1
|
Tennakoon R, Bily TM, Hasan F, Syal S, Voigt A, Balci TB, Hoffman KS, O’Donoghue P. Glutamine missense suppressor transfer RNAs inhibit polyglutamine aggregation. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102442. [PMID: 39897579 PMCID: PMC11787650 DOI: 10.1016/j.omtn.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Huntington's disease (HD) is caused by polyglutamine (polyQ) repeat expansions in the huntingtin gene. HD-causative polyQ alleles lead to protein aggregation, which is a prerequisite for disease. Translation fidelity modifies protein aggregation, and several studies suggest that mutating one or two glutamine (Gln) residues in polyQ reduces aggregation. Thus, we hypothesized that missense suppression of Gln codons with other amino acids will reduce polyQ aggregate formation in cells. In neuroblastoma cells, we assessed tRNA variants that misread Gln codons with serine (tRNASer C/UUG) or alanine (tRNAAla C/UUG). The tRNAs with the CUG anticodon were more effective at suppressing the CAG repeats in polyQ, and serine and alanine mis-incorporation had differential impacts on polyQ. The expression of tRNASer CUG reduced polyQ protein production as well as both soluble and insoluble aggregate formation. In contrast, cells expressing tRNAAla CUG selectively decreased insoluble polyQ aggregate formation by 2-fold. Mass spectrometry confirmed Ala mis-incorporation at an average level of ∼20% per Gln codon. Cells expressing the missense suppressor tRNAs showed no cytotoxic effects and no defects in growth or global protein synthesis levels. Our findings demonstrate that tRNA-dependent missense suppression of Gln codons is well tolerated in mammalian cells and significantly reduces polyQ levels and aggregates that cause HD.
Collapse
Affiliation(s)
- Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Teija M.I. Bily
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sunidhi Syal
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen, 52062 Aachen, Germany
| | - Tugce B. Balci
- Department of Paediatrics, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Kokona B, Cunningham NR, Quinn JM, Jacobsen DR, Garcia FJ, Galindo SM, Petrucelli L, Stafford WF, Laue TM, Fairman R. Studying C9orf72 dipeptide repeat polypeptide aggregation using an analytical ultracentrifuge equipped with fluorescence detection. Anal Biochem 2025; 697:115720. [PMID: 39581338 PMCID: PMC11624972 DOI: 10.1016/j.ab.2024.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Sedimentation velocity, using an analytical ultracentrifuge equipped with fluorescence detection, and electrophoresis methods are used to study aggregation of proteins in transgenic animal model systems. Our previous work validated the power of this approach in an analysis of mutant huntingtin aggregation. We demonstrate that this method can be applied to another neurodegenerative disease studying the aggregation of three dipeptide repeats (DPRs) produced by aberrant translation of mutant c9orf72 containing large G4C2 hexanucleotide repeats. These repeat expansions are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We analyzed the aggregation patterns of (Gly-Pro)47, (Gly-Ala)50, and (Gly-Arg)50 fused to fluorescent proteins in samples prepared from D. melanogaster, and (Gly-Ala)50 in C. elegans, using AU-FDS and SDD-AGE. Results suggest that (GP)47 is largely monomeric. In contrast, (GA)50 forms both intermediate and large-scale aggregates. (GR)50 is partially monomeric with some aggregation noted in SDD-AGE analysis. The aggregation of this DPR is likely to represent co-aggregated states with DNA and/or RNA. The power of these methods is the ability to gather data on aggregation patterns and characteristics in animal model systems, which may then be used to interpret the mitigation of aggregation through genetic or molecular therapeutic interventions.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Nicole R Cunningham
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Jeanne M Quinn
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Danielle R Jacobsen
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - F Jay Garcia
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Sierra M Galindo
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | | | - Thomas M Laue
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA
| | - Robert Fairman
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA.
| |
Collapse
|
3
|
Samanta S, Chakraborty S, Bagchi D. Pathogenesis of Neurodegenerative Diseases and the Protective Role of Natural Bioactive Components. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:20-32. [PMID: 37186678 DOI: 10.1080/27697061.2023.2203235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Neurodegenerative diseases are a serious problem throughout the world. There are several causes of neurodegenerative diseases; these include genetic predisposition, accumulation of misfolded proteins, oxidative stress, neuroinflammation, and excitotoxicity. Oxidative stress increases the production of reactive oxygen species (ROS) that advance lipid peroxidation, DNA damage, and neuroinflammation. The cellular antioxidant system (superoxide dismutase, catalase, peroxidase, and reduced glutathione) plays a crucial role in scavenging free radicals. An imbalance in the defensive actions of antioxidants and overproduction of ROS intensify neurodegeneration. The formation of misfolded proteins, glutamate toxicity, oxidative stress, and cytokine imbalance promote the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Antioxidants are now attractive molecules to fight against neurodegeneration. Certain vitamins (A, E, C) and polyphenolic compounds (flavonoids) show excellent antioxidant properties. Diet is the major source of antioxidants. However, diet medicinal herbs are also rich sources of numerous flavonoids. Antioxidants prevent ROS-mediated neuronal degeneration in post-oxidative stress conditions. The present review is focused on the pathogenesis of neurodegenerative diseases and the protective role of antioxidants. KEY TEACHING POINTSThis review shows that multiple factors are directly or indirectly associated with the pathogenesis of neurodegenerative diseases.Failure to cellular antioxidant capacity increases oxidative stress that intensifies neuroinflammation and disease progression.Different vitamins, carotenoids, and flavonoids, having antioxidant capacity, can be considered protective agents.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, New York, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
4
|
Khan A, Özçelik CE, Begli O, Oguz O, Kesici MS, Kasırga TS, Özçubukcu S, Yuca E, Seker UOS. Highly Potent Peptide Therapeutics To Prevent Protein Aggregation in Huntington's Disease. ACS Med Chem Lett 2023; 14:1821-1826. [PMID: 38116434 PMCID: PMC10726468 DOI: 10.1021/acsmedchemlett.3c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder resulting from a significant amplification of CAG repeats in exon 1 of the Huntingtin (Htt) gene. More than 36 CAG repeats result in the formation of a mutant Htt (mHtt) protein. These amino-terminal mHtt fragments lead to the formation of misfolded proteins, which then form aggregates in the relevant brain regions. Therapies that can delay the progression of the disease are imperative to halting the course of the disease. Peptide-based drug therapies provide such a platform. Inhibitory peptides were screened against monomeric units of both wild type (Htt(Q25)) and mHtt fragments, Htt(Q46) and Htt(Q103). Fibril kinetics was studied by utilizing the Thioflavin T (ThT) assay. Atomic force microscopy was also used to study the influence of the peptides on fibril formation. These experiments demonstrate that the chosen peptides suppress the formation of fibrils in mHtt proteins and can provide a therapeutic lead for further optimization and development.
Collapse
Affiliation(s)
- Anooshay Khan
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Department
of Neurosciences, Bilkent University, 06800 Ankara, Turkey
| | - Cemile Elif Özçelik
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ozge Begli
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Oguzhan Oguz
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Mehmet Seçkin Kesici
- Department
of Chemistry, Faculty of Science, Middle
East Technical University, Ankara 06800, Turkey
| | - Talip Serkan Kasırga
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Salih Özçubukcu
- Department
of Chemistry, Faculty of Science, Middle
East Technical University, Ankara 06800, Turkey
| | - Esra Yuca
- Department
of Molecular Biology and Genetics, Yildiz
Technical University, Istanbul 34349, Turkey
- Health
Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul 34220, Turkey
| | - Urartu Ozgur Safak Seker
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Department
of Neurosciences, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
5
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
6
|
Andersen N, Veuthey T, Blanco MG, Silbestri GF, Rayes D, De Rosa MJ. 1-Mesityl-3-(3-Sulfonatopropyl) Imidazolium Protects Against Oxidative Stress and Delays Proteotoxicity in C. elegans. Front Pharmacol 2022; 13:908696. [PMID: 35685626 PMCID: PMC9171001 DOI: 10.3389/fphar.2022.908696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Due to the increase in life expectancy worldwide, age-related disorders such as neurodegenerative diseases (NDs) have become more prevalent. Conventional treatments comprise drugs that only attenuate some of the symptoms, but fail to arrest or delay neuronal proteotoxicity that characterizes these diseases. Due to their diverse biological activities, imidazole rings are intensively explored as powerful scaffolds for the development of new bioactive molecules. By using C. elegans, our work aims to explore novel biological roles for these compounds. To this end, we have tested the in vivo anti-proteotoxic effects of imidazolium salts. Since NDs have been largely linked to impaired antioxidant defense mechanisms, we focused on 1-Mesityl-3-(3-sulfonatopropyl) imidazolium (MSI), one of the imidazolium salts that we identified as capable of improving iron-induced oxidative stress resistance in wild-type animals. By combining mutant and gene expression analysis we have determined that this protective effect depends on the activation of the Heat Shock Transcription Factor (HSF-1), whereas it is independent of other canonical cytoprotective molecules such as abnormal Dauer Formation-16 (DAF-16/FOXO) and Skinhead-1 (SKN-1/Nrf2). To delve deeper into the biological roles of MSI, we analyzed the impact of this compound on previously established C. elegans models of protein aggregation. We found that MSI ameliorates β-amyloid-induced paralysis in worms expressing the pathological protein involved in Alzheimer’s Disease. Moreover, this compound also delays age-related locomotion decline in other proteotoxic C. elegans models, suggesting a broad protective effect. Taken together, our results point to MSI as a promising anti-proteotoxic compound and provide proof of concept of the potential of imidazole derivatives in the development of novel therapies to retard age-related proteotoxic diseases.
Collapse
Affiliation(s)
- Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Gustavo Fabian Silbestri
- Departamento de Química, INQUISUR, Universidad Nacional Del Sur, UNS-CONICET, Bahía Blanca, Argentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
- *Correspondence: Diego Rayes, ; María José De Rosa,
| |
Collapse
|
7
|
Park S, Wang X, Xi W, Richardson R, Laue TM, Denis CL. The non-prion SUP35 preexists in large chaperone-containing molecular complexes. Proteins 2022; 90:869-880. [PMID: 34791707 PMCID: PMC8816864 DOI: 10.1002/prot.26282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022]
Abstract
Prions, misfolded proteins that aggregate, cause an array of progressively deteriorating conditions to which, currently, there are no effective treatments. The presently accepted model indicates that the soluble non-prion forms of prion-forming proteins, such as the well-studied SUP35, do not exist in large aggregated molecular complexes. Here, we show using analytical ultracentrifugation with fluorescent detection that the non-prion form of SUP35 exists in a range of discretely sized soluble complexes (19S, 28S, 39S, 57S, and 70S-200S). Similar to the [PSI+] aggregated complexes, each of these [psi-] complexes associates at stoichiometric levels with a large variety of molecular chaperones: HSP70 proteins comprise the major component. Another yeast prion-forming protein, RNQ1 (known to promote the production of the prion SUP35 state), is also present in SUP35 complexes. These results establish that the non-prion SUP35, like its prion form, is predisposed to form large molecular complexes containing chaperones and other prion-forming proteins. These results agree with our previous studies on the huntingtin protein. That the normal forms for aggregation-prone proteins may preexist in large molecular complexes has important ramifications for the progression of diseases involving protein aggregation.
Collapse
|
8
|
Jarosińska OD, Rüdiger SGD. Molecular Strategies to Target Protein Aggregation in Huntington's Disease. Front Mol Biosci 2021; 8:769184. [PMID: 34869596 PMCID: PMC8636123 DOI: 10.3389/fmolb.2021.769184] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the aggregation of the mutant huntingtin (mHTT) protein in nerve cells. mHTT self-aggregates to form soluble oligomers and insoluble fibrils, which interfere in a number of key cellular functions. This leads to cell quiescence and ultimately cell death. There are currently still no treatments available for HD, but approaches targeting the HTT levels offer systematic, mechanism-driven routes towards curing HD and other neurodegenerative diseases. This review summarizes the current state of knowledge of the mRNA targeting approaches such as antisense oligonucleotides and RNAi system; and the novel methods targeting mHTT and aggregates for degradation via the ubiquitin proteasome or the autophagy-lysosomal systems. These methods include the proteolysis-targeting chimera, Trim-Away, autophagosome-tethering compound, autophagy-targeting chimera, lysosome-targeting chimera and approach targeting mHTT for chaperone-mediated autophagy. These molecular strategies provide a knowledge-based approach to target HD and other neurodegenerative diseases at the origin.
Collapse
Affiliation(s)
- Olga D. Jarosińska
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:671-685. [PMID: 33564930 DOI: 10.1007/s00249-021-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Intrinsically disordered proteins (IDPs) have captured attention in the last couple of decades due to their functional roles despite a lack of specific structure. Moreover, these proteins are found to be highly aggregation prone depending on the mutational and environmental changes to which they are subjected. The aggregation of such proteins either in the intracellular context or extracellular matrix is associated with several adverse pathophysiological conditions such as Alzheimer's, Parkinson's, and Huntington's diseases, Spinocerebellar ataxia, and Type-II diabetes. Interestingly, it has been noted that the smaller oligomers formed by IDPs are more toxic to cells than their larger aggregates. This necessitates the development of techniques that can detect the smaller oligomers formed by IDPs for diagnosis of such diseases during their early onset. Fluorescence-based spectroscopic and microscopic techniques are highly effective as compared to other techniques for the evaluation of protein oligomerization, organization, and dynamics. In this review, we discuss several fluorescence-based techniques including fluorescence/Förster resonance energy transfer (FRET), homo-FRET, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging (FLIM), and photobleaching image correlation spectroscopy (pbICS) that are routinely used to identify protein oligomers in extracellular and intracellular matrices.
Collapse
|
10
|
Kumar MJV, Shah D, Giridharan M, Yadav N, Manjithaya R, Clement JP. Spatiotemporal analysis of soluble aggregates and autophagy markers in the R6/2 mouse model. Sci Rep 2021; 11:96. [PMID: 33420088 PMCID: PMC7794371 DOI: 10.1038/s41598-020-78850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Maintenance of cellular proteostasis is vital for post-mitotic cells like neurons to sustain normal physiological function and homeostasis, defects in which are established hallmarks of several age-related conditions like AD, PD, HD, and ALS. The Spatio-temporal accumulation of aggregated proteins in the form of inclusion bodies/plaques is one of the major characteristics of many neurodegenerative diseases, including Huntington's disease (HD). Toxic accumulation of HUNTINGTIN (HTT) aggregates in neurons bring about the aberrant phenotypes of HD, including severe motor dysfunction, dementia, and cognitive impairment at the organismal level, in an age-dependent manner. In several cellular and animal models, aggrephagy induction has been shown to clear aggregate-prone proteins like HTT and ameliorate disease pathology by conferring neuroprotection. In this study, we used the mouse model of HD, R6/2, to understand the pathogenicity of mHTT aggregates, primarily focusing on autophagy dysfunction. We report that basal autophagy is not altered in R6/2 mice, whilst being functional at a steady-state level in neurons. Moreover, we tested the efficacy of a known autophagy modulator, Nilotinib (Tasigna™), presently in clinical trials for PD, and HD, in curbing mHTT aggregate growth and their potential clearance, which was ineffective in both inducing autophagy and rescuing the pathological phenotypes in R6/2 mice.
Collapse
Affiliation(s)
- M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Devanshi Shah
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Mridhula Giridharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Niraj Yadav
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
11
|
Di Cristo F, Calarco A, Digilio FA, Sinicropi MS, Rosano C, Galderisi U, Melone MAB, Saturnino C, Peluso G. The Discovery of Highly Potent THP Derivatives as OCTN2 Inhibitors: From Structure-Based Virtual Screening to In Vivo Biological Activity. Int J Mol Sci 2020; 21:7431. [PMID: 33050117 PMCID: PMC7583931 DOI: 10.3390/ijms21197431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
A mismatch between β-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.
Collapse
Affiliation(s)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy;
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Vico Luigi De Crecchio 1, 80138 Naples, Italy;
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, via Sergio Pansini 5, 80131 Naples, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| |
Collapse
|
12
|
Sun Y, Jiang X, Pan R, Zhou X, Qin D, Xiong R, Wang Y, Qiu W, Wu A, Wu J. Escins Isolated from Aesculus chinensis Bge. Promote the Autophagic Degradation of Mutant Huntingtin and Inhibit its Induced Apoptosis in HT22 cells. Front Pharmacol 2020; 11:116. [PMID: 32158393 PMCID: PMC7052340 DOI: 10.3389/fphar.2020.00116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
The pathogenesis of Huntington’s disease (HD), an inherited progressive neurodegenerative disease, is highly associated with the cytotoxicity-inducing mutant huntingtin (mHtt) protein. Emerging evidence indicates that autophagy plays a pivotal role in degrading aggregated proteins such as mHtt to enhance neuronal viability. In this study, by employing preparative high-performance liquid chromatography (pre-HPLC), ultra-high performance liquid chromatography diode-array-detector quadrupole time-of-flight mass spectrometry (UHPLC-DAD-Q-TOF-MS) and nuclear magnetic resonance (NMR), three escins, escin IA (EA), escin IB (EB) and isoescin IA (IEA), were isolated and identified from the seed of Aesculus chinensis Bge. (ACB). After EGFP-HTT74-overexpressing HT22 cells were treated with EA, EB and IEA at safe concentrations, the clearance of mHtt and mHtt-induced apoptosis were investigated by Western blot, immunofluorescence microscopy and flow cytometry methods. In addition, the autophagy induced by these escins in HT22 cells was monitored by detecting GFP-LC3 puncta, P62 and LC3 protein expression. The results showed that EA, EB and IEA could significantly decrease mHtt levels and inhibit its induced apoptosis in HT22 cells. In addition, these three saponins induced autophagic flux by increasing the ratio of RFP-LC3 to GFP-LC3, and by decreasing P62 expression. Among the tested escins, EB displayed the best autophagy induction, which was regulated via both the mTOR and ERK signaling pathways. Furthermore, the degradation of mHtt and the commensurate decrease in its cytotoxic effects by EA, EB and IEA were demonstrated to be closely associated with autophagy induction, which depended on ATG7. In conclusion, we are the first to report that the escins, including EA, EB and IEA are novel autophagy inducers that degrade mHtt and inhibit mHtt-induced apoptosis in vitro and in vivo. As a result of these findings, the triterpenoid saponins in ACB might be considered to be promising candidates for the treatment of HD in the future.
Collapse
Affiliation(s)
- Yueshan Sun
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xueqin Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Rong Pan
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Rui Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yiling Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenqiao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Rencus-Lazar S, DeRowe Y, Adsi H, Gazit E, Laor D. Yeast Models for the Study of Amyloid-Associated Disorders and Development of Future Therapy. Front Mol Biosci 2019; 6:15. [PMID: 30968029 PMCID: PMC6439353 DOI: 10.3389/fmolb.2019.00015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
First described almost two decades ago, the pioneering yeast models of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, have become well-established research tools, providing both basic mechanistic insights as well as a platform for the development of therapeutic agents. These maladies are associated with the formation of aggregative amyloid protein structures showing common characteristics, such as the assembly of soluble oligomeric species, binding of indicative dyes, and apoptotic cytotoxicity. The canonical yeast models have recently been expanded by the establishment of a model for type II diabetes, a non-neurological amyloid-associated disease. While these model systems require the exogenous expression of mammalian proteins in yeast, an additional amyloid-associated disease model, comprising solely mutations of endogenous yeast genes, has been recently described. Mutated in the adenine salvage pathway, this yeast model exhibits adenine accumulation, thereby recapitulating adenine inborn error of metabolism disorders. Moreover, in line with the recent extension of the amyloid hypothesis to include metabolite amyloids, in addition to protein-associated ones, the intracellular assembly of adenine amyloid-like structures has been demonstrated using this yeast model. In this review, we describe currently available yeast models of diverse amyloid-associated disorders, as well as their impact on our understanding of disease mechanisms and contribution to future potential drug development.
Collapse
Affiliation(s)
- Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin DeRowe
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanaa Adsi
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dana Laor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Kokona B, Cunningham NR, Quinn JM, Fairman R. Aggregation Profiling of C9orf72 Dipeptide Repeat Proteins Transgenically Expressed in Drosophila melanogaster Using an Analytical Ultracentrifuge Equipped with Fluorescence Detection. Methods Mol Biol 2019; 2039:81-90. [PMID: 31342420 DOI: 10.1007/978-1-4939-9678-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent development of a fluorescence detection system for the analytical ultracentrifuge has allowed for the characterization of protein size and aggregation in complex mixtures. Protocols are described here to analyze protein aggregation seen in various human neurodegenerative diseases as they are presented in transgenic animal model systems. Proper preparation of crude extracts in appropriate sample buffers is critical for success in analyzing protein aggregation using sedimentation velocity methods. Furthermore, recent advances in sedimentation velocity analysis have led to data collection using single multispeed experiments, which may be analyzed using a wide distribution analysis approach. In this chapter, we describe the use of these new sedimentation velocity methods for faster determination of a wider range of sizes. In Chapter 7 of this book, we describe how agarose gel electrophoresis can be used to complement the analytical ultracentrifugation work, often as a prelude to careful biophysical analysis to help screen conditions in order to improve the success of sedimentation velocity experiments.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Jeanne M Quinn
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, PA, USA.
| |
Collapse
|
15
|
Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D. Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front Mol Neurosci 2018; 11:318. [PMID: 30233317 PMCID: PMC6131589 DOI: 10.3389/fnmol.2018.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that leads to progressive neuronal loss, provoking impaired motor control, cognitive decline, and dementia. So far, HD remains incurable, and available drugs are effective only for symptomatic management. HD is caused by a mutant form of the huntingtin protein, which harbors an elongated polyglutamine domain and is highly prone to aggregation. However, many aspects underlying the cytotoxicity of mutant huntingtin (mHTT) remain elusive, hindering the efficient development of applicable interventions to counteract HD. An important strategy to obtain molecular insights into human disorders in general is the use of eukaryotic model organisms, which are easy to genetically manipulate and display a high degree of conservation regarding disease-relevant cellular processes. The budding yeast Saccharomyces cerevisiae has a long-standing and successful history in modeling a plethora of human maladies and has recently emerged as an effective tool to study neurodegenerative disorders, including HD. Here, we summarize some of the most important contributions of yeast to HD research, specifically concerning the elucidation of mechanistic features of mHTT cytotoxicity and the potential of yeast as a platform to screen for pharmacological agents against HD.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
16
|
Identification of a 57S translation complex containing closed-loop factors and the 60S ribosome subunit. Sci Rep 2018; 8:11468. [PMID: 30065356 PMCID: PMC6068138 DOI: 10.1038/s41598-018-29832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/19/2018] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic translation the 60S ribosome subunit has not been proposed to interact with mRNA or closed-loop factors eIF4E, eIF4G, and PAB1. Using analytical ultracentrifugation with fluorescent detection system, we have identified a 57S translation complex that contains the 60S ribosome, mRNA, and the closed-loop factors. Previously published data by others also indicate the presence of a 50S-60S translation complex containing these same components. We have found that the abundance of this complex increased upon translational cessation, implying formation after ribosomal dissociation. Stoichiometric analyses of the abundances of the closed-loop components in the 57S complex indicate this complex is most similar to polysomal and monosomal translation complexes at the end of translation rather than at the beginning or middle of translation. In contrast, a 39S complex containing the 40S ribosome bound to mRNA and closed-loop factors was also identified with stoichiometries most similar to polysomal complexes engaged in translation, suggesting that the 39S complex is the previously studied 48S translation initiation complex. These results indicate that the 60S ribosome can associate with the closed-loop mRNA structure and plays a previously undetected role in the translation process.
Collapse
|
17
|
|
18
|
Pandey M, Rajamma U. Huntington's disease: the coming of age. J Genet 2018; 97:649-664. [PMID: 30027901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Huntington's disease (HD) is caused due to an abnormal expansion of polyglutamine repeats in the first exon of huntingtin gene. The mutation in huntingtin causes abnormalities in the functioning of protein, leading to deleterious effects ultimately to the demise of specific neuronal cells.The disease is inherited in an autosomal dominant manner and leads to a plethora of neuropsychiatric behaviour and neuronal cell death mainly in striatal and cortical regions of the brain, eventually leading to death of the individual. The discovery of the mutant gene led to a surge in molecular diagnostics of the disease and in making different transgenic models in different organisms to understand the function of wild-type and mutant proteins. Despite difficult challenges, there has been a significant increase in understanding the functioning of the protein in normal and other gain-of-function interactions in mutant form. However, there have been no significant improvements in treatments of the patients suffering from this ailment and most of the treatment is still symptomatic. HD warrants more attention towards better understanding and treatment as more advancement in molecular diagnostics and therapeutic interventions are available. Several different transgenic models are available in different organisms, ranging from fruit flies to primate monkeys, for studies on understanding the pathogenicity of the mutant gene. It is the right time to assess the advancement in the field and try new strategies for neuroprotection using key pathways as target. The present review highlights the key ingredients of pathology in the HD and discusses important studies for drug trials and future goals for therapeutic interventions.
Collapse
Affiliation(s)
- Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
19
|
Denis CL, Richardson R, Park S, Zhang C, Xi W, Laue TM, Wang X. Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size. Proteins 2018; 86:177-191. [PMID: 29139201 PMCID: PMC5897186 DOI: 10.1002/prot.25422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/23/2022]
Abstract
The eukaryotic eRF1 translation termination factor plays an important role in recognizing stop codons and initiating the end to translation. However, which exact complexes contain eRF1 and at what abundance is not clear. We have used analytical ultracentrifugation with fluorescent detection system to identify the protein complexome of eRF1 in the yeast Saccharomyces cerevisiae. In addition to eRF1 presence in translating polysomes, we found that eRF1 associated with five other macromolecular complexes: 77S, 57S, 39S, 28S, and 20S in size. Generally equal abundances of each of these complexes were found. The 77S complex primarily contained the free 80S ribosome consistent with in vitro studies and did not appear to contain significant levels of the monosomal translating complex that co-migrates with the free 80S ribosome. The 57S and 39S complexes represented, respectively, free 60S and 40S ribosomal subunits bound to eRF1, associations not previously reported. The novel 28S and 20S complexes (containing minimal masses of 830 KDa and 500 KDa, respectively) lacked significant RNA components and appeared to be oligomeric, as eRF1 has a mass of 49 KDa. The majority of polysomal complexes containing eRF1 were both substantially deadenylated and lacking in closed-loop factors eIF4E and eIF4G. The thirteen percent of such translating polysomes that contained poly(A) tails had equivalent levels of eIF4E and eIF4G, suggesting these complexes were in a closed-loop structure. The identification of eRF1 in these unique and previously unrecognized complexes suggests a variety of new roles for eRF1 in the regulation of cellular processes.
Collapse
Affiliation(s)
- Clyde L. Denis
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Roy Richardson
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Shiwha Park
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Chongxu Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Wen Xi
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Thomas M. Laue
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| |
Collapse
|
20
|
Kim SA, D'Acunto VF, Kokona B, Hofmann J, Cunningham NR, Bistline EM, Garcia FJ, Akhtar NM, Hoffman SH, Doshi SH, Ulrich KM, Jones NM, Bonini NM, Roberts CM, Link CD, Laue TM, Fairman R. Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans. Biochemistry 2017; 56:4676-4688. [PMID: 28786671 DOI: 10.1021/acs.biochem.7b00518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington's disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.
Collapse
Affiliation(s)
- Surin A Kim
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Victoria F D'Acunto
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Bashkim Kokona
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Jennifer Hofmann
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Nicole R Cunningham
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Emily M Bistline
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - F Jay Garcia
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Nabeel M Akhtar
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Susanna H Hoffman
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Seema H Doshi
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Kathleen M Ulrich
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Nicholas M Jones
- Department of Psychology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Christine M Roberts
- Integrative Physiology, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Christopher D Link
- Integrative Physiology, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Thomas M Laue
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire , Durham, New Hampshire 03824, United States
| | - Robert Fairman
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| |
Collapse
|