1
|
Caparali EB, De Gregorio V, Barua M. Genotype-Based Molecular Mechanisms in Alport Syndrome. J Am Soc Nephrol 2025:00001751-990000000-00551. [PMID: 39899372 DOI: 10.1681/asn.0000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Alport syndrome is an inherited disorder characterized by kidney disease, sensorineural hearing loss, and ocular abnormalities. Alport syndrome is caused by pathogenic variants in COL4A3 , COL4A4 , or COL4A5 , which encode the α 3, α 4, and α 5 chains of type 4 collagen that forms a heterotrimer expressed in the glomerular basement membrane. Knowledge of its genetic basis has informed the development of different models in dogs, mice, and rats that reflect its autosomal and X-linked inheritance patterns as well as different mutation types, including protein-truncating and missense variants. A key difference between these two types is the synthesis of α 3 α 4 α 5(IV), which is not made in autosomal Alport syndrome (two pathogenic variants in trans or biallelic) or male patients with X-linked Alport syndrome due to protein-truncating variants. By contrast, α 3 α 4 α 5(IV) is synthesized in Alport syndrome because of missense variants. For missense variants, in vitro studies suggest that these cause impaired type 4 collagen trafficking and endoplasmic reticulum stress. For protein-truncating variants, knockout models suggest that persistence of an immature α 1 α 1 α 2(IV) network is associated with biomechanical strain, which activates endothelin-A receptors leading to mesangial filopodia formation. Moreover, studies suggest that activation of collagen receptors, integrins and discoidin domain receptor 1, play a role in disease propagation. In this review, we provide an overview of how these genotype-phenotype mechanisms are key for a precision medicine-based approach in the future.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | - Moumita Barua
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ali A, Liu Z, Ye K, Guan Y, Chen S, Liu T, Guo Z, Wong MK, Vasquez P, Poudel C, Mustonen BC, Eng DG, Pippin JW, Shankland SJ, Wang S, Vaughan JC. Nanoscale Optical Imaging, Reconstruction, and Spatial Analysis of Whole Mouse Glomeruli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.620364. [PMID: 39554089 PMCID: PMC11565967 DOI: 10.1101/2024.10.31.620364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Renal glomeruli have traditionally been studied by micrometer-scale optical microscopy to interrogate overall physiology or molecular distributions and by nanoscale electron microscopy to interrogate the ultrastructure of thin sections. While these approaches are powerful, they have been limited in their ability to obtain detailed views of the glomeruli as holistic 3D functional units. To fill this knowledge gap, we have developed a novel pipeline for imaging, reconstructing, and analyzing whole mouse glomeruli at 100 nm resolution using super-resolution fluorescence microscopy. This pipeline integrates both manual and machine learning approaches to annotate and analyze glomerular structures. Using this method, we created 18 detailed glomerulus models, from a range of healthy, aged, and model diseased mice, that outline all major structures and cell types. These models have been made publicly accessible in an online repository, providing a valuable resource for further studies. Our results also uncovered a diverse set of novel phenotypes including nuclear enlargement in all glomerular cell types in aging and disease, as well as an aging-related pattern of regional thickening of the Bowman's capsule basement membrane near the tubular-glomerular junction.
Collapse
Affiliation(s)
- Adilijiang Ali
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Zixuan Liu
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Kenan Ye
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Yun Guan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Siying Chen
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Tingxuan Liu
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Ziyu Guo
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Madeline K Wong
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Pedro Vasquez
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Liu PJ, Sayeeda K, Zhuang C, Krendel M. Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease. Cytoskeleton (Hoboken) 2024; 81:737-752. [PMID: 38708443 PMCID: PMC11538376 DOI: 10.1002/cm.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kazi Sayeeda
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cindy Zhuang
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
4
|
Madison J, Wilhelm K, Meehan DT, Gratton MA, Vosik D, Samuelson G, Ott M, Fascianella J, Nelson N, Cosgrove D. Ramipril therapy in integrin α1-null, autosomal recessive Alport mice triples lifespan: mechanistic clues from RNA-seq analysis. J Pathol 2024; 262:296-309. [PMID: 38129319 PMCID: PMC10872630 DOI: 10.1002/path.6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
The standard of care for patients with Alport syndrome (AS) is angiotensin-converting enzyme (ACE) inhibitors. In autosomal recessive Alport (ARAS) mice, ACE inhibitors double lifespan. We previously showed that deletion of Itga1 in Alport mice [double-knockout (DKO) mice] increased lifespan by 50%. This effect seemed dependent on the prevention of laminin 211-mediated podocyte injury. Here, we treated DKO mice with vehicle or ramipril starting at 4 weeks of age. Proteinuria and glomerular filtration rates were measured at 5-week intervals. Glomeruli were analyzed for laminin 211 deposition in the glomerular basement membrane (GBM) and GBM ultrastructure was analyzed using transmission electron microscopy (TEM). RNA sequencing (RNA-seq) was performed on isolated glomeruli at all time points and the results were compared with cultured podocytes overlaid (or not) with recombinant laminin 211. Glomerular filtration rate declined in ramipril-treated DKO mice between 30 and 35 weeks. Proteinuria followed these same patterns with normalization of foot process architecture in ramipril-treated DKO mice. RNA-seq revealed a decline in the expression of Foxc2, nephrin (Nphs1), and podocin (Nphs2) mRNAs, which was delayed in the ramipril-treated DKO mice. GBM accumulation of laminin 211 was delayed in ramipril-treated DKO mice, likely due to a role for α1β1 integrin in CDC42 activation in Alport mesangial cells, which is required for mesangial filopodial invasion of the subendothelial spaces of the glomerular capillary loops. Ramipril synergized with Itga1 knockout, tripling lifespan compared with untreated ARAS mice. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, USA
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | - Denise Vosik
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Megan Ott
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Noa Nelson
- Boys Town National Research Hospital, Omaha, NE, USA
| | | |
Collapse
|
5
|
Marshall AG, Neikirk K, Stephens DC, Vang L, Vue Z, Beasley HK, Crabtree A, Scudese E, Lopez EG, Shao B, Krystofiak E, Rutledge S, Davis J, Murray SA, Damo SM, Katti P, Hinton A. Serial Block Face-Scanning Electron Microscopy as a Burgeoning Technology. Adv Biol (Weinh) 2023; 7:e2300139. [PMID: 37246236 PMCID: PMC10950369 DOI: 10.1002/adbi.202300139] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/09/2023] [Indexed: 05/30/2023]
Abstract
Serial block face scanning electron microscopy (SBF-SEM), also referred to as serial block-face electron microscopy, is an advanced ultrastructural imaging technique that enables three-dimensional visualization that provides largerx- and y-axis ranges than other volumetric EM techniques. While SEM is first introduced in the 1930s, SBF-SEM is developed as a novel method to resolve the 3D architecture of neuronal networks across large volumes with nanometer resolution by Denk and Horstmann in 2004. Here, the authors provide an accessible overview of the advantages and challenges associated with SBF-SEM. Beyond this, the applications of SBF-SEM in biochemical domains as well as potential future clinical applications are briefly reviewed. Finally, the alternative forms of artificial intelligence-based segmentation which may contribute to devising a feasible workflow involving SBF-SEM, are also considered.
Collapse
Affiliation(s)
- Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique C Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Catholic, 25685-100, Brazil
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sharifa Rutledge
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Jaimaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, Pharmacology, Meharry Medical College, Nashville, TN, 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
6
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Siegerist F, Drenic V, Koppe TM, Telli N, Endlich N. Super-Resolution Microscopy: A Technique to Revolutionize Research and Diagnosis of Glomerulopathies. GLOMERULAR DISEASES 2022; 3:19-28. [PMID: 36816428 PMCID: PMC9936760 DOI: 10.1159/000528713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Background For decades, knowledge about glomerular (patho)physiology has been tightly linked with advances in microscopic imaging technology. For example, the invention of electron microscopy was required to hypothesize about the mode of glomerular filtration barrier function. Summary Super-resolution techniques, defined as fluorescence microscopy approaches that surpass the optical resolution limit of around 200 nm, have been made available to the scientific community. Several of these different techniques are currently in use in glomerular research. Using three-dimensional structured illumination microscopy, the exact morphology of the podocyte filtration slit can be morphometrically analyzed and quantitatively compared across samples originating from animal models or human biopsies. Key Messages Several quantitative image analysis approaches and their potential influence on glomerular research and diagnostics are discussed. By improving not only optical resolution but also information content and turnaround time, super-resolution microscopy has the potential to expand the diagnosis of glomerular disease. Soon, these approaches could be introduced into glomerular disease diagnosis.
Collapse
Affiliation(s)
- Florian Siegerist
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | | - Thor-Magnus Koppe
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany,NIPOKA GmbH, Greifswald, Germany,*Nicole Endlich,
| |
Collapse
|
8
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
9
|
Liu PJ, Gunther LK, Garone ME, Zhang C, Perez D, Bi-Karchin J, Pellenz CD, Chase SE, Presti MF, Plante EL, Martin CE, Lovric S, Yengo CM, Hildebrandt F, Krendel M. Steroid-Resistant Nephrotic Syndrome-Associated MYO1E Mutations Have Differential Effects on Myosin 1e Localization, Dynamics, and Activity. J Am Soc Nephrol 2022; 33:1989-2007. [PMID: 36316095 PMCID: PMC9678034 DOI: 10.1681/asn.2021111505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Laura K. Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Michael E. Garone
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York
| | - Diana Perez
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Jing Bi-Karchin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Christopher D. Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Sharon E. Chase
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Maria F. Presti
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Eric L. Plante
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Svjetlana Lovric
- Divison of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Friedhelm Hildebrandt
- Divison of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| |
Collapse
|
10
|
Naylor RW, Lemarie E, Jackson-Crawford A, Davenport JB, Mironov A, Lowe M, Lennon R. A novel nanoluciferase transgenic reporter measures proteinuria in zebrafish. Kidney Int 2022; 102:815-827. [PMID: 35716957 DOI: 10.1101/2021.07.19.452884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The zebrafish is an important animal system for modeling human diseases. This includes kidney dysfunction as the embryonic kidney (pronephros) shares considerable molecular and morphological homology with the human nephron. A key clinical indicator of kidney disease is proteinuria, but a high-throughput readout of proteinuria in the zebrafish is currently lacking. To remedy this, we used the Tol2 transposon system to generate a transgenic zebrafish line that uses the fabp10a liver-specific promoter to over-express a nanoluciferase molecule fused with the D3 domain of Receptor-Associated Protein (a type of molecular chaperone) which we term NL-D3. Using a luminometer, we quantified proteinuria in NL-D3 zebrafish larvae by measuring the intensity of luminescence in the embryo medium. In the healthy state, NL-D3 is not excreted, but when embryos were treated with chemicals that affected either proximal tubular reabsorption (cisplatin, gentamicin) or glomerular filtration (angiotensin II, Hanks Balanced Salt Solution, Bovine Serum Albumin), NL-D3 is detected in fish medium. Similarly, depletion of several gene products associated with kidney disease (nphs1, nphs2, lrp2a, ocrl, col4a3, and col4a4) also induced NL-D3 proteinuria. Treating col4a4 depleted zebrafish larvae (a model of Alport syndrome) with captopril reduced proteinuria in this system. Thus, our findings validate the use of the NL-D3 transgenic zebrafish as a robust and quantifiable proteinuria reporter. Hence, given the feasibility of high-throughput assays in zebrafish, this novel reporter will permit screening for drugs that ameliorate proteinuria, thereby prioritizing candidates for further translational studies.
Collapse
Affiliation(s)
- Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emmanuel Lemarie
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - J Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
11
|
Naylor RW, Lemarie E, Jackson-Crawford A, Davenport JB, Mironov A, Lowe M, Lennon R. A novel nanoluciferase transgenic reporter measures proteinuria in zebrafish. Kidney Int 2022; 102:815-827. [PMID: 35716957 PMCID: PMC7614274 DOI: 10.1016/j.kint.2022.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
The zebrafish is an important animal system for modeling human diseases. This includes kidney dysfunction as the embryonic kidney (pronephros) shares considerable molecular and morphological homology with the human nephron. A key clinical indicator of kidney disease is proteinuria, but a high-throughput readout of proteinuria in the zebrafish is currently lacking. To remedy this, we used the Tol2 transposon system to generate a transgenic zebrafish line that uses the fabp10a liver-specific promoter to over-express a nanoluciferase molecule fused with the D3 domain of Receptor-Associated Protein (a type of molecular chaperone) which we term NL-D3. Using a luminometer, we quantified proteinuria in NL-D3 zebrafish larvae by measuring the intensity of luminescence in the embryo medium. In the healthy state, NL-D3 is not excreted, but when embryos were treated with chemicals that affected either proximal tubular reabsorption (cisplatin, gentamicin) or glomerular filtration (angiotensin II, Hanks Balanced Salt Solution, Bovine Serum Albumin), NL-D3 is detected in fish medium. Similarly, depletion of several gene products associated with kidney disease (nphs1, nphs2, lrp2a, ocrl, col4a3, and col4a4) also induced NL-D3 proteinuria. Treating col4a4 depleted zebrafish larvae (a model of Alport syndrome) with captopril reduced proteinuria in this system. Thus, our findings validate the use of the NL-D3 transgenic zebrafish as a robust and quantifiable proteinuria reporter. Hence, given the feasibility of high-throughput assays in zebrafish, this novel reporter will permit screening for drugs that ameliorate proteinuria, thereby prioritizing candidates for further translational studies.
Collapse
Affiliation(s)
- Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emmanuel Lemarie
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - J Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
12
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Jayadev R, Morais MRPT, Ellingford JM, Srinivasan S, Naylor RW, Lawless C, Li AS, Ingham JF, Hastie E, Chi Q, Fresquet M, Koudis NM, Thomas HB, O’Keefe RT, Williams E, Adamson A, Stuart HM, Banka S, Smedley D, Genomics England Research Consortium, Sherwood DR, Lennon R. A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. SCIENCE ADVANCES 2022; 8:eabn2265. [PMID: 35584218 PMCID: PMC9116610 DOI: 10.1126/sciadv.abn2265] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/22/2022] [Indexed: 05/17/2023]
Abstract
Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFβ. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Mychel R. P. T. Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jamie M. Ellingford
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Sandhya Srinivasan
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Richard W. Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Anna S. Li
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jack F. Ingham
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Nikki-Maria Koudis
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Huw B. Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Emily Williams
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Helen M. Stuart
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Genomics England Research Consortium
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
- Genomics England, London, UK
| | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
14
|
Cosgrove D, Madison J. Molecular and Cellular Mechanisms Underlying the Initiation and Progression of Alport Glomerular Pathology. Front Med (Lausanne) 2022; 9:846152. [PMID: 35223933 PMCID: PMC8863674 DOI: 10.3389/fmed.2022.846152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Alport syndrome results from a myriad of variants in the COL4A3, COL4A4, or COL4A5 genes that encode type IV (basement membrane) collagens. Unlike type IV collagen α1(IV)2α2(IV)1 heterotrimers, which are ubiquitous in basement membranes, α3/α4/α5 have a limited tissue distribution. The absence of these basement membrane networks causes pathologies in some, but not all these tissues. Primarily the kidney glomerulus, the stria vascularis of the inner ear, the lens, and the retina as well as a rare link with aortic aneurisms. Defects in the glomerular basement membranes results in delayed onset and progressive focal segmental glomerulosclerosis ultimately requiring the patient to undergo dialysis and if accessible, kidney transplant. The lifespan of patients with Alport syndrome is ultimately significantly shortened. This review addresses the consequences of the altered glomerular basement membrane composition in Alport syndrome with specific emphasis on the mechanisms underlying initiation and progression of glomerular pathology.
Collapse
Affiliation(s)
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States
| |
Collapse
|
15
|
Falcone S, Nicol T, Blease A, Randles MJ, Angus E, Page A, Tam FWK, Pusey CD, Lennon R, Potter PK. A novel model of nephrotic syndrome results from a point mutation in Lama5 and is modified by genetic background. Kidney Int 2022; 101:527-540. [PMID: 34774562 PMCID: PMC8883398 DOI: 10.1016/j.kint.2021.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
Nephrotic syndrome is characterized by severe proteinuria, hypoalbuminaemia, edema and hyperlipidaemia. Genetic studies of nephrotic syndrome have led to the identification of proteins playing a crucial role in slit diaphragm signaling, regulation of actin cytoskeleton dynamics and cell-matrix interactions. The laminin α5 chain is essential for embryonic development and, in association with laminin β2 and laminin γ1, is a major component of the glomerular basement membrane, a critical component of the glomerular filtration barrier. Mutations in LAMA5 were recently identified in children with nephrotic syndrome. Here, we have identified a novel missense mutation (E884G) in the uncharacterized L4a domain of LAMA5 where homozygous mice develop nephrotic syndrome with severe proteinuria with histological and ultrastructural changes in the glomerulus mimicking the progression seen in most patients. The levels of LAMA5 are reduced in vivo and the assembly of the laminin 521 heterotrimer significantly reduced in vitro. Proteomic analysis of the glomerular extracellular fraction revealed changes in the matrix composition. Importantly, the genetic background of the mice had a significant effect on aspects of disease progression from proteinuria to changes in podocyte morphology. Thus, our novel model will provide insights into pathologic mechanisms of nephrotic syndrome and pathways that influence the response to a dysfunctional glomerular basement membrane that may be important in a range of kidney diseases.
Collapse
Affiliation(s)
- Sara Falcone
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK; Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, UK
| | - Thomas Nicol
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK; British Heart Foundation, Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andrew Blease
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Michael J Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth Angus
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anton Page
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Frederick W K Tam
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Paul K Potter
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK; Department Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, UK.
| |
Collapse
|
16
|
Qu C, Roth R, Puapatanakul P, Loitman C, Hammad D, Genin GM, Miner JH, Suleiman HY. Three-Dimensional Visualization of the Podocyte Actin Network Using Integrated Membrane Extraction, Electron Microscopy, and Machine Learning. J Am Soc Nephrol 2022; 33:155-173. [PMID: 34758982 PMCID: PMC8763187 DOI: 10.1681/asn.2021020182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. METHODS We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation. RESULTS Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. CONCLUSIONS Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.
Collapse
Affiliation(s)
- Chengqing Qu
- Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Charles Loitman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Dina Hammad
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Guy M. Genin
- Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeffrey H. Miner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri,Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Hani Y. Suleiman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Müller-Deile J, Sopel N, Ohs A, Rose V, Gröner M, Wrede C, Hegermann J, Daniel C, Amann K, Zahner G, Schiffer M. Glomerular Endothelial Cell-Derived microRNA-192 Regulates Nephronectin Expression in Idiopathic Membranous Glomerulonephritis. J Am Soc Nephrol 2021; 32:2777-2794. [PMID: 34716242 PMCID: PMC8806098 DOI: 10.1681/asn.2020121699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autoantibodies binding to podocyte antigens cause idiopathic membranous glomerulonephritis (iMGN). However, it remains elusive how autoantibodies reach the subepithelial space because the glomerular filtration barrier (GFB) is size selective and almost impermeable for antibodies. METHODS Kidney biopsies from patients with iMGN, cell culture, zebrafish, and mouse models were used to investigate the role of nephronectin (NPNT) regulating microRNAs (miRs) for the GFB. RESULTS Glomerular endothelial cell (GEC)-derived miR-192-5p and podocyte-derived miR-378a-3p are upregulated in urine and glomeruli of patients with iMGN, whereas glomerular NPNT is reduced. Overexpression of miR-192-5p and morpholino-mediated npnt knockdown induced edema, proteinuria, and podocyte effacement similar to podocyte-derived miR-378a-3p in zebrafish. Structural changes of the glomerular basement membrane (GBM) with increased lucidity, splitting, and lamellation, especially of the lamina rara interna, similar to ultrastructural findings seen in advanced stages of iMGN, were found. IgG-size nanoparticles accumulated in lucidity areas of the lamina rara interna and lamina densa of the GBM in npnt-knockdown zebrafish models. Loss of slit diaphragm proteins and severe structural impairment of the GBM were further confirmed in podocyte-specific Npnt knockout mice. GECs downregulate podocyte NPNT by transfer of miR-192-5p-containing exosomes in a paracrine manner. CONCLUSIONS Podocyte NPNT is important for proper glomerular filter function and GBM structure and is regulated by GEC-derived miR-192-5p and podocyte-derived miR-378a-3p. We hypothesize that loss of NPNT in the GBM is an important part of the initial pathophysiology of iMGN and enables autoantigenicity of podocyte antigens and subepithelial immune complex deposition in iMGN.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Sopel
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Ohs
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Victoria Rose
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marwin Gröner
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hannover, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Gunther Zahner
- Department of Medicine, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Mario Schiffer
- Department of Nephrology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Lipp SN, Jacobson KR, Hains DS, Schwarderer AL, Calve S. 3D Mapping Reveals a Complex and Transient Interstitial Matrix During Murine Kidney Development. J Am Soc Nephrol 2021; 32:1649-1665. [PMID: 33875569 PMCID: PMC8425666 DOI: 10.1681/asn.2020081204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/20/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a network of proteins and glycosaminoglycans that provides structural and biochemical cues to cells. In the kidney, the ECM is critical for nephrogenesis; however, the dynamics of ECM composition and how it relates to 3D structure during development is unknown. METHODS Using embryonic day 14.5 (E14.5), E18.5, postnatal day 3 (P3), and adult kidneys, we fractionated proteins based on differential solubilities, performed liquid chromatography-tandem mass spectrometry, and identified changes in ECM protein content (matrisome). Decellularized kidneys were stained for ECM proteins and imaged in 3D using confocal microscopy. RESULTS We observed an increase in interstitial ECM that connects the stromal mesenchyme to the basement membrane (TNXB, COL6A1, COL6A2, COL6A3) between the embryo and adult, and a transient elevation of interstitial matrix proteins (COL5A2, COL12A1, COL26A1, ELN, EMID1, FBN1, LTBP4, THSD4) at perinatal time points. Basement membrane proteins critical for metanephric induction (FRAS1, FREM2) were highest in abundance in the embryo, whereas proteins necessary for integrity of the glomerular basement membrane (COL4A3, COL4A4, COL4A5, LAMB2) were more abundant in the adult. 3D visualization revealed a complex interstitial matrix that dramatically changed over development, including the perinatal formation of fibrillar structures that appear to support the medullary rays. CONCLUSION By correlating 3D ECM spatiotemporal organization with global protein abundance, we revealed novel changes in the interstitial matrix during kidney development. This new information regarding the ECM in developing kidneys offers the potential to inform the design of regenerative scaffolds that can guide nephrogenesis in vitro.
Collapse
Affiliation(s)
- Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Medical Scientist/Engineer Training Program, Indiana University, Indianapolis, Indiana
| | - Kathryn R. Jacobson
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
| | - David S. Hains
- Department of Pediatrics, School of Medicine, Indiana University, Riley Children’s Hospital, Indianapolis, Indiana
| | - Andrew L. Schwarderer
- Department of Pediatrics, School of Medicine, Indiana University, Riley Children’s Hospital, Indianapolis, Indiana
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
19
|
Quinlan C, Rheault MN. Genetic Basis of Type IV Collagen Disorders of the Kidney. Clin J Am Soc Nephrol 2021; 16:1101-1109. [PMID: 33849932 PMCID: PMC8425620 DOI: 10.2215/cjn.19171220] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glomerular basement membrane is a vital component of the filtration barrier of the kidney and is primarily composed of a highly structured matrix of type IV collagen. Specific isoforms of type IV collagen, the α3(IV), α4(IV), and α5(IV) isoforms, assemble into trimers that are required for normal glomerular basement membrane function. Disruption or alteration in these isoforms leads to breakdown of the glomerular basement membrane structure and function and can lead to progressive CKD known as Alport syndrome. However, there is wide variability in phenotype among patients with mutations affecting type IV collagen that depends on a complex interplay of sex, genotype, and X-chromosome inactivation. This article reviews the genetic basis of collagen disorders of the kidney as well as potential treatments for these conditions, including direct alteration of the DNA, RNA therapies, and manipulation of collagen proteins.
Collapse
Affiliation(s)
- Catherine Quinlan
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Victoria, Australia,Department of Kidney Regeneration, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle N. Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota Masonic Children’s Hospital, Minneapolis, Minnesota
| |
Collapse
|
20
|
Takemon Y, Wright V, Davenport B, Gatti DM, Sheehan SM, Letson K, Savage HS, Lennon R, Korstanje R. Uncovering Modifier Genes of X-Linked Alport Syndrome Using a Novel Multiparent Mouse Model. J Am Soc Nephrol 2021; 32:1961-1973. [PMID: 34045313 PMCID: PMC8455275 DOI: 10.1681/asn.2020060777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mutations in COL4A5 are responsible for 80% of cases of X-linked Alport Syndrome (XLAS). Although genes that cause AS are well characterized, people with AS who have similar genetic mutations present with a wide variation in the extent of kidney impairment and age of onset, suggesting the activities of modifier genes. METHODS We created a cohort of genetically diverse XLAS male and female mice using the Diversity Outbred mouse resource and measured albuminuria, GFR, and gene expression. Using a quantitative trait locus approach, we mapped modifier genes that can best explain the underlying phenotypic variation measured in our diverse population. RESULTS Genetic analysis identified several loci associated with the variation in albuminuria and GFR, including a locus on the X chromosome associated with X inactivation and a locus on chromosome 2 containing Fmn1. Subsequent analysis of genetically reduced Fmn1 expression in Col4a5 knockout mice showed a decrease in albuminuria, podocyte effacement, and podocyte protrusions in the glomerular basement membrane, which support the candidacy of Fmn1 as a modifier gene for AS. CONCLUSION With this novel approach, we emulated the variability in the severity of kidney phenotypes found in human patients with Alport Syndrome through albuminuria and GFR measurements. This approach can identify modifier genes in kidney disease that can be used as novel therapeutic targets.
Collapse
Affiliation(s)
| | | | - Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | | | | | | | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | |
Collapse
|
21
|
Dembele M, Delafosse M, Yousfi N, Debiec H, Ngo K, Plaisier E, Ronco P, Perry G. [Models of glomerular filtration barrier : New developments]. Med Sci (Paris) 2021; 37:242-248. [PMID: 33739271 DOI: 10.1051/medsci/2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we present the latest innovations to generate in vitro models of the glomerular filtration barrier. There is currently a growing interest for such model systems that allow to reduce the use of animal models. Methodologies to improve their physiological relevance have taken advantage of the development of induced pluripotent stem cells and of bioengineering, particularly tissue engineering. Here, we first introduce the methods to overcome the limitations of the currently used glomerular cells based on the use of stem cells. The different approaches to obtain podocytes, the most important cells in the glomerulus, are presented. Finally, we emphasize the importance of the glomerular microenvironment in maintaining the glomerular cell phenotype, which can be achieved by co-culturing different glomerular cells, integration of biomaterials mimicking the extracellular matrix and introduction of flows with microfluidics.
Collapse
Affiliation(s)
- Mahamadou Dembele
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Marion Delafosse
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Nadhir Yousfi
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Hanna Debiec
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Kieu Ngo
- Sorbonne Université, CNRS, Laboratoire interfaces et systèmes électrochimiques, LISE, Campus Pierre et Marie Curie, 4 place Jussieu 75252 Paris, France
| | - Emmanuelle Plaisier
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Pierre Ronco
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Guillaume Perry
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France - CNRS, Sorbonne université, Laboratoire de génie électrique et électronique de Paris, GeePs, Campus Pierre et Marie Curie, 4 Place Jussieu 75252 Paris, France
| |
Collapse
|
22
|
Iampietro C, Bellucci L, Arcolino FO, Arigoni M, Alessandri L, Gomez Y, Papadimitriou E, Calogero RA, Cocchi E, Van Den Heuvel L, Levtchenko E, Bussolati B. Molecular and functional characterization of urine-derived podocytes from patients with Alport syndrome. J Pathol 2021; 252:88-100. [PMID: 32652570 PMCID: PMC7589231 DOI: 10.1002/path.5496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Alport syndrome (AS) is a genetic disorder involving mutations in the genes encoding collagen IV α3, α4 or α5 chains, resulting in the impairment of glomerular basement membrane. Podocytes are responsible for production and correct assembly of collagen IV isoforms; however, data on the phenotypic characteristics of human AS podocytes and their functional alterations are currently limited. The evident loss of viable podocytes into the urine of patients with active glomerular disease enables their isolation in a non‐invasive way. Here we isolated, immortalized, and subcloned podocytes from the urine of three different AS patients for molecular and functional characterization. AS podocytes expressed a typical podocyte signature and showed a collagen IV profile reflecting each patient's mutation. Furthermore, RNA‐sequencing analysis revealed 348 genes differentially expressed in AS podocytes compared with control podocytes. Gene Ontology analysis underlined the enrichment in genes involved in cell motility, adhesion, survival, and angiogenesis. In parallel, AS podocytes displayed reduced motility. Finally, a functional permeability assay, using a podocyte–glomerular endothelial cell co‐culture system, was established and AS podocyte co‐cultures showed a significantly higher permeability of albumin compared to control podocyte co‐cultures, in both static and dynamic conditions under continuous perfusion. In conclusion, our data provide a molecular characterization of immortalized AS podocytes, highlighting alterations in several biological processes related to extracellular matrix remodelling. Moreover, we have established an in vitro model to reproduce the altered podocyte permeability observed in patients with AS. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland..
Collapse
Affiliation(s)
- Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Fanny O Arcolino
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Alessandri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Yonathan Gomez
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Cocchi
- Department of Pediatric Nephrology, University of Torino, Torino, Italy.,Division of Nephrology and Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Lambertus Van Den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
23
|
Clotet-Freixas S, McEvoy CM, Batruch I, Pastrello C, Kotlyar M, Van JAD, Arambewela M, Boshart A, Farkona S, Niu Y, Li Y, Famure O, Bozovic A, Kulasingam V, Chen P, Kim SJ, Chan E, Moshkelgosha S, Rahman SA, Das J, Martinu T, Juvet S, Jurisica I, Chruscinski A, John R, Konvalinka A. Extracellular Matrix Injury of Kidney Allografts in Antibody-Mediated Rejection: A Proteomics Study. J Am Soc Nephrol 2020; 31:2705-2724. [PMID: 32900843 DOI: 10.1681/asn.2020030286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Antibody-mediated rejection (AMR) accounts for >50% of kidney allograft loss. Donor-specific antibodies (DSA) against HLA and non-HLA antigens in the glomeruli and the tubulointerstitium cause AMR while inflammatory cytokines such as TNFα trigger graft injury. The mechanisms governing cell-specific injury in AMR remain unclear. METHODS Unbiased proteomic analysis of laser-captured and microdissected glomeruli and tubulointerstitium was performed on 30 for-cause kidney biopsy specimens with early AMR, acute cellular rejection (ACR), or acute tubular necrosis (ATN). RESULTS A total of 107 of 2026 glomerular and 112 of 2399 tubulointerstitial proteins was significantly differentially expressed in AMR versus ACR; 112 of 2026 glomerular and 181 of 2399 tubulointerstitial proteins were significantly dysregulated in AMR versus ATN (P<0.05). Basement membrane and extracellular matrix (ECM) proteins were significantly decreased in both AMR compartments. Glomerular and tubulointerstitial laminin subunit γ-1 (LAMC1) expression decreased in AMR, as did glomerular nephrin (NPHS1) and receptor-type tyrosine-phosphatase O (PTPRO). The proteomic analysis revealed upregulated galectin-1, which is an immunomodulatory protein linked to the ECM, in AMR glomeruli. Anti-HLA class I antibodies significantly increased cathepsin-V (CTSV) expression and galectin-1 expression and secretion in human glomerular endothelial cells. CTSV had been predicted to cleave ECM proteins in the AMR glomeruli. Glutathione S-transferase ω-1, an ECM-modifying enzyme, was significantly increased in the AMR tubulointerstitium and in TNFα-treated proximal tubular epithelial cells. CONCLUSIONS Basement membranes are often remodeled in chronic AMR. Proteomic analysis performed on laser-captured and microdissected glomeruli and tubulointerstitium identified early ECM remodeling, which may represent a new therapeutic opportunity.
Collapse
Affiliation(s)
- Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie Anh Dung Van
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Madhurangi Arambewela
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yun Niu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yanhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Olusegun Famure
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrea Bozovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Peixuen Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - S Joseph Kim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Emilie Chan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Syed Ashiqur Rahman
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tereza Martinu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Juvet
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada .,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Abstract
The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.
Collapse
|
25
|
Wrede C, Hegermann J, Mühlfeld C. Novel cell contact between podocyte microprojections and parietal epithelial cells analyzed by volume electron microscopy. Am J Physiol Renal Physiol 2020; 318:F1246-F1251. [PMID: 32249613 DOI: 10.1152/ajprenal.00097.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Podocytes are highly specialized cells with a clear cell polarity. It is known that in health and disease, microvilli protrude from the apical surface of the podocytes into the urinary space. As a basis to better understand the podocyte microprojections/microvilli, the present study analyzed their spatial localization, extension, and contact site with parietal epithelial cells (PECs). Using different electron microscopic (EM) techniques, we analyzed renal corpuscles of healthy young adult male C57BL/6 mice fixed by vascular perfusion. Serial block-face scanning EM was used to visualize entire corpuscles, focused ion beam scanning EM was performed to characterize microprojection/microvilli-rich regions at higher magnification, and transmission EM of serial sections was used to analyze the contact zone between podocyte microprojections and PECs. Numerous microprojections originating from the primary processes of podocytes were present in the urinary space in all regions of the corpuscle. They often reached the apical surface of the PEC but did not make junctional contacts. At high resolution, it was observed that the glycocalyx of both cells was in contact. Depending on the distance between podocytes and PECs, these microprojections had a stretched or coiled state. The present study shows that microprojections/microvilli of podocytes are a physiological feature of healthy mouse kidneys and are frequently in contact with the apical surface of PECs, thus spanning the urinary space. It is proposed that podocyte microprojections serve mechanosensory or communicative functions between podocytes and PECs.
Collapse
Affiliation(s)
- Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Riesterer JL, López CS, Stempinski ES, Williams M, Loftis K, Stoltz K, Thibault G, Lanicault C, Williams T, Gray JW. A workflow for visualizing human cancer biopsies using large-format electron microscopy. Methods Cell Biol 2020; 158:163-181. [PMID: 32423648 DOI: 10.1016/bs.mcb.2020.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent developments in large format electron microscopy have enabled generation of images that provide detailed ultrastructural information on normal and diseased cells and tissues. Analyses of these images increase our understanding of cellular organization and interactions and disease-related changes therein. In this manuscript, we describe a workflow for two-dimensional (2D) and three-dimensional (3D) imaging, including both optical and scanning electron microscopy (SEM) methods, that allow pathologists and cancer biology researchers to identify areas of interest from human cancer biopsies. The protocols and mounting strategies described in this workflow are compatible with 2D large format EM mapping, 3D focused ion beam-SEM and serial block face-SEM. The flexibility to use diverse imaging technologies available at most academic institutions makes this workflow useful and applicable for most life science samples. Volumetric analysis of the biopsies studied here revealed morphological, organizational and ultrastructural aspects of the tumor cells and surrounding environment that cannot be revealed by conventional 2D EM imaging. Our results indicate that although 2D EM is still an important tool in many areas of diagnostic pathology, 3D images of ultrastructural relationships between both normal and cancerous cells, in combination with their extracellular matrix, enables cancer researchers and pathologists to better understand the progression of the disease and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jessica L Riesterer
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States; Multiscale Microscopy Core, Oregon Health and Sciences University, Portland, OR, United States.
| | - Claudia S López
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States; Multiscale Microscopy Core, Oregon Health and Sciences University, Portland, OR, United States; Pacific Northwest Center for CryoEM, Oregon Health and Sciences University, Portland, OR, United States.
| | - Erin S Stempinski
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States; Multiscale Microscopy Core, Oregon Health and Sciences University, Portland, OR, United States
| | - Melissa Williams
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States; Multiscale Microscopy Core, Oregon Health and Sciences University, Portland, OR, United States
| | - Kevin Loftis
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States
| | - Kevin Stoltz
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States
| | - Guillaume Thibault
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States
| | - Christian Lanicault
- Department of Pathology, Oregon Health and Sciences University, Portland, OR, United States
| | - Todd Williams
- Department of Pathology, Oregon Health and Sciences University, Portland, OR, United States
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Sciences University, Portland, OR, United States.
| |
Collapse
|
27
|
Sample Preparation and Stereological Methods for the Study of Glomerular Ultrastructure Using Electron Microscopy. Methods Mol Biol 2019. [PMID: 31701447 DOI: 10.1007/978-1-4939-9841-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this chapter we describe conventional methods used for preparing renal tissue for transmission electron microscopy. We also describe a relatively new technique, serial block face scanning electron microscopy. Protocols are given for processing, sectioning, and imaging of tissue along with methods for obtaining quantitative data from the results.
Collapse
|
28
|
Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, Ronco P, Cybulsky AV, Huber TB. From podocyte biology to novel cures for glomerular disease. Kidney Int 2019; 96:850-861. [PMID: 31420194 DOI: 10.1016/j.kint.2019.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The podocyte is a key component of the glomerular filtration barrier. Podocyte dysfunction is central to the underlying pathophysiology of many common glomerular diseases, including diabetic nephropathy, glomerulonephritis and genetic forms of nephrotic syndrome. Collectively, these conditions affect millions of people worldwide, and account for the majority of kidney diseases requiring dialysis and transplantation. The 12th International Podocyte Conference was held in Montreal, Canada from May 30 to June 2, 2018. The primary aim of this conference was to bring together nephrologists, clinician scientists, basic scientists and their trainees from all over the world to present their research and to establish networks with the common goal of developing new therapies for glomerular diseases based on the latest advances in podocyte biology. This review briefly highlights recent advances made in understanding podocyte structure and metabolism, experimental systems in which to study podocytes and glomerular disease, disease mediators, genetic and immune origins of glomerulopathies, and the development of novel therapeutic agents to protect podocyte and glomerular injury.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Paul R Goodyer
- Department of Pediatrics, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S 1155, and Nephrology and Dialysis Department, Hôpital Tenon, Paris France
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
29
|
Pullman JM. New Views of the Glomerulus: Advanced Microscopy for Advanced Diagnosis. Front Med (Lausanne) 2019; 6:37. [PMID: 30899761 PMCID: PMC6416220 DOI: 10.3389/fmed.2019.00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
New technologies are ready to revolutionize glomerular imaging and significantly improve or replace immunofluorescence and electron microscopy, which have driven research and diagnosis of glomerular diseases for over 50 years. Advanced forms of transmission and scanning electron microscopy have revealed the detailed spatial relationships of the glomerular basement membrane, podocytes, and endothelial cells. These may be overshadowed by super resolution microscopy (SRM), which combines the advantages of immunofluorescence and electron microscopy, offers high resolution identification of specific molecules, and images large, physiologically relevant volumes of the glomerulus. Rapidity, ease of use and low cost with some types of SRM make them potentially suitable for routine diagnosis. SRM visualizes structures below the classical diffraction limit of conventional light microscopy by adding a time variable to either the illumination of the specimen, or to the fluorescence signal emitted by it. Ensemble techniques vary illumination and include Structured Illumination Microscopy (SIM) and Stimulation Emission Depletion Microscopy (STED). Single molecule localization techniques vary the light emission by fluorescence labels in the specimen, and include Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM). Technologies such as expansion microscopy and genetic labeling can also create effective super resolution imaging by non-optical, specialized preparation techniques. All technologies require dark field fluorescence and some require computer image analysis and reconstruction. Replicating successful application in other areas of biology, SIM, STED, and STORM have visualized normal and nephrotic disease podocytes, and have confirmed their appearances to be similar to those seen by electron microscopy, but with added new information on cell configuration and protein localization. STORM has also localized podocyte cytoskeleton and adhesion proteins, and glomerular basement membrane proteins at a resolution never before possible. These pioneering efforts show the promise of super resolution microscopy, and lay the groundwork for future study and new diagnostic tools for glomerular diseases.
Collapse
Affiliation(s)
- James M Pullman
- Division of Anatomic Pathology, Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
30
|
Balkawade RS, Chen C, Crowley MR, Crossman DK, Clapp WL, Verlander JW, Marshall CB. Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening. Am J Physiol Renal Physiol 2019; 316:F1026-F1040. [PMID: 30810063 DOI: 10.1152/ajprenal.00359.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conditional gene targeting using Cre recombinase has offered a powerful tool to modify gene function precisely in defined cells/tissues and at specific times. However, in mammalian cells, Cre recombinase can be genotoxic. The importance of including Cre-expressing control mice to avoid misinterpretation and to maximize the validity of the experimental results has been increasingly recognized. While studying the role of podocytes in the pathogenesis of glomerular basement membrane (GBM) thickening, we used Cre recombinase driven by the podocyte-specific podocin promoter (NPHS2-Cre) to generate a conditional knockout. By conventional structural and functional measures (histology by periodic acid-Schiff staining, albuminuria, and plasma creatinine), we did not detect significant differences between NPHS2-Cre transgenic and wild-type control mice. However, surprisingly, the group that expressed Cre transgene alone developed signs of podocyte toxicity, including marked GBM thickening, loss of normal foot process morphology, and reduced Wilms tumor 1 expression. GBM thickening was characterized by altered expression of core structural protein laminin isoform α5β2γ1. RNA sequencing analysis of extracted glomeruli identified 230 genes that were significant and differentially expressed (applying a q < 0.05-fold change ≥ ±2 cutoff) in NPHS2-Cre mice compared with wild-type control mice. Many biological processes were reflected in the RNA sequencing data, including regulation of the extracellular matrix and pathways related to apoptosis and cell death. This study highlights the importance of including the appropriate controls for potential Cre-mediated toxicity in conditional gene-targeting experiments. Indeed, omitting the Cre transgene control can result in critical errors during interpretation of experimental data.
Collapse
Affiliation(s)
- Rohan S Balkawade
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chao Chen
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Michael R Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - William L Clapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Caroline B Marshall
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
31
|
Takaki T, Ohno N, Saitoh S, Nagai M, Joh K. Podocyte penetration of the glomerular basement membrane to contact on the mesangial cell at the lesion of mesangial interposition in lupus nephritis: a three-dimensional analysis by serial block-face scanning electron microscopy. Clin Exp Nephrol 2019; 23:773-781. [PMID: 30734164 DOI: 10.1007/s10157-019-01701-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/19/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The interaction among the glomerular components plays an important role in the development of glomerular lesions; thus, investigation of the ultrastructural three-dimensional (3D) configuration of the human glomerular cells and extracellular matrix (ECM) is important for understanding the pathogenesis of glomerulosclerosis, especially glomerulonephritis. METHODS We applied a new technique of serial block-face scanning electron microscopy (SBF-SEM), which helps to acquire serial electron microscopic images to reconstruct a 3D ultrastructure, to a human kidney biopsy specimen obtained from a 25-year-old woman with lupus nephritis. RESULTS SBF-SEM demonstrated that the cytoplasmic processes of the podocyte penetrated into the lamina densa of the glomerular basement membrane, and was in direct contact with the cytoplasm of mesangial cells at the site of mesangial interposition. CONCLUSION Although this is a single-case observational study, SBF-SEM revealed a unique 3D configuration, suggesting a novel mechanism of direct intercellular cross-communication between podocytes and mesangial cells, aside from the presumed paracrine communication.
Collapse
Affiliation(s)
- Takashi Takaki
- Division of Electron microscopy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan. .,Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi Aoba-ku, Sendai-shi, Miyagi-ken, 980-8575, Japan.
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0431, Japan.,Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myoudaiji-cho, Okazaki-shi, Aichi-ken, 444-8787, Japan
| | - Sei Saitoh
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki-shi, Aichi-ken, 444-8787, Japan.,Department of Anatomy II and Cell Biology, Fujita Health University School of Medicine, 1-98 Dengakubo, Kutsukake-cho, Toyoake-shi, Aichi-ken, 470-1192, Japan
| | - Masaaki Nagai
- Division of Nephrology, Narita Memorial Hospital, 134 Haneihonmachi, Toyohashi-shi, Aichi-ken, 441-8029, Japan
| | - Kensuke Joh
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi Aoba-ku, Sendai-shi, Miyagi-ken, 980-8575, Japan
| |
Collapse
|
32
|
Subcellular connectomic analyses of energy networks in striated muscle. Nat Commun 2018; 9:5111. [PMID: 30504768 PMCID: PMC6269443 DOI: 10.1038/s41467-018-07676-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
Mapping biological circuit connectivity has revolutionized our understanding of structure-function relationships. Although connectomic analyses have primarily focused on neural systems, electrical connectivity within muscle mitochondrial networks was recently demonstrated to provide a rapid mechanism for cellular energy distribution. However, tools to evaluate organelle connectivity with high spatial fidelity within single cells are currently lacking. Here, we developed a framework to quantitatively assess mitochondrial network connectivity and interactions with cellular sites of energy storage, utilization, and calcium cycling in cardiac, oxidative, and glycolytic muscle. We demonstrate that mitochondrial network configuration, individual mitochondrial size and shape, and the junctions connecting mitochondria within each network are consistent with the differing contraction demands of each muscle type. Moreover, mitochondria-lipid droplet interaction analyses suggest that individual mitochondria within networks may play specialized roles regarding energy distribution and calcium cycling within the cell and reveal the power of connectomic analyses of organelle interactions within single cells.
Collapse
|
33
|
Funk SD, Lin MH, Miner JH. Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane. Matrix Biol 2018; 71-72:250-261. [PMID: 29673759 PMCID: PMC6146048 DOI: 10.1016/j.matbio.2018.04.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
The glomerular basement membrane (GBM) is an important component of the kidney's glomerular filtration barrier. Like all basement membranes, the GBM contains type IV collagen, laminin, nidogen, and heparan sulfate proteoglycan. It is flanked by the podocytes and glomerular endothelial cells that both synthesize it and adhere to it. Mutations that affect the GBM's collagen α3α4α5(IV) components cause Alport syndrome (kidney disease with variable ear and eye defects) and its variants, including thin basement membrane nephropathy. Mutations in LAMB2 that impact the synthesis or function of laminin α5β2γ1 (LM-521) cause Pierson syndrome (congenital nephrotic syndrome with eye and neurological defects) and its less severe variants, including isolated congenital nephrotic syndrome. The very different types of kidney diseases that result from mutations in collagen IV vs. laminin are likely due to very different pathogenic mechanisms. A better understanding of these mechanisms should lead to targeted therapeutic approaches that can help people with these rare but important diseases.
Collapse
Affiliation(s)
- Steven D Funk
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Meei-Hua Lin
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Siegerist F, Endlich K, Endlich N. Novel Microscopic Techniques for Podocyte Research. Front Endocrinol (Lausanne) 2018; 9:379. [PMID: 30050501 PMCID: PMC6050355 DOI: 10.3389/fendo.2018.00379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/22/2018] [Indexed: 01/16/2023] Open
Abstract
Together with endothelial cells and the glomerular basement membrane, podocytes form the size-specific filtration barrier of the glomerulus with their interdigitating foot processes. Since glomerulopathies are associated with so-called foot process effacement-a severe change of well-formed foot processes into flat and broadened processes-visualization of the three-dimensional podocyte morphology is a crucial part for diagnosis of nephrotic diseases. However, interdigitating podocyte foot processes are too narrow to be resolved by classic light microscopy due to Ernst Abbe's law making electron microscopy necessary. Although three dimensional electron microscopy approaches like serial block face and focused ion beam scanning electron microscopy and electron tomography allow volumetric reconstruction of podocytes, these techniques are very time-consuming and too specialized for routine use or screening purposes. During the last few years, different super-resolution microscopic techniques were developed to overcome the optical resolution limit enabling new insights into podocyte morphology. Super-resolution microscopy approaches like three dimensional structured illumination microscopy (3D-SIM), stimulated emission depletion microscopy (STED) and localization microscopy [stochastic optical reconstruction microscopy (STORM), photoactivated localization microscopy (PALM)] reach resolutions down to 80-20 nm and can be used to image and further quantify podocyte foot process morphology. Furthermore, in vivo imaging of podocytes is essential to study the behavior of these cells in situ. Therefore, multiphoton laser microscopy was a breakthrough for in vivo studies of podocytes in transgenic animal models like rodents and zebrafish larvae because it allows imaging structures up to several hundred micrometer in depth within the tissue. Additionally, along with multiphoton microscopy, lightsheet microscopy is currently used to visualize larger tissue volumes and therefore image complete glomeruli in their native tissue context. Alongside plain visualization of cellular structures, atomic force microscopy has been used to study the change of mechanical properties of podocytes in diseased states which has been shown to be a culprit in podocyte maintenance. This review discusses recent advances in the field of microscopic imaging and demonstrates their currently used and other possible applications for podocyte research.
Collapse
Affiliation(s)
| | | | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Martin CE, Jones N. Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and Beyond. Front Endocrinol (Lausanne) 2018; 9:302. [PMID: 29922234 PMCID: PMC5996060 DOI: 10.3389/fendo.2018.00302] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Podocytes are a major component of the glomerular blood filtration barrier, and alterations to the morphology of their unique actin-based foot processes (FP) are a common feature of kidney disease. Adjacent FP are connected by a specialized intercellular junction known as the slit diaphragm (SD), which serves as the ultimate barrier to regulate passage of macromolecules from the blood. While the link between SD dysfunction and reduced filtration selectivity has been recognized for nearly 50 years, our understanding of the underlying molecular circuitry began only 20 years ago, sparked by the identification of NPHS1, encoding the transmembrane protein nephrin. Nephrin not only functions as the core component of the extracellular SD filtration network but also as a signaling scaffold via interactions at its short intracellular region. Phospho-regulation of several conserved tyrosine residues in this region influences signal transduction pathways which control podocyte cell adhesion, shape, and survival, and emerging studies highlight roles for nephrin phospho-dynamics in mechanotransduction and endocytosis. The following review aims to summarize the last 5 years of advancement in our knowledge of how signaling centered at nephrin directs SD barrier formation and function. We further provide insight on promising frontiers in podocyte biology, which have implications for SD signaling in the healthy and diseased kidney.
Collapse
|
36
|
Tabatabaeifar M, Wlodkowski T, Simic I, Denc H, Mollet G, Weber S, Moyers JJ, Brühl B, Randles MJ, Lennon R, Antignac C, Schaefer F. An inducible mouse model of podocin-mutation-related nephrotic syndrome. PLoS One 2017; 12:e0186574. [PMID: 29049388 PMCID: PMC5648285 DOI: 10.1371/journal.pone.0186574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/10/2017] [Indexed: 12/03/2022] Open
Abstract
Mutations in the NPHS2 gene, encoding podocin, cause hereditary nephrotic syndrome. The most common podocin mutation, R138Q, is associated with early disease onset and rapid progression to end-stage renal disease. Knock-in mice carrying a R140Q mutation, the mouse analogue of human R138Q, show developmental arrest of podocytes and lethal renal failure at neonatal age. Here we created a conditional podocin knock-in model named NPHS2R140Q/-, using a tamoxifen-inducible Cre recombinase, which permits to study the effects of the mutation in postnatal life. Within the first week of R140Q hemizygosity induction the animals developed proteinuria, which peaked after 4–5 weeks. Subsequently the animals developed progressive renal failure, with a median survival time of 12 (95% CI: 11–13) weeks. Foot process fusion was observed within one week, progressing to severe and global effacement in the course of the disease. The number of podocytes per glomerulus gradually diminished to 18% compared to healthy controls 12–16 weeks after induction. The fraction of segmentally sclerosed glomeruli was 25%, 85% and 97% at 2, 4 and 8 weeks, respectively. Severe tubulointerstitial fibrosis was present at later disease stage and was correlated quantitatively with the level of proteinuria at early disease stages. While R140Q podocin mRNA expression was elevated, protein abundance was reduced by more than 50% within one week following induction. Whereas miRNA21 expression persistently increased during the first 4 weeks, miRNA-193a expression peaked 2 weeks after induction. In conclusion, the inducible R140Q-podocin mouse model is an auspicious model of the most common genetic cause of human nephrotic syndrome, with a spontaneous disease course strongly reminiscent of the human disorder. This model constitutes a valuable tool to test the efficacy of novel pharmacological interventions aimed to improve podocyte function and viability and attenuate proteinuria, glomerulosclerosis and progressive renal failure.
Collapse
Affiliation(s)
- Mansoureh Tabatabaeifar
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tanja Wlodkowski
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ivana Simic
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Helga Denc
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Geraldine Mollet
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Stefanie Weber
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Philipps-University Marburg, Marburg, Germany
| | | | - Barbara Brühl
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Michael Joseph Randles
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Corinne Antignac
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Department of Genetics, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
37
|
Tsuji K, Suleiman H, Miner JH, Daley JM, Capen DE, Păunescu TG, Lu HAJ. Ultrastructural Characterization of the Glomerulopathy in Alport Mice by Helium Ion Scanning Microscopy (HIM). Sci Rep 2017; 7:11696. [PMID: 28916834 PMCID: PMC5601433 DOI: 10.1038/s41598-017-12064-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/01/2017] [Indexed: 01/19/2023] Open
Abstract
The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.
Collapse
Affiliation(s)
- Kenji Tsuji
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Hani Suleiman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Division of Nephrology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, MO, USA
| | - James M Daley
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diane E Capen
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Teodor G Păunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Hua A Jenny Lu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Assady S, Wanner N, Skorecki KL, Huber TB. New Insights into Podocyte Biology in Glomerular Health and Disease. J Am Soc Nephrol 2017; 28:1707-1715. [PMID: 28404664 DOI: 10.1681/asn.2017010027] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Podocyte and glomerular research is center stage for the development of improved preventive and therapeutic strategies for chronic progressive kidney diseases. Held April 3-6, 2016, the 11th International Podocyte Conference took place in Haifa and Jerusalem, Israel, where participants from all over the world presented their work on new developments in podocyte research. In this review, we briefly highlight the advances made in characterizing the mechanisms involved in podocyte development, metabolism, acquired injury, and repair, including progress in determining the roles of genetic variants and microRNA in particular, as well as the advances made in diagnostic techniques and therapeutics.
Collapse
Affiliation(s)
- Suheir Assady
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl L Skorecki
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel; .,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tobias B Huber
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany; .,BIOSS-Centre for Biological Signalling Studies and.,III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,ZBSA-Center for Biological Systems Analysis, Albert Ludwigs University, Freiburg, Germany; and
| |
Collapse
|
39
|
Abstract
The last 5 years have witnessed tremendous advances in both light- and electron-microscopic techniques in the biomedical sciences. Application of these new cutting-edge methods to glomerular biology has advanced considerably and, in part, completed our endeavor to draw a detailed map of the glomerular tuft. The scope of this review is to illustrate these new insights within both the morphometry of podocyte cells and the architecture of the glomerular filtration barrier and to assess whether these findings have indeed had an impact on our biological understanding of glomerular function.
Collapse
Affiliation(s)
- Florian Grahammer
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Breisacherstrasse 66, 79106, Freiburg, Germany. .,III. Medical Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
40
|
Abstract
In this commentary, I review recent advances in Alport syndrome genetics, diagnostics, and therapeutics. I also offer some opinions regarding strategies to optimize the early identification of affected individuals to promote early therapeutic intervention.
Collapse
Affiliation(s)
- Clifford Kashtan
- Department of Pediatrics, Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
41
|
Clark SD, Nabity MB, Cianciolo RE, Dufek B, Cosgrove D. X-Linked Alport Dogs Demonstrate Mesangial Filopodial Invasion of the Capillary Tuft as an Early Event in Glomerular Damage. PLoS One 2016; 11:e0168343. [PMID: 27959966 PMCID: PMC5154607 DOI: 10.1371/journal.pone.0168343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/29/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND X-linked Alport syndrome (XLAS), caused by mutations in the type IV collagen COL4A5 gene, accounts for approximately 80% of human Alport syndrome. Dogs with XLAS have a similar clinical progression. Prior studies in autosomal recessive Alport mice demonstrated early mesangial cell invasion as the source of laminin 211 in the glomerular basement membrane (GBM), leading to proinflammatory signaling. The objective of this study was to verify this process in XLAS dogs. METHODS XLAS dogs and WT littermates were monitored with serial clinicopathologic data and kidney biopsies. Biopsies were obtained at set milestones defined by the onset of microalbuminuria (MA), overt proteinuria, onset of azotemia, moderate azotemia, and euthanasia. Kidney biopsies were analyzed by histopathology, immunohistochemistry, and electron microscopy. RESULTS XLAS dogs showed progressive decrease in renal function and progressive increase in interstitial fibrosis and glomerulosclerosis (based on light microscopy and immunostaining for fibronectin). The only identifiable structural abnormality at the time of microalbuminuria was ultrastructural evidence of mild segmental GBM multilamination, which was more extensive when overt proteinuria developed. Co-localization studies showed that mesangial laminin 211 and integrin α8β1 accumulated in the GBM at the onset of overt proteinuria and coincided with ultrastructural evidence of mild cellular interpositioning, consistent with invasion of the capillary loops by mesangial cell processes. CONCLUSION In a large animal model, the induction of mesangial filopodial invasion of the glomerular capillary loop leading to the irregular deposition of laminin 211 is an early initiating event in Alport glomerular pathology.
Collapse
Affiliation(s)
- Sabrina D. Clark
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, Texas, United States of America
- * E-mail:
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, Texas, United States of America
| | - Rachel E. Cianciolo
- Department of Veterinary Biosciences, The Ohio State University Columbus, Ohio, United States of America
| | - Brianna Dufek
- Center for Basic Research, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Dominic Cosgrove
- Center for Basic Research, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| |
Collapse
|