1
|
Liu J, Zhang L, Liu L, Wu T, Wang L, Han Q. The potential capacities of FTY720: Novel therapeutic functions, targets, and mechanisms against diseases. Eur J Med Chem 2025; 290:117508. [PMID: 40120496 DOI: 10.1016/j.ejmech.2025.117508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Fingolimod (FTY720), an antagonist of sphingosine-1-phosphate (S1P), functions by binding to S1P receptors (S1PRs), excluding S1PR2. It received approval from the Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) in 2010. As the first non-selective oral agonist for S1PRs, FTY720's diverse and systemic receptor expression often leads to alterations in various signaling pathways and multiple systems, making it a subject of intense research. Recent studies have identified a wide range of novel or potential functions for FTY720 beyond its application in MS. These include effects on the blood-brain barrier (BBB), vascular system, organelles, and cell death, as well as potential applications in organ transplantation, immune disorders, oncological conditions, neurological and psychiatric disorders, viral infections, and hypersensitivity diseases. This paper reviews the novel roles, targets, and mechanisms of FTY720 that hold promise for clinical utility. Additionally, it summarizes FTY720's derivation and development process, the characterization and mechanism of the structure of FTY720-P bound to S1PRs, the clinical safety profile, future challenges, and potential strategies to address them. These insights aim to guide future research and applications of FTY720, maximizing its therapeutic potential.
Collapse
Affiliation(s)
- Juan Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lu Zhang
- Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, PR China
| | - Le Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Tianfeng Wu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lin Wang
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Qingzhen Han
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China.
| |
Collapse
|
2
|
Martin-Gutierrez L, Waddington KE, Maggio A, Coelewij L, Oppong AE, Yang N, Adriani M, Nytrova P, Farrell R, Pineda-Torra I, Jury EC. Dysregulated lipid metabolism networks modulate T-cell function in people with relapsing-remitting multiple sclerosis. Clin Exp Immunol 2024; 217:204-218. [PMID: 38625017 PMCID: PMC11239565 DOI: 10.1093/cei/uxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024] Open
Abstract
Altered cholesterol, oxysterol, sphingolipid, and fatty acid concentrations are reported in blood, cerebrospinal fluid, and brain tissue of people with relapsing-remitting multiple sclerosis (RRMS) and are linked to disease progression and treatment responses. CD4 + T cells are pathogenic in RRMS, and defective T-cell function could be mediated in part by liver X receptors (LXRs)-nuclear receptors that regulate lipid homeostasis and immunity. RNA-sequencing and pathway analysis identified that genes within the 'lipid metabolism' and 'signalling of nuclear receptors' pathways were dysregulated in CD4 + T cells isolated from RRMS patients compared with healthy donors. While LXRB and genes associated with cholesterol metabolism were upregulated, other T-cell LXR-target genes, including genes involved in cellular lipid uptake (inducible degrader of the LDL receptor, IDOL), and the rate-limiting enzyme for glycosphingolipid biosynthesis (UDP-glucosylceramide synthase, UGCG) were downregulated in T cells from patients with RRMS compared to healthy donors. Correspondingly, plasma membrane glycosphingolipids were reduced, and cholesterol levels increased in RRMS CD4 + T cells, an effect partially recapitulated in healthy T cells by in vitro culture with T-cell receptor stimulation in the presence of serum from RRMS patients. Notably, stimulation with LXR-agonist GW3965 normalized membrane cholesterol levels, and reduced proliferation and IL17 cytokine production in RRMS CD4 + T-cells. Thus, LXR-mediated lipid metabolism pathways were dysregulated in T cells from patients with RRMS and could contribute to RRMS pathogenesis. Therapies that modify lipid metabolism could help restore immune cell function.
Collapse
Affiliation(s)
| | - Kirsty E Waddington
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Annalisa Maggio
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Leda Coelewij
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Alexandra E Oppong
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Nina Yang
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Marsilio Adriani
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical, Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Rachel Farrell
- Department of Neuroinflammation, University College London and Institute of Neurology and National Hospital of Neurology and Neurosurgery, UK
| | - Inés Pineda-Torra
- Centre for Experimental & Translational Medicine, Division of Medicine, University College London, UK
| | - Elizabeth C Jury
- Centre for Rheumatology, Division of Medicine, University College London, UK
| |
Collapse
|
3
|
Robichon K, Bibi R, Kiernan M, Denny L, Prisinzano TE, Kivell BM, La Flamme AC. Enhanced and complementary benefits of a nalfurafine and fingolimod combination to treat immune-driven demyelination. Clin Transl Immunology 2023; 12:e1480. [PMID: 38090669 PMCID: PMC10714663 DOI: 10.1002/cti2.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to myelin sheaths. While all current disease-modifying treatments (DMTs) are very effective at reducing relapses, they do not slow the progression of the disease, and there is little evidence that these treatments are able to repair or remyelinate damaged axons. Recent evidence suggests that activating kappa opioid receptors (KORs) has a beneficial effect on the progression of MS, and this study investigates the effects of KOR agonists treatment in combination with two current DMTs. METHODS Using the well-established murine model for immune-driven demyelination of MS, experimental autoimmune encephalomyelitis, the effect of KOR agonists in combination with DMTs fingolimod or dimethyl fumarate on disease progression, immune cell infiltration and activation as well as myelination were analysed. RESULTS Fingolimod in combination with the KOR agonist, nalfurafine, significantly increased each individual beneficial effect as measured by increased recovery of mice and reduced relapses. These beneficial effects correlated with a reduction in immune cell infiltration into the CNS as well as peripheral immune cell alterations including a reduction in autoreactive CD4+ T-cell cytokine production as well as increased myelination in the spinal cords of co-treated animals. In contrast, while the use of dimethyl fumarate in combination with nalfurafine did not adversely affect the benefits of nalfurafine, the combination did not significantly enhance those benefits. CONCLUSION This study indicates that KOR agonists can be used in combination with fingolimod and dimethyl fumarate with the nalfurafine-fingolimod combination providing enhanced benefits.
Collapse
Affiliation(s)
- Katharina Robichon
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Rabia Bibi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Mackenzie Kiernan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Lisa Denny
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | | | - Bronwyn M Kivell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Anne Camille La Flamme
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
4
|
Vakrakou AG, Brinia ME, Alexaki A, Koumasopoulos E, Stathopoulos P, Evangelopoulos ME, Stefanis L, Stadelmann-Nessler C, Kilidireas C. Multiple faces of multiple sclerosis in the era of highly efficient treatment modalities: Lymphopenia and switching treatment options challenges daily practice. Int Immunopharmacol 2023; 125:111192. [PMID: 37951198 DOI: 10.1016/j.intimp.2023.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The expanded treatment landscape in relapsing-remitting multiple sclerosis (MS) has resulted in highly effective treatment options and complexity in managing disease- or drug-related events during disease progression. Proper decision-making requires thorough knowledge of the immunobiology of MS itself and an understanding of the main principles behind the mechanisms that lead to secondary autoimmunity affecting organs other than the central nervous system as well as opportunistic infections. The immune system is highly adapted to both environmental and disease-modifying agents. Immune reconstitution following cell depletion or cell entrapment therapies eliminates pathogenic aspects of the disease but can also lead to distorted immune responses with harmful effects. Atypical relapses occur with second-line treatments or after their discontinuation and require appropriate clinical decisions. Lymphopenia is a result of the mechanism of action of many drugs used to treat MS. However, persistent lymphopenia and cell-specific lymphopenia could result in disease exacerbation, secondary autoimmunity, or the emergence of opportunistic infections. Clinicians treating patients with MS should be aware of the multiple faces of MS under novel, efficient treatment modalities and understand the intricate brain-immune cell interactions in the context of an altered immune system. MS relapses and disease progression still occur despite the current treatment modalities and are mediated either by failure to control effector mechanisms inherent to MS pathophysiology or by new drug-related mechanisms. The multiple faces of MS due to the highly adapted immune system of patients impose the need for appropriate switching therapies that safeguard disease remission and further clinical improvement.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany.
| | - Maria-Evgenia Brinia
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Alexaki
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Koumasopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panos Stathopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
5
|
Dumitrescu L, Papathanasiou A, Coclitu C, Garjani A, Evangelou N, Constantinescu CS, Popescu BO, Tanasescu R. An update on the use of sphingosine 1-phosphate receptor modulators for the treatment of relapsing multiple sclerosis. Expert Opin Pharmacother 2023; 24:495-509. [PMID: 36946625 PMCID: PMC10069376 DOI: 10.1080/14656566.2023.2178898] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an immune-mediated disorder of the CNS manifested by recurrent attacks of neurological symptoms (related to focal inflammation) and gradual disability accrual (related to progressive neurodegeneration and neuroinflammation). Sphingosine-1-phosphate-receptor (S1PR) modulators are a class of oral disease-modifying therapies (DMTs) for relapsing MS. The first S1PR modulator developed and approved for MS was fingolimod, followed by siponimod, ozanimod, and ponesimod. All are S1P analogues with different S1PR-subtype selectivity. They restrain the S1P-dependent lymphocyte egress from lymph nodes by binding the lymphocytic S1P-subtype-1-receptor. Depending on their pharmacodynamics and pharmacokinetics, they can also interfere with other biological functions. AREAS COVERED Our narrative review covers the PubMed English literature on S1PR modulators in MS until August 2022. We discuss their pharmacology, efficacy, safety profile, and risk management recommendations based on the results of phase II and III clinical trials. We briefly address their impact on the risk of infections and vaccines efficacy. EXPERT OPINION S1PR modulators decrease relapse rate and may modestly delay disease progression in people with relapsing MS. Aside their established benefit, their place and timing within the long-term DMT strategy in MS, as well as their immunological effects in the new and evolving context of the post-COVID-19 pandemic and vaccination campaigns warrant further study.
Collapse
Affiliation(s)
- Laura Dumitrescu
- Department of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Athanasios Papathanasiou
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
| | - Catalina Coclitu
- Department of Multiple Sclerosis and Neuroimmunology, CHU Grenoble, Grenoble, France
| | - Afagh Garjani
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikos Evangelou
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Cris S Constantinescu
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Neurology, Cooper Neurological Institute, Camden, NJ, USA
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Radu Tanasescu
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Elkhodiry AA, Zamzam DA, El Tayebi HM. MicroRNA‑155 modulation of CD8 + T‑cell activity personalizes response to disease‑modifying therapies of patients with relapsing‑remitting multiple sclerosis. MEDICINE INTERNATIONAL 2023; 3:20. [PMID: 37032715 PMCID: PMC10080195 DOI: 10.3892/mi.2023.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/02/2023] [Indexed: 04/11/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease where activated immune cells can attack oligodendrocytes causing damage to the myelin sheath. Several molecular mechanisms are responsible for the auto-activation of immune cells such as RNA interference (RNAi) through microRNAs (miRNAs or miRs). In the present study, the role of miR-155 in regulating CD8+ T-cell activity in patients with relapsing-remitting multiple sclerosis (RRMS) was investigated, in terms of its migratory functions with regard to intracellular adhesion molecule-1 (ICAM1) and integrin subunit β2 (ITGB2), and its cytotoxic proteins, perforin and granzyme B. Gene expression of miR-155, ICAM1, ITGB2, perforin and granzyme B was evaluated following epigenetic modulations using reverse transcription-quantitative polymerase chain reaction in CD8+ T-cells isolated from blood samples of patients with RRMS and compared to healthy controls. The ectopic expression of miR-155 resulted in a persistent downregulation in all genes of interest related to CD8+ T-cell activation that were positively correlated with the Expanded Disability Status Scale of patients. The present study revealed the interplay between miR-155, ICAM1, and ITGB2, shedding light on their beneficial use as possible therapeutic regulators and diagnostic biomarkers of disease. Moreover, epigenetic modulations enhancing the efficacy of disease-modifying therapies (DMTs) may be employed as personalized therapy, to decrease the side effects of DMTs and improve the outcomes of patients.
Collapse
Affiliation(s)
- Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina A. Zamzam
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
7
|
Hamatani M, Ochi H, Kimura K, Ashida S, Hashi Y, Okada Y, Fujii C, Kawamura K, Mizuno T, Ueno H, Takahashi R, Kondo T. T cells from MS Patients with High Disease Severity Are Insensitive to an Immune-Suppressive Effect of Sulfatide. Mol Neurobiol 2022; 59:5276-5283. [PMID: 35689766 DOI: 10.1007/s12035-022-02881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Its early phase is characterized by a relapse-remitting disease course, followed by disability progression in the later stage. While chronic inflammation accompanied with degeneration is well-established as the key pathological feature, the pathogenesis of MS, particularly progressive MS, remains elusive. Sulfatide is a major glycolipid component of myelin, and previous studies in experimental autoimmune encephalomyelitis mouse models have demonstrated it to have immune-protective functions. Notably, sulfatide concentration is increased in the serum and cerebrospinal fluid of patients with MS, particularly those in a progressive disease course. Here, we show that the myelin-glycolipid sulfatide displays an ability to suppress the proliferation of polyclonally activated human T cells. Importantly, this suppressive effect was impaired in T cells obtained from MS patients having higher disability status. Therefore, it is plausible that progression of MS is associated with an escape from the immune-regulatory effect of sulfatide. Our study suggests that, although the precise mechanisms remain unrevealed, an escape of T cells from immunosuppression by sulfatide is associated with disease progression in the advanced stage. Further studies will provide novel insights into the pathogenesis of MS, particularly regarding disease progression, and help develop novel treatment strategies for this challenging disease.
Collapse
Affiliation(s)
- Mio Hamatani
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Hirofumi Ochi
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kimitoshi Kimura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Ashida
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichiro Hashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurology, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Yoichiro Okada
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurology, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Chihiro Fujii
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuyuki Kawamura
- Department of Neurology, National Hospital Organization Minami Kyoto Hospital, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Ueno
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.,Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takayuki Kondo
- Department of Neurology, Kansai Medical University Medical Center, Moriguchi, Japan.
| |
Collapse
|
8
|
Jamann H, Cui QL, Desu HL, Pernin F, Tastet O, Halaweh A, Farzam-kia N, Mamane VH, Ouédraogo O, Cleret-Buhot A, Daigneault A, Balthazard R, Klement W, Lemaître F, Arbour N, Antel J, Stratton JA, Larochelle C. Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Front Immunol 2022; 13:850616. [PMID: 35479072 PMCID: PMC9035748 DOI: 10.3389/fimmu.2022.850616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by the loss of myelin and of myelin-producing oligodendrocytes (OLs) in the central nervous system (CNS). Pro-inflammatory CD4+ Th17 cells are considered pathogenic in MS and are harmful to OLs. We investigated the mechanisms driving human CD4+ T cell-mediated OL cell death. Using fluorescent and brightfield in vitro live imaging, we found that compared to Th2-polarized cells, Th17-polarized cells show greater interactions with primary human OLs and human oligodendrocytic cell line MO3.13, displaying longer duration of contact, lower mean speed, and higher rate of vesicle-like structure formation at the sites of contact. Using single-cell RNA sequencing, we assessed the transcriptomic profile of primary human OLs and Th17-polarized cells in direct contact or separated by an insert. We showed that upon close interaction, OLs upregulate the expression of mRNA coding for chemokines and antioxidant/anti-apoptotic molecules, while Th17-polarized cells upregulate the expression of mRNA coding for chemokines and pro-inflammatory cytokines such as IL-17A, IFN-γ, and granzyme B. We found that secretion of CCL3, CXCL10, IFN-γ, TNFα, and granzyme B is induced upon direct contact in cocultures of human Th17-polarized cells with human OLs. In addition, we validated by flow cytometry and immunofluorescence that granzyme B levels are upregulated in Th17-polarized compared to Th2-polarized cells and are even higher in Th17-polarized cells upon direct contact with OLs or MO3.13 cells compared to Th17-polarized cells separated from OLs by an insert. Moreover, granzyme B is detected in OLs and MO3.13 cells following direct contact with Th17-polarized cells, suggesting the release of granzyme B from Th17-polarized cells into OLs/MO3.13 cells. To confirm granzyme B–mediated cytotoxicity toward OLs, we showed that recombinant human granzyme B can induce OLs and MO3.13 cell death. Furthermore, pretreatment of Th17-polarized cells with a reversible granzyme B blocker (Ac-IEPD-CHO) or a natural granzyme B blocker (serpina3N) improved survival of MO3.13 cells upon coculture with Th17 cells. In conclusion, we showed that human Th17-polarized cells form biologically significant contacts with human OLs and exert direct toxicity by releasing granzyme B.
Collapse
Affiliation(s)
- Hélène Jamann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Haritha L. Desu
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Alexandre Halaweh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Negar Farzam-kia
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Oumarou Ouédraogo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Renaud Balthazard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Wendy Klement
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Florent Lemaître
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Catherine Larochelle
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Catherine Larochelle,
| |
Collapse
|
9
|
Boldrini VO, Marques AM, Quintiliano RPS, Moraes AS, Stella CRAV, Longhini ALF, Santos I, Andrade M, Ferrari B, Damasceno A, Carneiro RPD, Brandão CO, Farias AS, Santos LMB. Cytotoxic B Cells in Relapsing-Remitting Multiple Sclerosis Patients. Front Immunol 2022; 13:750660. [PMID: 35197967 PMCID: PMC8859463 DOI: 10.3389/fimmu.2022.750660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Emerging evidence of antibody-independent functions, as well as the clinical efficacy of anti-CD20 depleting therapies, helped to reassess the contribution of B cells during multiple sclerosis (MS) pathogenesis. Objective To investigate whether CD19+ B cells may share expression of the serine-protease granzyme-B (GzmB), resembling classical cytotoxic CD8+ T lymphocytes, in the peripheral blood from relapsing-remitting MS (RRMS) patients. Methods In this study, 104 RRMS patients during different treatments and 58 healthy donors were included. CD8, CD19, Runx3, and GzmB expression was assessed by flow cytometry analyses. Results RRMS patients during fingolimod (FTY) and natalizumab (NTZ) treatment showed increased percentage of circulating CD8+GzmB+ T lymphocytes when compared to healthy volunteers. An increase in circulating CD19+GzmB+ B cells was observed in RRMS patients during FTY and NTZ therapies when compared to glatiramer (GA), untreated RRMS patients, and healthy donors but not when compared to interferon-β (IFN). Moreover, regarding Runx3, the transcriptional factor classically associated with cytotoxicity in CD8+ T lymphocytes, the expression of GzmB was significantly higher in CD19+Runx3+-expressing B cells when compared to CD19+Runx3- counterparts in RRMS patients. Conclusions CD19+ B cells may exhibit cytotoxic behavior resembling CD8+ T lymphocytes in MS patients during different treatments. In the future, monitoring “cytotoxic” subsets might become an accessible marker for investigating MS pathophysiology and even for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Vinícius O. Boldrini
- Autoimmune Research Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- *Correspondence: Vinícius O. Boldrini, ; Alessandro S. Farias, ; Leonilda M. B. Santos,
| | - Ana M. Marques
- Autoimmune Research Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Raphael P. S. Quintiliano
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Adriel S. Moraes
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carla R. A. V. Stella
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Ana Leda F. Longhini
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Irene Santos
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marília Andrade
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Breno Ferrari
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Rafael P. D. Carneiro
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- MS Clinic of Santa Casa de São Paulo (CATEM), Irmandade da Santa Casa de Misericordia de São Paulo, São Paulo, Brazil
| | - Carlos Otávio Brandão
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Alessandro S. Farias
- Autoimmune Research Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Experimental Medicine Research Cluster (EMRC), São Paulo, Brazil
- *Correspondence: Vinícius O. Boldrini, ; Alessandro S. Farias, ; Leonilda M. B. Santos,
| | - Leonilda M. B. Santos
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- *Correspondence: Vinícius O. Boldrini, ; Alessandro S. Farias, ; Leonilda M. B. Santos,
| |
Collapse
|
10
|
Florou DT, Mavropoulos A, Dardiotis E, Tsimourtou V, Siokas V, Aloizou AM, Liaskos C, Tsigalou C, Katsiari C, Sakkas LI, Hadjigeorgiou G, Bogdanos DP. Tetracyclines Diminish In Vitro IFN-γ and IL-17-Producing Adaptive and Innate Immune Cells in Multiple Sclerosis. Front Immunol 2021; 12:739186. [PMID: 34899697 PMCID: PMC8662812 DOI: 10.3389/fimmu.2021.739186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/16/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Limited data from clinical trials in multiple sclerosis (MS) reported that minocycline, a widely used antibiotic belonging to the family of tetracyclines (TCs), exerts a beneficial short-lived clinical effect A similar anti-inflammatory effect of minocycline attributed to a deviation from Th1 to Th2 immune response has been reported in experimental models of MS. Whether such an immunomodulatory mechanism is operated in the human disease remains largely unknown. Aim To assess the in vitro immunomodulatory effect of tetracyclines, and in particular minocycline and doxycycline, in naïve and treated patients with MS. Material and Methods Peripheral blood mononuclear cells from 45 individuals (35 MS patients, amongst which 15 naïve patients and 10 healthy controls, HCs) were cultured with minocycline or doxycycline and conventional stimulants (PMA/Ionomycin or IL-12/IL-18). IFN-γ and IL-17 producing T-, NK- and NKT cells were assessed by flow cytometry. The effect of TCs on cell viability and apoptosis was further assessed by flow cytometry with Annexin V staining. Results Both tetracyclines significantly decreased, in a dose dependent manner, IFN-γ production in NKT and CD4+ T lymphocytes from MS patients (naïve or treated) stimulated with IL-12/IL-18 but did not decrease IFN-γ producing CD8+ T cells from naive MS or treated RRMS patients. They also decreased IL-17+ T and NKT cells following PMA and Ionomycin-stimulation. Tetracyclines did not affect the viability of cell subsets. Conclusion Tetracyclines can in vitro suppress IFN-γ and IL-17- producing cells from MS patients, and this may explain their potential therapeutic effect in vivo.
Collapse
Affiliation(s)
- Despoina T Florou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vana Tsimourtou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios Hadjigeorgiou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
11
|
Elkhodiry AA, Zamzam DA, El Tayebi HM. miR-155 and functional proteins of CD8+ T cells as potential prognostic biomarkers for relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2021; 53:103078. [PMID: 34171684 DOI: 10.1016/j.msard.2021.103078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that results in neurological deficits in patients leading to disabilities which are evaluated on a scale known as the Expanded Disability Status Scale (EDSS). The most prevalent subtype of the disease is Relapsing-Remitting Multiple sclerosis (RRMS). One of the key players in MS pathogenesis is CD8+ T cells present in abundance in MS lesions expressing surface receptors, intracellular adhesion molecule (ICAM1) and integrin Subunit Beta 2 (ITGB2). These proteins are crucial for migration through the blood-brain barrier (BBB) and secondary stimulatory signal, along with the cytotoxic proteins perforin and granzymeB that attack oligodendrocytes. MicroRNAs (miRNAs) are small non-coding RNAs that play a substantial regulatory role in various disease pathogeneses through post-transcriptional modifications, and miR-155 shows potential for its use as a biomarker of the disease. The study aims at investigating the expression of miR-155, ICAM1, ITGB2, perforin and GranzymeB in CD8+ T cells of RRMS patients receiving different treatment regimens and how these genes correlate with patients' EDSS and miR-155 expression. METHODS Gene expression of miR-155, ICAM1, ITGB2, perforin and granzymeB was evaluated using RT-qPCR in CD8+ T cells isolated from blood samples of RRMS patients and compared to healthy controls. RESULTS Results showed downregulation of miR-155 and upregulation of surface receptors and cytotoxic proteins in CD8+T cells with significant correlation with each other and patients' EDSS. CONCLUSION This study helps pave the road for the discussed genes for their use as potential biomarkers of disease disability and future investigations on their regulatory roles in disease pathogenesis.
Collapse
Affiliation(s)
- Aya A Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dina A Zamzam
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hend M El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
| |
Collapse
|
12
|
Cytotoxic profile of CD3+CD20+ T cells in progressive multiple sclerosis. Mult Scler Relat Disord 2021; 52:103013. [PMID: 34030100 DOI: 10.1016/j.msard.2021.103013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
Recently, it was shown that highly effective anti-CD20 therapies used for MS patients not only deplete CD20+ B cells, but also a small subset of T cells expressing CD20 surface marker (CD3+CD20+ T cells). Here we demonstrated that, in progressive MS patients, CD3+CD20+ T cells share the ability to express cytotoxic factors such as perforin and serine-protease granzyme-B (GzmB), classically associated with CD8+ T cells functionality. Beyond it, cluster analyses show that a set of activation markers and transcriptional factors related with CD8 effector program are also expressed in CD3+CD20+ T cells. Further characterization of surface and functional markers from CD3+CD20+ T subsets may be helpful for development of new therapeutic strategies mainly for progressive MS patients, as well as for assessing pathophysiological effects of highly effective anti-CD20 therapies.
Collapse
|
13
|
Hawke S, Zinger A, Juillard PG, Holdaway K, Byrne SN, Grau GE. Selective modulation of trans-endothelial migration of lymphocyte subsets in multiple sclerosis patients under fingolimod treatment. J Neuroimmunol 2020; 349:577392. [PMID: 33007647 DOI: 10.1016/j.jneuroim.2020.577392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder where auto-aggressive T cells target the central nervous system (CNS), causing demyelination. The trans-endothelial migration of leucocytes across the blood-brain barrier (BBB) is one of the earliest CNS events in MS pathogenesis. We examined the effect of the disease state and treatment with fingolimod on the transmigration of peripheral blood mononuclear cells (PBMCs) in an in vitro BBB model. Patients' leucocyte numbers, subsets and phenotypes were assessed by flow cytometry. As expected, fingolimod treatment induced a significant reduction in T cell and B cell numbers compared to untreated MS patients and healthy controls. Interestingly fingolimod led to a marked reduction of CD4+ and a significant increase in CD8+ cell numbers. In migrated cells, only CD3+ cell numbers were reduced in fingolimod-treated, compared to untreated patients; it had no effect on B cell or monocyte transmigration. T cells were then differentiated into naïve, effector and memory subsets based on their expression of CCR7. This showed that MS patients had increased numbers of effector memory CD4+ cells re-expressing CD45RA (TEMRA) and a decrease in central memory (CM) CD8+ cells. The former was corrected by fingolimod, while the latter was not. CM CD4+ and CD8+ cells migrated across BBB more efficiently in fingolimod-treated patients. We found that while fingolimod reduced the proportions of naïve CD19+ B cells, it significantly increased the proportions of these cells which migrated. When B cells were further stratified based on CD24, CD27 and CD38 expression, the only effect of fingolimod was an enhancement of CD24hiCD27+ B cell migration, compared to untreated MS patients. The migratory capacities of CD8hi Natural Killer (NK), CD8dim NK and NK-T cells were also reduced by fingolimod. While the disease-modifying effects of fingolimod are currently explained by its effect on reducing circulating auto-aggressive lymphocytes, our data suggests that fingolimod may also have a direct though differential effect on the trans-endothelial migration of circulating lymphocyte populations.
Collapse
Affiliation(s)
- Simon Hawke
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia; Central West Neurology and Neurosurgery, Orange, NSW, Australia.
| | - Anna Zinger
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Pierre-Georges Juillard
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | | | - Scott N Byrne
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Georges E Grau
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| |
Collapse
|
14
|
Chiarini M, Paghera S, Moratto D, Rossi ND, Giacomelli M, Badolato R, Capra R, Imberti L. Immunologic characterization of a immunosuppressed multiple sclerosis patient that recovered from SARS-CoV-2 infection. J Neuroimmunol 2020; 345:577282. [PMID: 32505908 PMCID: PMC7256606 DOI: 10.1016/j.jneuroim.2020.577282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 01/02/2023]
Abstract
A multiple sclerosis patient infected by SARS-CoV-2 during fingolimod therapy was hospitalized with moderate clinical features, and recovered in 15 days. High levels of CCL5 and CCL10 chemokines and of antibody-secreting B cells were detected, while the levels other B- and T-cell subsets were comparable to that of appropriate controls. However, CD4+ and CD8+ cells were oligoclonally expanded and prone to apoptosis when stimulated in vitro. This study suggests that fingolimod-immunosuppressed patients, despite the low circulating lymphocytes, may rapidly expand antibody-secreting cells and mount an effective immune response that favors COVID-19 recovery after drug discontinuation.
Collapse
Affiliation(s)
- Marco Chiarini
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Simone Paghera
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Daniele Moratto
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola De Rossi
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Mauro Giacomelli
- Molecular Medicine Institute "Angelo Nocivelli", Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Molecular Medicine Institute "Angelo Nocivelli", Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
15
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
16
|
Ghadiri M, Rezk A, Li R, Evans A, Giacomini PS, Barnett MH, Antel J, Bar-Or A. Pre-treatment T-cell subsets associate with fingolimod treatment responsiveness in multiple sclerosis. Sci Rep 2020; 10:356. [PMID: 31941953 PMCID: PMC6962338 DOI: 10.1038/s41598-019-57114-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
Biomarkers predicting fingolimod (FTY) treatment response in relapsing-remitting multiple sclerosis (RRMS) are lacking. Here, we performed extensive functional immunophenotyping using multiparametric flow cytometry to examine peripheral immune changes under FTY treatment and explore biomarkers of FTY treatment response. From among 135 RRMS patients who initiated FTY in a 2-year multicentre observational study, 36 were classified as ‘Active’ or ‘Stable’ based on clinical and/or radiological activity on-treatment. Flow cytometric analysis of immune cell subsets was performed on pre- and on-treatment peripheral blood mononuclear cells (PBMC) samples. Decreased absolute counts of B cells and most T-cell subsets were seen on-treatment. Senescent CD8 + T cells, CD56 + T cells, CD56dim natural killer cells, monocytes and dendritic cells were not reduced in number and hence relatively increased in frequency on-treatment. An unbiased multiparametric and traditional manual analysis of T-cell subsets suggested a higher pre-treatment frequency of CD4 + central memory T cells (TCM) in patients who were subsequently Active versus Stable on-treatment. Lower pre-treatment terminally differentiated effector memory (TEMRA) cell frequencies were also seen in the subsequently Active cohort. Together, our data highlight differential effects of FTY on peripheral immune cell subsets and suggest that pre-treatment T-cell subset frequencies may have value in predicting FTY treatment response.
Collapse
Affiliation(s)
- Mahtab Ghadiri
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ayman Rezk
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Center for Neuroinflammation and Experimental Therapeutics, and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Li
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Center for Neuroinflammation and Experimental Therapeutics, and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Paul S Giacomini
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Jack Antel
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Amit Bar-Or
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada. .,Center for Neuroinflammation and Experimental Therapeutics, and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Webb LM, Narvaez Miranda J, Amici SA, Sengupta S, Nagy G, Guerau-de-Arellano M. NF-κB/mTOR/MYC Axis Drives PRMT5 Protein Induction After T Cell Activation via Transcriptional and Non-transcriptional Mechanisms. Front Immunol 2019; 10:524. [PMID: 30941147 PMCID: PMC6433977 DOI: 10.3389/fimmu.2019.00524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) mediated by CD4+ T cells and modeled via experimental autoimmune encephalomyelitis (EAE). Inhibition of PRMT5, the major Type II arginine methyltransferase, suppresses pathogenic T cell responses and EAE. PRMT5 is transiently induced in proliferating memory inflammatory Th1 cells and during EAE. However, the mechanisms driving PRMT5 protein induction and repression as T cells expand and return to resting is currently unknown. Here, we used naive mouse and memory mouse and human Th1/Th2 cells as models to identify mechanisms controlling PRMT5 protein expression in initial and recall T cell activation. Initial activation of naive mouse T cells resulted in NF-κB-dependent transient Prmt5 transcription and NF-κB, mTOR and MYC-dependent PRMT5 protein induction. In murine memory Th cells, transcription and miRNA loss supported PRMT5 induction to a lesser extent than in naive T cells. In contrast, NF-κB/MYC/mTOR-dependent non-transcriptional PRMT5 induction played a major role. These results highlight the importance of the NF-κB/mTOR/MYC axis in PRMT5-driven pathogenic T cell expansion and may guide targeted therapeutic strategies for MS.
Collapse
Affiliation(s)
- Lindsay M Webb
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Janiret Narvaez Miranda
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephanie A Amici
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shouvonik Sengupta
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Gregory Nagy
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Mireia Guerau-de-Arellano
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Cohen JA, Bar-Or A, Cree BAC, Mao-Draayer Y, Han MH, Singer B, Jannu A, Kolodny S, Meng X, Winger RC. The FLUENT study design: investigating immune cell subset and neurofilament changes in patients with relapsing multiple sclerosis treated with fingolimod. Mult Scler J Exp Transl Clin 2019; 5:2055217318819245. [PMID: 30637116 PMCID: PMC6318720 DOI: 10.1177/2055217318819245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
Abstract
Background Fingolimod is a sphingosine 1-phosphate receptor modulator for the treatment of patients with relapsing forms of multiple sclerosis (RMS). Fingolimod sequesters lymphocytes within lymphoid tissue thereby reducing the counts of circulating lymphocytes. However, fingolimod's effects on the innate and adaptive components of the immune system are incompletely understood. Objective The FLUENT study will investigate temporal changes in circulating immune cell subsets in patients with RMS treated with fingolimod. Secondary objectives include examining the association between anti-John Cunningham virus (JCV) antibody status/index and phenotypic changes in innate and T and B cell subsets in patients on fingolimod therapy, and the association between serum neurofilament levels and clinical outcomes. Methods FLUENT is a prospective, multicenter, two-cohort, nonrandomized, open-label Phase IV study. Cohort 1 will include fingolimod-naïve patients and Cohort 2 will include patients who have received fingolimod 0.5 mg/day continuously for ≥2 years. Changes in the cellular components of the innate and adaptive immune system will be characterized over 12 months. Results The study is ongoing. Conclusion FLUENT may provide evidence for the use of immunologic profiling in predicting efficacy and risk of infection in patients with RMS treated with fingolimod.
Collapse
Affiliation(s)
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - May H Han
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Barry Singer
- The MS Center for Innovations in Care, Missouri Baptist Medical Center, St Louis, MO, USA
| | - Ann Jannu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Scott Kolodny
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Xiangyi Meng
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Ryan C Winger
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
19
|
Dumitrescu L, Constantinescu CS, Tanasescu R. Siponimod for the treatment of secondary progressive multiple sclerosis. Expert Opin Pharmacother 2018; 20:143-150. [PMID: 30517042 DOI: 10.1080/14656566.2018.1551363] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic central nervous system immune-mediated disease with an important inflammatory component associated with focal demyelination and widespread neurodegeneration. In most cases, the clinical presentation is relapsing-remitting, followed by a secondary progressive phase, characterized by disability accrual unrelated to relapses. In a minority, the phenotype is progressive from the beginning. Major therapeutic achievements have been made concerning the relapsing phase but modifying the evolution of progressive MS remains an unmet need. Areas covered: This review covers siponimod (BAF312), a new sphingosine 1-phosphate receptor modulator, and its role in the treatment of secondary progressive MS. The authors reviewed PubMed English literature using the keywords 'siponimod' or 'BAF312' and 'multiple sclerosis.' They also present the pharmacological profile of siponimod, as well as clinical efficacy and safety, with emphasis on the recently published results of a Phase III trial. Phase II data in relapsing MS are also summarized. Expert opinion: Siponimod may reduce the activity of the disease and has a modest effect on the gradual disability accrual. If approved, it may become one of the few available therapy options for secondary progressive MS.
Collapse
Affiliation(s)
- Laura Dumitrescu
- a Department of Neurosciences, University of Medicine and Pharmacy Carol Davila, Department of Neurology , Colentina Hospital , Bucharest , Romania
| | - Cris S Constantinescu
- b Academic Clinical Neurology, Division of Clinical Neuroscience , University of Nottingham , Nottingham , UK
| | - Radu Tanasescu
- a Department of Neurosciences, University of Medicine and Pharmacy Carol Davila, Department of Neurology , Colentina Hospital , Bucharest , Romania.,b Academic Clinical Neurology, Division of Clinical Neuroscience , University of Nottingham , Nottingham , UK
| |
Collapse
|
20
|
Oukka M, Bettelli E. Regulation of lymphocyte trafficking in central nervous system autoimmunity. Curr Opin Immunol 2018; 55:38-43. [PMID: 30268837 DOI: 10.1016/j.coi.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
CD4+ T helper (Th) cells play a central role in orchestrating protective immunity but also in autoimmunity. Multiple Sclerosis (MS) is a human autoimmune disease of the central nervous system (CNS) characterized by the infiltration of inflammatory lymphocytes and myeloid cells into the brain and spinal cord, leading to demyelination, axonal damage, and progressive loss of motor functions. The release of T cells in the circulation and their migration in the central nervous system are key and tightly regulated processes which have been targeted to decrease CD4+ T cell presence in the CNS and limit disease progression. Here, we review two of these pathways and discuss how their blockade modulate different subsets of CD4+ T cells.
Collapse
Affiliation(s)
- Mohamed Oukka
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, WA, 98101, USA; University of Washington, Department of Immunology, Seattle, WA, 98105, USA.
| | - Estelle Bettelli
- Benaroya Research Institute at Virginia Mason, Immunology Program, Seattle, WA, 98101, USA; University of Washington, Department of Immunology, Seattle, WA, 98105, USA.
| |
Collapse
|
21
|
Dominguez-Villar M, Raddassi K, Danielsen AC, Guarnaccia J, Hafler DA. Fingolimod modulates T cell phenotype and regulatory T cell plasticity in vivo. J Autoimmun 2018; 96:40-49. [PMID: 30122421 DOI: 10.1016/j.jaut.2018.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Fingolimod is an approved therapeutic option for patients with relapsing-remitting multiple sclerosis that primarily functions by sequestering T cells in lymph nodes inhibiting their egress to the central nervous system. However, recent data suggests that Fingolimod may also directly affect the immune cell function. Here we examined the in vivo effects of Fingolimod in modulating the phenotype and function of T cell and Foxp3 regulatory T cell populations in patients with multiple sclerosis under Fingolimod treatment. Besides decreasing the cell numbers in peripheral blood and sera levels of pro-inflammatory cytokines, Fingolimod inhibited the expression of Th1 and Th17 cytokines on CD4+ T cells and increased the expression of exhaustion markers. Furthermore, treatment increased the frequency of regulatory T cells in blood and inhibited the Th1-like phenotype that is characteristic of patients with multiple sclerosis, augmenting the expression of markers associated with increased suppressive function. Overall, our data suggest that Fingolimod performs other important immunomodulatory functions besides altering T cell migratory capacities, with consequences for other autoimmune pathologies characterized by excessive Th1/Th17 responses and Th1-like regulatory T cell effector phenotypes.
Collapse
Affiliation(s)
| | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Joseph Guarnaccia
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Role of Immunological Memory Cells as a Therapeutic Target in Multiple Sclerosis. Brain Sci 2017; 7:brainsci7110148. [PMID: 29112130 PMCID: PMC5704155 DOI: 10.3390/brainsci7110148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
Pharmacological targeting of memory cells is an attractive treatment strategy in various autoimmune diseases, such as psoriasis and rheumatoid arthritis. Multiple sclerosis is the most common inflammatory disorder of the central nervous system, characterized by focal immune cell infiltration, activation of microglia and astrocytes, along with progressive damage to myelin sheaths, axons, and neurons. The current review begins with the identification of memory cell types in the previous literature and a recent description of the modulation of these cell types in T, B, and resident memory cells in the presence of different clinically approved multiple sclerosis drugs. Overall, this review paper tries to determine the potential of memory cells to act as a target for the current or newly-developed drugs.
Collapse
|
23
|
Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front Immunol 2017; 8:892. [PMID: 28791027 PMCID: PMC5522883 DOI: 10.3389/fimmu.2017.00892] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 11/13/2022] Open
Abstract
Over the past years, the phenotypic and functional boundaries distinguishing the main cell subsets of the immune system have become increasingly blurred. In this respect, CD56 (also known as neural cell adhesion molecule) is a very good example. CD56 is the archetypal phenotypic marker of natural killer cells but can actually be expressed by many more immune cells, including alpha beta T cells, gamma delta T cells, dendritic cells, and monocytes. Common to all these CD56-expressing cell types are strong immunostimulatory effector functions, including T helper 1 cytokine production and an efficient cytotoxic capacity. Interestingly, both numerical and functional deficiencies and phenotypic alterations of the CD56+ immune cell fraction have been reported in patients with various infectious, autoimmune, or malignant diseases. In this review, we will discuss our current knowledge on the expression and function of CD56 in the hematopoietic system, both in health and disease.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Anna Capsomidis
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
24
|
Yoshii F, Moriya Y, Ohnuki T, Ryo M, Takahashi W. Neurological safety of fingolimod: An updated review. ACTA ACUST UNITED AC 2017; 8:233-243. [PMID: 28932291 PMCID: PMC5575715 DOI: 10.1111/cen3.12397] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/23/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Fingolimod (FTY) is the first oral medication approved for treatment of relapsing–remitting multiple sclerosis (RRMS). Its effectiveness and safety were confirmed in several phase III clinical trials, but proper evaluation of safety in the real patient population requires long‐term post‐marketing monitoring. Since the approval of FTY for RRMS in Japan in 2011, it has been administered to approximately 5000 MS patients, and there have been side‐effect reports from 1750 patients. Major events included infectious diseases, hepatobiliary disorders, nervous system disorders and cardiac disorders. In the present review, we focus especially on central nervous system adverse events. The topics covered are: (i) clinical utility of FTY; (ii) safety profile; (iii) post‐marketing adverse events in Japan; (iv) white matter (tumefactive) lesions; (v) rebound after FTY withdrawal; (vi) relationship between FTY and progressive multifocal leukoencephalopathy; (vii) FTY and progressive multifocal leukoencephalopathy‐related immune reconstitution inflammatory syndrome; and (viii) neuromyelitis optica and leukoencephalopathy.
Collapse
Affiliation(s)
- Fumihito Yoshii
- Department of Neurology Saiseikai Hiratsuka Hospital Hiratsuka Japan.,Department of Neurology Tokai University Oiso Hospital Oiso Japan
| | - Yusuke Moriya
- Department of Neurology Tokai University Oiso Hospital Oiso Japan
| | - Tomohide Ohnuki
- Department of Neurology Tokai University Oiso Hospital Oiso Japan
| | - Masafuchi Ryo
- Department of Neurology Tokai University Oiso Hospital Oiso Japan
| | - Wakoh Takahashi
- Department of Neurology Tokai University Oiso Hospital Oiso Japan
| |
Collapse
|
25
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|