1
|
Zhao T, Li K, Zhang Y, Dong Y, Li Y, Pang M, Wei Y, Yao B, Zhu Q. N6-methyladenosine-modified circQKI inhibits prostate cancer docetaxel-sensitivity via miR-188-3p/Beclin-1 pathway. Life Sci 2025; 372:123646. [PMID: 40250752 DOI: 10.1016/j.lfs.2025.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Docetaxel (DTX) is used in the first-line chemotherapy for advanced castration-resistant prostate cancer (CRPC), but resistance remains a major clinical challenge. Circular RNAs (circRNAs) play critical roles in DTX resistance. This study aimed to investigate the mechanism of a novel circRNA, circQKI, in DTX resistance and its regulatory network in CRPC. METHODS DTX-resistant cell lines (PC3/DR and 22RV1/DR) were established, and circQKI's circular structure was validated by Sanger sequencing. CircQKI expression was modulated via siRNA knockdown and overexpression plasmids. Cell viability, apoptosis, and colony formation were assessed by CCK-8, flow cytometry, and clonogenic assays. The interaction between circQKI and miR-188-3p was verified by dual-luciferase reporter, RIP, and RNA pull-down. Autophagy activation was analyzed via Western blot and TEM. Subcutaneous xenograft models evaluated in vivo drug resistance. M6A modification was investigated through m6A RIP-PCR, METTL3/IGF2BP2 knockdown, and stability assays. RESULTS CircQKI was significantly upregulated in resistant cells and promoted DTX resistance by sponging miR-188-3p, thereby enhancing Beclin-1 expression and autophagy activation. Inhibiting Beclin-1 or co-treatment with chloroquine (CQ) partially restored DTX sensitivity. Mechanistically, METTL3-mediated m6A modification stabilized circQKI via IGF2BP2 recognition, leading to its accumulation in resistant cells. In vivo studies confirmed that circQKI overexpression reduced tumor sensitivity to DTX by enhancing autophagy. CONCLUSION circQKI drives DTX resistance via the miR-188-3p/Beclin-1 axis and autophagy activation, with its expression regulated by METTL3-dependent m6A modification and IGF2BP2. Targeting circQKI or autophagy pathways may offer novel therapeutic strategies to overcome DTX resistance in prostate cancer.
Collapse
MESH Headings
- Humans
- Male
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Docetaxel/pharmacology
- Animals
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Mice
- Beclin-1/metabolism
- Beclin-1/genetics
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Cell Line, Tumor
- Mice, Nude
- Gene Expression Regulation, Neoplastic/drug effects
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Mice, Inbred BALB C
- Autophagy/drug effects
- Antineoplastic Agents/pharmacology
- Signal Transduction/drug effects
- Methyltransferases
Collapse
Affiliation(s)
- Tong Zhao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Li
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yetao Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiang Dong
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongshan Li
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingyang Pang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Bing Yao
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Lee YC, Lin YC, Wu YS, Tsao YY, Lin YC, Lin HH, Hsu YF, Wu YC, Lin CC, Tzeng HE, Wang PH, Chang WW, Hsiao KY. Nuclear circGUSBP1 promotes cancer stemness via transcriptional coordination with OCT4. Life Sci 2025; 374:123707. [PMID: 40360086 DOI: 10.1016/j.lfs.2025.123707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
AIMS Endometrial cancer (ECa) is a prevalent gynecological malignancy, with treatment often hindered by metastasis and recurrence driven by cancer stem-like cells. While circular RNAs (circRNAs) are well known for their cytoplasmic roles as microRNA sponges, their nuclear functions remain largely unexplored. This study investigates nuclear circRNAs and their roles in regulating cancer stem-like properties in ECa. MATERIALS AND METHODS Nuclear RNA sequencing data were analyzed to identify nuclear-enriched circRNAs. The subcellular localization of circGUSBP1 and circZNF680 was assessed via nuclear-cytoplasmic fractionation and RT-qPCR. The functional impact of circGUSBP1 was evaluated using tumorsphere formation, migration, and cisplatin sensitivity assays. Transcriptomic profiling and survival analysis were conducted using circGUSBP1-knockdown ECa cells and The Cancer Genome Atlas (TCGA) dataset. KEY FINDINGS CircGUSBP1 exhibited a high circular-to-linear transcript ratio and was preferentially nuclear, independent of intron retention. Its expression correlated with NANOG and OCT4 upregulation. Overexpression of circGUSBP1 enhanced tumorsphere formation, whereas circGUSBP1-knockdown (KD) reduced tumorsphere formation, impaired migration, and increased cisplatin sensitivity. Transcriptomic analysis revealed downregulation of stemness-related genes, supporting its role as a transcriptional co-activator. Notably, 230 circGUSBP1-regulated genes were co-targeted by OCT4, including SUPT16H and SUV39H2, chromatin remodelers linked to poor prognosis in ECa patients. Higher GUSBP1 expression, but not GUSB, correlated with worse survival outcomes in TCGA data. SIGNIFICANCE These findings identify circGUSBP1 as a nuclear regulator of cancer stemness. Through circGUSBP1/OCT4 co-regulation of chromatin modulators, circGUSBP1 promotes aggressive tumor behavior, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 402306, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Ya-Chi Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung 404328, Taiwan; Department of Biomedical Informatics, China Medical University, Taichung 404328, Taiwan
| | - Yu-Shiue Wu
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Yun-Ya Tsao
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yun-Chieh Lin
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Hui-Hsuan Lin
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yu-Feng Hsu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yu-Chen Wu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chien-Cheng Lin
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Huey-En Tzeng
- Department of Oncology and Precision Medicine Center, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Kuei-Yang Hsiao
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402202, Taiwan; Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan.
| |
Collapse
|
3
|
Shafaghat Z, Radmehr S, Saharkhiz S, Khosrozadeh A, Feiz K, Alkhathami AG, Taheripak G, Ramezani Farani M, Rahmati R, Zarimeidani F, Bassereh H, Bakhtiyari S, Alipourfard I. Circular RNA, A Molecule with Potential Chemistry and Applications in RNA-based Cancer Therapeutics: An Insight into Recent Advances. Top Curr Chem (Cham) 2025; 383:21. [PMID: 40343623 PMCID: PMC12064628 DOI: 10.1007/s41061-025-00505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Among these, circular RNAs (circRNAs) represent a recently identified class of endogenous ncRNAs with a pivotal role in gene regulation, alongside short ncRNAs (e.g., microRNAs or miRNAs) and long non-coding RNAs (lncRNAs). CircRNAs are characterized by their single-stranded, covalently closed circular structure, which lacks polyadenylated tails and 5'-3' ends. This unique circular conformation makes them resistant to exonuclease degradation, rendering them more stable than linear RNAs, such as mRNAs in human blood cells, which highlights their potential as biomarkers. Both linear and circular RNAs are derived from pre-mRNA precursors. However, while linear RNAs are produced through conventional splicing, circRNAs are primarily formed through a process known as reverse splicing. CircRNAs can be categorized into five basic types: exon circRNAs, circular intronic RNAs, exon-intron circRNAs, intergenic circRNAs, and fusion circRNAs. These molecules have been shown to significantly influence key hallmarks of cancer, including sustained growth signaling, proliferation, angiogenesis, resistance to apoptosis, unlimited replicative potential, and metastasis. This article will delve into the biogenesis and functions of circRNAs, explore their roles in cancer, and discuss their potential applications as therapeutic options and diagnostic biomarkers.
Collapse
Affiliation(s)
- Zahra Shafaghat
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Radmehr
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amirhossein Khosrozadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Feiz
- Biology Department, Texas State University, San Marcos, TX, USA
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P. O. Box 61413, 9088, Abha, Saudi Arabia
| | - Gholamreza Taheripak
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, Republic of Korea
| | - Rahem Rahmati
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Zarimeidani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hassan Bassereh
- Computational Discovery Research Group, Institute for Diabetes and Obesity, Helmholtz, Munich, Germany
| | - Salar Bakhtiyari
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Department of Regenerative Medicine, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| |
Collapse
|
4
|
Gao Y, Dong Y, Jiang N, Zhang H, Liu Z, Wang Q, Fu Y, Li J, Li Z, Pan H, Zheng X, Zhan L, Yang X, Xu L, Chen M. Atrial remodelling and atrial fibrillation self-sustaining: the role of circulating circDGCR8. Cardiovasc Res 2025:cvaf060. [PMID: 40336343 DOI: 10.1093/cvr/cvaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/14/2024] [Accepted: 12/15/2024] [Indexed: 05/09/2025] Open
Abstract
AIMS The prediction of atrial fibrillation (AF) progression and post-ablation recurrence is currently based on empirical estimates, leading to suboptimal predictive accuracy. This study investigates whether atrial remodelling, a key factor in the severity of atrial cardiomyopathy, could serve as a shared substrate influencing both AF progression and recurrence. We aimed to identify circular RNAs (circRNAs) associated with atrial remodelling and to evaluate their ability to predict AF progression and recurrence. METHODS AND RESULTS We assessed the differential expression of plasma circRNAs between paroxysmal (PAF) and persistent AF (PsAF) patients using microarray analysis. Selected candidate circRNAs were validated through qPCR following rigorous statistical and bioinformatics analysis. circDGCR8 was consistently found to be up-regulated in PsAF compared with PAF patients. Additionally, circDGCR8 was significantly up-regulated in human atrial fibroblasts treated with angiotensin II (AngII). Gain- and loss-of-function studies suggested that circDGCR8 could promote atrial remodelling at cellular level by enhancing collagen production and fibroblast proliferation. Overexpression of circDGCR8 in human cardiac fibroblasts significantly altered the gene expression spectrum, impacting pathways including IL-17 signalling and TNF signalling. Moreover, circDGCR8 levels were positively correlated with atrial fibrosis, as indicated by increased percentages of low voltage zones. The predictive value of circDGCR8 was evaluated in two cohorts: (i) PAF patients monitored for 36 months with progression to PsAF as the endpoint, and (ii) AF patients who underwent radiofrequency ablation followed for 12 months to assess recurrence. In both cohorts, higher level of circDGCR8 was associated with increased risks of AF progression and post-ablation recurrence. CONCLUSION Our results suggest that circDGCR8, associated with atrial remodelling, holds potential as a predictive biomarker for both AF progression and post-ablation recurrence.
Collapse
Affiliation(s)
- Yuanfeng Gao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Ying Dong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Nan Jiang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, No. 22, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street PH-10 Suite 305, New York, NY 10032, USA
| | - Zheng Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Qianhui Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Yuan Fu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Huize Pan
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street PH-10 Suite 305, New York, NY 10032, USA
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI 48109-5618, USA
| | - Lingyu Zhan
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Gonda 4335A, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Li Xu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Mulei Chen
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| |
Collapse
|
5
|
Lin Y, Wang Y, Li L, Zhang K. Coding circular RNA in human cancer. Genes Dis 2025; 12:101347. [PMID: 40034125 PMCID: PMC11875173 DOI: 10.1016/j.gendis.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 03/05/2025] Open
Abstract
circular RNA (circRNA) is a covalently closed single-stranded RNA that lacks 5' and 3' ends and has long been considered a noncoding RNA. With the development of high-throughput sequencing and bioinformatics technology, the understanding of circRNA has become increasingly advanced. Recent studies have shown that some cytoplasmic circRNAs can be effectively translated into detectable proteins, further indicating the importance of circRNA in cellular pathology and physiological functions. Internal ribosome entry site (IRES) and N6-methyladenosine (m6A) mediated cap-independent translation initiation are considered potential mechanisms of circRNA translation. Multiple circRNAs have been shown to play crucial roles in human cancer. This paper provides an overview of the nature and functions of circRNA and describes the possible mechanisms underlying the initiation of circRNA translation. We summarized the emerging functions of circRNA-encoded proteins in human cancer. Finally, we discuss the therapeutic potential of circRNAs and the challenges of research in this field. This review on circRNA translation will reveal a hidden human proteome and enhance our understanding of the importance of circRNAs in human malignant tumors.
Collapse
Affiliation(s)
| | | | - Lixin Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| |
Collapse
|
6
|
Liu S, Wan X, Gou Y, Yang W, Xu W, Du Y, Peng X, Wang X, Zhang X. The emerging functions and clinical implications of circRNAs in acute myeloid leukaemia. Cancer Cell Int 2025; 25:167. [PMID: 40296024 PMCID: PMC12038945 DOI: 10.1186/s12935-025-03772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Acute myeloid leukaemia (AML) is a prevalent haematologic malignancy characterized by significant heterogeneity. Despite the application of aggressive therapeutic approaches, AML remains associated with poor prognosis. Circular RNAs (circRNAs) constitute a unique class of single-stranded RNAs featuring covalently closed loop structures that are ubiquitous across species. These molecules perform crucial regulatory functions in the pathogenesis of various diseases through diverse mechanisms, including acting as miRNA sponges, interacting with DNA or proteins, and encoding functional proteins/polypeptides. Recently, numerous circRNAs have been confirmed to have aberrant expression patterns in AML patients. In particular, certain circRNAs are closely associated with specific clinicopathological characteristics and thus have great potential as diagnostic/prognostic biomarkers and therapeutic targets in AML. Herein, we systematically summarize the biogenesis, degradation, and functional mechanisms of circRNAs while highlighting their clinical relevance. We also outline a series of online databases and analytical tools available to facilitate circRNA research. Finally, we discuss the current challenges and future research priorities in this evolving field.
Collapse
Affiliation(s)
- Shuiqing Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xingyu Wan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Wuchen Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Wei Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yuxuan Du
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiangui Peng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
7
|
Alqahtani S, Alqahtani T, Venkatesan K, Sivadasan D, Ahmed R, Elfadil H, Paulsamy P, Periannan K. Unveiling Pharmacogenomics Insights into Circular RNAs: Toward Precision Medicine in Cancer Therapy. Biomolecules 2025; 15:535. [PMID: 40305280 PMCID: PMC12024797 DOI: 10.3390/biom15040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Pharmacogenomics is revolutionizing precision medicine by enabling tailored therapeutic strategies based on an individual genetic and molecular profile. Circular RNAs (circRNAs), a distinct subclass of endogenous non-coding RNAs, have recently emerged as key regulators of drug resistance, tumor progression, and therapeutic responses. Their covalently closed circular structure provides exceptional stability and resistance to exonuclease degradation, positioning them as reliable biomarkers and novel therapeutic targets in cancer management. This review provides a comprehensive analysis of the interplay between circRNAs and pharmacogenomics, focusing on their role in modulating drug metabolism, therapeutic efficacy, and toxicity profiles. We examine how circRNA-mediated regulatory networks influence chemotherapy resistance, alter targeted therapy responses, and impact immunotherapy outcomes. Additionally, we discuss emerging experimental tools and bioinformatics techniques for studying circRNAs, including multi-omics integration, machine learning-driven biomarker discovery, and high-throughput sequencing technologies. Beyond their diagnostic potential, circRNAs are being actively explored as therapeutic agents and drug delivery vehicles. Recent advancements in circRNA-based vaccines, engineered CAR-T cells, and synthetic circRNA therapeutics highlight their transformative potential in oncology. Furthermore, we address the challenges of standardization, reproducibility, and clinical translation, emphasizing the need for rigorous biomarker validation and regulatory frameworks to facilitate their integration into clinical practice. By incorporating circRNA profiling into pharmacogenomic strategies, this review underscores a paradigm shift toward highly personalized cancer therapies. circRNAs hold immense potential to overcome drug resistance, enhance treatment efficacy, and optimize patient outcomes, marking a significant advancement in precision oncology.
Collapse
Affiliation(s)
- Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (S.A.); (T.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (S.A.); (T.A.)
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (S.A.); (T.A.)
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia;
| | - Kalaiselvi Periannan
- Department of Mental Health Nursing, Oxford School of Nursing & Midwifery, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0FL, UK;
| |
Collapse
|
8
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Tang L, Ji Y, Ni C, Xu Z, Shen Y, Lu H, Zhang C, Yang S. EIF4A3-Mediated Biogenesis of CircFADS1 Promotes the Progression of Hepatocellular Carcinoma via Wnt/β-Catenin Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411869. [PMID: 39965082 PMCID: PMC11984884 DOI: 10.1002/advs.202411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Indexed: 02/20/2025]
Abstract
Mounting research indicates that circRNAs are pivotal elements in tumorigenesis and progression. Understanding the mechanisms by which circRNAs function in tumors is crucial for identifying undiscovered diagnostic and treatment targets. This research centers on unraveling the mechanisms by which the novel circRNA, circFADS1, influences hepatocellular carcinoma (HCC) progression. CircFADS1 shows elevated expression in HCC and is linked to unfavorable prognosis. Functionally, circFADS1 overexpression accelerates HCC progression through inducing HCC proliferation and inhibited apoptosis. Mechanistically, RNA-seq analysis demonstrates its connection to the Wnt/β-catenin pathway. Moreover, circFADS1 interacts with GSK3β and promotes its ubiquitination and degradation by recruiting the ubiquitin ligase RNF114 while EIF4A3 facilitates the biogenesis of circFADS1. Additionally, circFADS1 is closely linked to lenvatinib resistance. Overall, this study reveals that circFADS1 regulates GSK3β function, influencing the progression of hepatocellular carcinoma. The EIF4A3/circFADS1/GSK3β/β-catenin axis is discovered to hold promise as a novel therapeutic target for hepatocellular carcinoma, while circFADS1 is also a significant factor in lenvatinib resistance.
Collapse
Affiliation(s)
- Lei Tang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)No. 300 Guangzhou RoadNanjingJiangsu210029China
| | - Yang Ji
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)No. 300 Guangzhou RoadNanjingJiangsu210029China
- Medical CollegeYangzhou UniversityYangzhouJiangsu225009China
| | - Chuangye Ni
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)No. 300 Guangzhou RoadNanjingJiangsu210029China
| | - Zhenggang Xu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)No. 300 Guangzhou RoadNanjingJiangsu210029China
| | - Yanjun Shen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)No. 300 Guangzhou RoadNanjingJiangsu210029China
| | - Hao Lu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)No. 300 Guangzhou RoadNanjingJiangsu210029China
| | - Chuanyong Zhang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)No. 300 Guangzhou RoadNanjingJiangsu210029China
| | - Shikun Yang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)No. 300 Guangzhou RoadNanjingJiangsu210029China
| |
Collapse
|
10
|
Ding YH, Song XH, Chen JS. CircRNAs in Colorectal Cancer: Unveiling Their Roles and Exploring Therapeutic Potential. Biochem Genet 2025; 63:1219-1240. [PMID: 40029586 DOI: 10.1007/s10528-025-11068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) is the most common malignancy of the digestive system. Although research into the causes of CRC's origin and progression has advanced over the past few decades, many details are still not fully understood. Circular RNAs (circRNAs), as a novel regulatory molecule, have been found to be closely involved in various key biological processes in CRC. CircRNAs also have been shown to encode proteins, which could offer new possibilities for therapeutic applications. This ability to produce tumor-specific proteins makes circRNA-based vaccines a potentially valuable approach for targeted cancer treatment. In this review, we summarize recent findings on the various roles of circRNAs in CRC and explore their potential in the development of protein-encoding circRNA vaccines for CRC therapy.
Collapse
Affiliation(s)
- Yi-Han Ding
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Xiao-Hang Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Jing-Song Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
11
|
Wang SF, Yang LY, Zhao AQ, Wang ZY, Wang S, Gong M, Zheng MQ, Liu G, Yang SY, Lin JJ, Sun SG. A Novel Hidden Protein p-414aa Encoded by circSETD2(14,15) Inhibits Vascular Remodeling. Circulation 2025. [PMID: 40099364 DOI: 10.1161/circulationaha.124.070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs), leading to neointimal hyperplasia, is a fundamental cause of vascular remodeling diseases such as atherosclerosis and hypertension. Novel hidden proteins encoded by circular RNAs play crucial roles in disease progression, yet their involvement in vascular remodeling diseases has not been comprehensively studied. This study identifies a novel protein derived from a circular RNA in VSMCs and demonstrates its potential role in regulating vascular remodeling. METHODS Cell proliferation assays were performed to investigate the effects of circSETD2(14,15) on VSMC proliferation. Techniques such as vector construction, immunoprecipitation-mass spectrometry, and dual-luciferase reporter gene were used to confirm that circSETD2(14,15) encoded a novel protein, p-414aa. The interaction between p-414aa and HuR (human antigen R) was validated with techniques such as coimmunoprecipitation, mass spectrometry, and proximity ligation assay. Through experiments including RNA sequencing and RNA immunoprecipitation, the interaction between HuR and C-FOS (C-Fos proto-oncogene) mRNA was revealed. The role of p-414aa in neointimal hyperplasia was assessed with a carotid artery ligation model in male mice. RESULTS Overexpression of circSETD2(14,15) inhibits VSMC phenotypic switching. The novel protein p-414aa, encoded by circSETD2(14,15), interacts with HuR to reduce C-FOS mRNA stability, thereby suppressing VSMC proliferation and ultimately inhibiting neointimal hyperplasia in male mice. CONCLUSIONS We uncover a novel hidden protein derived from circSETD2(14,15), called p-414aa, that inhibits vascular remodeling. CircSETD2(14,15) and p-414aa may serve as potential therapeutic targets for vascular remodeling diseases.
Collapse
Affiliation(s)
- Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, China (S.-F.W.)
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - Sen Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - Ming-Qi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, China (M.-Q.Z., G.L.)
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, China (M.-Q.Z., G.L.)
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (S.-Y.Y.)
| | - Jia-Jie Lin
- School of Basic Medicine, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China (J.-J.L.)
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| |
Collapse
|
12
|
Yang L, Yi Y, Mei Z, Huang D, Tang S, Hu L, Liu L. Circular RNAs in cancer stem cells: Insights into their roles and mechanisms (Review). Int J Mol Med 2025; 55:50. [PMID: 39930823 PMCID: PMC11781527 DOI: 10.3892/ijmm.2025.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Cancer stem cells (CSCs) represent a small, yet pivotal subpopulation of tumor cells that play significant roles in tumor initiation, progression and therapeutic resistance. Circular RNAs (circRNAs) are a distinct class of RNAs characterized by their closed‑loop structures, lacking 5' to 3'ends. There is growing evidence that circRNAs are integral to the development and regulation of CSCs. Aberrant expression of circRNAs in CSCs can contribute to oncogenic properties and drug resistance. Specifically, oncogenic circRNAs modulate CSC behavior via key signaling pathways, thereby promoting CSC self‑renewal and maintenance, as well as tumor progression. This review summarizes the latest research on the functional roles and regulatory mechanisms of circRNAs in CSC behavior and discusses potential applications and challenges of targeting circRNAs in CSCs. Understanding the intricate interactions between circRNAs and CSCs may lead to novel therapeutic strategies that effectively combat treatment resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Lunyu Yang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Yuling Yi
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Zhu Mei
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Dongmei Huang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Sitian Tang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Liyi Hu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Ling Liu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| |
Collapse
|
13
|
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X, Wu Z, Oyang L, Luo X, Lin J, Xia L, Peng M, Wu N, Tang Y, Han Y, Liao Q, Zhou Y. Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential. J Hematol Oncol 2025; 18:20. [PMID: 39972384 PMCID: PMC11841355 DOI: 10.1186/s13045-025-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
In the present era, noncoding RNAs (ncRNAs) have become a subject of considerable scientific interest, with peptides encoded by ncRNAs representing a particularly promising avenue of investigation. The identification of ncRNA-encoded peptides in human cancers is increasing. These peptides regulate cancer progression through multiple molecular mechanisms. Here, we delineate the patterns of diverse ncRNA-encoded peptides and provide a synopsis of the methodologies employed for the identification of ncRNAs that possess the capacity to encode these peptides. Furthermore, we discuss the impacts of ncRNA-encoded peptides on the biological behavior of cancer cells and the underlying molecular mechanisms. In conclusion, we describe the prospects of ncRNA-encoded peptides in cancer and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhu Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Márton É, Varga A, Domoszlai D, Buglyó G, Balázs A, Penyige A, Balogh I, Nagy B, Szilágyi M. Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application. Cancers (Basel) 2025; 17:579. [PMID: 40002172 PMCID: PMC11853212 DOI: 10.3390/cancers17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
We are on the brink of a paradigm shift in both theoretical and clinical oncology. Genomic and transcriptomic profiling, alongside personalized approaches that account for individual patient variability, are increasingly shaping discourse. Discussions on the future of personalized cancer medicine are mainly dominated by the potential of non-coding RNAs (ncRNAs), which play a prominent role in cancer progression and metastasis formation by regulating the expression of oncogenic or tumor suppressor proteins at transcriptional and post-transcriptional levels; furthermore, their cell-free counterparts might be involved in intercellular communication. Non-coding RNAs are considered to be promising biomarker candidates for early diagnosis of cancer as well as potential therapeutic agents. This review aims to provide clarity amidst the vast body of literature by focusing on diverse species of ncRNAs, exploring the structure, origin, function, and potential clinical applications of miRNAs, siRNAs, lncRNAs, circRNAs, snRNAs, snoRNAs, eRNAs, paRNAs, YRNAs, vtRNAs, and piRNAs. We discuss molecular methods used for their detection or functional studies both in vitro and in vivo. We also address the challenges that must be overcome to enter a new era of cancer diagnosis and therapy that will reshape the future of oncology.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Dóra Domoszlai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Anita Balázs
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary;
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| |
Collapse
|
15
|
Zhang Y, Wang J, Quan R, Lyu L. circ_0004662 contributes to colorectal cancer progression by interacting with hnRNPM. Int J Oncol 2025; 66:14. [PMID: 39821691 PMCID: PMC11753766 DOI: 10.3892/ijo.2025.5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Circular (circ)RNAs participate in colorectal cancer (CRC) occurrence and progression. However, the role of hsa_circ_0004662 (circ_0004662) in CRC remains unknown. Reverse transcription‑quantitative PCR noted high expression of circ_0004662 in CRC compared with normal colorectal epithelial cells. circ_0004662 knockdown inhibited migration of CRC cells in vitro and in vivo; would healing and Transwell assays showed that circ_0004662 overexpression contributed to CRC migration. Nuclear cytoplasmic analysis and fluorescence in situ hybridization revealed localization of circ_0004662 in the nucleus and cytoplasm. CircRNADB databases predicted that circ_0004662 exhibited translational potential and liquid chromatography‑mass spectrometry (LC‑MS) of circ_0004662 pull‑down products suggested that circ_0004662 bound to multiple ribosomal subunits. However, peptide products of 149aa translated by circ_0004662, with a molecular weight of ~17 kDa were not detected. Nevertheless, LC‑MS analysis indicated that circ_0004662 bound multiple proteins. Immunoprecipitation of RNA‑binding proteins revealed that circ_0004662 bound to heterogeneous nuclear ribonucleoprotein M (hnRNPM) and that hnRNPM interference decreased circ_0004662 expression, thereby affecting CRC progression. In summary, circ_0004662 was significantly upregulated in CRC. As a non‑coding RNA, it may promote CRC progression by binding to hnRNPM, which may serve as a potential target for treating CRC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Hepatopancreatobiliary Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
| | - Ruiliang Quan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
| | - Lihua Lyu
- Department of Laboratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
16
|
Meng X, Wu Q, Cao C, Yang W, Chu S, Guo H, Qi S, Bai J. A novel peptide encoded by circSRCAP confers resistance to enzalutamide by inhibiting the ubiquitin-dependent degradation of AR-V7 in castration-resistant prostate cancer. J Transl Med 2025; 23:108. [PMID: 39844192 PMCID: PMC11755828 DOI: 10.1186/s12967-025-06115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The sustained activation of androgen receptor splice variant-7 (AR-V7) is a key factor in the resistance of castration-resistant prostate cancer (CRPC) to second-generation anti-androgens such as enzalutamide (ENZ). The AR/AR-V7 protein is regulated by the E3 ubiquitin ligase STUB1 and a complex involving HSP70, but the precise mechanism remains unclear. METHODS High-throughput RNA sequencing was used to identify differentially expressed circular RNAs (circRNAs) in ENZ-resistant and control CRPC cells. The coding potential of circSRCAP was confirmed by polysome profiling and LC-MS. The function of circSRCAP was validated in vitro and in vivo using gain- and loss-of-function assays. Mechanistic insights were obtained through immunoprecipitation analyses. RESULTS A novel ENZ-resistant circRNA, circSRCAP, was identified and shown to be upregulated in ENZ-resistant C4-2B (ENZR-C4-2B) cells, correlating with increased AR-V7 protein levels. circSRCAP is generated via splicing by eIF4A3, forming a loop structure and is exported from the nucleus by the RNA helicase DDX39A. Mechanistically, circSRCAP encodes a 75-amino acid peptide (circSRCAP-75aa) that inhibits the ubiquitination of AR/AR-V7's co-chaperone protein HSP70 by disrupting the interaction with the E3 ligase STUB1. This process results in the upregulation of AR-V7 expression and promotes ENZ resistance in CRPC cells. Xenograft tumor models further confirmed the role of circSRCAP in CRPC progression and its potential as a therapeutic target for ENZ-resistant CRPC. CONCLUSIONS circSRCAP provides an epigenetic mechanism influencing AR-V7 stability and offers a promising therapeutic target for treating ENZ-resistant CRPC.
Collapse
MESH Headings
- Male
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/pathology
- Humans
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Benzamides
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Proteolysis/drug effects
- Cell Line, Tumor
- Animals
- Nitriles
- Ubiquitin/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Peptides/metabolism
- Peptides/genetics
- Ubiquitin-Protein Ligases/metabolism
- Mice, Nude
- Protein Isoforms/metabolism
- Mice
Collapse
Affiliation(s)
- Xiannan Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qingxuan Wu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chengsong Cao
- Department of Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Department of Oncology, Xuzhou Institute of Medical Science, Xuzhou, Jiangsu, China
| | - Wendong Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hongjun Guo
- Department of General Surgery, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China.
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Huang Y, Zhang L, Mu W, Zheng M, Bao X, Li H, Luo X, Ren J, Zuo Z. RMVar 2.0: an updated database of functional variants in RNA modifications. Nucleic Acids Res 2025; 53:D275-D283. [PMID: 39436017 PMCID: PMC11701541 DOI: 10.1093/nar/gkae924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Evaluating the impact of genetic variants on RNA modifications (RMs) is crucial for identifying disease-associated variants and understanding the pathogenic mechanisms underlying human diseases. Previously, we developed a database called RMVar to catalog variants linked to RNA modifications in humans and mice. Here, we present an updated version RMVar 2.0 (http://rmvar.renlab.cn). In this updated version, we applied an enhanced analytical pipeline to the latest RNA modification datasets and genetic variant information to identify RM-associated variants. A notable advancement in RMVar 2.0 is our incorporation of allele-specific RNA modification analysis to identify RM-associated variants, a novel approach not utilized in RMVar 1.0 or other comparable databases. Furthermore, the database offers comprehensive annotations for various molecular events, including RNA-binding protein (RBP) interactions, RNA-RNA interactions, splicing events, and circular RNAs (circRNAs), which facilitate investigations into how RM-associated variants influence post-transcriptional regulation. Additionally, we provide disease-related information sourced from ClinVar and GWAS to help researchers explore the connections between RNA modifications and various diseases. We believe that RMVar 2.0 will significantly enhance our understanding of the functional implications of genetic variants affecting RNA modifications within the context of human disease research.
Collapse
Affiliation(s)
- Yuantai Huang
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Luowanyue Zhang
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Weiping Mu
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Mohan Zheng
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoqiong Bao
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Huiqin Li
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaotong Luo
- Innovation Center of the Sixth Affiliated hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Jian Ren
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhixiang Zuo
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
18
|
Lan T, Gao F, Cai Y, Lv Y, Zhu J, Liu H, Xie S, Wan H, He H, Xie K, Liu C, Wu H. The protein circPETH-147aa regulates metabolic reprogramming in hepatocellular carcinoma cells to remodel immunosuppressive microenvironment. Nat Commun 2025; 16:333. [PMID: 39747873 PMCID: PMC11696079 DOI: 10.1038/s41467-024-55577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Metabolic reprogramming fuels cancer cell metastasis and remodels the immunosuppressive tumor microenvironment (TME). We report here that circPETH, a circular RNA (circRNA) transported via extracellular vesicles (EVs) from tumor-associated macrophages (TAMs) to hepatocellular carcinoma (HCC) cells, facilitates glycolysis and metastasis in recipient HCC cells. Mechanistically, circPETH-147aa, encoded by circPETH in an m6A-driven manner, promotes PKM2-catalyzed ALDOA-S36 phosphorylation via the MEG pocket. Furthermore, circPETH-147aa impairs anti-HCC immunity by increasing HuR-dependent SLC43A2 mRNA stability and driving methionine and leucine deficiency in cytotoxic CD8+ T cells. Importantly, through virtual and experimental screening, we find that a small molecule, Norathyriol, is an effective inhibitor that targets the MEG pocket on the circPETH-147aa surface. Norathyriol reverses circPETH-147aa-facilitated acquisition of metabolic and metastatic phenotypes by HCC cells, increases anti-PD1 efficacy, and enhances cytotoxic CD8+ T-cell function. Here we show that Norathyriol is a promising anti-HCC agent that contributes to attenuating the resistance of advanced HCC to immune checkpoint blocker (ICB) therapies.
Collapse
Affiliation(s)
- Tian Lan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Fengwei Gao
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yunshi Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yinghao Lv
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Zhu
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sinan Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Haifeng Wan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Haorong He
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Du C, Fan W, Zhou Y. Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1875. [PMID: 39523464 DOI: 10.1002/wrna.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
RNA processing involves steps such as capping, splicing, polyadenylation, modification, and nuclear export. These steps are essential for transforming genetic information in DNA into proteins and contribute to RNA diversity and complexity. Many biochemical methods have been developed to profile and quantify RNAs, as well as to identify the interactions between RNAs and RNA-binding proteins (RBPs), especially when coupled with high-throughput sequencing technologies. With the rapid accumulation of diverse data, it is crucial to develop computational methods to convert the big data into biological knowledge. In particular, machine learning and deep learning models are commonly utilized to learn the rules or codes governing the transformation from DNA sequences to intriguing RNAs based on manually designed or automatically extracted features. When precise enough, the RNA codes can be incredibly useful for predicting RNA products, decoding the molecular mechanisms, forecasting the impact of disease variants on RNA processing events, and identifying driver mutations. In this review, we systematically summarize the biochemical and computational methods for deciphering five important RNA codes related to alternative splicing, alternative polyadenylation, RNA localization, RNA modifications, and RBP binding. For each code, we review the main types of experimental methods used to generate training data, as well as the key features, strategic model structures, and advantages of representative tools. We also discuss the challenges encountered in developing predictive models using large language models and extensive domain knowledge. Additionally, we highlight useful resources and propose ways to improve computational tools for studying RNA codes.
Collapse
Affiliation(s)
- Chen Du
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Weiliang Fan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
He C, Duan L, Zheng H, Wang X, Guan L, Xu J. A Representation Learning Approach for Predicting circRNA Back-Splicing Event via Sequence-Interaction-Aware Dual Encoder. IEEE Trans Nanobioscience 2024; 23:603-611. [PMID: 39226209 DOI: 10.1109/tnb.2024.3454079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Circular RNAs (circRNAs) play a crucial role in gene regulation and association with diseases because of their unique closed continuous loop structure, which is more stable and conserved than ordinary linear RNAs. As fundamental work to clarify their functions, a large number of computational approaches for identifying circRNA formation have been proposed. However, these methods fail to fully utilize the important characteristics of back-splicing events, i.e., the positional information of the splice sites and the interaction features of its flanking sequences, for predicting circRNAs. To this end, we hereby propose a novel approach called SIDE for predicting circRNA back-splicing events using only raw RNA sequences. Technically, SIDE employs a dual encoder to capture global and interactive features of the RNA sequence, and then a decoder designed by the contrastive learning to fuse out discriminative features improving the prediction of circRNAs formation. Empirical results on three real-world datasets show the effectiveness of SIDE. Further analysis also reveals that the effectiveness of SIDE.
Collapse
|
21
|
Yi Q, Feng J, Lan W, Shi H, Sun W, Sun W. CircRNA and lncRNA-encoded peptide in diseases, an update review. Mol Cancer 2024; 23:214. [PMID: 39343883 PMCID: PMC11441268 DOI: 10.1186/s12943-024-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), are unique RNA molecules widely identified in the eukaryotic genome. Their dysregulation has been discovered and played key roles in the pathogenesis of numerous diseases, including various cancers. Previously considered devoid of protein-coding ability, recent research has revealed that a small number of open reading frames (ORFs) within these ncRNAs endow them with the potential for protein coding. These ncRNAs-derived peptides or proteins have been proven to regulate various physiological and pathological processes through diverse mechanisms. Their emerging roles in disease diagnosis and targeted therapy underscore their potential utility in clinical settings. This comprehensive review aims to provide a systematic overview of proteins or peptides encoded by lncRNAs and circRNAs, elucidate their production and functional mechanisms, and explore their promising applications in cancer diagnosis, disease prediction, and targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weiwu Lan
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
22
|
Peng D, Wei C, Jing B, Yu R, Zhang Z, Han L. A novel protein encoded by circCOPA inhibits the malignant phenotype of glioblastoma cells and increases their sensitivity to temozolomide by disrupting the NONO-SFPQ complex. Cell Death Dis 2024; 15:616. [PMID: 39183343 PMCID: PMC11345445 DOI: 10.1038/s41419-024-07010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Glioblastoma (GBM) represents a primary malignant brain tumor. Temozolomide resistance is a major hurdle in GBM treatment. Proteins encoded by circular RNAs (circRNAs) can modulate the sensitivity of multiple tumor chemotherapies. However, the impact of circRNA-encoded proteins on GBM sensitivity to temozolomide remains unknown. Herein, we discover a circRNA (circCOPA) through the circRNA microarray profile in GBM samples, which can encode a novel 99 amino acid protein (COPA-99aa) through its internal ribosome entry site. Functionally, circCOPA overexpression in GBM cells inhibits cell proliferation, migration, and invasion in vitro and growth in vivo. Rather than itself, circCOPA mainly functions as a suppressive effector by encoding COPA-99aa. Moreover, we reveal that circCOPA is downregulated in GBM tissues and high expression of circCOPA is related to a better prognosis in GBM patients. Mechanistically, a heteromer of SFPQ and NONO is required for double-strand DNA break repair. COPA-99aa disrupts the dimerization of NONO and SFPQ by separately binding with the NONO and SFPQ proteins, thus resulting in the inhibition of proliferation or invasion and the increase of temozolomide-induced DNA damage in GBM cells. Collectively, our data suggest that circCOPA mainly contributes to inhibiting the GBM malignant phenotype through its encoded COPA-99aa and that COPA-99aa increases temozolomide-induced DNA damage by interfering with the dimerization of NONO and SFPQ. Restoring circCOPA or COPA-99aa may increase the sensitivity of patients to temozolomide.
Collapse
Affiliation(s)
- Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Boyuan Jing
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Runze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
23
|
Zuo Y, Liu W, Jin Y, Pan Y, Fan T, Fu X, Guo J, Tan S, He J, Yang Y, Li Z, Yang C, Peng Y. C2CDB: an advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs. BIOINFORMATICS ADVANCES 2024; 4:vbae112. [PMID: 39246384 PMCID: PMC11379471 DOI: 10.1093/bioadv/vbae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Motivation Circular RNAs (circRNAs) play important roles in gene expression and their involvement in tumorigenesis is emerging. circRNA-related database is a powerful tool for researchers to investigate circRNAs. However, existing databases lack advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs. Results We developed a comprehensive platform called CircRNA to Cancer Database (C2CDB), encompassing 318 158 cancer-related circRNAs expressed in tumors and adjacent tissues across 30 types of cancers. C2CDB provides basic details such as sequence and expression levels of circRNAs, as well as crucial insights into biological mechanisms, including miRNA binding, RNA-binding protein interaction, coding potential, base modification, mutation, and secondary structure. Moreover, C2CDB collects an extensive compilation of published literature on cancer circRNAs, extracting and presenting pivotal content encompassing biological functions, underlying mechanisms, and molecular tools in these studies. Additionally, C2CDB offers integrated tools to analyse three potential mechanisms: circRNA-miRNA ceRNA interaction, circRNA encoding, and circRNA biogenesis, facilitating investigators with convenient access to highly reliable information. To enhance clarity and organization, C2CDB has meticulously curated and integrated the previously chaotic nomenclature of circRNAs, addressing the prevailing confusion and ambiguity surrounding their designations. Availability and implementation C2CDB is freely available at http://pengyonglab.com/c2cdb.
Collapse
Affiliation(s)
- Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Shuangyan Tan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Juan He
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yang Yang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zhang Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Chenyu Yang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Wang C, Liang C. CircCNNs, a convolutional neural network framework to better understand the biogenesis of exonic circRNAs. Sci Rep 2024; 14:18982. [PMID: 39152135 PMCID: PMC11329666 DOI: 10.1038/s41598-024-69262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Circular RNAs (circRNAs) as biomarkers for cancer detection have been extensively explored, however, the biogenesis mechanism is still elusive. In contrast to linear splicing (LS) involved in linear transcript formation, the so-called back splicing (BS) process has been proposed to explain circRNA formation. To investigate the potential mechanism of BS via the machine learning approach, we curated a high-quality BS and LS exon pairs dataset with evidence-based stringent filtering. Two convolutional neural networks (CNN) base models with different structures for processing splicing junction sequences including motif extraction were created and compared after extensive hyperparameter tuning. In contrast to the previous study, we are able to identify motifs corresponding to well-established BS-associated genes such as MBNL1, QKI, and ESPR2. Importantly, despite prevalent high false positive rates in existing circRNA detection pipelines and databases, our base models demonstrated a notable high specificity (greater than 90%). To further improve the model performance, a novo fast numerical method was proposed and implemented to calculate the reverse complementary matches (RCMs) crossing two flanking regions and within each flanking region of exon pairs. Our CircCNNs framework that incorporated RCM information into the optimal base models further reduced the false positive rates leading to 88% prediction accuracy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
25
|
Gong X, Liu Y, Wu G, Xu Z, Zeng L, Tian M, Zhang R, Zeng C, Chen Y. An updated resource for the detection of protein-coding circRNA with CircProPlus. Sci Rep 2024; 14:19040. [PMID: 39152148 PMCID: PMC11329775 DOI: 10.1038/s41598-024-69744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Protein-encoding circular RNAs (circRNAs) are newly identified RNA molecules characterized by intense interaction with translating ribosome. Emerging evidence has implicated physiological and pathological significance of these non-canonical RNAs, yet a large body of them remains unidentified. Due to limited tools at hand, we developed CircProPlus, an automated computational pipeline for de novo detection of translated circRNAs. In comparison to previously established CircPro, CircProPlus adjusts the overall workflow and integrates more robust implements for achieving easier accessibility, higher flexibility and productivity. In present study, we tested the performance of CircProPlus when using different circRNA-detecting implements (i.e., CIRI2, CirComPara2) in the evaluation of coding ability of circRNAs. Results showed that CirComPara2, a state-of-the-art algorithm, consistently outperformed CIRI2 when coupled with CircProPlus in testing real data collected from different RNA libraries and species, which highlighted its potency in data mining of circRNAs with protein-coding potential.
Collapse
Affiliation(s)
- Xue Gong
- Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, People's Republic of China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, People's Republic of China
- Department of Cardiology, No. 926 Hospital, Joint Logistics Support Force of PLA, Yunnan, People's Republic of China
| | - Yunchang Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, People's Republic of China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, People's Republic of China
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, People's Republic of China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, People's Republic of China
| | - Zheqi Xu
- Department of Pharmacy, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liping Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, People's Republic of China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, People's Republic of China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, People's Republic of China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, People's Republic of China
| | - Runjun Zhang
- Department of Cardiology, No. 926 Hospital, Joint Logistics Support Force of PLA, Yunnan, People's Republic of China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400042, People's Republic of China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, People's Republic of China
| | - Yundai Chen
- Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
26
|
Yehui L, Zhihong L, Fang T, Zixuan Z, Mengyuan Z, Zhifang Y, Jiuhong Z. Bibliometric Analysis of Global Research on Circular RNA: Current Status and Future Directions. Mol Biotechnol 2024; 66:2064-2077. [PMID: 37587318 DOI: 10.1007/s12033-023-00830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Circular RNAs (circRNAs) have gained significant attention in recent years. This bibliometric analysis aimed to provide insights into the current state and future trends of global circRNA research. The scientific output on circRNAs from 2010 to 2022 was retrieved from the Web of Science Core Collection with circRNA-related terms as the subjects. Key bibliometric indicators were calculated and evaluated using CiteSpace. A total of 7385 studies on circRNAs were identified. The output and citation number have increased rapidly after 2015. China, the USA, and Germany were top three publishing countries. Currently, circCDR1as, circHIPK3, circPVT1, circSHPRH, and circZNF609 are the most studied circRNAs; and all are related to cancer. The theme of research have shifted from transcript, exon circularization and miRNA sponge topics to the transcriptome, tumor suppressor, and biomarkers, indicating that research interests have evolved from basic to applied research. CircRNAs will continue to be a highly active research area in the near future. From the current understanding of circRNA characterization and regulatory mechanisms as miRNA sponges in cancer, future directions may examine potential diagnostic and therapeutic roles of circRNAs in cancers or the function and mechanism of circRNAs in other diseases.
Collapse
Affiliation(s)
- Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Zhihong
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Tong Fang
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zeng Zixuan
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhang Mengyuan
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yang Zhifang
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhao Jiuhong
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
27
|
Chaudhary U, Banerjee S. Decoding the Non-coding: Tools and Databases Unveiling the Hidden World of "Junk" RNAs for Innovative Therapeutic Exploration. ACS Pharmacol Transl Sci 2024; 7:1901-1915. [PMID: 39022352 PMCID: PMC11249652 DOI: 10.1021/acsptsci.3c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Non-coding RNAs are pivotal regulators of gene and protein expression, exerting crucial influences on diverse biological processes. Their dysregulation is frequently implicated in the onset and progression of diseases, notably cancer. A profound comprehension of the intricate mechanisms governing ncRNAs is imperative for devising innovative therapeutic interventions against these debilitating conditions. Significantly, nearly 80% of our genome comprises ncRNAs, underscoring their centrality in cellular processes. The elucidation of ncRNA functions is pivotal for grasping the complexities of gene regulation and its implications for human health. Modern genome sequencing techniques yield vast datasets, stored in specialized databases. To harness this wealth of information and to understand the crosstalk of non-coding RNAs, knowledge of available databases is required, and many new sophisticated computational tools have emerged. These tools play a pivotal role in the identification, prediction, and annotation of ncRNAs, thereby facilitating their experimental validation. This Review succinctly outlines the current understanding of ncRNAs, emphasizing their involvement in disease development. It also highlights the databases and tools instrumental in classifying, annotating, and evaluating ncRNAs. By extracting meaningful biological insights from seemingly "junk" data, these tools empower scientists to unravel the intricate roles of ncRNAs in shaping human health.
Collapse
Affiliation(s)
- Uma Chaudhary
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
28
|
Zhao H, Xiong Y, Zhou Z, Xu Q, Zi Y, Zheng X, Chen S, Xiao X, Gong L, Xu H, Liu L, Lu H, Cui Y, Shao S, Zhang J, Ma J, Zhou Q, Ma D, Li X. A hidden proteome encoded by circRNAs in human placentas: Implications for uncovering preeclampsia pathogenesis. Clin Transl Med 2024; 14:e1759. [PMID: 38997803 PMCID: PMC11245404 DOI: 10.1002/ctm2.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND CircRNA-encoded proteins (CEPs) are emerging as new players in health and disease, and function as baits for the common partners of their cognate linear-spliced RNA encoded proteins (LEPs). However, their prevalence across human tissues and biological roles remain largely unexplored. The placenta is an ideal model for identifying CEPs due to its considerable protein diversity that is required to sustain fetal development during pregnancy. The aim of this study was to evaluate circRNA translation in the human placenta, and the potential roles of the CEPs in placental development and dysfunction. METHODS Multiomics approaches, including RNA sequencing, ribosome profiling, and LC-MS/MS analysis, were utilised to identify novel translational events of circRNAs in human placentas. Bioinformatics methods and the protein bait hypothesis were employed to evaluate the roles of these newly discovered CEPs in placentation and associated disorders. The pathogenic role of a recently identified CEP circPRKCB119aa in preeclampsia was investigated through qRT-PCR, Western blotting, immunofluorescence imaging and phenotypic analyses. RESULTS We found that 528 placental circRNAs bound to ribosomes with active translational elongation, and 139 were translated to proteins. The CEPs showed considerable structural homology with their cognate LEPs, but are more stable, hydrophobic and have a lower molecular-weight than the latter, all of which are conducive to their function as baits. On this basis, CEPs are deduced to be closely involved in placental function. Furthermore, we focused on a novel CEP circPRKCB119aa, and illuminated its pathogenic role in preeclampsia; it enhanced trophoblast autophagy by acting as a bait to inhibit phosphorylation of the cognate linear isoform PKCβ. CONCLUSIONS We discovered a hidden circRNA-encoded proteome in the human placenta, which offers new insights into the mechanisms underlying placental development, as well as placental disorders such as preeclampsia. Key points A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised. The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders. A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) β in preeclampsia.
Collapse
Affiliation(s)
- Huanqiang Zhao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yu Xiong
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zixiang Zhou
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qixin Xu
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yang Zi
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Xiujie Zheng
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Shiguo Chen
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Xirong Xiao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lili Gong
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huangfang Xu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lidong Liu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huiqing Lu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yutong Cui
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuyi Shao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiongjie Zhou
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaotian Li
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
29
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
30
|
Hwang H, Jeon H, Yeo N, Baek D. Big data and deep learning for RNA biology. Exp Mol Med 2024; 56:1293-1321. [PMID: 38871816 PMCID: PMC11263376 DOI: 10.1038/s12276-024-01243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
The exponential growth of big data in RNA biology (RB) has led to the development of deep learning (DL) models that have driven crucial discoveries. As constantly evidenced by DL studies in other fields, the successful implementation of DL in RB depends heavily on the effective utilization of large-scale datasets from public databases. In achieving this goal, data encoding methods, learning algorithms, and techniques that align well with biological domain knowledge have played pivotal roles. In this review, we provide guiding principles for applying these DL concepts to various problems in RB by demonstrating successful examples and associated methodologies. We also discuss the remaining challenges in developing DL models for RB and suggest strategies to overcome these challenges. Overall, this review aims to illuminate the compelling potential of DL for RB and ways to apply this powerful technology to investigate the intriguing biology of RNA more effectively.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonseong Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Genome4me Inc., Seoul, Republic of Korea
| | - Nagyeong Yeo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Genome4me Inc., Seoul, Republic of Korea.
| |
Collapse
|
31
|
Digby B, Finn S, Ó Broin P. Computational approaches and challenges in the analysis of circRNA data. BMC Genomics 2024; 25:527. [PMID: 38807085 PMCID: PMC11134749 DOI: 10.1186/s12864-024-10420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algorithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addition to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases for rich circRNA annotation.
Collapse
Affiliation(s)
- Barry Digby
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
| | - Stephen Finn
- Discipline of Histopathology, School of Medicine, Trinity College Dublin and Cancer Molecular Diagnostic Laboratory, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
32
|
Li Y, Wang Z, Yang J, Sun Y, He Y, Wang Y, Chen X, Liang Y, Zhang N, Wang X, Zhao W, Hu G, Yang Q. CircTRIM1 encodes TRIM1-269aa to promote chemoresistance and metastasis of TNBC via enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR activation. Mol Cancer 2024; 23:102. [PMID: 38755678 PMCID: PMC11097450 DOI: 10.1186/s12943-024-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zekun Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuhan Sun
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yinqiao He
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuping Wang
- School of Basic Medicine, Jining Medical College, Jining, Shandong, 272067, China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
33
|
He M, Pan Y, You C, Gao H. CircRNAs in cancer therapy tolerance. Clin Chim Acta 2024; 558:119684. [PMID: 38649011 DOI: 10.1016/j.cca.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The rapidly expanding field of circular RNA (circ-RNA) research has opened new avenues in cancer diagnostics and treatment, highlighting the role of serum circRNAs as potential biomarkers for assessing tumor therapy resistance. This review comprehensively compiles existing knowledge regarding the biogenesis, function, and clinical relevance of circRNAs, emphasizing their stability, abundance, and cell type-specific expression profiles, which make them ideal candidates for noninvasive early biomarkers in cancer treatment. We explored the roles of circRNAs in oncogenesis and tumor progression and their complex interactions with patient responses to various cancer treatments, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Through the analysis of data from recent studies and clinical trials, we underscore the prognostic significance of serum circRNAs in predicting therapeutic outcomes, their involvement in resistance mechanisms, and their capacity to inform personalized treatment approaches. Additionally, this review addresses the obstacles inherent in circRNA research, including the need for standardized protocols for circRNA extraction and quantification and the elucidation of the clinical significance of circRNAs. Furthermore, our investigation extends to future prospects, including embedding circRNA profiling into regular clinical workflows and pioneering circRNA-based therapeutic approaches. We underscore the transformative potential of serum circRNAs in enhancing cancer diagnosis, improving the accuracy of therapy tolerance predictions, and ultimately fostering the advent of precision oncology.
Collapse
Affiliation(s)
- Miao He
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Yunyan Pan
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China
| | - Chongge You
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| | - Hongwei Gao
- The Second Hospital of Lanzhou University, Laboratory Medicine Center, Lanzhou 730030, PR China.
| |
Collapse
|
34
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
35
|
Daniel Thomas S, Vijayakumar K, John L, Krishnan D, Rehman N, Revikumar A, Kandel Codi JA, Prasad TSK, S S V, Raju R. Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:213-233. [PMID: 38752932 DOI: 10.1089/omi.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline that the complexity in the analysis of miRNA function ranges from their modes of biogenesis to the target diversity in diverse biological conditions. Therefore, it is imperative to first ascertain the miRNA coding potential of genomes and understand the regulatory mechanisms of their expression. This knowledge enables the efficient classification of miRNA precursors and the identification of their mature forms and respective target genes. Second, and because one miRNA can target multiple mRNAs and vice versa, another challenge is the assessment of the miRNA-mRNA target interaction network. Furthermore, long-noncoding RNA (lncRNA)and circular RNAs (circRNAs) also contribute to this complexity. ML has been used to tackle these challenges at the high-dimensional data level. The present expert review covers more than 100 tools adopting various ML approaches pertaining to, for example, (1) miRNA promoter prediction, (2) precursor classification, (3) mature miRNA prediction, (4) miRNA target prediction, (5) miRNA- lncRNA and miRNA-circRNA interactions, (6) miRNA-mRNA expression profiling, (7) miRNA regulatory module detection, (8) miRNA-disease association, and (9) miRNA essentiality prediction. Taken together, we unpack, critically examine, and highlight the cutting-edge synergy of ML approaches and miRNA research so as to develop a dynamic and microlevel understanding of human health and diseases.
Collapse
Affiliation(s)
- Sonet Daniel Thomas
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Krithika Vijayakumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Thiruvananthapuram, Kerala, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | | | - Vinodchandra S S
- Department of Computer Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| |
Collapse
|
36
|
Zhang B, Zhang H, Wang Z, Cao H, Zhang N, Dai Z, Liang X, Peng Y, Wen J, Zhang X, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Peng R. The regulatory role and clinical application prospects of circRNA in the occurrence and development of CNS tumors. CNS Neurosci Ther 2024; 30:e14500. [PMID: 37953502 PMCID: PMC11017455 DOI: 10.1111/cns.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) tumors originate from the spinal cord or brain. The study showed that even with aggressive treatment, malignant CNS tumors have high mortality rates. However, CNS tumor risk factors and molecular mechanisms have not been verified. Due to the reasons mentioned above, diagnosis and treatment of CNS tumors in clinical practice are currently fraught with difficulties. Circular RNAs (circRNAs), single-stranded ncRNAs with covalently closed continuous structures, are essential to CNS tumor development. Growing evidence has proved the numeral critical biological functions of circRNAs for disease progression: sponging to miRNAs, regulating gene transcription and splicing, interacting with proteins, encoding proteins/peptides, and expressing in exosomes. AIMS This review aims to summarize current progress regarding the molecular mechanism of circRNA in CNS tumors and to explore the possibilities of clinical application based on circRNA in CNS tumors. METHODS We have summarized studies of circRNA in CNS tumors in Pubmed. RESULTS This review summarized their connection with CNS tumors and their functions, biogenesis, and biological properties. Furthermore, we introduced current advances in clinical RNA-related technologies. Then we discussed the diagnostic and therapeutic potential (especially for immunotherapy, chemotherapy, and radiotherapy) of circRNA in CNS tumors in the context of the recent advanced research and application of RNA in clinics. CONCLUSIONS CircRNA are increasingly proven to participate in decveloping CNS tumors. An in-depth study of the causal mechanisms of circRNAs in CNS tomor progression will ultimately advance their implementation in the clinic and developing new strategies for preventing and treating CNS tumors.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- MRC Centre for Regenerative Medicine, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yun Peng
- Teaching and Research Section of Clinical NursingXiangya Hospital of Central South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xun Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Renjun Peng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
37
|
Liu D, Zhou X, He Y, Zhao J. The Roles of CircRNAs in Mitochondria. J Cancer 2024; 15:2759-2769. [PMID: 38577612 PMCID: PMC10988319 DOI: 10.7150/jca.92111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Mitochondria participate in varieties of cellular events. It is widely accepted that human mitochondrial genome encodes 13 proteins, 2 rRNAs, and 22 tRNAs. Gene variation derived from human nuclear genome cannot completely explain mitochondrial diseases. The advent of high-throughput sequencing coupled with novel bioinformatic analyses decode the complexity of mitochondria-derived transcripts. Recently, circular RNAs (circRNAs) from both human mitochondrial genome and nuclear genome have been found to be located at mitochondria. Studies about the roles and molecular mechanisms underlying trafficking of the nucleus encoded circRNAs to mitochondria and mitochondria encoded circRNAs to the nucleus or cytoplasm in mammals are only beginning to emerge. These circRNAs have been associated with a variety of diseases, especially cancers. Here, we discuss the emerging field of mitochondria-located circRNAs by reviewing their identification, expression patterns, regulatory roles, and functional mechanisms. Mitochondria-located circRNAs have regulatory roles in cellular physiology and pathology. We also highlight future perspectives and challenges in studying mitochondria-located circRNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Donghong Liu
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Xinyu Zhou
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yida He
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Jun Zhao
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| |
Collapse
|
38
|
Goina CA, Goina DM, Farcas SS, Andreescu NI. The Role of Circular RNA for Early Diagnosis and Improved Management of Patients with Cardiovascular Diseases. Int J Mol Sci 2024; 25:2986. [PMID: 38474233 PMCID: PMC10932049 DOI: 10.3390/ijms25052986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for approximately 17.9 million deaths every year. There is growing evidence that circular RNAs (circRNAs) may play a significant role in the early diagnosis and treatment of cardiovascular diseases. As regulatory molecules, circular RNAs regulate gene expression, interact with proteins and miRNAs, and are translated into proteins that play a key role in a wide variety of biological processes, including the division and proliferation of cells, as well as the growth and development of individuals. An overview of the properties, expression profiles, classification, and functions of circRNAs is presented here, along with an explanation of their implications in cardiovascular diseases including heart failure, hypertension, ischemia/reperfusion injury, myocardial infarction, cardiomyopathies, atherosclerosis, and arrhythmia.
Collapse
Affiliation(s)
- Claudia Alexandrina Goina
- Doctoral School, Discipline of Genetics, “Victor Babes” University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania;
| | - Daniela Marcela Goina
- Faculty of Animal Husbandry and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine of Banat, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Simona Sorina Farcas
- Department of Microscopic Morphology, Discipline of Genetics, Genomic Medicine Centre, “Victor Babeș” University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania;
| | - Nicoleta Ioana Andreescu
- Department of Microscopic Morphology, Discipline of Genetics, Genomic Medicine Centre, “Victor Babeș” University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania;
| |
Collapse
|
39
|
Niu M, Wang C, Chen Y, Zou Q, Qi R, Xu L. CircRNA identification and feature interpretability analysis. BMC Biol 2024; 22:44. [PMID: 38408987 PMCID: PMC10898045 DOI: 10.1186/s12915-023-01804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/18/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) can regulate microRNA activity and are related to various diseases, such as cancer. Functional research on circRNAs is the focus of scientific research. Accurate identification of circRNAs is important for gaining insight into their functions. Although several circRNA prediction models have been developed, their prediction accuracy is still unsatisfactory. Therefore, providing a more accurate computational framework to predict circRNAs and analyse their looping characteristics is crucial for systematic annotation. RESULTS We developed a novel framework, CircDC, for classifying circRNAs from other lncRNAs. CircDC uses four different feature encoding schemes and adopts a multilayer convolutional neural network and bidirectional long short-term memory network to learn high-order feature representation and make circRNA predictions. The results demonstrate that the proposed CircDC model is more accurate than existing models. In addition, an interpretable analysis of the features affecting the model is performed, and the computational framework is applied to the extended application of circRNA identification. CONCLUSIONS CircDC is suitable for the prediction of circRNA. The identification of circRNA helps to understand and delve into the related biological processes and functions. Feature importance analysis increases model interpretability and uncovers significant biological properties. The relevant code and data in this article can be accessed for free at https://github.com/nmt315320/CircDC.git .
Collapse
Affiliation(s)
- Mengting Niu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| | - Yaojia Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu, 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu, 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Ren Qi
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Barbosa DF, Oliveira LS, Nachtigall PG, Valentini Junior R, de Souza N, Paschoal AR, Kashiwabara AY. cirCodAn: A GHMM-based tool for accurate prediction of coding regions in circRNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:289-334. [PMID: 38448139 DOI: 10.1016/bs.apcsb.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Studies focusing on characterizing circRNAs with the potential to translate into peptides are quickly advancing. It is helping to elucidate the roles played by circRNAs in several biological processes, especially in the emergence and development of diseases. While various tools are accessible for predicting coding regions within linear sequences, none have demonstrated accurate open reading frame detection in circular sequences, such as circRNAs. Here, we present cirCodAn, a novel tool designed to predict coding regions in circRNAs. We evaluated the performance of cirCodAn using datasets of circRNAs with strong translation evidence and showed that cirCodAn outperformed the other tools available to perform a similar task. Our findings demonstrate the applicability of cirCodAn to identify coding regions in circRNAs, which reveals the potential of use of cirCodAn in future research focusing on elucidating the biological roles of circRNAs and their encoded proteins. cirCodAn is freely available at https://github.com/denilsonfbar/cirCodAn.
Collapse
Affiliation(s)
- Denilson Fagundes Barbosa
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina (IFSC), Canoinhas, Santa Catarina, Brazil
| | - Liliane Santana Oliveira
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rodolpho Valentini Junior
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Nayane de Souza
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Alexandre Rossi Paschoal
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - André Yoshiaki Kashiwabara
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil.
| |
Collapse
|
41
|
Liu S, Wang Y, Wang T, Shi K, Fan S, Li C, Chen R, Wang J, Jiang W, Zhang Y, Chen Y, Xu X, Yu Y, Li C, Li X. CircPCNXL2 promotes tumor growth and metastasis by interacting with STRAP to regulate ERK signaling in intrahepatic cholangiocarcinoma. Mol Cancer 2024; 23:35. [PMID: 38365721 PMCID: PMC10873941 DOI: 10.1186/s12943-024-01950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND circular RNAs (circRNAs) have been reported to exert important effects in the progression of numerous cancers. However, the functions of circRNAs in intrahepatic cholangiocarcinoma (ICC) are still unclear. METHODS circPCNXL2 (has_circ_0016956) were identified in paired ICC by circRNA microarray. Then, we assessed the biological functions of circPCNXL2 by CCK8, EdU, clone formation, transwell, wound healing assays, and xenograft models. RNA pull-down, mass spectrometry, and RNA immunoprecipitation (RIP) were applied to explore the interaction between cirrcPCNXL2 and serine-threonine kinase receptor-associated protein (STRAP). RNA pull-down, RIP and luciferase reporter assays were used to investigate the sponge functions of circPCNXL2. In the end, we explore the effects of circPCNXL2 and trametinib (a MEK1/2 inhibitor) in vivo. RESULTS circPCNXL2 was upregulated in ICC tissues and cell lines, which promoted the proliferation and metastasis of ICC in vitro and in vivo. In terms of the mechanisms, circPCNXL2 could directly bind to STRAP and induce the interaction between STRAP and MEK1/2, resulting in the tumor promotion in ICC by activation of ERK/MAPK pathways. Besides, circPCNXL2 could regulate the expression of SRSF1 by sponging miR-766-3p and subsequently facilitated the growth of ICC. Finally, circPCNXL2 could partially inhibit the anti-tumor activity of trametinib in vivo. CONCLUSION circPCNXL2 played a crucial role in the progression of ICC by interacting with STRAP to activate the ERK signaling pathway, as well as by modulating the miR-766-3p/SRSF1 axis. These findings suggest that circPCNXL2 may be a promising biomarker and therapeutic target for ICC.
Collapse
Affiliation(s)
- Shuochen Liu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yirui Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Tianlin Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Kuangheng Shi
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Shilong Fan
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Chang Li
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yananlan Chen
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yue Yu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiangcheng Li
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
42
|
Xie Q, Ma Y, Ren Z, Gu T, Jiang Z. Circular RNA: A new expectation for cardiovascular diseases. J Cell Biochem 2024; 125:e30512. [PMID: 38098251 DOI: 10.1002/jcb.30512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.
Collapse
Affiliation(s)
- Qiao Xie
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
43
|
Zhang L, Gao H, Li X, Yu F, Li P. The important regulatory roles of circRNA‑encoded proteins or peptides in cancer pathogenesis (Review). Int J Oncol 2024; 64:19. [PMID: 38186313 PMCID: PMC10783939 DOI: 10.3892/ijo.2023.5607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Circular RNAs (circRNAs) represent a class of RNA molecules characterized by their covalently closed structures. There are three types of circRNAs, namely exonic circRNAs, exon‑intron circRNAs and circular intronic RNAs. To date, four distinct mechanisms have been unveiled through which circRNAs exert their functional influence, including serving as microRNA (miRNA) sponges, interacting with RNA binding proteins (RBPs), modulating parental gene transcription and acting as templates for translation. Of note, among these mechanisms, the miRNA/RBP sponge function has been the most investigated one. Recent research has uncovered the presence of various proteins or peptides encoded by circRNA. CircRNAs are translated independent of the 5' cap and 3' polyA tail, which are typical elements for linear RNA translation. Some unique elements, such as internal ribosome entry sites and N‑methyladenosine modifications, facilitate the initiation of translation. These circRNA‑encoded proteins or peptides participate in diverse signalling pathways and act as important regulators in carcinogenesis by influencing cell proliferation, migration, apoptosis and other key processes. Consequently, circRNA‑encoded proteins or peptides have great potential as therapeutic targets for anticancer drugs. The present comprehensive review aimed to systematically summarize the current understanding of circRNA‑encoded proteins or peptides and to unveil their roles in carcinogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
44
|
Wang H, Zhang Y, Miao H, Xu T, Nie X, Cheng W. CircRAD23B promotes proliferation and carboplatin resistance in ovarian cancer cell lines and organoids. Cancer Cell Int 2024; 24:42. [PMID: 38273320 PMCID: PMC10811902 DOI: 10.1186/s12935-024-03228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the regulation of progression and drug resistance in ovarian cancer (OC). In the present study, we aimed to explore the role of circRAD23B, a newly identified circRNA, in the regulation of carboplatin-resistant OC. METHODS CircRAD23B expression levels were measured using qRT-PCR. The biological roles of circRAD23B were analysed using CCK-8, colony formation, EDU, flow cytometry, and cell viability assays. RNA pull-down and luciferase assays were used to investigate the interactions of circRAD23B with mRNAs and miRNAs. RESULTS CircRAD23B was significantly increased in carboplatin-resistant OC tissues. CircRAD23B promoted proliferation and reduced sensitivity to carboplatin in cell lines and patient-derived organoids (PDOs), consistent with in vivo findings. Mechanistically, circRAD23B acted as a molecular sponge, abrogating its inhibitory effect on Y-box binding protein 1 (YBX1) by adsorbing miR-1287-5p. Rescue experiments confirmed that the pro-proliferation and carboplatin resistance mediated by circRAD23B was partially reversed by the upregulation of miR-1287-5p. CONCLUSIONS Our results demonstrated, for the first time, the role of the circRAD23B/miR-1287-5p/YBX1 axis in OC progression and carboplatin resistance in cell lines, PDOs, and animal models, providing a basis for the development of targeted therapies for patients with OC.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yashuang Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Huixian Miao
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ting Xu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xianglin Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
45
|
Gutierrez-Camino A, Caron M, Richer C, Fuchs C, Illarregi U, Poncelet L, St-Onge P, Bataille AR, Tremblay-Dauphinais P, Lopez-Lopez E, Camos M, Ramirez-Orellana M, Astigarraga I, Lécuyer É, Bourque G, Martin-Guerrero I, Sinnett D. CircRNAome of Childhood Acute Lymphoblastic Leukemia: Deciphering Subtype-Specific Expression Profiles and Involvement in TCF3::PBX1 ALL. Int J Mol Sci 2024; 25:1477. [PMID: 38338754 PMCID: PMC10855129 DOI: 10.3390/ijms25031477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Maxime Caron
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Claire Fuchs
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (U.I.); (I.M.-G.)
| | - Lucas Poncelet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Alain R. Bataille
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Pascal Tremblay-Dauphinais
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Elixabet Lopez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Mireia Camos
- Hematology Laboratory, Sant Joan de Déu Research Institute, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Manuel Ramirez-Orellana
- Department of Pediatric Hematology and Oncology, Niño Jesús University Hospital, 28009 Madrid, Spain;
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Pediatrics, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Éric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada;
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (U.I.); (I.M.-G.)
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
46
|
Chiang TW, Jhong SE, Chen YC, Chen CY, Wu WS, Chuang TJ. FL-circAS: an integrative resource and analysis for full-length sequences and alternative splicing of circular RNAs with nanopore sequencing. Nucleic Acids Res 2024; 52:D115-D123. [PMID: 37823705 PMCID: PMC10767854 DOI: 10.1093/nar/gkad829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Circular RNAs (circRNAs) are RNA molecules with a continuous loop structure characterized by back-splice junctions (BSJs). While analyses of short-read RNA sequencing have identified millions of BSJ events, it is inherently challenging to determine exact full-length sequences and alternatively spliced (AS) isoforms of circRNAs. Recent advances in nanopore long-read sequencing with circRNA enrichment bring an unprecedented opportunity for investigating the issues. Here, we developed FL-circAS (https://cosbi.ee.ncku.edu.tw/FL-circAS/), which collected such long-read sequencing data of 20 cell lines/tissues and thereby identified 884 636 BSJs with 1 853 692 full-length circRNA isoforms in human and 115 173 BSJs with 135 617 full-length circRNA isoforms in mouse. FL-circAS also provides multiple circRNA features. For circRNA expression, FL-circAS calculates expression levels for each circRNA isoform, cell line/tissue specificity at both the BSJ and isoform levels, and AS entropy for each BSJ across samples. For circRNA biogenesis, FL-circAS identifies reverse complementary sequences and RNA binding protein (RBP) binding sites residing in flanking sequences of BSJs. For functional patterns, FL-circAS identifies potential microRNA/RBP binding sites and several types of evidence for circRNA translation on each full-length circRNA isoform. FL-circAS provides user-friendly interfaces for browsing, searching, analyzing, and downloading data, serving as the first resource for discovering full-length circRNAs at the isoform level.
Collapse
Affiliation(s)
- Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Song-En Jhong
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | |
Collapse
|
47
|
Wu W, Zhao F, Zhang J. circAtlas 3.0: a gateway to 3 million curated vertebrate circular RNAs based on a standardized nomenclature scheme. Nucleic Acids Res 2024; 52:D52-D60. [PMID: 37739414 PMCID: PMC10767913 DOI: 10.1093/nar/gkad770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
Recent studies have demonstrated the important regulatory role of circRNAs, but an in-depth understanding of the comprehensive landscape of circRNAs across various species still remains unexplored. The current circRNA databases are often species-restricted or based on outdated datasets. To address this challenge, we have developed the circAtlas 3.0 database, which contains a rich collection of 2674 circRNA sequencing datasets, curated to delineate the landscape of circRNAs within 33 distinct tissues spanning 10 vertebrate species. Notably, circAtlas 3.0 represents a substantial advancement over its precursor, circAtlas 2.0, with the number of cataloged circRNAs escalating from 1 007 087 to 3 179 560, with 2 527 528 of them being reconstructed into full-length isoforms. circAtlas 3.0 also introduces several notable enhancements, including: (i) integration of both Illumina and Nanopore sequencing datasets to detect circRNAs of extended lengths; (ii) employment of a standardized nomenclature scheme for circRNAs, providing information of the host gene and full-length circular exons; (iii) inclusion of clinical cancer samples to explore the biological function of circRNAs within the context of cancer and (iv) links to other useful resources to enable user-friendly analysis of target circRNAs. The updated circAtlas 3.0 provides an important platform for exploring the evolution and biological implications of vertebrate circRNAs, and is freely available at http://circatlas.biols.ac.cn and https://ngdc.cncb.ac.cn/circatlas.
Collapse
Affiliation(s)
- Wanying Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Jinyang Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Huang D, Zhu X, Ye S, Zhang J, Liao J, Zhang N, Zeng X, Wang J, Yang B, Zhang Y, Lao L, Chen J, Xin M, Nie Y, Saw PE, Su S, Song E. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature 2024; 625:593-602. [PMID: 38093017 DOI: 10.1038/s41586-023-06834-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Emerging data have shown that previously defined noncoding genomes might encode peptides that bind human leukocyte antigen (HLA) as cryptic antigens to stimulate adaptive immunity1,2. However, the significance and mechanisms of action of cryptic antigens in anti-tumour immunity remain unclear. Here mass spectrometry of the HLA class I (HLA-I) peptidome coupled with ribosome sequencing of human breast cancer samples identified HLA-I-binding cryptic antigenic peptides that were noncanonically translated by a tumour-specific circular RNA (circRNA): circFAM53B. The cryptic peptides efficiently primed naive CD4+ and CD8+ T cells in an antigen-specific manner and induced anti-tumour immunity. Clinically, the expression of circFAM53B and its encoded peptides was associated with substantial infiltration of antigen-specific CD8+ T cells and better survival in patients with breast cancer and patients with melanoma. Mechanistically, circFAM53B-encoded peptides had strong binding affinity to both HLA-I and HLA-II molecules. In vivo, administration of vaccines consisting of tumour-specific circRNA or its encoded peptides in mice bearing breast cancer tumours or melanoma induced enhanced infiltration of tumour-antigen-specific cytotoxic T cells, which led to effective tumour control. Overall, our findings reveal that noncanonical translation of circRNAs can drive efficient anti-tumour immunity, which suggests that vaccination exploiting tumour-specific circRNAs may serve as an immunotherapeutic strategy against malignant tumours.
Collapse
Affiliation(s)
- Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianyou Liao
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Zeng
- Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bing Yang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Min Xin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
49
|
Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Circular RNAs: Biogenesis, Functions, and Role in Myocardial Hypertrophy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S1-S13. [PMID: 38621741 DOI: 10.1134/s0006297924140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 04/17/2024]
Abstract
Circular RNAs (circRNAs) are a large class of endogenous single-stranded covalently closed RNA molecules. High-throughput RNA sequencing and bioinformatic algorithms have identified thousands of eukaryotic circRNAs characterized by high stability and tissue-specific expression pattern. Recent studies have shown that circRNAs play an important role in the regulation of physiological processes in the norm and in various diseases, including cardiovascular disorders. The review presents current concepts of circRNA biogenesis, structural features, and biological functions, describes the methods of circRNA analysis, and summarizes the results of studies on the role of circRNAs in the pathogenesis of hypertrophic cardiomyopathy, the most common inherited heart disease.
Collapse
Affiliation(s)
- Natalia M Baulina
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Ivan S Kiselev
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Olga S Chumakova
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Olga O Favorova
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
50
|
Lu Y, Ran Y, Li H, Wen J, Cui X, Zhang X, Guan X, Cheng M. Micropeptides: origins, identification, and potential role in metabolism-related diseases. J Zhejiang Univ Sci B 2023; 24:1106-1122. [PMID: 38057268 PMCID: PMC10710913 DOI: 10.1631/jzus.b2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|