallel design, and received tDCS individually targeted at the left dorsolateral prefrontal cortex (DLPFC). In accordance with Ampere's Law, tDCS currents were hypothesized to induce magnetic fields at the stimulation-target, measured in real-time using dual-echo echo-planar-imaging (DE-EPI) MRI. Additionally, the tDCS treatment trial (consisting of 12 daily 20-min sessions) was hypothesized to induce cerebral blood flow (CBF) changes post-treatment at the DLPFC target and in the reciprocally connected anterior cingulate cortex (ACC), measured using pseudo-continuous arterial spin labeling (pCASL) MRI. Significant tDCS current-induced magnetic fields were observed at the left DLPFC target for both active stimulation montages (Brodmann's area (BA) 46: pHD = 0.048, Cohen's dHD = 0.73; pConv = 0.018, dConv = 0.86; BA 9: pHD = 0.011, dHD = 0.92; pConv = 0.022, dConv = 0.83). Significant longitudinal CBF increases were observed (a) at the left DLPFC stimulation-target for both active montages (pHD = 3.5E-3, dHD = 0.98; pConv = 2.8E-3, dConv = 1.08), and (b) at ACC for the HD-montage only (pHD = 2.4E-3, dHD = 1.06; pConv = 0.075, dConv = 0.64). These results confirm that tDCS-treatment (a) engages the stimulation-target, and (b) modulates depression-relevant neural circuitry in depressed participants, with stronger network-modulations induced by the HD-montage. Although not primary outcomes, active HD-tDCS showed significant improvements of anhedonia relative to sham, though HDRS scores did not differ significantly between montages post-treatment.
Collapse
|
15
|
Soleimani G, Saviz M, Bikson M, Towhidkhah F, Kuplicki R, Paulus MP, Ekhtiari H. Group and individual level variations between symmetric and asymmetric DLPFC montages for tDCS over large scale brain network nodes. Sci Rep 2021; 11:1271. [PMID: 33446802 PMCID: PMC7809198 DOI: 10.1038/s41598-020-80279-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Two challenges to optimizing transcranial direct current stimulation (tDCS) are selecting between, often similar, electrode montages and accounting for inter-individual differences in response. These two factors are related by how tDCS montage determines current flow through the brain considered across or within individuals. MRI-based computational head models (CHMs) predict how brain anatomy determines electric field (EF) patterns for a given tDCS montage. Because conventional tDCS produces diffuse brain current flow, stimulation outcomes may be understood as modulation of global networks. Therefore, we developed a network-led, rather than region-led, approach. We specifically considered two common "frontal" tDCS montages that nominally target the dorsolateral prefrontal cortex; asymmetric "unilateral" (anode/cathode: F4/Fp1) and symmetric "bilateral" (F4/F3) electrode montages. CHMs of 66 participants were constructed. We showed that cathode location significantly affects EFs in the limbic network. Furthermore, using a finer parcellation of large-scale networks, we found significant differences in some of the main nodes within a network, even if there is no difference at the network level. This study generally demonstrates a methodology for considering the components of large-scale networks in CHMs instead of targeting a single region and specifically provides insight into how symmetric vs asymmetric frontal tDCS may differentially modulate networks across a population.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehrdad Saviz
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York of CUNY, New York, NY, USA
| | - Farzad Towhidkhah
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rayus Kuplicki
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| |
Collapse
|
16
|
Habich A, Fehér KD, Antonenko D, Boraxbekk CJ, Flöel A, Nissen C, Siebner HR, Thielscher A, Klöppel S. Stimulating aged brains with transcranial direct current stimulation: Opportunities and challenges. Psychiatry Res Neuroimaging 2020; 306:111179. [PMID: 32972813 DOI: 10.1016/j.pscychresns.2020.111179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/30/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Ageing involves significant neurophysiological changes that are both systematic while at the same time exhibiting divergent trajectories across individuals. These changes underlie cognitive impairments in elderly while also affecting the response of aged brains to interventions like transcranial direct current stimulation (tDCS). While the cognitive benefits of tDCS are more variable in elderly, older adults also respond differently to stimulation protocols compared to young adults. The age-related neurophysiological changes influencing the responsiveness to tDCS remain to be addressed in-depth. We review and discuss the premise that, in comparison to the better calibrated brain networks present in young adults, aged systems perform further away from a homoeostatic set-point. We argue that this age-related neurophysiological deviation from the homoeostatic optimum extends the leeway for tDCS to modulate the aged brain. This promotes the potency of immediate tDCS effects to induce directional plastic changes towards the homoeostatic equilibrium despite the impaired plasticity induction in elderly. We also consider how age-related neurophysiological changes pose specific challenges for tDCS that necessitate proper adaptations of stimulation protocols. Appreciating the distinctive properties of aged brains and the accompanying adjustment of stimulation parameters can increase the potency and reliability of tDCS as a treatment avenue in older adults.
Collapse
Affiliation(s)
- Annegret Habich
- University Hospital of Old Age Psychiatry and Psychotherpa, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland
| | - Daria Antonenko
- Department of Neurology, University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Østvej, 2650 Hvidovre, Denmark; Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Agnes Flöel
- Department of Neurology, University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Center for Neurodegenerative Diseases, Ellernholzstraße 1-2, 17489 Greifswald, Germany
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland; Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Østvej, 2650 Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Østvej, 2650 Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, Ørsteds Pl. 348, 2800 Kgs. Lyngby, Denmark
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherpa, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland
| |
Collapse
|
17
|
Wiltshire CEE, Watkins KE. Failure of tDCS to modulate motor excitability and speech motor learning. Neuropsychologia 2020; 146:107568. [PMID: 32687836 PMCID: PMC7534039 DOI: 10.1016/j.neuropsychologia.2020.107568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) modulates cortical excitability in a polarity-specific way and, when used in combination with a behavioural task, it can alter performance. TDCS has the potential, therefore, for use as an adjunct to therapies designed to treat disorders affecting speech, including, but not limited to acquired aphasias and developmental stuttering. For this reason, it is important to conduct studies evaluating its effectiveness and the parameters optimal for stimulation. Here, we aimed to evaluate the effects of bi-hemispheric tDCS over speech motor cortex on performance of a complex speech motor learning task, namely the repetition of tongue twisters. A previous study in older participants showed that tDCS could modulate performance on a similar task. To further understand the effects of tDCS, we also measured the excitability of the speech motor cortex before and after stimulation. Three groups of 20 healthy young controls received: (i) anodal tDCS to the left IFG/LipM1 and cathodal tDCS to the right hemisphere homologue; or (ii) cathodal tDCS over the left and anodal over the right; or (iii) sham stimulation. Participants heard and repeated novel tongue twisters and matched simple sentences before, during and 10 min after the stimulation. One mA tDCS was delivered concurrent with task performance for 13 min. Motor excitability was measured using transcranial magnetic stimulation to elicit motor-evoked potentials in the lip before and immediately after tDCS. The study was double-blind, randomized, and sham-controlled; the design and analysis were pre-registered. Performance on the task improved from baseline to after stimulation but was not significantly modulated by tDCS. Similarly, a small decrease in motor excitability was seen in all three stimulation groups but did not differ among them and was unrelated to task performance. Bayesian analyses provide substantial evidence in support of the null hypotheses in both cases, namely that tongue twister performance and motor excitability were not affected by tDCS. We discuss our findings in the context of the previous positive results for a similar task. We conclude that tDCS may be most effective when brain function is sub-optimal due to age-related declines or pathology. Further study is required to determine why tDCS failed to modulate excitability in the speech motor cortex in the expected ways.
Collapse
Affiliation(s)
- Charlotte E E Wiltshire
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, OX2 6GG, UK.
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, OX2 6GG, UK.
| |
Collapse
|
18
|
Toffa DH, Sow AD. The enigma of headaches associated with electromagnetic hyperfrequencies: Hypotheses supporting non-psychogenic algogenic processes. Electromagn Biol Med 2020; 39:196-205. [PMID: 32401641 DOI: 10.1080/15368378.2020.1762638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although an electrohypersensitivity (EHS) is reported in numerous studies, some authors associate hyperfrequencies (HF)-related pains with a nocebo effect while others suggest a biological effect. Therefore, we aimed to suggest hypotheses about the complex mechanisms of headaches related to HF-exposure. We crossed basic features of headaches with relevant studies (from the year 2000 up to 2018) emphasizing on the HF effects that may lead to pain genesis: neuroglial dysmetabolism, neuroinflammation, changes in cerebral blood perfusion, blood-brain barrier dysfunction and electrophysiological evidences of hyperexcitability. We privileged studies implying a sham exposure (for in vivo studies) and a specific absorption rate lower than 4 W/Kg. HF-induced headaches may involve an indirect inflammatory process (neurogenic, magnetogenic or thermogenic) as well as a direct biophysical effect (thermogenic or magnetogenic). We linked inflammatory processes to meningeal dysperfusion or primary neuroglial dysfunction triggered by non-thermal irradiation or HF-induced heating at thermal powers. In the latter case, HF-induced excitoxicity and oxidative stress probably play a crucial role. Such disorders may lead to vascular-trigeminal activation in predisposed people. Interestingly, an abnormal oxidative stress predisposition had been demonstrated in overall 80% of EHS self-reporting patients. In the case of direct effects, pain pathways' activation may be directly triggered by HF-irradiation (heating and/or transcranial HF-induced ectopic action potentials). Further research on HF-related headaches is needed.
Collapse
Affiliation(s)
- D H Toffa
- Division of Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montreal, Canada
| | - A D Sow
- Division of Neurology, CHUN Fann, Université Cheikh Anta Diop , Dakar, Senegal
| |
Collapse
|
19
|
Unal G, Ficek B, Webster K, Shahabuddin S, Truong D, Hampstead B, Bikson M, Tsapkini K. Impact of brain atrophy on tDCS and HD-tDCS current flow: a modeling study in three variants of primary progressive aphasia. Neurol Sci 2020; 41:1781-1789. [PMID: 32040791 PMCID: PMC7363529 DOI: 10.1007/s10072-019-04229-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND During transcranial direct current stimulation (tDCS), the amount and distribution of current that reaches the brain depends on individual anatomy. Many progressive neurodegenerative diseases are associated with cortical atrophy, but the importance of individual brain atrophy during tDCS in patients with progressive atrophy, including primary progressive aphasia (PPA), remains unclear. OBJECTIVE In the present study, we addressed the question whether brain anatomy in patients with distinct cortical atrophy patterns would impact brain current intensity and distribution during tDCS over the left IFG. METHOD We developed state-of-the-art, gyri-precise models of three subjects, each representing a variant of primary progressive aphasia: non-fluent variant PPA (nfvPPA), semantic variant PPA (svPPA), and logopenic variant PPA (lvPPA). We considered two exemplary montages over the left inferior frontal gyrus (IFG): a conventional pad montage (anode over F7, cathode over the right cheek) and a 4 × 1 high-definition tDCS montage. We further considered whether local anatomical features, specifically distance of the cortex to skull, can directly predict local electric field intensity. RESULTS We found that the differences in brain current flow across the three PPA variants fall within the distribution of anatomically typical adults. While clustering of electric fields was often around individual gyri or sulci, the minimal distance from the gyri/sulci to skull was not correlated with electric field intensity. CONCLUSION Limited to the conditions and assumptions considered here, this argues against a specific need to adjust the tDCS montage for these patients any more than might be considered useful in anatomically typical adults. Therefore, local atrophy does not, in isolation, reliably predict local electric field. Rather, our results are consistent with holistic head anatomy influencing brain current flow, with tDCS producing diffuse and individualized brain current flow patterns and HD-tDCS producing targeted brain current flow across individuals.
Collapse
Affiliation(s)
- Gozde Unal
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Bronte Ficek
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA
| | - Kimberly Webster
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA
- Department of Otolaryngology, Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Syed Shahabuddin
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Dennis Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Benjamin Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Kyrana Tsapkini
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA.
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, 21218, USA.
| |
Collapse
|
20
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
21
|
Electricity, Neurology, and Noninvasive Brain Stimulation: Looking Back, Looking Ahead. Neurol Res Int 2020; 2020:5260820. [PMID: 32328305 PMCID: PMC7174904 DOI: 10.1155/2020/5260820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 11/18/2022] Open
Abstract
Electricity and neurology evolved synchronously over the past few centuries. This article looks at their origins and their journey into noninvasive brain stimulation technique of transcranial direct current stimulation (tDCS), which is now popular in neuroscience research.
Collapse
|
22
|
Jog M, Jann K, Yan L, Huang Y, Parra L, Narr K, Bikson M, Wang DJJ. Concurrent Imaging of Markers of Current Flow and Neurophysiological Changes During tDCS. Front Neurosci 2020; 14:374. [PMID: 32372913 PMCID: PMC7186453 DOI: 10.3389/fnins.2020.00374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Despite being a popular neuromodulation technique, clinical translation of transcranial direct current stimulation (tDCS) is hampered by variable responses observed within treatment cohorts. Addressing this challenge has been difficult due to the lack of an effective means of mapping the neuromodulatory electromagnetic fields together with the brain's response. In this study, we present a novel imaging technique that provides the capability of concurrently mapping markers of tDCS currents, as well as the brain's response to tDCS. A dual-echo echo-planar imaging (DE-EPI) sequence is used, wherein the phase of the acquired MRI-signal encodes the tDCS current induced magnetic field, while the magnitude encodes the blood oxygenation level dependent (BOLD) contrast. The proposed technique was first validated in a custom designed phantom. Subsequent test-retest experiments in human participants showed that tDCS-induced magnetic fields can be detected reliably in vivo. The concurrently acquired BOLD data revealed large-scale networks characteristic of a brain in resting-state as well as a 'cathodal' and an 'anodal' resting-state component under each electrode. Moreover, 'cathodal's BOLD-signal was observed to significantly decrease with the applied current at the group level in all datasets. With its ability to image markers of electromagnetic cause as well as neurophysiological changes, the proposed technique may provide an effective means to visualize neural engagement in tDCS at the group level. Our technique also contributes to addressing confounding factors in applying BOLD fMRI concurrently with tDCS.
Collapse
Affiliation(s)
- Mayank Jog
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Lirong Yan
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Yu Huang
- Department of Biomedical Engineering, the City College of The City University of New York, New York, NY, United States
| | - Lucas Parra
- Department of Biomedical Engineering, the City College of The City University of New York, New York, NY, United States
| | - Katherine Narr
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marom Bikson
- Department of Biomedical Engineering, the City College of The City University of New York, New York, NY, United States
| | - Danny J J Wang
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Bartl GJ, Blackshaw E, Crossman M, Allen P, Sandrini M. Systematic Review and Network Meta-Analysis of Anodal tDCS Effects on Verbal Episodic Memory. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2020. [DOI: 10.1027/2151-2604/a000396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. There is growing interest in the study of transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, as an effective intervention to improve memory. In order to evaluate the relative efficacy of tDCS based on the location of anodal electrode sites, we conducted a systematic review examining the effect of stimulation applied during encoding on subsequent verbal episodic memory in healthy adults. We performed a network meta-analysis of 20 studies (23 experiments) with N = 978 participants. Left ventrolateral prefrontal and temporo-parietal sites appeared most likely to enhance episodic memory, although any significant effects were based on findings from single studies only. We did not find evidence for verbal retrieval enhancement of tDCS versus sham stimulation where the effect was based on more than one experimental paper. More frequent replication efforts and stricter reporting standards may improve the quality of evidence and allow more precise estimation of population-level effects of tDCS.
Collapse
Affiliation(s)
| | - Emily Blackshaw
- Department of Psychology, University of Roehampton, London, UK
| | - Margot Crossman
- Department of Psychology, University of Roehampton, London, UK
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Marco Sandrini
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
24
|
Jiang J, Truong DQ, Esmaeilpour Z, Huang Y, Badran BW, Bikson M. Enhanced tES and tDCS computational models by meninges emulation. J Neural Eng 2020; 17:016027. [PMID: 31689695 PMCID: PMC7254922 DOI: 10.1088/1741-2552/ab549d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Understanding how current reaches the brain during transcranial electrical stimulation (tES) underpins efforts to rationalize outcomes and optimize interventions. To this end, computational models of current flow relate applied dose to brain electric field. Conventional tES modeling considers distinct tissues like scalp, skull, cerebrospinal fluid (CSF), gray matter and white matter. The properties of highly conductive CSF are especially important. However, modeling the space between skull and brain as entirely CSF is not an accurate representation of anatomy. The space conventionally modeled as CSF is approximately half meninges (dura, arachnoid, and pia) with lower conductivity. However, the resolution required to describe individual meningeal layers is computationally restrictive in an MRI-derived head model. Emulating the effect of meninges through CSF conductivity modification could improve accuracy with minimal cost. APPROACH Models with meningeal layers were developed in a concentric sphere head model. Then, in a model with only CSF between skull and brain, CSF conductivity was optimized to emulate the effect of meningeal layers on cortical electric field for multiple electrode positions. This emulated conductivity was applied to MRI-derived models. MAIN RESULTS Compared to a model with conventional CSF conductivity (1.65 S m-1), emulated CSF conductivity (0.85 S m-1) produced voltage fields better correlated with intracranial recordings from epilepsy patients. SIGNIFICANCE Conventional tES models have been validated using intracranial recording. Residual errors may nonetheless impact model utility. Because CSF is so conductive to current flow, misrepresentation of the skull-brain interface as entirely CSF is not realistic for tES modeling. Updating the conventional model with a CSF conductivity emulating the effect of the meninges enhances modeling accuracy without increasing model complexity. This allows existing modeling pipelines to be leveraged with a simple conductivity change. Using 0.85 S m-1 emulated CSF conductivity is recommended as the new standard in non-invasive brain stimulation modeling.
Collapse
Affiliation(s)
- Jimmy Jiang
- Department of Biomedical Engineering, Neural Engineering Laboratory, City College of New York of the City University of New York, New York, NY 10031, United States of America. Authors contributed equally
| | | | | | | | | | | |
Collapse
|
25
|
Smith RX, Guha A, Vaida F, Paul RH, Ances B. Prefrontal Recruitment Mitigates Risk-Taking Behavior in Human Immunodeficiency Virus-Infected Young Adults. Clin Infect Dis 2019; 66:1595-1601. [PMID: 29177412 DOI: 10.1093/cid/cix1031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/17/2017] [Indexed: 01/04/2023] Open
Abstract
Background Human immunodeficiency virus (HIV)-infected (HIV+) young adults often engage in risk-taking behavior. However, the disruptive effects of HIV on the neurobiological underpinnings of risky decision making are not well understood. Methods Risky decision making, measured via the Iowa Gambling Task (IGT), was compared voxel-wise to resting cerebral blood flow (rCBF) acquired via arterial spin labeling. Separate topographical maps were obtained for HIV-uninfected (HIV-; n = 62) and HIV+ (n = 41) young adults (18-24 years old) and were compared to the full cohort of participants. For the HIV+ group, rCBF was compared to recent and nadir CD4. Results IGT performance was supported by rCBF in 3 distinct brain regions: regions I, II, and III. The relationship between IGT performance and rCBF in HIV+ individuals was most robust in region I, the ventromedial prefrontal and insular cortices. Region II contained strong relationships for both HIV- and HIV+. Region III, dorsolateral prefrontal and posterior cingulate cortices, contained relationships that were strongest for HIV- controls. IGT performance was intact among HIV+ participants with higher rCBF in either region I or region III. By contrast, performance was worse among HIV+ individuals with lower rCBF in both regions I and III when compared to HIV- controls (P = .01). rCBF in region III was reduced in HIV+ compared with HIV- individuals (P = .04), and positively associated with nadir CD4 cell count (P = .02). Conclusions Recruitment of executive systems (region III) mitigates risk-taking behavior in HIV+ and HIV- individuals. Recruitment of reward systems (region I) mitigates risk-taking behavior when region III is disrupted due to immunological compromise. Identifying individual recruitment patterns may aid anatomically directed therapeutics or psychosocial interventions.
Collapse
Affiliation(s)
- Robert X Smith
- Department of Neurology, Washington University in St Louis, Missouri
| | - Anika Guha
- Department of Neurology, Washington University in St Louis, Missouri
| | - Florin Vaida
- Division of Biostatistics and Bioinformatics, University of California, San Diego
| | - Robert H Paul
- Missouri Institute of Mental Health, University of Missouri in St Louis
| | - Beau Ances
- Department of Neurology, Washington University in St Louis, Missouri
| |
Collapse
|
26
|
Huang Y, Datta A, Bikson M, Parra LC. Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline. J Neural Eng 2019; 16:056006. [PMID: 31071686 PMCID: PMC7328433 DOI: 10.1088/1741-2552/ab208d] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Research in the area of transcranial electrical stimulation (TES) often relies on computational models of current flow in the brain. Models are built based on magnetic resonance images (MRI) of the human head to capture detailed individual anatomy. To simulate current flow on an individual, the subject's MRI is segmented, virtual electrodes are placed on this anatomical model, the volume is tessellated into a mesh, and a finite element model (FEM) is solved numerically to estimate the current flow. Various software tools are available for each of these steps, as well as processing pipelines that connect these tools for automated or semi-automated processing. The goal of the present tool-realistic volumetric-approach to simulate transcranial electric simulation (ROAST)-is to provide an end-to-end pipeline that can automatically process individual heads with realistic volumetric anatomy leveraging open-source software and custom scripts to improve segmentation and execute electrode placement. APPROACH ROAST combines the segmentation algorithm of SPM12, a Matlab script for touch-up and automatic electrode placement, the finite element mesher iso2mesh and the solver getDP. We compared its performance with commercial FEM software, and SimNIBS, a well-established open-source modeling pipeline. MAIN RESULTS The electric fields estimated with ROAST differ little from the results obtained with commercial meshing and FEM solving software. We also do not find large differences between the various automated segmentation methods used by ROAST and SimNIBS. We do find bigger differences when volumetric segmentation are converted into surfaces in SimNIBS. However, evaluation on intracranial recordings from human subjects suggests that ROAST and SimNIBS are not significantly different in predicting field distribution, provided that users have detailed knowledge of SimNIBS. SIGNIFICANCE We hope that the detailed comparisons presented here of various choices in this modeling pipeline can provide guidance for future tool development. We released ROAST as an open-source, easy-to-install and fully-automated pipeline for individualized TES modeling.
Collapse
Affiliation(s)
- Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY 10031, United States of America. Research & Development, Soterix Medical Inc., New York, NY 10001, United States of America
| | | | | | | |
Collapse
|
27
|
Jog MV, Wang DJJ, Narr KL. A review of transcranial direct current stimulation (tDCS) for the individualized treatment of depressive symptoms. ACTA ACUST UNITED AC 2019; 17-18:17-22. [PMID: 31938757 DOI: 10.1016/j.pmip.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a low intensity neuromodulation technique shown to elicit therapeutic effects in a number of neuropsychological conditions. Independent randomized sham-controlled trials and meta- and mega-analyses demonstrate that tDCS targeted to the left dorsolateral prefrontal cortex can produce a clinically meaningful response in patients with major depressive disorder (MDD), but effects are small to moderate in size. However, the heterogeneous presentation, and the neurobiology underlying particular features of depression suggest clinical outcomes might benefit from empirically informed patient selection. In this review, we summarize the status of tDCS research in MDD with focus on the clinical, biological, and intrinsic and extrinsic factors shown to enhance or predict antidepressant response. We also discuss research strategies for optimizing tDCS to improve patient-specific clinical outcomes. TDCS appears suited for both bipolar and unipolar depression, but is less effective in treatment resistant depression. TDCS may also better target core aspects of depressed mood over vegetative symptoms, while pretreatment patient characteristics might inform subsequent response. Peripheral blood markers of gene and immune system function have not yet proven useful as predictors or correlates of tDCS response. Though further research is needed, several lines of evidence suggest that tDCS administered in combination with pharmacological and cognitive behavioral interventions can improve outcomes. Tailoring stimulation to the functional and structural anatomy and/or connectivity of individual patients can maximize physiological response in targeted networks, which in turn could translate to therapeutic benefits.
Collapse
Affiliation(s)
- Mayank V Jog
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California.,Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California.,Department of Neurology, and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
28
|
Göksu C, Scheffler K, Siebner HR, Thielscher A, Hanson LG. The stray magnetic fields in Magnetic Resonance Current Density Imaging (MRCDI). Phys Med 2019; 59:142-150. [DOI: 10.1016/j.ejmp.2019.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 02/01/2023] Open
|
29
|
Indahlastari A, Chauhan M, Sadleir RJ. Benchmarking transcranial electrical stimulation finite element models: a comparison study. J Neural Eng 2019; 16:026019. [PMID: 30605892 DOI: 10.1088/1741-2552/aafbbd] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To compare field measure differences in simulations of transcranial electrical stimulation (tES) generated by variations in finite element (FE) models due to boundary condition specification, use of tissue compartment smoothing filters, and use of free or structured tetrahedral meshes based on magnetic resonance imaging (MRI) data. APPROACH A structural MRI head volume was acquired at 1 mm3 resolution and segmented into ten tissue compartments. Predicted current densities and electric fields were computed in segmented models using modeling pipelines involving either an in-house (block) or a commercial platform commonly used in previous FE tES studies involving smoothed compartments and free meshing procedures (smooth). The same boundary conditions were used for both block and smooth pipelines. Differences caused by varying boundary conditions were examined using a simple geometry. Percentage differences of median current density values in five cortical structures were compared between the two pipelines for three electrode montages (F3-right supraorbital, T7-T8 and Cz-Oz). MAIN RESULTS Use of boundary conditions commonly used in previous tES FE studies produced asymmetric current density profiles in the simple geometry. In head models, median current density differences produced by the two pipelines, using the same boundary conditions, were up to 6% (isotropic) and 18% (anisotropic) in structures targeted by each montage. Tangential electric field measures calculated via either pipeline were within the range of values reported in the literature, when averaged over cortical surface patches. SIGNIFICANCE Apparently equivalent boundary settings may affect predicted current density outcomes and care must be taken in their specification. Smoothing FE model compartments may not be necessary, and directly translated, voxellated tissue boundaries at 1 mm3 resolution may be sufficient for use in tES FE studies, greatly reducing processing times. The findings here may be used to inform future current density modeling studies.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | | | | |
Collapse
|
30
|
Lee MB, Kim HJ, Woo EJ, Kwon OI. Anisotropic conductivity tensor imaging for transcranial direct current stimulation (tDCS) using magnetic resonance diffusion tensor imaging (MR-DTI). PLoS One 2018; 13:e0197063. [PMID: 29763453 PMCID: PMC5953498 DOI: 10.1371/journal.pone.0197063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/25/2018] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a widely used non-invasive brain stimulation technique by applying low-frequency weak direct current via electrodes attached on the head. The tDCS using a fixed current between 1 and 2 mA has relied on computational modelings to achieve optimal stimulation effects. Recently, by measuring the tDCS current induced magnetic field using an MRI scanner, the internal current pathway has been successfully recovered. However, up to now, there is no technique to visualize electrical properties including the electrical anisotropic conductivity, effective extracellular ion-concentration, and electric field using only the tDCS current in-vivo. By measuring the apparent diffusion coefficient (ADC) and the magnetic flux density induced by the tDCS, we propose a method to visualize the electrical properties. We reconstruct the scale parameter, which connects the anisotropic conductivity tensor to the diffusion tensor of water molecules, by introducing a repetitive scheme called the diffusion tensor J-substitution algorithm using the recovered current density and the measured ADCs. We investigate the proposed method to explain why the iterative scheme converges to the internal conductivity. We verified the proposed method with an anesthetized canine brain to visualize electrical properties including the electrical properties by tDCS current.
Collapse
Affiliation(s)
- Mun Bae Lee
- Department of Mathematics, Konkuk University, Seoul, Korea
| | - Hyung Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| | - Eung Je Woo
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| | - Oh In Kwon
- Department of Mathematics, Konkuk University, Seoul, Korea
- * E-mail:
| |
Collapse
|
31
|
Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, Dmochowski J, Edwards DJ, Frohlich F, Kappenman ES, Lim KO, Loo C, Mantovani A, McMullen DP, Parra LC, Pearson M, Richardson JD, Rumsey JM, Sehatpour P, Sommers D, Unal G, Wassermann EM, Woods AJ, Lisanby SH. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul 2018; 11:465-480. [PMID: 29398575 PMCID: PMC5997279 DOI: 10.1016/j.brs.2017.12.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. OBJECTIVE This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. METHODS The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. RESULTS Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. CONCLUSIONS These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Leigh E Charvet
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Vincent P Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Zhi-De Deng
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Jacek Dmochowski
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Dylan J Edwards
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Rehabilitation and Research, Burke-Cornell Medical Research Facility, White Plains, New York and School of Medicine and Health Sciences, Edith Cowan University, Perth, Australia
| | - Flavio Frohlich
- Department of Psychiatry, Cell Biology and Physiology, Biomedical Engineering, and Neurology, Carolina Center for Neurostimulation, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Emily S Kappenman
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis Veterans Administration Health Care System, and Defense Veterans Brain Injury Center, Minneapolis, MN, United States
| | - Colleen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Antonio Mantovani
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, New York, NY, United States
| | - David P McMullen
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Michele Pearson
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| | - Jessica D Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Judith M Rumsey
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States.
| | - Pejman Sehatpour
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - David Sommers
- Scientific Review Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah H Lisanby
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Mourdoukoutas AP, Truong DQ, Adair DK, Simon BJ, Bikson M. High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation. Neuromodulation 2018; 21:261-268. [PMID: 29076212 PMCID: PMC5895480 DOI: 10.1111/ner.12706] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To develop the first high-resolution, multi-scale model of cervical non-invasive vagus nerve stimulation (nVNS) and to predict vagus fiber type activation, given clinically relevant rheobase thresholds. METHODS An MRI-derived Finite Element Method (FEM) model was developed to accurately simulate key macroscopic (e.g., skin, soft tissue, muscle) and mesoscopic (cervical enlargement, vertebral arch and foramen, cerebral spinal fluid [CSF], nerve sheath) tissue components to predict extracellular potential, electric field (E-Field), and activating function along the vagus nerve. Microscopic scale biophysical models of axons were developed to compare axons of varying size (Aα-, Aβ- and Aδ-, B-, and C-fibers). Rheobase threshold estimates were based on a step function waveform. RESULTS Macro-scale accuracy was found to determine E-Field magnitudes around the vagus nerve, while meso-scale precision determined E-field changes (activating function). Mesoscopic anatomical details that capture vagus nerve passage through a changing tissue environment (e.g., bone to soft tissue) profoundly enhanced predicted axon sensitivity while encapsulation in homogenous tissue (e.g., nerve sheath) dulled axon sensitivity to nVNS. CONCLUSIONS These findings indicate that realistic and precise modeling at both macroscopic and mesoscopic scales are needed for quantitative predictions of vagus nerve activation. Based on this approach, we predict conventional cervical nVNS protocols can activate A- and B- but not C-fibers. Our state-of-the-art implementation across scales is equally valuable for models of spinal cord stimulation, cortex/deep brain stimulation, and other peripheral/cranial nerve models.
Collapse
Affiliation(s)
- Antonios P. Mourdoukoutas
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY
| | - Dennis Q. Truong
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY
| | - Devin K. Adair
- Department of Psychology, The Graduate Center, City University of New York, New York, New York
| | | | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY
| |
Collapse
|
33
|
Göksu C, Hanson LG, Siebner HR, Ehses P, Scheffler K, Thielscher A. Human in-vivo brain magnetic resonance current density imaging (MRCDI). Neuroimage 2017; 171:26-39. [PMID: 29288869 DOI: 10.1016/j.neuroimage.2017.12.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022] Open
Abstract
Magnetic resonance current density imaging (MRCDI) and MR electrical impedance tomography (MREIT) are two emerging modalities, which combine weak time-varying currents injected via surface electrodes with magnetic resonance imaging (MRI) to acquire information about the current flow and ohmic conductivity distribution at high spatial resolution. The injected current flow creates a magnetic field in the head, and the component of the induced magnetic field ΔBz,c parallel to the main scanner field causes small shifts in the precession frequency of the magnetization. The measured MRI signal is modulated by these shifts, allowing to determine ΔBz,c for the reconstruction of the current flow and ohmic conductivity. Here, we demonstrate reliable ΔBz,c measurements in-vivo in the human brain based on multi-echo spin echo (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. In a series of experiments, we optimize their robustness for in-vivo measurements while maintaining a good sensitivity to the current-induced fields. We validate both methods by assessing the linearity of the measured ΔBz,c with respect to the current strength. For the more efficient SSFP-FID measurements, we demonstrate a strong influence of magnetic stray fields on the ΔBz,c images, caused by non-ideal paths of the electrode cables, and validate a correction method. Finally, we perform measurements with two different current injection profiles in five subjects. We demonstrate reliable recordings of ΔBz,c fields as weak as 1 nT, caused by currents of 1 mA strength. Comparison of the ΔBz,c measurements with simulated ΔBz,c images based on FEM calculations and individualized head models reveals significant linear correlations in all subjects, but only for the stray field-corrected data. As final step, we reconstruct current density distributions from the measured and simulated ΔBz,c data. Reconstructions from non-corrected ΔBz,c measurements systematically overestimate the current densities. Comparing the current densities reconstructed from corrected ΔBz,c measurements and from simulated ΔBz,c images reveals an average coefficient of determination R2 of 71%. In addition, it shows that the simulations underestimated the current strength on average by 24%. Our results open up the possibility of using MRI to systematically validate and optimize numerical field simulations that play an important role in several neuroscience applications, such as transcranial brain stimulation, and electro- and magnetoencephalography.
Collapse
Affiliation(s)
- Cihan Göksu
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, DTU Elektro, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, DTU Elektro, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Philipp Ehses
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany; Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, DTU Elektro, Technical University of Denmark, Kgs Lyngby, Denmark; High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
34
|
Esmaeilpour Z, Marangolo P, Hampstead BM, Bestmann S, Galletta E, Knotkova H, Bikson M. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul 2017; 11:310-321. [PMID: 29258808 DOI: 10.1016/j.brs.2017.12.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is investigated to modulate neuronal function by applying a fixed low-intensity direct current to scalp. OBJECTIVES We critically discuss evidence for a monotonic response in effect size with increasing current intensity, with a specific focus on a question if increasing applied current enhance the efficacy of tDCS. METHODS We analyzed tDCS intensity does-response from different perspectives including biophysical modeling, animal modeling, human neurophysiology, neuroimaging and behavioral/clinical measures. Further, we discuss approaches to design dose-response trials. RESULTS Physical models predict electric field in the brain increases with applied tDCS intensity. Data from animal studies are lacking since a range of relevant low-intensities is rarely tested. Results from imaging studies are ambiguous while human neurophysiology, including using transcranial magnetic stimulation (TMS) as a probe, suggests a complex state-dependent non-monotonic dose response. The diffusivity of brain current flow produced by conventional tDCS montages complicates this analysis, with relatively few studies on focal High Definition (HD)-tDCS. In behavioral and clinical trials, only a limited range of intensities (1-2 mA), and typically just one intensity, are conventionally tested; moreover, outcomes are subject brain-state dependent. Measurements and models of current flow show that for the same applied current, substantial differences in brain current occur across individuals. Trials are thus subject to inter-individual differences that complicate consideration of population-level dose response. CONCLUSION The presence or absence of simple dose response does not impact how efficacious a given tDCS dose is for a given indication. Understanding dose-response in human applications of tDCS is needed for protocol optimization including individualized dose to reduce outcome variability, which requires intelligent design of dose-response studies.
Collapse
Affiliation(s)
- Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, University Federico II, Naples and IRCCS Fondazione Santa Lucia, Rome Italy
| | - Benjamin M Hampstead
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, UK
| | - Elisabeth Galletta
- Rusk Rehabilitation Medicine, New York University Langone Medical Center, USA
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA
| |
Collapse
|
35
|
Baxter BS, Edelman BJ, Sohrabpour A, He B. Anodal Transcranial Direct Current Stimulation Increases Bilateral Directed Brain Connectivity during Motor-Imagery Based Brain-Computer Interface Control. Front Neurosci 2017; 11:691. [PMID: 29270110 PMCID: PMC5725434 DOI: 10.3389/fnins.2017.00691] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/23/2017] [Indexed: 01/29/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to affect motor and cognitive task performance and learning when applied to brain areas involved in the task. Targeted stimulation has also been found to alter connectivity within the stimulated hemisphere during rest. However, the connectivity effect of the interaction of endogenous task specific activity and targeted stimulation is unclear. This study examined the aftereffects of concurrent anodal high-definition tDCS over the left sensorimotor cortex with motor network connectivity during a one-dimensional EEG based sensorimotor rhythm brain-computer interface (SMR-BCI) task. Directed connectivity following anodal tDCS illustrates altered connections bilaterally between frontal and parietal regions, and these alterations occur in a task specific manner; connections between similar cortical regions are altered differentially during left and right imagination trials. During right-hand imagination following anodal tDCS, there was an increase in outflow from the left premotor cortex (PMC) to multiple regions bilaterally in the motor network and increased inflow to the stimulated sensorimotor cortex from the ipsilateral PMC and contralateral sensorimotor cortex. During left-hand imagination following anodal tDCS, there was increased outflow from the stimulated sensorimotor cortex to regions across the motor network. Significant correlations between connectivity and the behavioral measures of total correct trials and time-to-hit (TTH) correct trials were also found, specifically that the input to the left PMC correlated with decreased right hand imagination performance and that flow from the ipsilateral posterior parietal cortex (PPC) to midline sensorimotor cortex correlated with improved performance for both right and left hand imagination. These results indicate that tDCS interacts with task-specific endogenous activity to alter directed connectivity during SMR-BCI. In order to predict and maximize the targeted effect of tDCS, the interaction of stimulation with the dynamics of endogenous activity needs to be examined comprehensively and understood.
Collapse
Affiliation(s)
- Bryan S. Baxter
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bradley J. Edelman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Abbas Sohrabpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
36
|
Rawji V, Ciocca M, Zacharia A, Soares D, Truong D, Bikson M, Rothwell J, Bestmann S. tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimul 2017; 11:289-298. [PMID: 29146468 PMCID: PMC5805821 DOI: 10.1016/j.brs.2017.11.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/30/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023] Open
Abstract
Background Measurements and models of current flow in the brain during transcranial Direct Current Stimulation (tDCS) indicate stimulation of regions in-between electrodes. Moreover, the folded cortex results in local fluctuations in current flow intensity and direction, and animal studies suggest current flow direction relative to cortical columns determines response to tDCS. Methods Here we test this idea by using Transcranial Magnetic Stimulation Motor Evoked Potentials (TMS-MEP) to measure changes in corticospinal excitability following tDCS applied with electrodes aligned orthogonal (across) or parallel to M1 in the central sulcus. Results Current flow models predicted that the orthogonal electrode montage produces consistently oriented current across the hand region of M1 that flows along cortical columns, while the parallel electrode montage produces non-uniform current directions across the M1 cortical surface. We find that orthogonal, but not parallel, orientated tDCS modulates TMS-MEPs. We also show modulation is sensitive to the orientation of the TMS coil (PA or AP), which is thought to select different afferent pathways to M1. Conclusions Our results are consistent with tDCS producing directionally specific neuromodulation in brain regions in-between electrodes, but shows nuanced changes in excitability that are presumably current direction relative to column and axon pathway specific. We suggest that the direction of current flow through cortical target regions should be considered for targeting and dose-control of tDCS. Direction of current flow is important for tDCS after-effects. tDCS modulates excitability between two electrodes. tDCS differentially modulates PA and AP inputs into M1.
Collapse
Affiliation(s)
- Vishal Rawji
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK.
| | - Matteo Ciocca
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK
| | - André Zacharia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK; Department of Neurology, University Hospitals of Geneva, Switzerland
| | - David Soares
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK
| | - Dennis Truong
- Department of Biomedical Engineering, The City College of the City University of New York, New York City, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York City, USA
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
37
|
Edwards DJ, Cortes M, Wortman-Jutt S, Putrino D, Bikson M, Thickbroom G, Pascual-Leone A. Transcranial Direct Current Stimulation and Sports Performance. Front Hum Neurosci 2017; 11:243. [PMID: 28539880 PMCID: PMC5423975 DOI: 10.3389/fnhum.2017.00243] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/25/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dylan J Edwards
- Non-Invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, Weill Cornell Graduate School of Medical Sciences, Cornell UniversityWhite Plains, NY, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA.,School of Medical and Health Sciences, Edith Cowan UniversityPerth, WA, Australia.,Department of Neurology, Weill Cornell Graduate School of Medical Sciences, Cornell UniversityNew York, NY, USA
| | - Mar Cortes
- Human Spinal Cord Injury Repair Laboratory, Burke Medical Research Institute, Weill Cornell Graduate School of Medical Sciences, Cornell UniversityWhite Plains, NY, USA.,Department of Rehabilitation Medicine, Weill Cornell Graduate School of Medical Sciences, Cornell UniversityNew York, NY, USA
| | | | - David Putrino
- Department of Rehabilitation Medicine, Weill Cornell Graduate School of Medical Sciences, Cornell UniversityNew York, NY, USA.,Telemedicine and Virtual Rehabilitation Laboratory, Burke Medical Research InstituteWhite Plains, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, City University of New YorkNew York, NY, USA
| | - Gary Thickbroom
- Non-Invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, Weill Cornell Graduate School of Medical Sciences, Cornell UniversityWhite Plains, NY, USA.,School of Medical and Health Sciences, Edith Cowan UniversityPerth, WA, Australia.,Department of Rehabilitation Medicine, Weill Cornell Graduate School of Medical Sciences, Cornell UniversityNew York, NY, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA.,Institut de Neurorehabilitacio Guttman, Universitat Autonoma de BarcelonaBadalona, Spain
| |
Collapse
|
38
|
Kasinadhuni AK, Indahlastari A, Chauhan M, Schär M, Mareci TH, Sadleir RJ. Imaging of current flow in the human head during transcranial electrical therapy. Brain Stimul 2017; 10:764-772. [PMID: 28457836 DOI: 10.1016/j.brs.2017.04.125] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been assumed that effects caused by tDCS or tACS neuromodulation are due to electric current flow within brain structures. However, to date, direct current density distributions in the brains of human subjects have not been measured. Instead computational models of tDCS or tACS have been used to predict electric current and field distributions for dosimetry and mechanism analysis purposes. OBJECTIVE/HYPOTHESIS We present the first in vivo images of electric current density distributions within the brain in four subjects undergoing transcranial electrical stimulation. METHODS Magnetic resonance electrical impedance tomography (MREIT) techniques encode current flow in phase images. In four human subjects, we used MREIT to measure magnetic flux density distributions caused by tACS currents, and then calculated current density distributions from these data. Computational models of magnetic flux and current distribution, constructed using contemporaneously collected T1-weighted structural MRI images, were co-registered to compare predicted and experimental results. RESULTS We found consistency between experimental and simulated magnetic flux and current density distributions using transtemporal (T7-T8) and anterior-posterior (Fpz-Oz) electrode montages, and also differences that may indicate a need to improve models to better interpret experimental results. While human subject data agreed with computational model predictions in overall scale, differences may result from factors such as effective electrode surface area and conductivities assumed in models. CONCLUSIONS We believe this method may be useful in improving reproducibility, assessing safety, and ultimately aiding understanding of mechanisms of action in electrical and magnetic neuromodulation modalities.
Collapse
Affiliation(s)
- A K Kasinadhuni
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville FL, USA
| | - A Indahlastari
- School of Biological and Health Systems Engineering, Arizona State University, Tempe AZ, USA
| | - M Chauhan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe AZ, USA
| | - Michael Schär
- Department of Radiology, Johns Hopkins University, Baltimore MD, USA
| | - T H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville FL, USA
| | - R J Sadleir
- Department of Radiology, Johns Hopkins University, Baltimore MD, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe AZ, USA.
| |
Collapse
|